
u n i ve r s i t y  o f  co pe n h ag e n  

Improving natural language processing with human data

Eye tracking and other data sources reflecting cognitive text processing

Barrett, Maria

Publication date:
2018

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY-NC-ND

Citation for published version (APA):
Barrett, M. (2018). Improving natural language processing with human data: Eye tracking and other data
sources reflecting cognitive text processing. Det Humanistiske Fakultet, Københavns Universitet.

Download date: 09. apr.. 2020

https://curis.ku.dk/portal/da/persons/maria-jung-barrett(45ecfb6f-78b7-405c-8bce-f8003b822bf9).html
https://curis.ku.dk/portal/da/publications/improving-natural-language-processing-with-human-data(d7912525-4c39-49b4-9aad-66a84b899371).html
https://curis.ku.dk/portal/da/publications/improving-natural-language-processing-with-human-data(d7912525-4c39-49b4-9aad-66a84b899371).html


I M P R O V I N G N AT U R A L L A N G U A G E P R O C E S S I N G W I T H
H U M A N D ATA

maria barrett

Eye tracking and other data sources reflecting cognitive text processing

Department of Nordic Studies and Linguistics
Faculty of Humanities

University of Copenhagen

July 2018



Maria Barrett: Improving natural language processing with human data:
Eye tracking and other data sources reflecting cognitive text processing

Supervisor

Anders Søgaard, Prof., Dr. Phil., PhD
Department of Computer Science, Faculty of Science, University of
Copenhagen

Affiliation

Centre for Language Technology, Department of Nordic Studies and
Linguistics, Faculty of Humanities, University of Copenhagen

Submitted

Juli 30, 2018



A B S T R A C T

When humans perform everyday tasks like reading, speaking, and
writing, they cognitively also complete many of the tasks that natural
language processing strives for computers to replicate. The traces of
human cognitive processing can be collected in various data sources
such as eye tracking during reading, keystroke logs from typing and
acoustic cues, where milliseconds matter.

We successfully improve supervised cross-domain part-of-speech
tagging and parsing using eye-tracking data. We also present first ev-
idence that we can impove weakly supervised part-of-speech induc-
tion for English and French using eye-tracking features from reading.
We furthermore demonstrate transfer across related languages by us-
ing English eye-tracking recordings to improve French part-of-speech
induction. The English experiment utilizes our Universal Dependency
annotation layer on top of the – at the time – largest available eye-
tracking corpus. For part-of-speech induction, eye-tracking data can
further be supported by other sources of human features reflecting
the cognitive processing of text, such as acoustic features and features
from keystroke logs.

We present a novel way of regularizing the attention of a recurrent
neural network with human attention derived from gaze features. We
utilize the inductive bias from human attention to consistently im-
prove a range of sequence classification tasks, such as detection of
abusive language, grammatical error detection, and sentiment classi-
fication.

Technology for recording keystroke logs and prosody features is
already common. And the recent advancements of low-cost eye track-
ing technology promise eye-tracking data to be available in larger
quantities, also for low-resource languages. Real-world eye-tracking
data poses new challenges compared to laboratory data. One study in
this thesis presents first evidence that despite the noise and idiosyn-
crasies, real-world reading data recorded with a consumer-grade eye
tracker can be modeled in machine learning models.

In this thesis, we show that there is an unused potential for utiliz-
ing eye tracking and other data sources reflecting human cognitive
processing of text for natural language processing.



R E S U M É

Hverdagsaktiviteter såsom at læse, skrive og tale afspejler menne-
skers kognitive processering af tekst. Mennesker løser ubevidst op-
gaver, som natursprogsprocessing prøver at få computere til at efter-
ligne. Spor efter den menneskelige processering af tekst kan blive
opsamlet igennem øjenbevægelser fra læsning, tastaturtryk fra skriv-
ning og lydoptagelser af tale. Millisekunders forskel afslører væsent-
lige forskelle.

Vi forbedrer superviseret opmærkning af ordklasse og syntaks på
tværs af tekstdomæner ved hjælp af øjenbevægelsesdata. Vi er også
de første til at forbedre ordklasseopmærkning uden brug af opmær-
ket træningsdata for engelsk og fransk. Vi viser endda at signalet bli-
ver overført mellem beslægtede sprog, således at vi kan bruge engelsk
øjenbevægelsesdata til at forbedre fransk ordklasseopmærkning. Til
de engelske ordklaseeksperimenter bruger vi vores egen Universal De-
pendencies-annotering af det – på den tid – største øjenbevægelses-
korpus. Øjenbevægelsesdata kan yderligere blive hjulpet ved at blive
kombineret med andre datatyper, der også afspejler kognitiv proces-
sering af tekst. Vi kombinerer med akustisk data og tastaturtryk til
ordklasseopmærkning.

Vi præsenterer også en ny måde at vægte hvert ord ved hjælp af
øjenbevægelser i et dybt neuralt netværk. Dette bruger vi til konsi-
stent at forbedre en række tekstklassificeringsopgaver. Vi opfanger
diskriminerende sprog, grammatiske fejl samt holdninger/følelser ud-
trykt i teksten.

Teknologi til at optage tastaturtryk og tale er allerede udbredt. Og
de nyeste opfindelser har også gjort eyetrackere til at betale, således
at vi må forvente at kunne få adgang til større mængder øjenbevæ-
gelsesdata, selv for sprog hvor der normalt ikke findes opmærkede
tekstressourcer. Øjenbevægelsesdata fra den virkelige verden intro-
ducerer nye udfordringer i forhold til data optaget i laboratorier. Et
studie i denne afhandling viser, at vi kan modellere øjenbevægelses-
data fra den virkelige verden optaget med en billigere eyetracker i
maskinlæringsmodeller på trods af datastøj og idiosynkrasier.

Denne afhandling viser, at der er et uudnyttet potentiale for natur-
sprogsprocessering i forhold til at bruge øjenbevægelsesdata og andre
datakilder, der afspejler kognitiv processing af tekst.
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thesis structure
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Part I

O V E RV I E W A N D B A C K G R O U N D





1
O V E RV I E W

Eye movements during reading provide one of the richest known
data sources reflecting the human processing of text. It is a simple
and non-invasive way of studying human cognition. During normal
reading, the cognitive processing signal is implicit in the data. It
has been extensively explored in psycholinguistic laboratory studies
which have identified several layers of linguistic processing e.g. syn-
tactic and morphological processing reflected in the gaze data (Fra-
zier and Rayner, 1982; Hyönä, Bertram, and Pollatsek, 2004).

The field of natural language processing (NLP) strives to make ma-
chines capable of solving tasks that humans readily detect in the
process of making sense of text. These tasks include part-of-speech
(POS) tagging, parsing, anaphora resolution, sentiment classification,
sarcasm detection, and semantic labeling among others. Cognitive
studies have repeatedly confirmed that there is a tight relationship
between word-based, eye-tracking metrics and the linguistic/lexical
properties of a word. Just and Carpenter (1980) and Rayner (1977)
were the first to report frequency effect and this has been confirmed
many times, also when controlling for confounding factors (Rayner
and Duffy, 1986). My work is motivated by the cognitive studies
that report such links between cognition and gaze behavior. The key
studies are presented and referenced within their individual chapters
whereas Chapter 2 introduces a basic introduction to eye-tracking.

The best-performing NLP models rely on vast amounts of text that
have been annotated by trained professionals1. These are called su-
pervised machine learning (ML) models and learn a model based on
annotated training data. Unsupervised models, on the contrary, learn
patterns, for example clusters, from features in unlabeled training
data. We use an unsupervised hidden Markov model (HMM) for POS

induction that is type-constrained by a crowdsourced dictionary. All
predictions are limited to the set of possible tags for a certain word
type according to the dictionary. This makes this approach weakly
supervised2. The model is described in detail in Chapter 6.

There are more than 7,000 languages in the world3, but very few
of them have annotated resources for training. This creates a global
bias. Very few languages – and typically the major Indo-European
languages – have a lot of annotated resources, but for the majority of
the worlds languages, no annotated resources exist.

1 https://github.com/sebastianruder/NLP-progress
2 This distinction is used in all papers except Chapter 8.
3 http://www.ethnologue.com/world

http://www.ethnologue.com/world
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Responsible tourism lies in absolute respect for the location and its inhabitants

ADJ NOUN VERB ADP ADJ NOUN ADP DET NOUN CONJ PRON NOUN

319 271 319 169 255 208 162 191 205 108 147 382

Table 1.1: An example sentence annotated with Universal part-of-speech
(UPOS) and total fixation duration in ms averaged over all read-
ers of The Dundee Corpus (Kennedy, Hill, and Pynte, 2003)

The main concern of this thesis is models not relying on annotated
training data where the impact of the application seems more com-
pelling. It is motivated by a wish to improve unsupervised NLP by
using the processing signal in readers which would mainly benefit
low-resource languages. The experiments have been working towards
methods that do not rely on human data at test time, which is a more
resource-efficient setup.

This thesis presents work that demonstrates that NLP models can
benefit from including eye-tracking data from reading. We show that
both supervised and weakly supervised ML models can benefit from
even modest amounts of eye-tracking reading data. One study in this
thesis also combines eye-tracking data with other data sources reflect-
ing human processing, namely acoustic features and keystroke logs.

The current developments in eye-tracker hardware promise that
eye-tracking data from the real world can become available on a larger
scale in the very near future. This means that it will be feasible to
gather larger amounts of reading data for improving NLP for low-
resource languages, for example. The combination of implicitness and
versatility makes eye tracking a high-gain data source for NLP.

1.1 scope

My work is firmly based on the field of cognitive science, but as such,
does not contribute to this particular field. It contributes to the field
of NLP. Work described in this thesis was initialised by findings in the
cognitive field. The studies rely on these conclusions and use machine
learning (ML) and data reflecting human text processing to tackle NLP

tasks.
The main data source in this thesis is word-level fixation informa-

tion from eye tracking, but human text processing through keystroke
logs and prosody is also explored. The gaze features represent a
broad range of word-based fixation metrics. Scanpaths are not consid-
ered, apart from regressions and skips, which are considered features.
The gaze feature set varies from study to study and is identified in
each paper.

Language processing as reflected in direct brain measures, such as
event-related potential (ERP) and measures of hemodynamic response
in the brain from the field of cognitive neuroscience is outside the
scope of this thesis.
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POS induction is the main task of three studies of this thesis, but
other studies also explore chunk induction, supervised POS tagging
and supervised parsing as well as supervised detection of abusive
language, sentiment classification and detection of misreadings. In
contrast to the other tasks, misreading detection is not an established
NLP task, but is related to complex word identification and would be
useful for individual word disambiguation, as in Bingel and Søgaard
(2018). In this thesis, NLP is synonymous to machine learning (ML)
models, i.e. models that learn from data, rather than rules.

1.2 key questions

The key question of this thesis is how data reflecting the human
processing of text can benefit NLP. The answer to the following sub-
questions are posed in this thesis:

• To what extent can the human processing signal for a broad
range of categories be extracted from the eye movements of a
reader and be used for POS tagging/parsing/POS induction?

• To what extent does the processing signal transfer from one
language to another related language for POS induction?

• How will gaze data support POS induction when combined with
other data sources reflecting human text processing, such as
features from keystroke logs and acoustic features?

• To what extent can we use gaze features to guide the attention
of a RNN for sequence classification?

• How can we model noisy real-word gaze data?

1.3 contributions

The overall contribution of this thesis is to show that human text
processing metrics such as gaze, but also keystroke logs and prosody,
have the potentials for improving NLP.

The studies in the thesis contribute to the field of NLP in the follow-
ing way:

• Chapter 4 presents the first attempt to predict a broad set of syn-
tactic functions from gaze and also presents the first results of
improving supervised dependency parsing with gaze features.

• Chapter 3 and Chapter 6 are the first studies to improve super-
vised POS tagging and weakly supervised POS induction, respec-
tively, using gaze features.
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• Chapter 7 presents the first evidence that the eye-tracking signal
from native reading can be used to some extent to improve POS

induction on a related language.

• Although there are a couple of studies improving chunking and
shallow parsing with speech and keystroke features, the study
presented in Chapter 8 is the first to use keystrokes and acous-
tics as multi-dimensional, continuous features for POS and syn-
tactic chunk induction. It is also the first to combine them with
other modalities (gaze and pre-trained word embeddings) for
POS induction and chunk induction.

• Chapter 9 introduces a novel way of regularizing the attention
of a recurrent neural network (RNN) with human attention de-
rived from continuous gaze features. We show that we can use
the inductive bias from human attention to improve performan-
ce on several NLP tasks, such as detection of abusive language,
grammatical error detection, and sentiment classification.

• Chapter 10 presents the first study to model real-world, eye-
tracking reading data from children’s reading sessions. In this
study, we predict misreadings using gaze features from reading.

1.4 overview of the thesis

This section will explain how the articles of this thesis are connected.
References are kept at a minimum for readability in this section since
each chapter contains its own references.

1.4.1 Two pilot studies

The studies in Part ii represent first evidence that the signal in gaze
features is usable for cross-domain POS tagging and dependency pars-
ing, respectively. Both studies use eye-tacking data that is collected for
this purpose.

Two hundred and fifty English sentences from established corpora,
randomly sampled from five different domains were read by 10 native
speakers. Chapter 3 contains the methodological description of the
data collection.

The notion of domain is frequently used in NLP, although it is not
clearly defined. It usually refers to a collection of texts of the same
genre or source from the assumption that this common denominator
will have some systematic impact on the vocabulary or writing style.
But there are many underlying factors that are ignored in this process.
See Plank (2016b) for a discussion.

In Chapter 3, we explore the well-established fact from cognitive
studies, that readers are less likely to fixate their gaze on closed-class
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syntactic categories, such as prepositions and pronouns and more
likely to focus on words belonging to open-class categories, such as
verbs and nouns. But we go a step further and try to investigate to
what extent the coarse-grained syntactic category of a word in con-
text can be predicted from gaze features from reading. Our results
show that gaze features do discriminate between most pairs of syn-
tactic categories, and we show how we can use this information to
tag words with POS across domains, when tag dictionaries enable us
to narrow down the set of potential categories. We also show that we
can improve supervised POS tagging on all domains. The improve-
ment is even larger when we also add type-level gaze features from
the Dundee Corpus and word length and word frequency features.

Since we can predict word class, we take the investigation a step fur-
ther in Chapter 4. Here we investigate the more fine-grained distinc-
tions between grammatical function e.g. the subject or object function
for nouns. In addition, we show that gaze features can be used to im-
prove a discriminative, transition-based dependency parser. We can
improve dependency parsing over several baselines across domains,
e.g. pre-trained word embeddings.

Both exploratory supervised experiments show, that even though
there is some variation across the five domains, we can successfully
predict grammatical functions and grammatical categories across do-
mains. Both papers explored predictive eye-tracking features and they
found overlapping features for POS and dependency relations. To con-
tinue this line of work, it was crucial to obtain more syntactically
annotated gaze data.

1.4.2 More gaze data - and other human resources used in the remaining
articles

Table 1.2 present an overview of all human sources used in this thesis.
Note that there is also a task-solving part of the ZuCo corpus, a Dutch
and L2 English part of the GECO corpus, and a transcribing part of
the keystroke dataset. They are not included in the table, since they
are not included in this thesis.

Only a couple of years ago, the Dundee Corpus (Kennedy, Hill, and
Pynte, 2003) was the largest eye-tracking corpus by token count. But
it was not syntactically annotated. Because both pilot studies showed,
that we could predict syntactic categories and functions cross-domain,
the easiest way to get more data was to obtain syntactic annotation
the Dundee Corpus. It contains around 50,000 tokens for English and
French. It is read by ten subjects in each language and is extensively
used in larger-scale cognitive science studies. It contains naturalis-
tic reading of contextualized running text. The subjects read articles
from either Le Monde or The Independent. We made a Universal De-
pendencies (UD)-style annotation (Agić et al., 2015) for the English
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Name Ref Lang Modality Tokens Types n subj Available annotations

250 cross-domain Barrett and Søgaard (2015a) en gaze 3,241 1,372 10 According to sources

Dundee
Kennedy, Hill, and Pynte (2003)

en gaze 51,502 9,776 10 UD

Dundee fr gaze 47,445 12,464 10 French Treebank 1.4

EyeJustRead not released da gaze 8,681 1,539 44 Misreadings

Free composition Killourhy and Maxion (2012) en keystroke 14,890 2,198 20

GECO Cop et al. (2017) en gaze 54,364 5,817 14 MWE

Prosody Frermann and Frank (2017) en prosody 763,854 598 22

ZuCo Hollenstein et al. (2018) en gaze 20,765 4,651 12 Relations and sentiment

Table 1.2: Overview of all human data sources used in this thesis. For Eye-
JustRead, counts are on the cleaned dataset. Note that for EyeJust-
Read data, un-fixated words are not in the corpus opposed to the
other eye-tracking datasets. Numbers are therefore not completely
comparable to this dataset. In all corpora containing punctuation,
the tokenisation follows visual units. Token count is counted on
this tokenisation, whereas the type count is counted on words
stripped from punctuation at the end or beginning of the token
(but for English and French, contractions are preserved). For the
French Dundee, numbers are on the entire corpus, though 5% of
the words are not found in the French Treebank and therefore not
included in Chapter 7. The French Dundee corpus contain 52,173

tokens per participant and 11,321 types according to Pynte and
Kennedy (2006). The difference could be due to another tokenisa-
tion than visual units before counting.

part. This annotation work is described in Chapter 5 and is freely
available4. The Dundee Corpus is used in all of the following articles
except Chapter 10.

To obtain syntax annotations for the French part of the Dundee
Corpus for Chapter 7, the French part of the Dundee Corpus was
manually merged with the syntactic annotation of the French Tree-
bank. The read texts originated from this source. This merge is not
publicly available due to licensing restrictions. 2,518 tokens could not
be merged, because they could not be located in the French Treebank.

In Chapter 8, we also include the newly released Ghent Eye-Track-
ing Corpus (GECO). It is now considered the largest, publicly available
eye tracking corpus. The monolingual part is slightly bigger than the
English Dundee Corpus both with respect to number of participants
and token count (14 subjects read over 54,000 tokens). It contains first
language (L1) (English and Dutch) and second language (L2) (English)
reading of an entire novel. We only used the English L1 part. It is not
syntactically annotated, which was not needed for Chapter 8.

In Chapter 8, we also used keystroke logs from a typing experiment
and prosody features from a large corpus of child-directed speech.
Both data sources are only used in this study and described more
closely in the respective chapter.

In Chapter 9, we include a newly released English resource: the
ZuCo Corpus. The normal reading part of the ZuCo Corpus contains

4 https://bitbucket.org/lowlands/release/src

https://bitbucket.org/lowlands/release/src
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eye-tracking data (as well as EEG that is not used in this thesis) for 300

relation-annotated sentences and 400 sentiment-annotated sentences.
Chapter 10 is the only study modelling real-world reading data

recorded with a consumer-grade eye tracker. The data comes from
real reading sessions by Danish children with reading difficulties. It
is annotated for misreadings by the teacher. The data poses other
challenges with respect to pre-processing as described in detail in the
chapter.

For all data sources reflecting human text processing only natural-
istic text processing is included. Experimental factors or tasks would
affect the human text processing. Only keystroke logs from the free
composition condition and ZuCo gaze data from the normal reading
conditions are used. Unbiased human data does not exist, and even
naturalistic data is biased. Therefore, the Dundee and Ghent Eye-
Tracking Corpus (GECO) corpus are treated as two separate modali-
ties in Chapter 8, and the ZuCo Corpus and the Dundee Corpus are
normalized separately in Chapter 9.

1.4.3 Three studies on weakly supervised POS induction

Since supervised POS tagging is practically a solved task (see Man-
ning (2011) for a discussion) the following work moved to weakly
POS induction using gaze and other human text processing data. For
many of the world’s languages, there are no or very few linguistically
annotated resources. But raw text and sometimes also dictionaries,
can be harvested from the web. These resources can be used to train
weakly supervised POS taggers.

Since my previous work showed that gaze can be used to discrimi-
nate POS signal, we perform POS induction experiments using this and
other human data. The following experiments are on either English or
English / French, due to the availability of eye-tracking data in these
particular languages. For the following three experiments, we train a
weakly supervised POS tagger using a second-order hidden Markov
model with maximum entropy emissions (SHMM-ME). Its predictions
are constrained by a crowd-sourced dictionary.

The best model in Chapter 6 uses type-level aggregates of English
eye-tracking data and significantly outperforms a baseline that does
not have access to eye-tracking data. This model also outperforms
models using token-level features. The best model includes all gaze
features. Type-level gaze features further have the added positive ben-
efit of not requiring gaze at test time.

Both pilot studies in Part ii explore a broad set of word-level gaze
features. Results indicate that the signal is distributed over several
features. Chapter 6 explore these features in groups of 3-6 and find
that the best model indeed includes all features. Even the best indi-
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vidual gaze feature group is beaten by frequency and word length
features.

In Chapter 7, we move further and show that gaze and POS correla-
tions largely transfer across the related languages English and French.
This means that we can replicate the previous English study on gaze-
based POS induction, but now for French. We find that we can use
English gaze data to assist the induction of French POS. Type-level
features are also here consistently better than token-level. The follow-
ing experiment therefore only use type-level-aggregated features of
human text processing.

In Chapter 8, we explore the performance of the model in a dif-
ferent direction: by including several other data sources, presumably
containing human syntactic processing signal. We find that perfor-
mance can be improved by combinations of only partially overlap-
ping resources from eye-tracking, prosody, keystroke, and pre-trained
word embeddings. The best models significantly outperform a base-
line of pre-trained word embeddings. Our analysis shows that im-
provements are even bigger when the available tag dictionaries are
smaller. Based on the findings in Chapter 7 and Chapter 6, we only
use type-level averaged features in this study, and we are therefore
able to evaluate our models on established NLP corpora.

A fourth POS induction study I co-authored is not included in my
thesis but has several methodological similarities to the three studies
above. In Bingel, Barrett, and Søgaard (2016), we used the fMRI signal
to improve POS induction. The fMRI-signal posed other preprocessing
challenges as well as theoretical challenges and the signal was less
reliable than gaze.

1.4.4 Sequence classification and modelling real-world data

Chapter 9 is exploratory with respect to how the gaze is included
in the model and it is the only study in this thesis concerned with
sequence classification. Opposed to the previous studies, the eye-
tracking feature is not used to directly reflecting the human process-
ing of the NLP task. Rather, the gaze is used to regularise the attention
of the supervised model. Learning attention functions for recurrent
neural networks requires large volumes of data, but many NLP tasks
simulate human behavior. In Chapter 9, we present a RNN architec-
ture that jointly learns the recurrent parameters and the attention
function, but is able to alternate between supervision signals from la-
beled sequences and from attention trajectories in eye-tracking data.
We show substantial improvements across a range of tasks, includ-
ing sentiment analysis, grammatical error detection, and detection of
abusive language.

Chapter 10 is facilitated by the cheaper and available eye trackers.
Data comes from real reading class sessions and is captured by a
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consumer-grade eye tracker. We try to predict where the child mis-
reads a word, which would be useful for, for example, personalized
reading assistance and an important tool for the reading teacher. We
use an ensemble of neural models and decision trees for experiments
across the entire dataset and a multi-task learning setup to explore
whether predictions generalize across readers. Our experiments show
that despite the noise and small number of misreadings, gaze data
improves the performance more than any other feature group and
achieves good performance. We further show that gaze patterns for
misread words do not fully generalize across readers, but in some
cases, we can transfer knowledge between readers using multi-task
learning.

1.5 errata

After publication, I was made aware that my calculation of the in-
tegration cost for the reproduction of the (dependency locality the-
ory (DLT)) experiment for Chapter 5 contained a systematic error. The
DLT score is only used in this particular study, to show one application
of the new syntactic annotation of the Dundee Corpus. I am grateful
to Scarlett Hao for pointing this out. I erroneously assigned the inte-
gration cost for the number of intervening new discourse referents to
the head instead of to the dependent.

When re-running the DLT experiment, I became aware that the cal-
culation of the gaze feature, the First Pass Duration feature on the
Dundee Corpus was erroneously extracted by my script for around
5% of the words, namely the words that were re-fixated. The Dundee
Corpus does not come with ready-to-use gaze features (like for in-
stance the GECO corpus). Instead, the Dundee Corpus provides raw
gaze data, which each researcher can use to extract the desired fea-
tures. The First Pass Duration values were higher than they should
have been due to the re-fixation(s) being added twice to the First Pass
Duration, instead of only once. It was systematic for all words being
re-fixated in the first pass. The bug only affects one gaze feature and
only 5% of the words. I fixed the bug and re-extracted the feature
from the raw Dundee Corpus.

The study, most affected by the bug in the extraction of the First
Pass Duration is also the only study affected by the bug in the cal-
culation of the DLT integration score, presented in Chapter 5. Here I
perform a statistic test only on the First Pass Duration using DLT as
a fixed effect. I re-ran this test using the corrected scores for DLT and
First Pass Duration and present the new results in the last section of
the relevant chapter.

The First Pass Duration is used in several studies along with around
30 other gaze features from the Dundee Corpus. I did not rerun these
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experiments using the corrected First Pass Duration score. I do not
expect this to have any significant impact on these studies.



2
B A C K G R O U N D

Reading is a complex interplay of several processes not yet fully un-
derstood. Some processes are low-level oculomotor factors (typically
associated with where to look) and others are higher-level lexical
properties (typically associated with the duration of looking). Con-
text factors (such as predictability from preceding words) also play
a role. This section presents a background overview from psycholin-
guistics about well-established processes that guide when and where
the eyes move during adult skilled reading. It will introduce the ba-
sics of some of the different levels of text processing to give the reader
an understanding of what can be expected with respect to the high-
level processing signal that the studies include. Uncited numbers and
facts in this section come from Juhasz and Pollatsek (2011), Rayner
(1998), and Staub and Rayner (2007) where further references can be
found. Specific, high-level effects relevant to each study, can be found
in the respective chapters.

Unlike ERP (such as EEG) and measures of hemodynamic brain re-
sponse (such as fMRI), eye tracking measures are proxies for the cogni-
tive processes, whereas brain-metrics may be considered direct mea-
sures of cognitive processes. Eye-tracking data contains processing in-
formation with high temporal resolution, but does not provide infor-
mation about which process occurs. Since many layers of human text
processing occur and co-occur, eye-tracking during reading is usually
studied in controlled experiments where only the parameter of inter-
est varies and any variation on gaze behaviour can be attributed to
this change. But for NLP we need to generalize to unseen text and are
thus interested in naturalistic reading of representative text.

2.1 where to fixate?

Contrary to the internally perceived experience of reading, the eyes
do not glide smoothly over the text, but instead perform a series of
rapid, ballistic movements called saccades. Only a small part of the
visual field can be seen sharply by the eye at a time, and the main
function of the saccades is to bring another part of the visual field
in focus. Saccades last for about 20-40 ms on average and most often
move the eyes 7-9 letter spaces forward. But around 10% of the sac-
cades – often unconscious to the reader – go backwards. Backward
saccades are referred to as regressions. Between saccades, the posi-
tion of the eye is relatively stable for 50-500 ms, but typically 2-300
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ms. These are called fixations and it is only during fixations that the
eye is still enough for the brain to be able to perceive any information.

Due to the anatomy of the eye, only the foveal area, which is 1°of
the visual field is seen very sharply during a fixation. The parafoveal
area covers around 5°of the visual field around a fixation. The acuity
drops gradually and quickly. Beyond that, in the peripheral vision,
the reader is aware of the general shape of the text e.g. line breaks.

In combination with the anatomic foveal limitations, there seems
to be an unconsciously learned aspect: For a left-to-right reader, the
viewed text part during reading is not symmetrical. It extends 3-4
characters to the left and 14-15 characters to the right of a fixation
(McConkie and Rayner, 1976; Rayner, Well, and Pollatsek, 1980). The
area where words can be identified, the perceptual span, is even smaller
and only extends 7-8 characters to the right and varies as a function of
text difficulty. The asymmetry of the perceptual span for right-to-left
readers is mirrored (i.e. shifted to the left) compared to left-to-right
readers. It is even found that bi-lingual readers of Hebrew and En-
glish unconsciously mirror their perceptual span to suit the reading
direction (Pollatsek et al., 1981). The perceptual span is important,
especially when examining where the eyes move and trying to under-
stand the nature of preview effects. The differences across writing
systems are important to keep in mind when discussing the multilin-
gual perspectives in the conclusions of this thesis.

From the length of the typical saccadic span (7-9 letter spaces) and
the size of the perceptual span (around 12 characters), it is obvious
that some words are not fixated at all, but are visible to the reader
during a fixation on the previous word. But preview effects occur in a
complex interplay with predictability and frequency effects. The per-
ceptual span is part of the explanation why not all words are fixated
and an even bigger part of the explanation for short words. Read-
ers generally benefit from previewing, and several studies have ex-
plored the characteristics of the information the reader obtains from
the parafoveal view. Readers seem to have access to the letters and
the sound codes of the word but not the the meaning of the word
nor the morphological composition before the word is fixated. Words
are also more often skipped when they are predictable from context
or very frequent. Skipping words can be understood as the conse-
quence of a successful preview processing (Pynte and Kennedy, 2007).
The perceptual span can, to some extent, explain why Carpenter and
Just (1983) found that 38% of function words are fixated and 83% of
content words are fixated, since function words are generally shorter
than content words and can thus more often be previewed. But when
controlling for word length, function words were still skipped more
often. Word length is also robustly positively correlated with fixation
probability, number of fixations as well as fixation duration. Staub
and Rayner (2007) conclude that low-level visual information is most
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important with respect to where to move the eyes, whereas linguistic
factors seem more important with respect to when to move the eyes.
This thesis therefore focuses mainly on fixation durations.

An interesting feature of eye-tracking data is that it allows us to
study regressions. In normal skilled reading around 10–15% of all
saccades are regressions, most of them short regressions. Regressions
longer than 13 letter spaces are rare. In the review of Rayner (1998)
it is concluded that regressions are not fully understood, but they
are positively correlated with text difficulty; they may come from
comprehension difficulties, but also occulumotor errors; and they are
also linked to recovering from syntactic parsing errors (Frazier and
Rayner, 1982).

2.2 for how long to fixate?

The two most well-researched properties that guide how long a word
is fixated, are word length and word frequency. People look longer
at long and infrequent words. But there are many other properties
proven to affect fixation duration: Morphology, orthography, familiar-
ity, number of meanings, and estimated age of acquisition are shown
to have frequency-independent effects. Relational effects, such as pre-
dictability from context, are also well studied. Word length and word
frequency account for more of the variance in mean fixation duration
than nine other known factors (high- and low level) combined. In the
case of this thesis, where we do not try to understand human cog-
nition but rather try to extract the syntactic processing signal, it is
important to keep in mind that the signals of interest will be mixed
with other processing signals. The intrinsic properties of a word are
constant for an unambiguous word, but may interact with contextual
features.

One of the most intriguing features of eye tracking is that it allows
us to study early and later text processing separately. The early mea-
sures (e.g., first fixation duration and first pass duration) have been
shown to be sensitive to early text comprehension processes, such as
lexical access and early syntactic and semantic integration. In contrast,
late measures (e.g., total fixation duration and information about later
passes over the text) are sensitive to later cognitive processes, such as
information reanalysis, discourse integration, and recovery from pro-
cessing difficulties.

Because numerous studies (Juhasz and Rayner, 2003; Rayner, 1977;
Rayner and Frazier, 1989) have found that fixation duration is sensi-
tive to various lexical properties of the fixated word, we can assume
that there is a rather tight relationship between what is fixated and
the cognitive processes on the word level, what Just and Carpenter
(1980) referred to as the eye-mind span. Preview effects and spillover
effects (the processing of a word results in extended fixation duration
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on the next word) are examples of phenomena where this relation
is not air-tight. Word frequency affects first fixation duration on the
fixated word, but is also an example of a phenomenon, that is known
to cause spillover effects to the following word (Rayner and Duffy,
1986). It is therefore sensible to provide information about fixations
and some properties on the surrounding words to ML models.

Processing effects found on super-word level (e.g. multi-word ex-
pression (MWE)) and sub-word level (e.g. morphology) are other ex-
ceptions. In behavioral experiments, including eye tracking experi-
ments, the entire MWE is found to have a processing advantage over
novel strings of language. Siyanova-Chanturia (2013) provide a re-
view of eye-tracking evidence. For sub-word level processing, e.g.
Hyönä, Bertram, and Pollatsek (2004) find that the frequency of the
first morpheme, and to some extent of the second, influences fixation
duration, suggesting that words are decomposed into morphemes as
they are analyzed. But the vast majority of studies show word-level
effects.

2.3 general observations about eye tracking studies of

syntax

There are a lot of psycholinguistic studies which focus on the pro-
cessing of syntax, but most studies are interested in parsing of tem-
porarily ambiguous syntax. Watching humans resolve temporarily
ambiguous syntax is informative about human cognition, but the
phenomenon only applies to a small subset of naturally occurring
sentences. In an extensive and exhaustive survey of sentence com-
prehension factors, approximately 70 studies out of 100, all studying
higher-level effects, deal with temporarily ambiguous syntax/garden
path sentences. Other high-level effects within the scope of the survey
are semantic, pragmatic and world-knowledge factors (Clifton, Staub,
and Rayner, 2007). One take-home message is that human syntactic
parsing is sequential and incremental and probably not sensitive to
the hierarchical structure (Frank and Bod, 2011; Frazier and Rayner,
1982) (though see Fossum and Levy (2012) for a discussion).

There are examples of studies aiming for a broad-coverage model
of human syntax processing, e.g. Demberg and Keller (2008) where
the effects of delexicalized surprisal (by POS) and dependency local-
ity theory (DLT) on fixation durations are explored. Somewhat re-
lated to Demberg and Keller (2008), Pynte, New, and Kennedy (2009)
explore semantic processing as an effect of priming on the French
Dundee Corpus for nouns, verbs and adjectives. In this study, the
primes are the previous content words and the study differentiates
between remote and local priming. Their results suggest that verbs
elicit remote effects and nouns and adjectives elicit local priming ef-
fects. Schmauder, Morris, and Poynor (2000) find frequency effects
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and word length effects in the processing of both content and function
words as well as increased processing time in the phrase immediately
following a low-frequency function word.

Very little research is dedicated to broad-coverage studies of word
classes, besides the coarse-grained distinguishing between content
and function words. Pynte and Kennedy (2007) study the effect of
punctuation on the English Dundee Corpus and explore word class
as a confounding factor. They find that the more probable the word
class of a word, the higher the skipping probability of this word. They
also find that punctuation, which is a strong indicator of the word
class of surrounding words (e.g. the punctuated word is most often a
noun and the next word is most often a closed class word), does not
in itself triggers word skipping, but the punctuation is a further cue
to the word class prediction and thus triggers skipping. For example,
a punctuation changes the probability that the previewed word will
be a function word. Supporting this finding, both Bauman (2013) and
Demberg and Keller (2008) find that the probability of a word class is
negatively correlated with of fixation duration in naturally occurring
text. Distinguishing or characterizing word classes by gaze behaviour
is outside the scope of all the above studies, but all studies reveal that
word class processing is also dependent on the context. Only Furtner,
Rauthmann, and Sachse (2009) find that nouns in text with jumbled
letters are regressed to more often than any other word class. This
also seems to be the case for L2 reading (Furtner, Rauthmann, and
Sachse, 2011). The only study is Zelenina (2014) where the output of
a POS tagger was re-ranked based on eye-tracking features, but this
work is, however, not published beyond the master thesis.

No cognitive studies explore a full set of word class differences. It
may be that the difference in processing word classes is not a well-
motivated cognitive task, whereas the grammar-lexicon distinction
(roughly content words vs. function words) is fuelled e.g. by findings
of agrammatism in some aphasia patients1 and battles between lin-
guistic theories. Another explanation is that the differences are most
likely reflected in a complex interplay between many gaze features.
Cognitive studies usually analyse one gaze variable at a time, e.g. in
a factorized experimental design using statistical tests. It is quite un-
likely that one gaze variable is able to distinguish a broad set of word
classes.

2.4 eye-tracking studies on naturalistic reading

In order to include gaze in NLP, the processing signal found in con-
trolled experiments needs to transfer to naturalistic reading of larger

1 though there is also evidence that e.g. nouns and verbs are processed differently in
the brain, e.g. (Luzzatti et al., 2002)
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quantities of naturally occurring text. This section will present evi-
dence that this is the case.

Reader models, such as the E-Z Reader model (Reichle et al., 1998),
provides a model for when and where the eyes move during reading
based on word identification, visual processing, attention, and ocu-
lomotor control. Some studies have tried to model aspects of global
reading strategies, e.g. Hara, Kano, and Aizawa (2012) and Nilsson
and Nivre (2009). Matthies and Søgaard (2013) even show that word-
skipping behaviour generalizes across readers.

A related line of research shows how conclusions from psycholin-
guistic experiments generalize to larger sets of naturalistic reading
but without a specific NLP focus. Many use the Dundee Corpus as a
data source. This research covers uncertainty of word identity (Frank,
2010; Hahn and Keller, 2016; Smith and Levy, 2010), surprisal and
other expectation-based resource allocation (Frank et al., 2013b; Frank
and Thompson, 2012; Hale, 2001; Levy, 2008; Monsalve, Frank, and
Vigliocco, 2012; Rauzy and Blache, 2012; Shain et al., 2016b), parafoveal
effects on foveal reading time (Kennedy and Pynte, 2005), frequency
and predictability effects (Kennedy et al., 2013), comparison of global
reading patterns for English and French (Pynte and Kennedy, 2006),
and broad-coverage theories of syntactic processing, such as DLT and
delexicalized surprisal (Demberg and Keller, 2008).

Furthermore the larger amount of data allows such studies to model
continuous functions of, for example, surprisal and frequency as op-
posed to the discretised categories of psycholinguistic experiments.
My work is motivated by the fact that these studies find evidence
of global psycholinguistic conclusions on corpus data. The process-
ing of syntax and word classes on a broad set of categories has not
been sufficiently covered by the psycholinguistic field, however, so
my work should be considered exploratory. Moreover I try to apply
human text processing data to solve existing NLP tasks.

2.5 from dependent variables in experiments to input

vectors in ml models

NLP as engineering is not theoretically accountable to the same extent
as cognitive science studies when it does not claim to explain why
models work. Rather NLP sets up external modes of evaluating model
robustness. This thesis belongs to the field of NLP. This section will
try to explain in words the journey of the features from dependent
variables in cognitive studies to parts of input vectors in ML models.

In controlled cognitive experiments with limited textual data, the
tested parameter is often discretised (e.g. high vs. low frequent words).
With more data, it is possible to capture an effect over a continuous
spectrum. All studies in this thesis use continuous values. This is not
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dissimilar to what cognitive studies would do, if more textual data
was available per experiment.

Although psycholinguistic eye-tracking studies use a large number
of eye-tracking metrics, each study usually only analyses a couple of
pre-defined and theoretically motivated metrics. In his extensive re-
view, Rayner concludes that "It thus appears that any single measure
of processing time per word is a pale reflection of the reality of cogni-
tive processing."(Rayner, 1998, p.377). When we are not interested in
isolating one effect and making conclusions about human cognition,
but rather improve NLP models (the engineering approach), it seems
rational to include a richer set of eye-tracking features, i.e. multidi-
mensional gaze representation. All studies in this thesis except Chap-
ter 9, use multidimensional, continuous features. In Chapter 9, we
use one continuous feature.

If not controlled for, some extraneous variables will distort the re-
sults of cognitive studies or in the worst case scenario: be confound-
ing. In controlled studies, some variables are controlled for by sam-
pling or by being kept constant. These include word length, word
frequency, predictability, age of acquisition, sentence length, position
on screen, position in sentence, frequency of next word, and/or fre-
quency of the previous word. In NLP, some factors are easy to control
for by just adding them as features. The ML algorithm will pick up
the effects and interaction effects. Carpenter and Just (1983) found
in a linear regression model that word length and word frequency
together account for 69% of the variance in mean fixation duration
when reading scientific texts, whereas nine other factors together only
accounted for 37% of the variance. The factors are intercorrelated
meaning that the numbers are not additive. The nine other factors
coded e.g. whether the word was at the beginning of a line, at end
of sentence, was the first content word in passage. All 11 variables to-
gether accounted for 79% of the variance. In controlled studies, such
factors are controlled for by only studying the relevant effect on target
words of the same length and from the same frequency group. It is
worth taking the most robust features into account to ensure that our
model is not swallowed by noise, but also balance the gain against the
feature engineering effort. Furthermore, basic features can be used as
baselines when evaluating the models.

On a related note, it is also possible to control for e.g. spillover ef-
fects by providing the frequency of the previous word and the fixation
duration of the previous word as features. Likewise we can control
for preview effects by providing some features of the upcoming word.
The success of all control approaches is dependent on the selection of
the right features.

Overfitting is a risk in all NLP studies. When using relatively little
human data from a small number of subjects, it represents real threat.
The token-level features should not be overly exposed to the risk of
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overfitting, but word-type-averaged features are. The equivalent for
cognitive science studies would be experiment bias. It is a living con-
dition that can be minimized but must otherwise be documented and
accepted. An engineering approach would be to obtain more data for
future experiments. This is also discussed in Chapter 11.

2.6 gaze and other human text processing metrics for

nlp

This section aims to provide a unified review of NLP tasks2 for written
text processing informed by human text processing measures from
reading. The source is primarily eye-tracking data, but also keystroke,
acoustic cues and brain imaging are included when available. Studies
modelling human data without an application to NLP is not included.

Human processing data is a fairly new addition to the field of NLP,
and this section mainly aims to show the width of the subfield. Al-
though the list of studies is not exhaustive, the tasks and applications
are intended to be. I also include a few relevant studies, where gaze
is not directly used to solve NLP tasks for text, but where the meth-
ods used or the conclusions could be adapted to NLP with few or no
modifications. That is, all studies below are included because they
could be used to generalize to unseen text and evaluated for some
NLP task. The studies are limited to models that apply to all words or
at least a broad range of words. This section is structured thematically
in an attempt to provide an overview of an emerging field. Studies
into the cognitive processes of annotators are not included since this
is a different cognitive task from pure reading. But I include studies
that evaluate the output of NLP models using implicit human text
processing.

A well-researched line of work shows, that eye-tracking data from
reading reflects text comprehension, e.g. Green (2014) and Singh et
al. (2016). This is an obvious direction to pursue since processing
difficulties are expected to show larger effects on fixation durations
as well as regressions. Text comprehension of individual readers is
considered peripheral to the NLP field. However, I only include stud-
ies that deal with predictions/scoring on natural reading. Thus, all
methods/scores could be used by ML models and evaluated. In von
der Malsburg and Vasishth (2011) and von der Malsburg, Kliegl, and
Vasishth (2015), a sentence-level scanpath score that can be used to
measure irregularities in reading e.g. by detecting syntactically com-
plex sentences is presented. It is evaluated on laboratory reading data
but it is in theory applicable to real-world data. Similarly, Wallot et al.
(2012, 2014, 2015) score the reading fluency of text passages based
on different metrics of scanpath regularity and use these scores to
predict reading comprehension.

2 This is not a completely closed set of tasks
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The following studies are examples of using the comprehension sig-
nal in eye movements with a tighter NLP relation. Klerke, Goldberg,
and Søgaard (2016) predict discretised gaze features as an auxiliary
task in a bi-LSTM to improve sentence compression. They employ an
early gaze measure (First pass duration) and a late measure (regres-
sions), individually.

Eye movements have been used to evaluate the quality of NLP

model output. If eye trackers are being built into mass market prod-
ucts, such as smartphones, tablets and computers it is not difficult to
imagine the benefit of having ML output evaluated during use with-
out the need for any explicit feedback. Gaze has been used to directly
evaluate the quality of machine translation output. In Klerke et al.
(2015), different versions of logic text puzzles were solved by native-
speaking human participants. Both correctness of the solutions and
eye-tracking metrics were used to compare automatically translated
versions to expert translated versions. Reading metrics were better
proxies for the usability of the text than the standard, automatic met-
ric: bilingual evaluation understudy score (BLEU) (Papineni et al.,
2002). Stymne et al. (2012) also evaluate machine translation output
using eye tracking and comprehension question, but did not include
a performance metric such as puzzle solving. They also found longer
gaze time on machine translation error. Eye tracking has also been
used to evaluate automatically compressed sentences (Klerke, Alonso,
and Søgaard, 2015), translation difficulty (Mishra, Bhattacharyya, and
Carl, 2013), and – together with fMRI – word embedding quality (Sø-
gaard, 2016).

Another line of research extracts the semantic processing from data
reflecting human text processing. Understanding sarcasm during read-
ing requires extra processing time, which is also detectable from the
eye movements. The Sarcasm Processing Time depends on the degree
of context incongruity between the statement and the context (Ivanko
and Pexman, 2003). Mishra, Kanojia, and Bhattacharyya (2016) and
Mishra et al. (2016a) use this phenomenon for supervised sarcasm
detection. Eye-tracking data has also been successfully used for senti-
ment classification (Mishra et al., 2016b) and to evaluate the relevance
for information retrieval purposes, e.g. Hardoon et al. (2007) and Sa-
lojärvi et al. (2003). Loboda, Brusilovsky, and Brunstein (2011) also
show that relevance can be inferred from gaze at word level. Espe-
cially word-level relevance plays a role for guiding attention functions
of RNNs. There are also attempts with named-entity recognition with
corpus eye-tracking data (Rotsztejn, 2018). This study show that there
is a significant, negative correlation between the number of times an
entity is mentioned and reading time. This is also validated on a held-
out test set.

MWEs cover a heterogeneous group of expressions. They vary to
a in their linguistic properties but they are perceived as highly con-
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ventional by L1 speakers (Siyanova-Chanturia, 2013). There are some
attempts to predict MWE using eye-tracking data (Rohanian et al.,
2017). Yaneva, Taslimipoor, Rohanian, et al. (2017) compare gaze pat-
terns from the large GECO corpus of naturalistic reading annotated
for MWEs. They compare verb-particle and verb-noun MWEs to control
phrases of the same POS pattern. They find that MWEs are generally
processed with lower numbers of fixations and lower reading times
than control sentences, but that early gaze measures do not discrim-
inate MWEs from novel, matched strings. They also find that there is
a processing advantage for the last word of the MWE, if it is a noun.
This applies only to L1 speakers, not L2. Particles occurring at the end
of a sentence were processed equally efficiently for MWE and control
phrases. Although the difference is subtle, this study is interesting
and important because it confirms that in naturalistic reading con-
texts, word processing also occurs at super-word level, and that gaze
can be used to discriminate formulaic language from novel phrases.

There are a couple of supervised parsing experiments using human
data. Plank (2016a) used a single, discretised keystroke feature, pre-
word pause from keystroke logs, to help supervised, shallow parsing.
It builds on the intuition that pre-word pauses are longer before syn-
tactic chunks, so words belonging to the same chunk are typed in
bursts. The keystroke feature was an auxiliary task in a multi-task
bi-LSTM model. Using keystroke improved two shallow parsing tasks:
CCG supertagging and chunking over text annotations alone. The fol-
lowing two studies also used a single, discretised feature: Pate and
Goldwater (2011) used a single acoustic feature to aid unsupervised
chunking and later also parsing (Pate and Goldwater, 2013). Like
Gonzalez-Garduno and Søgaard (2018), we predict one continuous
feature. Other relations between words can also be established. Jaffe,
Shain, and Schuler (2018) use gaze to improve co-reference resolution.

Some models include what could be referred to as second order hu-
man processing i.e. include metrics motivated by the fact that they are
known to correlate with human text processing or mimic human be-
havior. The following are examples of this: Shain et al. (2016c) include
human language acquisition features in an unsupervised parser: lim-
ited working memory capacity as well as a human left-corner parsing
strategy. Wang, Zhang, and Zong (2017) include word-level features,
that are known to correlate with human attention (e.g. surprisal) to
weigh the attention for sentence representation.

Other studies, in the periphery of the scope of this thesis, are con-
cerned with modelling characteristics of the reader. Berzak et al. (2017)
predict the native language of the reader based on eye-tracking data
of L2 English reading. Augereau et al. (2016) and Berzak, Katz, and
Levy (2018) use gaze data to predict English proficiency from gaze
data.
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2.7 advancements in availability of eye tracking data

Eye-tracking research has a more than 100 year-old history, but for
many years, eye trackers were unica machines or very expensive and
only found in big research labs. In the past ten years, there have been
several attempts to make eye-tracking available through a regular we-
bcam (e.g. San Agustin et al. (2009)) and smartphone (Krafka et al.,
2016), just to mention a few. In 2013, Samsung Galaxy S4 came with
a built-in eye tracker and the following year, the first $100 eye tracker
was available. Since then, more hardware options have emerged, also
from established eye-tracker companies. A more recent advancement
is iPhone X which has API access to all necessary components for
external developers to implement eye tracking.

Low-cost gaze technologies have taken big leaps during the course
of my PhD, meaning that towards the end of my PhD, we have been
able to model real-world gaze data from children’s reading sessions
captured by a Tobii eye tracker targeted at regular consumers. Such
data was not available four years ago. The data was kindly provided
– with consent from all participants and parents – by a Danish startup
company, which is one of the first to bring real-world, eye-tracking
data from reading into practical use. Another example on an applica-
tion benefiting from the increased availability of eye trackers include
iAppraise (Abdelali, Durrani, and Guzmán, 2016), which is a machine
translation evaluation environment supporting eye tracking using a
low-cost eye tracker.

Recently there has been an increased interest in naturalistic eye-
tracking data. When I started my PhD, the only large corpus of nat-
uralistic reading was the Dundee Corpus (Kennedy, Hill, and Pynte,
2003). Both parts contain contextualized reading of naturally occur-
ring text, as opposed to the Potsdam Sentence Corpus (Kliegl et al.,
2004), which comprises 144 constructed, German sentences read by
222 participants. Other databases include Frank et al. (2013a) which
consists of 205 naturally occurring English sentences read by 43 native
speakers, and the DEMONIC database Kuperman et al. (2010) which
consists of 224 constructed Dutch sentences read by 55 participants.

However, more resources that may accommodate NLP have recently
emerged. The GECO Corpus (Cop et al., 2017), described in Section 1.4.2
is now the largest eye tracking corpus by token count. Like the Dundee
Corpus, it contains naturally-occurring contextualized text. The Provo
Corpus (Luke and Christianson, 2018) contains around 2,700 English
words read in 55 short paragraphs by 89 native participants. The
Provo corpus comes with predictability norms. The ZuCo Corpus (Hol-
lenstein et al., 2018), also described in Section 1.4.2, contains gaze and
EEG data from reading isolated sentences. The naturalistic reading
parts contain 700 annotated sentences (sentiment or relations).
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There is reason to believe that eye tracking technology will soon be
available on a larger scale capable of providing data that can be used
for NLP. This expectation calls for ways to benefit from this rich data
source. The following studies present first evidence that NLP should
consider including eye-tracking data and other rich data sources re-
flecting human processing of text.

2.8 theoretical definitions

2.8.1 Dependency Locality Theory

DLT (Gibson, 1998, 2000) is a theory of computational resources con-
sumed by a human processor when parsing the syntax of a sentence.
It focuses on discourse referents. It assumes that the sentence struc-
ture is parsed by the human brain one word at a time and that there
is a cost of connecting a discourse referent into the built structure so
far (integration cost) as well as a cost of keeping track of incomplete
dependencies (memory cost). Like Demberg and Keller (2008), this
thesis focus on integration cost.

The integration cost assigns one cost unit for every new discourse
referent as well as one cost unit for every discourse referent between
a particular discourse referent and its head. "A discourse referent is
an entity that has a spatio-temporal location so that it can later be re-
ferred to with an anaphoric expression, such as a pronoun for NPs, or
tense on a verb for events." (Gibson, 1998, p. 12). When automatically
assigning costs on dependency parsed text, a discourse referent can
be operationalised as the head of a noun phrase or of a verb phrase.

The integration cost expresses the empirically known fact that the
distance between a verb and its argument has an effect on sentence
processing difficulty, e.g. Gibson and Ko (1998), though there is con-
flicting evidence e.g. for German verb-final sentences (Konieczny, 2000).
DLT describes the increased complexity when integrating admitted in
The reporter that the senator attacked admitted the error compared to The
reporter admitted the error. The linearly increasing cost must be consid-
ered an arbitrary oversimplification. Following Demberg and Keller
(2008), we use the logarithm of the cost.
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R E A D I N G B E H AV I O R P R E D I C T S S Y N TA C T I C
C AT E G O R I E S

abstract

It is well-known that readers are less likely to fixate their gaze on
closed class syntactic categories such as prepositions and pronouns.
This paper investigates to what extent the syntactic category of a
word in context can be predicted from gaze features obtained using
eye-tracking equipment. If syntax can be reliably predicted from eye
movements of readers, it can speed up linguistic annotation substan-
tially, since reading is considerably faster than doing linguistic anno-
tation by hand. Our results show that gaze features do discriminate
between most pairs of syntactic categories, and we show how we can
use this to annotate words with part of speech across domains, when
tag dictionaries enable us to narrow down the set of potential cate-
gories.

3.1 introduction

Eye movements during reading is a well-established proxy for cog-
nitive processing, and it is well-known that readers are more likely
to fixate on words from open syntactic categories (verbs, nouns, ad-
jectives) than on closed category items like prepositions and conjunc-
tions (Nilsson and Nivre, 2009; Rayner, 1998). Generally, readers seem
to be most likely to fixate and re-fixate on nouns (Furtner, Rauthmann,
and Sachse, 2009). If reading behavior is affected by syntactic category,
maybe reading behavior can, conversely, also tell us about the syntax
of words in context.

This paper investigates to what extent gaze data can be used to
predict syntactic categories. We show that gaze data can effectively be
used to discriminate between a wide range of POS pairs, and gaze data
can therefore be used to significantly improve type-constrained POS

taggers. This is potentially useful, since eye-tracking data becomes
more and more readily available with the emergence of eye trackers
in mainstream consumer products (San Agustin et al., 2010). With the
development of robust eye-tracking in laptops, it is easy to imagine
digital text providers storing gaze data, which could then be used to
improve automated analysis of their publications.

contributions We are, to the best of our knowledge, the first to
study reading behavior of syntactically annotated, natural text across
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Figure 3.1: Fixation probability boxplots across five domains

domains, and how gaze correlates with a complete set of syntactic
categories. We use logistic regression to show that gaze features dis-
criminate between POS pairs, even across domains. We then show how
gaze features can improve a cross-domain supervised POS tagger. We
show that gaze-based predictions are robust, not only across domains,
but also across subjects.

3.2 experiment

In our experiment, 10 subjects read syntactically annotated sentences
from five domains.
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3.2.1 Data

The data consists of 250 sentences: 50 sentences (min. 3 tokens, max.
120 characters), randomly sampled from each of five different, manu-
ally annotated corpora: Wall Street Journal articles (WSJ), Wall Street
Journal headlines (HDL), emails (MAI), weblogs (WBL), and Twitter
(TWI). WSJ and HDL syntactically annotated sentences come from
the OntoNotes 4.0 release of the English Penn Treebank.1 The MAI
and WBL sections come from the English Web Treebank.2 The TWI
data comes from the work of Foster et al. (2011). We mapped the
gold labels to the 12 UPOS (Petrov, Das, and McDonald, 2011), but
discarded the category X due to data sparsity.

3.2.2 Experimental design

The 250 items were read by all 10 participants, but participants read
the items in one of five randomized orders. Neither the source do-
main for the sentence, nor the POS tags were revealed to the partici-
pant at any time. One sentence was presented at a time in black on
a light gray background. Font face was Verdana and font size was 25

pixels. Sentences were centered vertically, and all sentences could fit
into one line. All sentences were preceded by a fixation cross. The ex-
periment was self-paced. To switch to a new sentence and to ensure
that the sentence was actually processed by the participant, partici-
pants rated the immediate interest towards the sentence on a scale
from 1-6 by pressing the corresponding number on the numeric key-
pad. Participants were instructed to read and continue to the next
sentence as quickly as possible. The actual experiment was preceded
by 25 practice sentences to familiarize the participant with the exper-
imental setup.

Our apparatus was a Tobii X120 eye tracker with a 15" monitor.
Sampling rate was 120 Hz binocular. Participants were seated on a
chair approximately 65 cm from the display. We recruited 10 partici-
pants (7 male, mean age 31.30 ±4.74)) from campus. All were native
English speakers. Their vision was normal or corrected to normal,
and none were diagnosed with dyslexia. All were skilled readers.
Minimum educational level was an ongoing MA. Each session lasted
around 40 minutes. One participant had no fixations on a few sen-
tences. We believe that erroneous key strokes caused the participant
to skip a few sentences.

1 http://catalog.ldc.upenn.edu/LDC2011T03

2 http://catalog.ldc.upenn.edu/LDC2012T13

http://catalog.ldc.upenn.edu/LDC2011T03
http://catalog.ldc.upenn.edu/LDC2012T13
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Rank Feature % of votes

0 Fixation prob 19.0

1 Previous word fixated binary 13.7

2 Next word fixated binary 13.2

3 nFixations 12.2

4 First fixation duration on every word 9.1

5 Previous fixation duration 7.0

6 Mean fixation duration per word 6.6

7 Re-read prob 5.7

8 Next fixation duration 2.0

9 Total fixation duration per word 2.0

Table 3.1: 10 most used features by stability selection from logistic regression
classification of all POS pairs on all domains, 5-fold cross valida-
tion.

3.2.3 Features

There are many different features for exploring cognitive load during
reading (Rayner, 1998). We extracted a broad selection of cognitive
effort features from the raw eye-tracking data in order to determine
which are more fit for the task. The features are inspired by Salojärvi
et al. (2003), who used a similarly exploratory approach. We wanted
to cover both oculomotor features, such as fixations on previous and
subsequent words, and measures relating to early (e.g. first fixation
duration) and late processing (e.g. regression destinations / depar-
ture points and total fixation time). We also included reading speed
and reading depth features, such as fixation probability and total fix-
ation time per word. In total, we have 32 gaze features, where some
are highly correlated (such as number of fixations on a word and total
fixation time).

3.2.4 Dundee Corpus

The main weakness of the experiment is the small dataset. As future
work, we plan to replicate the experiment with a $99 eye tracker for
subjects to use at home. This will make it easy to collect thousands of
sentences, leading to more robust gaze-based POS models. Here, in-
stead, we include an experiment with the Dundee corpus (Kennedy
and Pynte, 2005). The Dundee corpus is a widely used dataset in re-
search on reading and consists of gaze data for 10 subjects reading 20

newswire articles (about 51,000 words). We extracted the same word-
based features as above, except probability for 1st and 2nd fixation,
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and sentence-level features (in the Dundee corpus, subjects are ex-
posed to multiple sentences per screen window), and used them as
features in our POS tagging experiments in Section 3.3.3.

3.2.5 Learning experiments

In our experiments, we used type-constrained logistic regression with
L2-regularization and type-constrained (averaged) structured percep-
tron (Collins, 2002; Täckström et al., 2013). In all experiments, unless
otherwise stated, we trained our models on four domains and evalu-
ated on the fifth to avoid over-fitting to the characteristics of a specific
domain. Our tag dictionary is from Wiktionary3 and covers 95% of all
tokens.
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Figure 3.2: Scatter plot of frequency and fixation probability for content
words (NOUN, VERB, ADJ, NUM) and function words (PRON,
CONJ, ADP, DET, PRT)

3.3 results

3.3.0.1 Domain differences

Our first observation is that the gaze characteristics differ slightly
across domains, but more across POS. Figure 3.1 presents the fixation
probabilities across the 11 parts of speech. While the overall pattern is
similar across the five domains (open category items are more likely
to be fixated), we see domain differences. For example, pronouns are
more likely to be fixated in headlines. The explanation could lie in
the different distributions of function words and content words. It
is established and unchallenged that function words are fixated on
about 35% of the time and content words are fixated on about 85% of
the time (Rayner and Duffy, 1988). In our data, these numbers vary
among the domains according to frequency of that word class, see Fig-
ure 3.2. Figure 3.2a shows that there is a strong linear correlation be-
tween content word frequency and content word fixation probability

3 https://code.google.com/p/wikily-supervised-pos-tagger/downloads/list

https://code.google.com/p/wikily-supervised-pos-tagger/downloads/list
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Figure 3.3: Error reduction of logistic regression over a majority baseline. All
domains

among the different domains: Pearson’s ρ = 0.909. From Figure 3.2b,
there is a negative correlation between function word frequency and
function word fixation probability: Pearson’s ρ = −0.702.

3.3.1 Predictive gaze features

To investigate which gaze features were more predictive of part of
speech, we used stability selection (Meinshausen and Bühlmann, 2010)
with logistic regression classification on all binary POS classifications.
Fixation probability was the most informative feature, but also whether
the words around the word is fixated is important along with num-

SP +Gaze +DGaze +FreqLen +DGaze+FreqLen

HDL 80.7 82.2 82.2 82.6 84.3

MAI 79.1 83.1 83.4 79.5 83.1

TWI 77.1 78.7 80.0 77.2 79.3

WBL 83.6 85.4 85.8 85.0 86.1

WSJ 83.1 83.7 83.8 83.1 85.9

Average 80.7 82.6 83.0 81.5 83.7

Table 3.2: POS tagging accuracy scores on different test sets using 200 out-
of-domain sentences for training. SP is baseline results from the
structured perceptron. DGaze is using gaze features from Dundee.
Best result for each row in bold face
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ber of fixations. In our binary discrimination and POS tagging exper-
iments, using L2-regularization or averaging with all features was
superior (on Twitter data) to using stability selection for feature selec-
tion. We also asked a psycholinguist to select a small set of relatively
independent gaze features fit for the task (first fixation duration, fixa-
tion probability and re-read probability), but again, using all features
with L2-regularization led to better performance on the Twitter data.

3.3.2 Binary discrimination

First, we trained L2-regularized logistic regression models to discrim-
inate between all pairs of POS tags only using gaze features. In other
words, for example we selected all words annotated as NOUN or
VERB, and trained a logistic regression model to discriminate be-
tween the two in a five-fold cross validation setup. We report error
reduction acc−baseline

1−baseline in Figure 3.3.

3.3.3 POS tagging

We also tried evaluating our gaze features directly in a supervised POS

tagger.4 We trained a type-constrained (averaged) perceptron model
with drop-out and a standard feature model (from Owoputi et al.
(2013)) augmented with the above gaze features. The POS tagger was
trained on a very small seed of data (200 sentences), doing 20 passes
over the data, and evaluated on out-of-domain test data; training on
four domains, testing on one. For the gaze features, instead of using
token gaze features, we first built a lexicon with average word type
statistics from the training data. We normalize the gaze matrix by di-
viding with its standard deviation. This is the normalizer in Turian,
Ratinov, and Bengio (2010) with σ = 1.0. We condition on the gaze
features of the current word, only. We compare performance using
gaze features to using only word frequency, estimating from the (un-
labeled) English Web Treebank corpus, and word length (FreqLen).

The first three columns in Table 3.2 show, that gaze features help
POS tagging, at least when trained on very small seeds of data. Error
reduction using gaze features from the Dundee corpus (DGaze) is
12%. We know that gaze features correlate with word frequency and
word length, but using these features directly leads to much smaller
performance gains. Concatenating the two features sets leads to the
best performance, with an error reduction of 16%.

In follow-up experiments, we observe that averaging over 10 sub-
jects when collecting gaze features does not seem as important as
we expected. Tagging accuracies on raw (non-averaged) data are only
about 1% lower. Finally, we also tried running logistic regression ex-

4 https://github.com/coastalcph/rungsted

https://github.com/coastalcph/rungsted
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periments across subjects rather than domains. Here, tagging accura-
cies were again comparable to our set-up, suggesting that gaze fea-
tures are also robust across subjects.

3.4 related work

Matthies and Søgaard (2013) present results that suggest that individ-
ual variation among (academically trained) subjects’ reading behavior
was not a greater source of error than variation within subjects, show-
ing that it is possible to predict fixations across readers. Our work re-
lates to such work, studying the robustness of reading models across
domains and readers, but it also relates in spirit to research on using
weak supervision in NLP, e.g., work on using HTML markup to im-
prove dependency parsers (Spitkovsky, 2013) or using click-through
data to improve POS taggers (Ganchev et al., 2012).

3.5 conclusions

We have shown that it is possible to use gaze features to discrimi-
nate between many POS pairs across domains, even with only a small
dataset and a small set of subjects. We also showed that gaze features
can improve the performance of a POS tagger trained on small seeds
of data.
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abstract

This paper investigates to what extent grammatical functions of a
word can be predicted from gaze features obtained using eye-tracking.
A recent study showed that reading behavior can be used to predict
coarse-grained part of speech, but we go beyond this, and show that
gaze features can also be used to make more fine-grained distinctions
between grammatical functions, e.g., subjects and objects. In addition,
we show that gaze features can be used to improve a discriminative
transition-based dependency parser.

4.1 introduction

Readers fixate more and longer on open syntactic categories (verbs,
nouns, adjectives) than on closed class items like prepositions and
conjunctions (Nilsson and Nivre, 2009; Rayner and Duffy, 1988). Re-
cently, Barrett and Søgaard (2015a) presented evidence that gaze fea-
tures can be used to discriminate between most pairs of POS. Their
study uses all the coarse-grained POS labels proposed by Petrov, Das,
and McDonald (2011). This paper investigates to what extent gaze
data can also be used to predict grammatical functions such as sub-
jects and objects. We first show that a simple logistic regression clas-
sifier trained on a very small seed of data using gaze features dis-
criminates between some pairs of grammatical functions. We show
that the same kind of classifier distinguishes well between the four
main grammatical functions of nouns, pobj, dobj, nn, and nsubj. In
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Abstract

This paper investigates to what extent
grammatical functions of a word can be
predicted from gaze features obtained us-
ing eye-tracking. A recent study showed
that reading behavior can be used to pre-
dict coarse-grained part of speech, but we
go beyond this, and show that gaze fea-
tures can also be used to make more fine-
grained distinctions between grammati-
cal functions, e.g., subjects and objects.
In addition, we show that gaze features
can be used to improve a discriminative
transition-based dependency parser.

1 Introduction

Readers fixate more and longer on open syntac-
tic categories (verbs, nouns, adjectives) than on
closed class items like prepositions and conjunc-
tions (Rayner and Duffy, 1988; Nilsson and Nivre,
2009). Recently, Barrett and Søgaard (2015) pre-
sented evidence that gaze features can be used to
discriminate between most pairs of parts of speech
(POS). Their study uses all the coarse-grained
POS labels proposed by Petrov et al. (2011). This
paper investigates to what extent gaze data can
also be used to predict grammatical functions such
as subjects and objects. We first show that a sim-
ple logistic regression classifier trained on a very
small seed of data using gaze features discrimi-
nates between some pairs of grammatical func-
tions. We show that the same kind of classifier
distinguishes well between the four main gram-
matical functions of nouns, POBJ, DOBJ, NN and
NSUBJ. In §3, we also show how gaze features
can be used to improve dependency parsing. Many
gaze features correlate with word length and word

Texans get resonable car rental insurance
NOUN VERB ADJ NOUN NOUN NOUN
279.2 237.2 300.4 144.0 341.9 447.4

root

nsubj

dobj

amod

nn nn

Figure 1: A dependency structure with average fix-
ation duration per word

frequency (Rayner, 1998) and these could be as
good as gaze features, while being easier to obtain.
We use frequencies from the unlabelled portions
of the English Web Treebank and word length as
baseline in all types of experiments and find that
gaze features to be better predictors for the noun
experiment as well as for improving parsers.

This work is of psycholinguistic interest, but we
show that gaze features may have practical rele-
vance, by demonstrating that they can be used to
improve a dependency parser. Eye-tracking data
becomes more readily available with the emer-
gence of eye trackers in mainstream consumer
products (San Agustin et al., 2010). With the de-
velopment of robust eye-tracking in laptops, it is
easy to imagine digital text providers storing gaze
data, which could then be used as partial annota-
tion of their publications.

Contributions We demonstrate that we can dis-
criminate between some grammatical functions
using gaze features and which features are fit for
the task. We show a practical use for data reflect-
ing human cognitive processing. Finally, we use
gaze features to improve a transition-based de-
pendency parser, comparing also to dependency
parsers augmented with word embeddings.

Figure 4.1: A dependency structure with average fixation duration per
word.
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Section 4.4.4, we also show how gaze features can be used to improve
dependency parsing. Many gaze features correlate with word length
and word frequency (Rayner, 1998) and these could be as good as
gaze features, while being easier to obtain. We use frequencies from
the unlabeled portions of the English Web Treebank and word length
as baseline in all types of experiments and find that gaze features to
be better predictors for the noun experiment as well as for improving
parsers.

This work is of psycholinguistic interest, but we show that gaze
features may have practical relevance, by demonstrating that they
can be used to improve a dependency parser. Eye-tracking data be-
comes more readily available with the emergence of eye trackers in
mainstream consumer products (San Agustin et al., 2010). With the
development of robust eye-tracking in laptops, it is easy to imagine
digital text providers storing gaze data, which could then be used as
partial annotation of their publications.

contributions We demonstrate that we can discriminate between
some grammatical functions using gaze features and which features
are fit for the task. We show a practical use for data reflecting hu-
man cognitive processing. Finally, we use gaze features to improve a
transition-based dependency parser, comparing also to dependency
parsers augmented with word embeddings.

4.2 eye tracking data

The data comes from Barrett and Søgaard (2015a) and is publicly
available1. In this experiment 10 native English speakers read 250

syntactically annotated sentences in English (min. 3 tokens, max. 120

characters). The sentences were randomly sampled from one of five
different, manually annotated corpora from different domains: Wall
Street Journal articles (WSJ), Wall Street Journal headlines (HDL),
emails (MAI), weblogs (WBL), and Twitter (TWI)2. See Figure 4.1 for
an example.

features It is not yet established which eye movement reading
features are fit for the task of distinguishing grammatical functions
of the words. To explore this, we extracted a broad selection of word-
and sentence-based features. The features are inspired by Salojärvi
et al. (2003) who used a similar exploratory approach. For a full list
of features, see Appendix A.

1 https://bitbucket.org/lowlands/release/src

2 Wall Street Journal sentences are from OntoNotes 4.0 release of the English Penn
Treebank. http://catalog.ldc.upenn.edu/LDC2011T03. Mail and weblog sentences
come from the English Web Treebank. http://catalog.ldc.upenn.edu/LDC2012T13.
Twitter sentences are from the work of (Foster et al., 2011)

https://bitbucket.org/lowlands/release/src
http://catalog.ldc.upenn.edu/LDC2011T03
http://catalog.ldc.upenn.edu/LDC2012T13
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4.3 learning experiments

In our binary experiments, we use L2-regularized logistic regression
classifiers with the default parameter setting in SciKit Learn3 and a
publicly available transition-based dependency parser4 trained using
structured perceptron (Collins, 2002; Zhang and Nivre, 2011).

4.3.1 Binary classification

We trained logistic regression models to discriminate between pairs
of the 11 most frequent dependency relations where the sample size
is above 100: (amod, nn, aux, prep, nsubj, advmod, dep, det, dobj,
pobj, root) only using gaze features. E.g., we selected all words an-
notated as prep or nsubj and trained a logistic regression model to
discriminate between the two in a five-fold cross validation setup.
Our baseline uses the following features: word length, position in
sentence and word frequency.

Some dependency relations are almost uniquely associated with
one POS, e.g. determiners where 84.8% of words with the dependency
relation det are labeled determiners. This means that in some cases,
the grammatical function of a word follows from its part of speech. In
another binary experiment, we therefore focus on nouns to show that
eye movements do make more fine-grained distinctions between dif-
ferent grammatical functions. Nouns are mostly four-way ambiguous:
74.6% of the 946 nouns in the dataset have one of four dependency
relations to its head. Nouns with pobj relations is 18.9% of all nouns,
nsubj is 17.0%, nn is 27.0% and dobj is 14.9%. The remaining 25.4%
of the nouns are discarded from the noun experiment since they have
28 different relations to their head.

4.3.2 Parsing

In all experiments we trained our parsing models on four domains
and evaluated on the fifth to avoid over-fitting to the characteristics
of a specific domain. All parameters were tuned on the WSJ dataset.
We did 30 passes over the data and used the feature model in Zhang
and Nivre (2011) – concatenated with gaze vectors for the first to-
ken on the buffer, the first token in the stack, and the left sibling of
the first token in the stack. We extend the feature representation of
each parser configuration by 3× 26 features. Our gaze vectors were
normalized using the technique in Turian, Ratinov, and Bengio (2010)
(σ · E/SD(E)) using a scaling factor of σ = 0.001. Gaze features such
as fixation duration are known to correlate with word frequency and

3 http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.

LogisticRegression.html

4 https://github.com/andersjo/hanstholm

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://github.com/andersjo/hanstholm
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Rank Feature name % of votes

0 Next word fixation probability 13.46

1 Fixation probability 11.14

2 n Fixations 9.66

3 Probability to get 2
nd fixation 8.90

4 Previous word fixation probability 7.17

5 n Regressions from 5.65

6 First fixation duration on every word 5.45

7 Mean fixation duration per word 5.17

8 Previous fixation duration 4.93

9 Re-read probability 4.65

10 Probability to get 1
st fixation 4.53

11 n Long regressions from word 3.77

12 Share of fixated words per sent 3.04

13 n Re-fixations 1.88

14 n Regressions to word 1.76

Table 4.1: Most predictive features for binary classification of 11 most fre-
quent dependency relations using five-fold cross validation.

word length. To investigate whether word length and frequency are
stronger features than gaze, we perform an experiment, +Freq+Len,
where our baseline and system also use frequencies and word length
as features.

4.4 results

4.4.1 Predictive features

To investigate which gaze features were more predictive of grammati-
cal function, we used stability selection (Meinshausen and Bühlmann,
2010) with logistic regression classification on binary dependency re-
lation classifications on the most frequent dependency relations.

For each pair of dependencies, we perform a five-fold cross valida-
tion and record the informative features from each run. 4.1 shows
the 15 most used features in ranked order with their proportion of
all votes. The features predictive of grammatical functions are sim-
ilar to the features that were found to be predictive of POS (Barrett
and Søgaard, 2015a), however, the probability that a word gets first
and second fixation were not important features for POS classifica-
tion, whereas they are contributing to dependency classification. This
could suggest that words with certain grammatical functions are con-
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Figure 4.2: Error reduction over the baseline for binary classifications of 11

most frequent dependency relations. 5-fold cross validation. De-
pendency relations associated with nouns in triangle.

sistently more likely or less likely to get first and second fixation, but
could also be due to a frequent syntactic order in the sample.

4.4.2 Binary discrimination

Error reduction over the baseline can be seen in Figure 4.2. The mean
accuracy using logistic regression on all binary classification prob-
lems between grammatical functions is 0.722. The frequency-position-
word length baseline is 0.706. In other words, using gaze features
leads to a 5.6% error reduction over the baseline. The worst perfor-
mance (where our baseline outperforms using gaze features) is seen
where one relation is associated with closed class words (det, prep,
aux), and where discrimination is easier.

4.4.3 Noun experiment

Error reductions for pairwise classification of nouns are between -
4% and 41%. See Figure 4.2. The average accuracy for binary noun
experiments is 0.721. Baseline accuracy is 0.647. For pobj and dobj

the baseline was better than using gaze, but for the other pairs, gaze
was better. When doing stability selection for nouns with only the
four most frequent grammatical functions, the most important fea-
tures can be seen from Table 4.2. The most informative feature is the
fixation probability of the next word. Kernel density of this feature
can be seen in Figure 4.3a, and it shows two types of behavior: pobj
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and dobj, where the next word is less frequently fixated, and nn and
nsubj, where the next word is more frequently fixated. Whether the
next word is fixated or not, can be influenced by the word length, as
well as the fixation probability of the current word: If the word is very
short, the next word can be processed from a fixation of the current
word, and if the current word is not fixated, the eyes need to land
somewhere in order for the visual span to cover a satisfactory part
of the text. Word length and fixation probabilities for the nouns are
reported in Figure 4.3c and Figure 4.3b to show that the dependency
labels have similar densities.
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Figure 4.3: Kernel density plots across four grammatical functions of nouns.

4.4.4 Dependency parsing

We also evaluate our gaze features directly in a supervised depen-
dency parser. Our baseline performance is relatively low because of
the small training set, but comparable to performance often seen with
low-resource languages. Evaluation metrics are labelled attachment
score (LAS) and unlabelled attachment score (UAS), i.e. the number of
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Rank Feature name % of votes

0 Next word fixation probability 20.66

1 Probability to get 2
nd fixation 19.83

2 nRegressions from word 14.05

3 Previous word fixation probability 8.68

4 Probability to get 1
st fixation 7.44

Table 4.2: Most predictive features for the binary classification of four most
frequent dependency relations for nouns using five-fold cross val-
idation.

LAS UAS

+Freq+Len Freq+Len

BL +Senna +EigenW +Gaze BL +Gaze BL +Senna +EigenW +Gaze BL +Gaze

HDL 53.9 53.9 52.6 54.1 53.5 54.2 58.3 60.0 56.4 58.9 58.2 58.7

MAI 66.7 65.1 66.8 *68.4 67.8 *71.1 71.5 69.9 71.5 *74.7 73.2 *75.9

TWI 53.2 56.9 56.3 *56.1 55.4 *56.9 57.6 62.6 61.5 *60.2 60.7 *62.1

WBL 60.4 62.9 59.2 *63.8 63.1 *65.5 66.8 67.0 66.6 *71.1 70.9 *71.9

WSJ 63.5 63.5 62.2 *65.0 62.9 63.4 67.2 68.1 67.4 *69.5 67.1 67.7

Average 59.5 60.5 59.4 *61.5 60.5 *62.2 64.3 65.5 64.7 *66.9 66.0 *67.2

Table 4.3: Dependency parsing results on all five test sets using 200 sen-
tences (four domains) for training and 50 sentences (one do-
main) for evaluation. Best results are bold-faced, and significant
(p < 0.01) improvements are asterisked.

words that get assigned the correct syntactic head w/o the correct
dependency label.

Gaze features lead to consistent improvements across all five do-
mains. The average error reduction in LAS is 5.0%, while the average
error reduction in UAS is 7.3%. For the +Freq+Len experiment, +Gaze

also lead to improvements for all domains, with error reductions of
3.3% for LAS and 4.7% for UAS.

For comparison we also ran our parser with Senna embeddings5

and EigenWords embeddings.6 The gaze vectors proved overall more
informative.

4.5 related work

In addition to Barrett and Søgaard (2015a), our work relates to Matthies
and Søgaard (2013), who study the robustness of a fixation prediction
model across readers, not domains, but our work also relates in spirit
to research on using weak supervision in NLP, e.g., work on using
HTML markup to improve dependency parsers (Spitkovsky, 2013)

5 http://ronan.collobert.com/senna/

6 http://www.cis.upenn.edu/~ungar/eigenwords/

http://ronan.collobert.com/senna/
http://www.cis.upenn.edu/~ungar/eigenwords/
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or using click-through data to improve POS taggers (Ganchev et al.,
2012).

There have been few studies correlating reading behavior and gen-
eral dependency syntax in the literature. Demberg and Keller (2008),
having parsed the Dundee corpus using MiniPar, show that depen-
dency integration cost, roughly the distance between a word and its
head, is predictive of reading times for nouns. Our finding could
be a side-effect of this, since nsubj, nn and dobj/pobj typically have
very different dependency integration costs, while dobj and pobj have
about the same. Their study thus seems to support our finding that
gaze features can be used to discriminate between the grammatical
functions of nouns. Most other work of this kind focus on specific
phenomena, e.g., Traxler, Morris, and Seely (2002), who show that
subjects find it harder to process object relative clauses than subject
relative clauses. This paper is related to such work, but our interest is
a broader model of syntactic influences on reading patterns.

4.6 conclusions

We have shown that gaze features can be used to discriminate be-
tween a subset of grammatical functions, even across domains, us-
ing only a small dataset and explored which features are more use-
ful. Furthermore, we have shown that gaze features can be used
to improve a state-of-the-art dependency parsing model, even when
trained on small seeds of data, which suggests that parsers can bene-
fit from data from human processing.
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T H E D U N D E E T R E E B A N K

abstract

We introduce the Dundee Treebank, a Universal Dependencies-style
syntactic annotation layer on top of the English side of the Dundee
Corpus. As the Dundee Corpus is an important resource for conduct-
ing large-scale psycholinguistic research, we aim at facilitating further
research in the field by replacing automatic parses with manually as-
signed syntax. We report on constructing the treebank, performing
parsing experiments, as well as replicating a broad-scale psycholin-
guistic study – now for the first time using manually assigned syntac-
tic dependencies.

5.1 introduction

The Dundee Corpus is a major resource for studies of linguistic pro-
cessing through eye movements. It is a famous resource in psycholin-
guistics, and – to the best of our knowledge – the world’s largest
eye-movement corpus. The English part of the Dundee Corpus was
annotated with POS information in 2009 (Frank, 2009). This layer of an-
notation facilitated new psycholinguistic studies such as testing sev-
eral reader models using models of hierarchical phrase structure and
sequential structure (Frank and Bod, 2011).

In this paper, we describe a recent annotation effort to add a layer
of dependency syntax on top of the POS annotation, enabling the repli-
cation of classic studies such as (Demberg and Keller, 2008) on man-
ually assigned syntax rather than automatic parses. We first describe
the Dundee Corpus, then our annotation scheme, and finally we dis-
cuss applications of this annotation effort.

5.2 the dundee corpus

The Dundee Corpus was developed by Alan Kennedy and Joël Pynte
in 2003, and it contains eye movement data on top of English and
French text (Kennedy, Hill, and Pynte, 2003). Measurements were
taken while participants read newspaper articles from The Independent
(English) or Le Monde (French). Ten native English-speaking subjects
participated in the English experiments reading 20 articles, which we
focus on here. For a more detailed account, see Kennedy and Pynte
(2005).
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Figure 5.1: An example sentence (#10) from the Dundee Corpus with UD-
style syntactic dependencies and per-word fixation durations.

The English corpus contains 51,502 tokens1 and 9,776 types in 2,368

sentences. The apparatus was a Dr Bouis Oculometer Eye tracker with
a 1000 Hz monocular (right) sampling. The corpus provides informa-
tion on fixation durations and fixation order on word level – while
also accounting for landing position – for a relatively natural reading
scenario. Subjects read running text, 5 lines per display.

Eye movements provide a window to the workings of the brain,
e.g. by reflecting cognitive load. Recordings of eye movements during
reading is one of the main methods for getting a millisecond to mil-
lisecond record of human cognition. Eye movements during reading
is controlled by a complex interplay between low-level factors (how
much the eye can see and encode from each fixation, word length,
landing position, etc.) and high-level factors (e.g. syntactic process-
ing). For an overview, see Rayner (1998).

This resource has enabled researchers to study things like syntactic
and semantic factors in processing difficulty of words (Mitchell et al.,
2010) and whether the linguistic processing associated with a word
can proceed before the word is uniquely identified (Smith and Levy,
2010).

5.3 syntactic annotation

In annotating the Dundee Corpus for syntactic dependencies, we fol-
low the Universal Dependencies (UD) guidelines2 (Agić et al., 2015)
as the emerging de facto standard for dependency annotation.

The guidelines build on – and closely adhere to – Universal Stan-
ford dependencies (de Marneffe et al., 2014), proposing 40 depen-
dency relations together with an UPOS tagset and morphological fea-
tures. We convert the Penn Treebank-style POS tags from the Dundee
Corpus into UPOS, and we provide the universal morphology features,
by using the official English UD conversion tools.

The guidelines for annotating English are very well-documented
within the UD framework. We only briefly touch upon the most im-
portant ones.

For core dependents of clausal predicates, UD distinguishes be-
tween nominal subjects (nsubj), direct objects (dobj), indirect objects

1 According to the tokenisation of the Dundee corpus where punctuation and con-
tracted words are glued to the preceding word.

2 http://universaldependencies.github.io/
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Dundee English UD dev English UD test

Train set LAS UAS LA LAS UAS LA LAS UAS LA

Dundee 82.23 85.06 89.97 69.50 75.96 81.26 68.86 75.60 80.61

English UD 71.45 78.66 84.28 85.51 88.03 92.91 84.72 87.30 92.37

Table 5.1: Dependency parsing results with English UD and Dundee as train-
ing sets. Parser: mate-tools graph-based parser with default set-
tings (Bohnet, 2010). Features: FORM and coarse part-of-speech
(CPOS) TAG only, using the Penn Treebank POS tags. Metrics:
labeled and unlabeled attachment scores (LAS, UAS), and label
assignment (LA). On Dundee, result is on 5-fold (80:20) cross-
validation, as the Dundee Treebank has no held-out test set.

(iobj), nominal subjects of passives (nsubjpass), clausal subjects (csubj),
clausal subjects of passives (csubjpass), clausal complements (ccomp),
and open clausal complements (xcomp). When it comes to non-nominal
modifiers of nouns, for example, the guidelines distinguishes between
adjectival modifiers (amod), determiners (det), and negation (neg).

We show an example sentence from the treebank in Figure 5.1. It
depicts the UD-style dependency annotation, as well as per-word to-
tal fixation durations averaged over ten readers. Some of the typical
UD-style conventions – such as content head primacy and no copula
heads – are also illustrated.

We used two professional annotators that had previously worked
on treebanks following the UD guidelines. The annotators provided
double annotations for 118 sentences, with moderately high inter-
annotator agreements of 80.82 (LAS), 87.61 (UAS, and 86.63 (LA). The
remaining part of the Dundee Corpus was only annotated by one
annotator.

Further, we trained a graph-based dependency parser (Bohnet, 2010)
on English UD training data, and parsed the Dundee Corpus text. We
report the results in Table 5.1. There is a decrease in accuracy mov-
ing from English UD to the Dundee Corpus text. We attribute the
decrease to the domain shift – English UD stemming from various
web sources, while Dundee consists of newswire commentaries in
specific – and possibly to the slight cross-dataset inconsistency in POS

and dependency annotations. In a separate experiment, we also parse
the Dundee Corpus text using 5-fold cross-validation with an 80:20

split, observing accuracies consistent with the English UD experiment.
These results are also reported in Table 5.1.

The cross-dataset decrease in parsing accuracy, even if irrelevant
for Dundee-specific experiments, plays into the argument for using
gold-standard annotations in psycholinguistic research.
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5.4 replication of dependency locality theory experi-
ment

The Dundee Treebank annotated with dependencies has the following
affordances. First, it allows for replication of studies such as Demberg
and Keller (2008) with manual annotations. Second, gaze features can
be used to improve NLP models by enabling joint learning of gaze
and syntactic dependencies (Barrett and Søgaard, 2015a,b). Finally,
the Dundee Treebank facilitates for researchers to study the reading
of very specific syntactic constructions in naturalistic, contextualized
text, while controlling for individual variation, and variation specific
to the parts of speech or syntactic dependencies involved.

Demberg and Keller (2008) were the first to test broad-covering
theories of sentence processing on large-scale, contextualized text
with eye tracking data (Demberg and Keller, 2008). They explored
two theories of syntactic complexity, namely dependency locality the-
ory (DLT) and Surprisal, and how these correlate with three eye track-
ing measures while controlling for oculomotor and low-level process-
ing.

DLT (Gibson, 2000) estimates the computational resources consumed
by the human processor and computes a cost for any discourse refer-
ent as well as a cost for every discourse referent between a particular
discourse referent and it’s head. Thus, DLT needs dependency parsed
text to score the complexity of the sentences and Minipar was used
to parse the text with a reported 83% accuracy of the DLT score.

In this paper we replicate the parts of their experiments involving
DLT, but with manually assigned dependencies instead of automatic
parses for calculating DLT. Demberg and Keller (2008) found that DLT

score did not have the expected positive effect on reading time of
all words. The calculation of DLT only applies for nouns and verbs.
They did, however, find that DLT significantly had a positive effect on
reading times for nouns and verbs.

We replicate the linear mixed-effects experiment using first pass fix-
ation duration per word for all words and nouns3. First pass fixation
duration is the duration of all fixations on a specific word from when
the reader’s eyes first enter into the region and until the eyes leave
the region, given that this region is fixated. This is a measure said to
encompass early syntactic and semantic processing as well as lexical
access. We use the same low-level predictor variables as the original
experiment:

1. word length in characters (word length),
2. log-transformed frequency of target word (word frequency),
3. log-transformed frequency of previous word (previous word

frequency),

3 The original paper does not contain information about the elements of the model for
verbs, which is why this part of the experiment was not replicated.
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Predictor Coef p Coef original p original

intercept 199.59 128.24 ***

word length -1.25 30.90 ***

word frequency 4.43 *** 14.50 ***

previous word fixated -33.32 *** -18.05 ***

landing position -1.23 *** -4.18 ***

launch distance 1.79 *** -1.91 ***

sentence position -.09 * -.12 *

forward transitional probability 1.51 *** -3.27 ***

backward transitional probability -5.87 *** 3.96 ***

log(DLT) 3.51 ** 5.86 *

word length:word frequency -2.96 *** -4.98 ***

word length:landing position -.68 *** -1.02 ***

Table 5.2: First pass durations for nouns with non-zero DLT score in the
Dundee corpus. Coefficients and their significance level. Same
predictors as original noun experiment. * p < .05, ** p < .01, ***
p < .001.

4. forward-transitional probability (forward transitional proba-
bility),

5. backward transitional probability (backward transitional prob-
ability),

6. word position in sentence (sentenceposition),
7. whether the previous word was fixated or not (previous word

fixated),
8. launch distance of the fixation in characters (launch distance),
9. and fixation landing position (landing position).

Backward- and forward transitional probabilities are conditional prob-
abilities of a word given the previous / next word, respectively (Mc-
Donald and Shillcock, 2003). Along with the word frequencies these
two measures are obtained from the British National Corpus (BNC)
(Consortium et al., 2007), following the line of Demberg and Keller
(2008). We use KenLM (Heafield, 2011) for getting the bigram frequen-
cies and Kneser-Ney smoothing for those bigrams that are not found
in the training set. Demberg and Keller (2008) used CMU-Cambridge
Language Modeling Toolkit and applied Witten-Bell smoothing. Bi-
grams respect sentence boundaries.

We clean the data following the described approach by using only
fixated words, excluding words that are followed by any kind of punc-
tuation and excluding first and last words of each line. We did, how-
ever, not remove words “in a region of 4 or more adjacent words that
had not been fixated”, since it is unclear what a “region” is (non-
fixated words are already removed). This left us with 209,010 data
points. Demberg and Keller (2008) report to have 200,684 data points
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after cleaning. The difference is probably accounted for by the miss-
ing, last cleaning step.

We use R (R Core Team, 2015) and lme4 (Bates et al., 2015) to fit
a linear mixed-effects model. In the following we use the same fixed
and random effects as their models minimised using Akaike Infor-
mation Criterion (AIC). The authors do not report which significance
test they used. We use likelihood ratio tests of the full model with the
particular fixed effect against the model without the particular fixed
effect.

Demberg and Keller (2008) find that for all words, DLT had a signifi-
cant, negative effect on first pass fixation duration (p < .001), which is
a displeasing counter-intuitive result. It means higher DLT score gives
a shorter fixation duration. We also find a very small negative effect
(-.03) of DLT on first pass fixation duration for all words, but it doesn’t
reach significance. Following the original experiment, we fit a model
for the nouns with non-zero DLT score, encompassing 51,786 data
points. The original experiment report having 45,038. In Table 5.2 we
report the coefficients and significance level for all fixed effects of this
model as well as the corresponding results of the original experiment.
Like the original experiment, we find that the log(DLT) had a signifi-
cant positive effect on reading time (p < .01). These two experiments
demonstrate that parser bias did not skew the results substantially.

5.5 conclusion

We introduced the Dundee Treebank – a new resource for corpus-
based psycholinguistic experiments. The treebank is annotated in com-
pliance with the Universal Dependencies scheme. We presented the
design choices together with a batch of dependency parsing experi-
ments.

We also partly replicated a study, which explores how a theory of
sentence complexity, DLT, is reflected in reading times. We used manu-
ally assigned dependencies instead of parsed dependencies. Like the
original experiment, we found both a small negative effect of DLT on
all word and a significant positive effect of DLT on reading time for
nouns with non-zero DLT score.

The treebank is made publicly available for research purposes.4

5.6 errata

During the write-up process of the thesis, I was made aware that there
was a systematic error in my calculation of DLT. Thanks for Scarlett
Hao for pointing that out. Unfortunately my old cleaning script is
missing. Trying to replicate the cleaning I get around 218,000 data
points instead of the around 209.000 data points we used last. Going

4 https://bitbucket.org/lowlands/release
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Predictor Coef p Coef p

intercept 283.70 128.24 ***

word length -16.91 *** 30.90 ***

word frequency 16.93 *** 14.50 ***

previous word fixated -40.11 *** -18.05 ***

landing position -.64 -4.18 ***

launch distance 1.73 *** -1.91 ***

sentence position -.14 *** -.12 *

forward transitional probability -.96 *** -3.27 ***

backward transitional probability -3.80 *** 3.96 ***

log(DLT) 14.23 *** 5.86 *

wordlength:wordfrequency -5.62 *** -4.98 ***

wordlength:landingposition -.41 *** -1.02 ***

Table 5.3: First pass durations for nouns with non-zero DLT score in the
Dundee corpus. Corrected numbers. Coefficients and their signif-
icance level. Corrected scores. Same predictors as original noun
experiment. * p < .05, ** p < .01, *** p < .001.

over my old code, I found a bug in the Dundee feature extraction: for
around 5% of the words that were refixated in the first pass reading,
re-fixation durations were added twice instead of once, making the
value too high for these words.

I therefore replicate the linear mixed effects models with the cor-
rected DLT score and the corrected First Pass Duration. For all words
there is now a small, positive effect (5.82) of log(DLT) on First pass du-
ration. The effect is significant (p > 0.001). Both Demberg and Keller
(2008) and the original version of this study found a very small, nega-
tive effect of DLT, which in our case was not significant. The correction
follow the same tendency further. Though the effect is very small, it
is a pleasing conclusion to have a positive effect of DLT. Due to the
different cleaning procedure, the result is not directly comparable to
previous studies.

For nouns only there is now a larger positive effect on the slope
(14.23) of DLT than we found previously (3.51). It is also larger than
what Demberg and Keller (2008) found (5.86). Table 5.3 presents the
corrected coefficients.

Shain et al. (2016a) also found a small, negative effect of several
variations of DLT on all words using their own later annotation of
the Dundee Corpus, but it is not clear from the abstract how they
cleaned the data, which statistical test they used or which fixed effect
they used, making comparison difficult.
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abstract

For many of the world’s languages, there are no or very few linguis-
tically annotated resources. On the other hand, raw text, and often
also dictionaries, can be harvested from the web for many of these
languages, and part-of-speech taggers can be trained with these re-
sources. At the same time, previous research shows that eye-tracking
data, which can be obtained without explicit annotation, contains
clues to part-of-speech information. In this work, we bring these two
ideas together and show that given raw text, a dictionary, and eye-
tracking data obtained from naive participants reading text, we can
train a weakly supervised part-of-speech tagger using a second-order
hidden Markov model with maximum entropy emissions (SHMM-ME).
The best model use type-level aggregates of eye-tracking data and
significantly outperforms a baseline that does not have access to eye-
tracking data.

6.1 introduction

According to Ethnologue, there are around 7,000 languages in the
world.1 For most of these languages, no or very little linguistically an-
notated resources are available. This is why over the past decade or
so, NLP researchers have focused on developing unsupervised algo-
rithms that learn from raw text, which for many languages is widely
available on the web. An example is part-of-speech (POS) tagging,
in which unsupervised approaches have been increasingly success-
ful (see Christodoulopoulos, Goldwater, and Steedman (2010) for an
overview). The performance of unsupervised POS taggers can be im-
proved further if dictionary information is available, making it possi-
ble to constrain the POS tagging process. Again, dictionary informa-
tion can be harvested readily from the web for many languages (Li,
Graça, and Taskar, 2012).

In this paper, we show that POS tagging performance can be im-
proved further by using a weakly supervised model which exploits
eye-tracking data in addition to raw text and dictionary information.
Eye-tracking data can be obtained by getting native speakers of the
target language to read text while their gaze behavior is recorded.
Reading is substantially faster than manual annotation, and compe-

1 http://www.ethnologue.com/world

http://www.ethnologue.com/world
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zi-2 zi-1 zi

xi-2 xi-1 xi

Figure 6.1: Second-order HMM. In addition to the transitional probabilities of
the antecedent state zi−1 in first-order HMMs, second-order mod-
els incorporate transitional probabilities from the second-order
antecedent state zi−2.

tent readers are available for languages where trained annotators are
hard to find or non-existent. While high quality eye-tracking equip-
ment is still expensive, $100 eye-trackers such as the EyeTribe are
already on the market, and cheap eye-tracking equipment is likely
to be widely available in the near future, including eye-tracking by
smartphone or webcam (Skovsgaard, Hansen, and Møllenbach, 2013;
Xu et al., 2015).
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Figure 6.2: Tagging accuracy on development data (token-level) as a func-
tion of number of iterations on baseline and full model.

Gaze patterns during reading are strongly influenced by the parts
of speech of the words being read. Psycholinguistic experiments show
that readers are less likely to fixate on closed-class words that are
predictable from context. Readers also fixate longer on rare words,
on words that are semantically ambiguous, and on words that are
morphologically complex (Rayner, 1998). These findings indicate that
eye-tracking data should be useful for classifying words by part of
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Table 6.1: Features in feature selection groups.

speech, and indeed Barrett and Søgaard (2015a) show that word-type-
level aggregate statistics collected from eye-tracking corpora can be
used as features for supervised POS tagging, leading to substantial
gains in accuracy across domains. This leads us to hypothesize that
gaze data should also improve weakly supervised POS tagging.

In this paper, we test this hypothesis by experimenting with a POS

tagging model that uses raw text, dictionary information, and eye-
tracking data, but requires no explicit annotation. We start with a
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Features TA

NoGazeDun 81.03

NoGazeBNC 80.69

Basic 80.30

Early 79.96

Late 79.87

RegFrom 79.62

Context 79.53

Best Group Comb (All) 81.37

Best Gaze-Only Comb (Basic-Late) 80.45

Table 6.2: Tagging accuracy on the development set (token-level) for all in-
dividual feature groups, for the best combination of groups and
for the best gaze-only combination of groups.

state-of-the-art unsupervised POS tagging model, the SHMM-ME of Li,
Graça, and Taskar (2012), which uses only textual features. We aug-
ment this model with a wide range of features derived from an eye-
tracking corpus at training time (type-level gaze features). We also
experiment with token-level gaze features; the use of these features
implies that eye-tracking is available both at training time and at test
time. We find that eye-tracking features lead to a significant increase
in POS tagging accuracy, and that type-level aggregates work better
than token-level features.

6.2 the dundee treebank

The Dundee Treebank (Barrett, Agić, and Søgaard, 2015) is a Univer-
sal Dependencies (UD) annotation layer that has recently been added
to the world’s largest eye-tracking corpus, called the Dundee Cor-
pus (Kennedy, Hill, and Pynte, 2003). The English portion of the cor-
pus contains 51,502 tokens and 9,776 types in 2,368 sentences. The
Dundee Corpus is a well-known and widely used resource in psy-
cholinguistic research. The corpus enables researchers to study the
reading of contextualized, running text obtained under relatively nat-
uralistic conditions. The eye-movements in the Dundee Corpus were
recorded with a high-end eye-tracker, sampling at 1000 Hz. The cor-
pus contains the eye-movements of ten native English speakers as
they read the same twenty newspaper articles from The Independent.
The corpus was augmented with Penn Treebank POS annotation by
Frank (2009). When constructing the Dundee Treebank, this POS an-
notation was checked and corrected if necessary. In the present paper,
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System TA

Baseline Li et al. 2012 79.77

NoTextFeats 74.61

NoTextFeats + Best Group Comb (token) 79.56

NoTextFeats + Best Group Comb (type) 81.94*

Token-level features

Best Gaze Group (Basic) 80.42*

Best Gaze-Only Comb (Basic+Late) 80.45*

Best Single Group (NoGazeDun) 80.61*

Best Group Comb (All) 81.00*

Type-averaged features

Best Gaze Group (Basic) 81.28*

Best Gaze-Only Comb (Basic+Late) 81.38*

Best Group (NoGazeDun) 81.52*

Best Group Comb (All) 82.44*

Table 6.3: Tagging accuracy for the baseline, for models with no text fea-
tures and for our gaze-enriched models using type and token gaze
features. Significant improvements over the baseline marked by *
(p < 10−3, McNemar’s test).

we use Universal part-of-speech (UPOS) tags (Petrov, Das, and Mc-
Donald, 2011), which were obtained by automatically mapping the
original Penn Treebank annotation of the Dundee Treebank to Uni-
versal tags.

6.3 type-constrained second-order hmm pos tagging

We build on the type-constrained SHMM-ME proposed by Li, Graça,
and Taskar (2012). This model is an extension of the first-order max-
imum entropy HMM introduced by Berg-Kirkpatrick et al. (2010). Li,
Graça, and Taskar (2012) derive type constraints from crowd-sourced
tag dictionaries obtained from Wiktionary. Using type constraints
means confining the emissions for a given word to the tags specified
by the Wiktionary for that word. Li, Graça, and Taskar (2012) report
a considerable improvement over state-of-the-art unsupervised POS

tagging models by using type constraints. In our experiments, we use
the tag dictionaries they made available2 to facilitate comparison. Li

2 https://code.google.com/archive/p/wikily-supervised-pos-tagger/

https://code.google.com/archive/p/wikily-supervised-pos-tagger/
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et al.’s model was evaluated across nine languages and outperformed
a model trained on the Penn Treebank tagset, as well as a models that
use parallel text. We follow Li et al.’s approach, including the map-
ping of the Penn Treebank tags to the UPOS tags (Petrov, Das, and
McDonald, 2011). Figure 6.1 shows a graphical representation of a
second-order HMM.

Li et al. explore two aspects of type-constrained HMMs for unsu-
pervised POS tagging: the use of a second-order Markov model, and
the use of textual features modeled by maximum entropy emissions.
They find that both aspects improve tagging accuracy and report the
following results for English using Universal POS tags on the Penn
Treebank: first-order HMM 85.4, first-order HMM with max-ent emis-
sions 86.1, second-order HMM 85.0, and SHMM-ME 87.1. Li et al. em-
ploy a set of basic textual features for the max-ent versions, which
encode word identity, presence of a hyphen, a capital letter, or a digit,
and word suffixes of two to three letters.

6.4 experiments

features Based on the eye-movement data in the Dundee Corpus,
we compute token-level values for 22 features pertaining to gaze and
complement them with another nine non-gaze features. Word length
and word frequency are known to correlate and interact with gaze
features. We use frequency counts from both a large corpus (British
National Corpus (BNC)) and the Dundee Corpus itself. From these
corpora, we also obtain forward and backward transitional probabili-
ties, i.e., the conditional probabilities of a word given the previous or
next word.

All gaze features are averaged over the ten readers and normalized
linearly to a scale between 0 and 1. We divide the set of 31 features,
which we list in Table 6.1, into the following seven groups in order to
examine for their individual contribution:

early measures of processing such as first-pass fixation duration.
Fixations on previous words are included in this group due
to preview benefits. Early measures capture lexical access and
early syntactic processing.

late measures of processing such as number of regressions to a
word and re-fixation probability. These measures reflect late syn-
tactic processing and disambiguation in general.

basic word-level features, e.g., mean fixation duration and fixation
probability. These metrics do not belong explicitly to early or
late processing measures.

regfrom includes a small selection of measures based on regres-
sions departing from a token. It also includes counts of long
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Feature groups Accuracy ∆

All groups 81.00

−NoGazeBNC 80.80 −0.20

−NoGazeDun 80.28 −0.52*

−Basic 80.20 −0.08

−Early 79.78 −0.42*

−Late 79.53 −0.25

−RegFrom 79.24 −0.29*

−Context (Baseline) 79.77 +0.53*

Table 6.4: Results of an ablation study over feature groups on the test set on
token-level features. Significant differences with previous model
are marked by * (p < 0.05, McNemar’s test).

regressions3. The token of departure of a regression can have
syntactic relevance, e.g., in garden path sentences.

context features of the surrounding tokens. This group contains
features relating to the fixations of the words in near proximity
of the token. The eye can only recognize words a few characters
to the left, and seven to eight characters to the right of the fix-
ation (Rayner, 1998). Therefore it is useful to know the fixation
pattern around the token.

nogazebnc includes word length and word frequency obtained from
the British National Corpus, as well as forward and backward
transitional probabilities. These were computed using the KenLM
language modeling toolkit (Heafield, 2011) with Kneser-Ney
smoothing for unseen bigrams.

nogazedun includes the same features as NogazeBNC, but com-
puted on the Dundee Corpus. They were extracted using CMU-
Cambridge language modeling toolkit.4

setup The Dundee Corpus does not include a standard train/de-
velopment/test split, so we divided it into a training set containing
46,879 tokens/1,896 sentences, a development set containing 5,868 to-
kens/230 sentences, and a test set of 5,832 tokens/241 sentences.

To tune the number of expectation maximisation (EM) iterations
required for the SHMM-ME model, we ran several experiments on the
development set using 1 through 50 iterations. The result is fairly
consistent for both the baseline (the original model of Li, Graça, and

3 defined as saccades going further back than wi−2
4 http://www.speech.cs.cmu.edu/SLM/toolkit.html

http://www.speech.cs.cmu.edu/SLM/toolkit.html
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Taskar (2012)) and the full model (which includes all feature groups
in Table 6.1). Tagging accuracy as a function of number of iterations
is graphed in Figure 6.2. The best number of iterations on the full
model is five, which we will use for the remaining experiments.

We perform a grid search over all combinations of the seven feature
groups, using five EM iterations for training, evaluating the resulting
models on token-level features of the development set. We observe
that the best single feature group is NoGazeDUN, the best single
group of gaze features is Basic, the best gaze-only group combination
is basic-Late and the best group combination is obtained by includ-
ing all seven feature groups. Using all feature groups outperforms
any individual feature group on development data. The performance
of all the individual groups and of the best group combinations can
be seen in Table 6.2. We run experiments on the test set and report re-
sults using the best single group (NoGazeDun), the best single gaze
group (Basic), the best gaze-only group combination (Basic-Late)
and the best group combination (all features).

Following Barrett and Søgaard (2015a), we contrast the token-level
gaze features with features aggregated at the type level. Type-level
aggregation was used by Barrett and Søgaard (2015a) for supervised
POS tagging: A lexicon of word types was created and the features
values were averaged over all occurrences of each type in the training
data.

As our baseline, we train and evaluate the original model proposed
by Li, Graça, and Taskar (2012) on the train-test split described above,
and compare it to the models that make use of eye-tracking measures.

To get an estimate of the effect of the textual features of Li et al., we
train a model without these features, labeled NoTextFeats. We also
augment this model with the best combination of feature groups.

6.5 results

The main results are presented in Table 6.3. We first of all observe
that both type- and token-level gaze features lead to significant im-
provements over Li, Graça, and Taskar (2012), but type-level features
perform better than token-level. We observe that the best individual
feature group, NoGazeDUN, performs better than the best individ-
ual gaze feature group, Basic and the best gaze-only feature group,
Basic+Late. This is true on both type and token-level. Using the
best combination of feature groups (All features) works best for both
type- and token-level features. Also when excluding the textual fea-
ture model gaze helps and type-level features also work better than
token-level here.

A feature ablation study (see Table 6.4) supports the hierarchical
ordering of the features based on the development set results (see
Table 6.1).



6.6 related work 61

6.6 related work

The proposed approach continues the work of Barrett and Søgaard
(2015a) by augmenting an unsupervised baseline POS tagging model
instead of a supervised model. Our work also explores the poten-
tials of token-level features. Zelenina (2014) is the only work we are
aware of that uses gaze features for unsupervised POS tagging. Zelen-
ina (2014) employs gaze features to re-rank the output of a standard
unsupervised tagger. She reports a small improvement with gaze fea-
tures when evaluating on the Universal POS tagset, but finds no im-
provement when using the Penn Treebank tagset.

6.7 discussion

The best individual feature group is NoGazeDUN, indicating that
just using word length and word frequency, as well as transitional
probabilities, leads to a significant improvement in tagging accuracy.
However, performance increases further when we add gaze features,
which supports our claim that gaze data is useful for weakly super-
vising POS induction.

Type-level features work noticeably better than token-level features,
suggesting that access to eye-tracking data at test time is not neces-
sary. On the contrary, our results support the more resource-efficient
set-up of just having eye-tracking data available at training time. We
assume that this finding is due to the fact that eye-movement data
is typically quite noisy; averaging over all tokens of a type reduces
the noise more than just averaging over the ten participants that read
each token. Thus token-level aggregation leads to more reliable fea-
ture values.

Our finding that the best model includes all groups of gaze features,
and that the best gaze-only group combination works better than the
best individual gaze group suggest that different eye-tracking fea-
tures contain complementary information. A broad selection of eye-
movement features is necessary for reliably identifying POS classes.

6.8 conclusions

We presented the first study of weakly supervised part-of-speech tag-
ging with eye-tracking data, using a type-constrained SHMM-ME. We
performed experiments adding a broad selection of eye-tracking fea-
tures at training time (type-level features) and at test time (token-
level features). We found significant improvements over the base-
line in both cases, but type-averaging worked better than token-level
features. Our results indicate that using traces of human cognitive
processing, such as the eye-movements made during reading, can
be used to augment NLP models. This could enable us to bootstrap



62 weakly supervised part-of-speech tagging using eye-tracking data

better POS taggers for domains and languages for which manually
annotated corpora are not available, in particular once eye-trackers
become widely available through smartphones or webcams (Skovs-
gaard, Hansen, and Møllenbach, 2013; Xu et al., 2015).
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abstract

Several recent studies have shown that eye movements during read-
ing provide information about grammatical and syntactic processing,
which can assist the induction of NLP models. All these studies have
been limited to English, however. This study shows that gaze and POS

correlations largely transfer across English and French. This means
that we can replicate previous studies on gaze-based POS tagging for
French, but also that we can use English gaze data to assist the induc-
tion of French NLP models.

7.1 introduction

The eye movements during normal, skilled reading are known to re-
flect the processing load associated with reading. Recently, eye move-
ment data has been integrated into natural language processing mod-
els for weakly supervised POS induction (Barrett et al., 2016), sentence
compression (Klerke, Goldberg, and Søgaard, 2016), supervised POS

tagging (Barrett and Søgaard, 2015a), and supervised parsing (Barrett
and Søgaard, 2015b).

Barrett et al. (2016) used eye movements from the English portion
of a large eye tracking corpus, the Dundee corpus (Kennedy, Hill, and
Pynte, 2003), for weakly supervised POS induction for English, obtain-
ing significant improvements over a baseline without gaze features.
They used a second-order hidden Markov Model, which was type-
constrained by Wiktionary dictionaries for their experiments. These
results suggest an approach to weakly supervised POS induction us-
ing only a dictionary and eye movement data. Such an approach
would be applicable for low-resource languages, for which it is dif-
ficult to find professional annotators.

The present study further explores to which extent native readers’
processing of POS generalizes across related languages. We use a sim-
ilar model as Barrett et al. (2016), but perform cross-lingual experi-
ments with both the French and the English portion of the Dundee
Corpus.

This work is licenced under a Creative Commons Attribution 4.0 International Licence.
Licence details: http://creativecommons.org/licenses/by/4.0/

http://creativecommons.org/licenses/by/4.0/
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Figure 7.1: Distribution of POS in the English and French training sets.

contribution This is to the best of our knowledge the first study
to explore how the eye movements of native readers that inform POS

models generalize from one language to another. We also introduce
a new resource for studying the relation between grammatical class
and eye movements in French: we provide POS annotation for most of
the French Dundee Corpus by aligning it with the morphosyntactic
annotation of the French Treebank (Abeillé, Clément, and Toussenel,
2003).

7.2 data preparation

The data used for this experiment is the English and French portions
of the Dundee Corpus (Kennedy, Hill, and Pynte, 2003). The Dundee
Corpus is the largest available eye movement corpus by token count.
For English and French, 10 native speakers of each language read 20

newspaper articles from either The Independent (English) or Le Monde
(French). The corpus comprises around 50,000 tokens per language.

For both the English and the French part of the Dundee Corpus,
the original tokenization follows the visual units of the text, and con-
tractions and punctuation are attached to the word whose visual unit
they belong to. For instance, s’entendre or rappelle-t-il are one token
in the French Dundee Corpus but two and five, respectively, in the
French Treebank. In the English Dundee Corpus, don’t! is one token,
but three in the Dundee Treebank. As a result, eye movement mea-
sures are only available for the entire visual unit. We address this
issue by duplicating the eye movement measures for all treebank to-
kens that comprise a Dundee token (i.e., a visual unit). This is the
same approach Barrett et al. (2016) used. As a result, the number of
tokens increases in the POS tagged version of the Dundee Corpus;
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Figure 7.2: Two reading measures across POS class computed on the English
and French training sets.

also, some tokens are associated with eye movement measures that
reflect the processing of several tokens.

For English, the treebank tokenization leads to 13.8% increase of
tokens to 58,599 tokens. For French, the treebank tokenization leads
to an 17.7% increase on token count to 56,683 tokens. For the English
training set, 76% of all Dundee Corpus tokens are mapped to one
treebank token. The same goes for 62% of the Dundee Corpus tokens
for French.

7.2.1 English

The Dundee Treebank (Barrett, Agić, and Søgaard, 2015) is a recent
manual, syntactic annotation layer for the English portion of the Dun-
dee Corpus following the Universal Dependency formalism. For eval-
uation, we use the POS labels from this resource. We mapped the
Penn Treebank tagset used in the Dundee Treebank automatically to
the Universal POS tag set (Petrov, Das, and McDonald, 2011).

The split into training, development, and test set for the English
Dundee corpus is identical to the splits used by Barrett et al. (2016),
with 80% of the tokens for training and 10% of the tokens for devel-
opment and testing, respectively, without splitting up sentences. This
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split results in 46,879 tokens in 1,896 sentences for training, 5,868 to-
kens in 230 sentences for development, and a test set of 5,832 tokens
in 241 sentences.

7.2.2 French

The text for the French part of the Dundee Corpus is originally from
the French Treebank version 1.4 (Abeillé, Clément, and Toussenel,
2003) and we re-aligned the two corpora for this experiment. We first
manually identified the relevant subset of the French Treebank (which
is discontinuous). A small part (2,518 tokens equivalent of 5.31% of
the French Dundee tokens) of the Dundee Corpus could not be found
by manual search in the French Treebank and was therefore omitted
from the experiment. Only entire sentences were removed. The mor-
phosyntactic annotation of the French Treebank was semi-manually
aligned with the Dundee Corpus by a set of heuristic rules and by
manually fixing all exceptions. Due to tokenization inconsistencies in
both the French Treebank and the Dundee Corpus, manual interven-
tion was required.

For French there are some treebank tokens with no token string,
only POS lemma etc. For example, du should be split into de and le,
but in some instances the token string for le is missing. These missing
tokens were omitted from this experiment.

The French Dundee Corpus does not come with a train-development-
test split. We use a similar approach as for English, with the first 80%
of the tokens for training, the next 10% of the tokens for develop-
ment and the last 10% for testing. No sentences were split into sepa-
rate sets. That results in 43,383 tokens in 1,585 sentences for training,
5,407 tokens in 240 sentences for development, and 5,444 tokens in
178 sentences for testing.

The tagset of the French Treebank was automatically mapped to the
Universal POS tag set (Petrov, Das, and McDonald, 2011). We make
the aligned, morphosyntactic annotation for the French Dundee Cor-
pus available at https://bitbucket.org/lowlands/release.

7.2.3 Reading differences between English and French

This section discusses the results of existing studies comparing read-
ing in French and English. The two main studies used the two Dundee
corpora for their analysis.

Pynte and Kennedy (2006) compared the eye movements of the
French and English Dundee corpus to explore local effects (e.g., word
frequency, word length, local context) and global effects (e.g., pre-
dictability, reading strategy, inspection strategy) on five eye move-
ment metrics.

 https://bitbucket.org/lowlands/release
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− suffix feats + suffix feats

TR-TE No gaze Token Type No gaze Token Type

Development set accuracy

EN-EN 77.44 80.01 83.38 80.21 81.46 83.86

FR-EN 73.16 72.92 72.92

FR-FR 82.45 83.08 86.55 83.39 84.11 87.52

EN-FR 79.38 80.86 80.97

Test set accuracy

EN-EN 76.49 78.49* 82.14* 80.37 80.60 83.25*

FR-EN 71.38 71.39 71.58

FR-FR 81.30 82.27* 85.03* 83.16 83.30* 86.22*

EN-FR 78.34 79.83* 79.92*

Table 7.1: Accuracy on development and test set for type-and token-level
experiments. Best condition per experimental set-up per language
combination in bold. *) For test set results: p < 0.001 according to
mid-p McNemar test when compared to baseline.

They first of all noted that French was read slower than English
with more and longer fixations. This effect is significant and is even
more pronounced for long words and there are also significantly
more re-fixations for French compared to English. Kennedy and Pynte
(2005) argue that re-fixations reflect the most crucial difference be-
tween French and English. Besides being an obvious difference in the
processing of the target word, more re-fixations also enhance preview
of the next word. Pynte and Kennedy (2006) report that participants
of the English and French experiments were matched (though not
on which factors) and that the procedure, including calibration tech-
nique, equipment, control software, instructions, and data-reduction
software, were identical across language, though the French data was
collected in Aix-en-Provence, France and the English data in Dundee,
UK. Therefore they ascribed this difference to the text itself. Even
though they found that French words (5.2 characters) are on average
longer than English ones (4.7 characters), there are more two-letter
words in French (19.7%) than in English (17.2%). Therefore Kennedy
and Pynte (2005) suggest that the reading difference is due the dis-
tribution of information across the letters of a given words, which
is different across these two languages. For example, in French, ter-
minal accents, case markers, and gender and tense marking convey
crucial morphological information. This is in line with their finding
that eye movements in the English part of the Dundee Corpus were
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more sensitive to the length of the next word, whereas French showed
equivalent effects of the informativeness of the word-initial trigram.

Overall, Kennedy and Pynte (2005) and Pynte and Kennedy (2006)
conclude that the English and French inspection strategies are re-
markably similar, which is the same conclusion Sparrow, Miellet, and
Coello (2003) made when testing the English EZ reader model on an-
other eye movement corpus of 134 words of French. Kennedy and
Pynte (2005) provide an analysis of the statistical differences between
English and French, but besides re-fixations being more frequent in
French, they seem to conclude that the reading is in many respects
similar, which is also supported by their choice of mainly analyzing
French and English jointly.
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Figure 7.3: Accuracy on development set for all POS classes.

The treebank annotation includes sentence boundaries, which ma-
kes it possible to compare the length and the complexity of the sen-
tences for both languages. We find that the average sentence length of
the English training set is 24.7 tokens (SD 13.1). For French it is 28.7
tokens (SD 17.8). Sentence length was not considered by Kennedy
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and Pynte (2005) and Pynte and Kennedy (2006). A consequence of
longer sentences is that reading difficulty increases. The Coleman-
Liau index (Coleman and Liau, 1975) is 10.38 for the English training
set and 12.98 for the French.1 This could stem from different writ-
ing styles in Le Monde and The Independent or a biased sampling of
articles.

The conclusion can go no further than to say that French and En-
glish readers can display a more or less similar inspection strategy
when reading text under matched conditions. Some effects, e.g., the
fact that word-initial trigrams are more important for fixation dura-
tions in French than in English, could be due to cross-lingual differ-
ences in the spelling of the two languages, leading to re-fixations in
order to increase preview. But slower reading could also be partly
due to the presence of more difficult texts in the French corpus. See
Section 7.7 for a further discussion on grammatical processing differ-
ences across languages.

7.2.3.1 Comparing reading of POS for English and French

The statistics presented in the following section were computed on
the French and English training sets and extends the comparison of
Section 7.2.3 with respect to POS We show that the POS classes are
overall read similarly across the two languages with few exceptions
due to systematic biases.

Figure 7.1 shows the distribution of POS classes in the English and
French data. The biggest differences are that there are no NUM tags
in French. This is due to the annotation scheme and our automatic
mapping, in which no tags map to NUM. There are also very few
particles in the French data compared to English.

Figure 7.2 shows boxplots for two different reading metrics: num-
ber of fixations and first pass duration, across POS class for English
and French. The first pass duration is the sum of fixation durations
for a token in the first pass through the text. This measure is said to
encompass early syntactic and lexical processing. The number of fixa-
tions encompasses re-fixations and regressions to a token and reflects
later syntactic and semantic processing.

Note that punctuation is almost always glued to a word and any
eye movements on a punctuation will mainly–if not solely–reflect the
processing of the other token. Therefore punctuation is excluded from
Figure 7.2.

When comparing Figure 7.2d and Figure 7.2b, we can confirm the
findings of Pynte and Kennedy (2006) that fixations are generally
longer in the French portion than in the English portion of Dundee.
Average gaze duration in the training set is 236 ms for English and
303 ms for French.

1 calculated using http://www.online-utility.org/

http://www.online-utility.org/
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Figure 7.4: Erroneous predictions per gold POS for all combinations of train-
ing and testing language on development set.
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It can be seen from Figure 7.2 that the measures differ across POS

for most classes in an intuitive way. For instance, POS classes of short,
frequent, closed-class words such as CONJ, ADP, PRON and DET
get fewer and shorter fixations than, e.g., NOUN, VERB, ADJ, and
ADV. This seems to be consistent across the two languages, and is in
line with a similar analysis for English (Barrett and Søgaard, 2015a)
for a smaller data set of naturally occurring text from five different
domains.

The PRT category seems to be an exception. In French, PRT seems
to require extensive early and late processing. Remember from Fig-
ure 7.1 that there are more PRTs for English (3.6%) and fewer for
French (0.05%). The sets of PRT words for the two languages reveal a
systematic bias in the annotation scheme or automatic mapping. For
the French training set, the set of PRTs is {vice-, pseudo-, post-, contre-
, anti-, non-, quasi-, soviéto-, supra-, néo-, inter-}. For English it is {off,
down, To, about, on, in, over, around, back, up, out, to, away, ’, ’s}. French
particles are therefore always at least two-token visual units that seem
to be quite infrequent as well as long, whereas English particles are
short and frequent.

7.3 features

For our weakly supervised POS tagging experiments, we use 22 gaze
features that measure both early processing and late processing. They
are equivalent to the 22 gaze features used by Barrett et al. (2016).
Early processing measures are said to reflect different aspects of early
syntactic and semantic processing and include first pass duration and
first fixation duration. Late processing measures reflect, e.g., late syn-
tactic and semantic integration (Rayner, 1998). Examples are number
and duration of regressions going to a word, as well as the total read-
ing time for a word.

Non-gaze features are usually included in eye movement models,
because they explain a lot of the variance in fixation durations. Word
frequency and word length together have been found to explain 69%
of the variance in the mean gaze duration (Carpenter and Just, 1983).
Like Barrett et al. (2016), we use word length, log word frequencies
from a big corpus and log word frequencies from the Dundee training
set for the target word, and the previous and next words. From the
Dundee training set, we also extract the forward and backward tran-
sitional probability, i.e., the conditional probabilities for a word given
the next or previous word. Our non-gaze features are almost equiva-
lent to Barrett et al. (2016). The only difference is that they also used
forward and backward transitional probabilities from a big corpus.

The big corpus log frequencies were obtained from the British Na-
tional Corpus (BNC)2 for English, extracted with KenLM (Heafield,

2 http://www.natcorp.ox.ac.uk

http://www.natcorp.ox.ac.uk
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2011) and Lexique3 for French. The Dundee log frequencies were cal-
culated on the respective training sets using CMU Language Model-
ing Toolkit4 with Witten-Bell smoothing.

In total we have 29 features. All features are first averaged over
all 10 readers of the corpus, then scaled to a value between 0 and 1

by min-max scaling. The best model of the feature ablation study of
Barrett et al. (2016) used all features, which suggests that grammatical
processing of a broad set of POS categories is reflected across many
features and need non-gaze features as well.

7.4 experiment

We replicate the experimental setup of Barrett et al. (2016), which
used the best model from Li, Graça, and Taskar (2012), a second-order
hidden Markov model with maximum entropy emissions (SHMM-ME),
constrained by Wiktionary tags such that emissions are confined to
the allowed POS tags of the Wiktionary given that the token exists
in the Wiktionary. Li, Graça, and Taskar (2012) report considerable
improvements from the Wiktionary contraint when comparing to un-
supervised methods.

The second-order model includes transition probabilities from the
antecedent state like a first order model (Berg-Kirkpatrick et al., 2010)
as well as from the second-order antecedent state.

We use the original implementation of Li et al. and we also in-
clude a subset of their word-level features, viz., four features detect-
ing hyphens, numerals, punctuation and capitalization. We leave out
the three suffix features from Li et al.’s basic feature model, as these
features do not transfer across languages. These features were also
included by Barrett et al. (2016).

We use the English Wiktionary dumps made available by Li et al.5

The French Wiktionary dump is from Wisniewski et al. (2014) and
does not include any punctuation. We therefore augment it with all
punctuation entries from the English Wiktionary. Furthermore, to-
kens for the tag ADP are completely missing from the French Wik-
tionary, and the tokens for the class DET were sparse. We therefore
add all examples of DET and ADP from the French training set to the
French Wiktionary.

For the cross-lingual experiments, we use the union of the French
and the English Wiktionary dictionaries.

Barrett et al. (2016) used Li et al.’s model for weakly supervising
POS induction with gaze features for English, and performed model
tuning and feature ablation. We use their best hyper-parameter set-
ting, i.e., five EM iterations, as well as the best feature combination:

3 http://www.lexique.org

4 http://www.speech.cs.cmu.edu/SLM/toolkit.html

5 https://code.google.com/archive/p/wikily-supervised-pos-tagger/

http://www.lexique.org
 http://www.speech.cs.cmu.edu/SLM/toolkit.html
https://code.google.com/archive/p/wikily-supervised-pos-tagger/
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Metric Cosine sim

n refixations 0.6318

First pass duration 0.8480

Re-read probability 0.8489

n fixations 0.9097

Total fixation duration 0.9217

n regressions to 0.9354

n long regressions from 0.9375

Total duration of regressions from 0.9377

Total duration of regression to 0.9385

n regressions from 0.9404

n long regressions to 0.9644

Fixation probability 0.9795

w-1 fixation duration 0.9839

w+1 fixation duration 0.9934

w-1 fixation probability 0.9947

w+2 fixation duration 0.9961

w+1 fixation probability 0.9967

w-2 fixation probability 0.9975

w+2 fixation probability 0.9986

First fixation duration 0.9992

Mean fixation duration 0.9992

w-2 fixation duration 0.9992

Table 7.2: Cosine similarity between POS-averaged French and English train
set gaze vectors across gaze features. Sorted by similarity.

all features. Following Barrett et al. (2016), we try token-level and
type-level features. For the token-level experiments, each token is rep-
resented by its feature vector. For the type-level experiments, each
token is represented by an average of the feature vectors for all occur-
rences of the lower-cased word type of the training set.

7.5 results

The tagging accuracy for all combinations of training and testing lan-
guage on the development set and the test set can be seen in Table 7.1.

For all conditions, type-level features work better than token-level,
though the type-level improvement over the baseline is not significant
for FR-EN.
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The English monolingual condition plus suffix is almost equivalent
to the best model in Barrett et al. (2016). The only difference is the
two missing non-gaze features described in Section 7.3. On the test
set, they report a baseline accuracy of 79.77, a token-level accuracy
of 81.00, and a type-level accuracy of 82.44, which is in line with
our results. We observe that the suffix features seem to help in the
monolingual conditions. For monolingual conditions, we confirm that
type-level gaze-features and token-level ones outperform the baseline.
These differences are significant, except for the EN-EN token-level
plus suffix condition.

FR-FR POS tagging seems to be a slightly an easier task than EN-EN
POS tagging, achieving overall higher accuracies.

The cross-lingual conditions generally achieve lower performance
than the monolingual. When training on English and testing on French,
both token-level and type-level conditions are significantly better than
baseline.

7.6 error analysis

There are – as expected – more errors when using cross-lingual gaze
data. This section will explore these errors by comparing the pre-
dictions of the cross-lingual experiments with the predictions of the
monolingual experiments. All analysis is on the development set out-
put of the type-level models. We compare them to the output of the
type-level monolingual models.

Figure 7.3 shows accuracy scores per POS class comparing exper-
iments with same test set. The accuracy of punctuations is due to
the basic feature model and the Wiktionary constraints–not the eye
movement measures. PRT and NUM are real challenges for FR-EN
compared to EN-EN. This can be assumed to be due to the different
use of the PRT tag and the missing NUM class in the French dataset
described in Section 7.2.3.1. ADJ also seems like a cross-lingual chal-
lenge, though harder when trained on English and tested on French
than the other way around.

Figure 7.4 shows the erroneous predictions per gold POS tag, allow-
ing us to compare error types across experiments. When comparing
Figure 7.4a and Figure 7.4c, both evaluated on English, most classes
seem to have almost the same set of misclassified labels though for
some labels in different magnitude or ratio depending on whether
they are trained on English or French. The main differences are: when
trained on French, ADP and ADJ are generally more often misclassi-
fied, ADP is not mainly misclassified as CONJ, but more often as
ADV, DET is also misclassified as VERB and ADV, PRT is misclassi-
fied as ADV and not mainly as ADP.

When comparing Figure 7.4b and Figure 7.4d, both evaluating on
French, we also find that for many of the POS classes, the misclassifi-
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cations are of the same type, though different in magnitude or ratio.
The main differences we observe when training on English are: ADJ
is mainly misclassified as NOUN instead of ADP, ADV, DET, NOUN,
and PRT; ADV is misclassified as VERB; DET is never misclassified
as PRT, but more often as NOUN and ADJ; and NOUN is rarely mis-
classified as PRT. The last error probably has to do with the long gaze
durations for PRT in the French data (resembling gaze durations of
NOUNs) opposed to the short gaze durations of English PRT.

Table 7.2 shows the cosine similarity between the English and French
POS-averaged gaze vectors from the train set for all gaze features. This
gives information about which gaze feature averages differ between
French and English POS Pynte and Kennedy (2006) found that French
had more re-fixations than English, which is reflected in the table.
Measures correlating with re-fixations like re-read probability, num-
ber of fixations, and total fixation duration are naturally also different
across languages. First pass duration is not directly correlated with
number of re-fixations, and must be considered an distinct pattern.
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Figure 7.5: Development set word type lookup in Wiktionary for English
and French: the percentage of word types assigned a set of tags
that is either: identical to, a subset of, a superset of, overlapping
with, disjoint with, or not in the Wiktionary.

7.6.1 Wiktionary agreement

Figure 7.5 shows the word types for the English and French devel-
opment set according to their representation in the respective mono-
lingual Wiktionary. This figure is inspired by Li, Graça, and Taskar
(2012). For English, more POS types agree with the Wiktionary (Same
or SubsetOfWik) than for French. We also computed token-level accu-
racies, where a tag licensed by Wiktionary counts as correct. For the
French development set, this maximum dictionary accuracy is 0.95,
whereas for English it is 0.92.
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7.7 discussion

We presented four experiments with POS induction using gaze data
in a monolingual and cross-lingual setup with a second-order hidden
Markov model. Our experiments confirm the main conclusion from
Barrett et al. (2016), viz., that type-level gaze vectors improve POS

induction. We replicated their result for English and report the same
finding for French as well as for French when trained on English gaze
vectors.

It is difficult to determine how much the relatedness of the French
and English languages is responsible for the ability of the model to
generalize cross-lingually. The psycholinguistic literature does not
reveal how different POS categories are processed across languages;
most experimental work in the literature studies single phenomena
in one language. For instance, in reaction time studies of lexical deci-
sion tasks it has been found that the processing of English plural and
singular nouns is influenced by surface frequency only6 (Sereno and
Jongman, 1997), whereas for Dutch (Baayen, Dijkstra, and Schreuder,
1997) and French (New et al., 2004), the lexical processing of singular
and plural nouns is influenced by the base frequency7. The English
data thus support a full-storage cognitive model, whereas the French
and the Dutch data support the Parallel Dual-Route model where a
word is processed as segments in parallel with whole word process-
ing. These results suggest that nouns are processed differently in the
brain for native speakers of different languages. This means that our
results may not generalize to other combinations of languages and in
the specific case of nouns it suggests that Dutch and French nouns
are processed more similarly than French and English.

7.8 conclusion

This is, to the best of our knowledge, the first study to explore whether
gaze features generalize from one language to another for a broad
set of syntactic categories. We used a type-constrained second-order
HMM for monolingual and cross-lingual POS induction on the English
and French portions of the Dundee eye tracking corpus. We experi-
mented with both token-level and type-level features and confirmed
that type-level gaze features improve monolingual POS induction for
both English and French. We also showed that type-level gaze fea-
tures significantly improve POS induction for French, even when the
model is trained on English gaze vectors.

6 the token frequency of a word form
7 the sum of the frequencies of all inflections of a word
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abstract

When learning POS taggers and syntactic chunkers for low-resource
languages, different resources may be available, and often all we have
is a small tag dictionary, motivating type-constrained unsupervised
induction. Even small dictionaries can improve the performance of
unsupervised induction algorithms. This paper shows that perfor-
mance can be further improved by including data that is readily avail-
able or can be easily obtained for most languages, i.e., eye-tracking,
speech, or keystroke logs (or any combination thereof). We project in-
formation from all these data sources into shared spaces, in which
the union of words is represented. For English unsupervised POS

induction, the additional information, which is not required at test
time, leads to an average error reduction on Ontonotes domains of
1.5% over systems augmented with state-of-the-art word embeddings.
On Penn Treebank the best model achieves 5.4% error reduction over
a word embeddings baseline. We also achieve significant improve-
ments for syntactic chunk induction. Our analysis shows that im-
provements are even bigger when the available tag dictionaries are
smaller.

8.1 introduction

It is a core assumption in linguistics that humans have knowledge of
grammar and that they use this knowledge to generate and process
language. Reading, writing, and talking leave traces of this knowl-
edge and in psycholinguistics this data is used to analyze our gram-
matical competencies. Psycholinguists are typically interested in falsi-
fying a specific hypothesis about our grammatical competencies and
therefore collect data with this hypothesis in mind. In NLP, we typi-
cally require big, representative corpora. NLP usually has induced the
models from expensive corpus annotations by professional linguists,
but recently, a few researchers have shown that data traces from hu-
man processing can be used directly to improve NLP models (Barrett
et al., 2016; Klerke, Goldberg, and Søgaard, 2016; Plank, 2016a).

In this paper, we investigate whether unsupervised POS induction
and unsupervised syntactic chunking can be improved using human
text processing traces. We also explore what traces are beneficial, and
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how they are best combined. Our work supplements psycholinguistic
research by evaluating human data on larger scale than usual, but
more robust unsupervised POS induction also contributes to NLP for
low-resource languages for which professional annotators are hard
to find, and where instead, data from native speakers can be used to
augment unsupervised learning.

We explore three different modalities of data reflecting human pro-
cessing plus standard, pre-trained distributional word embeddings
for comparison, but also because some modalities might fare better
when combined with distributional vectors. Data reflecting human
processing come from reading (two different eye-tracking corpora),
speaking (prosody), and typing (keystroke logging). We test three dif-
ferent methods of combining the different word representations: a)
canonical correlation analysis (CCA) (Faruqui and Dyer, 2014b) and
b) singular value decomposition and inverted softmax feature pro-
jection (SVD+IS) (Smith et al., 2017) and c) simple concatenation of
feature vectors.

contributions We present experiments in unsupervised POS and
syntactic chunk induction using multi-modal word representations,
obtained from records of reading, speaking, and writing. Individu-
ally, all modalities are known to contain syntactic processing signals,
but to the best of our knowledge, we are the first to combine them in
one model. Our work extends on previous work in several respects:

a. We compare using data traces from gaze, speech, and keystrokes.

b. We consider three ways of combining such information that do
not require access to data from all modalities for all words.

c. While some previous work assumed access to gaze data at test
time, our models do not assume access to any modalities at test
time.

d. We evaluate how much the additional information helps, de-
pending on the size of the available tag dictionary.

e. While related work on keystrokes and prosody focused on a sin-
gle feature, all our word representations are multi-dimensional
and continuous.

8.2 related work

eye-tracking data reflect the eye movements during reading and
provide millisecond-accurate records of the readers fixations. It is well
established that the duration of the fixations reflect the processing
load of the reader (Rayner, 1998). Words from closed word classes are
usually fixated less often and for shorter time than words from open
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word classes (Rayner and Duffy, 1988). Psycholinguistics, however,
is generally not interested in covering all linguistic categories, and
psycholinguists typically do not study corpora, but focus instead on
small suites of controlled examples in order to explore human cogni-
tion. This is in contrast with NLP. Some studies have, however, tried to
bridge between psycholinguistics and NLP. Demberg and Keller (2008)
found that eye movements reflected syntactic complexity. Barrett and
Søgaard (2015a) and Barrett and Søgaard (2015b) have tried to – re-
spectively – predict a full set of syntactic classes and syntactic func-
tions across domains in supervised setups. Barrett et al. (2016), which
is the work most similar to ours, used eye-tracking features from the
Dundee Corpus (Kennedy, Hill, and Pynte, 2003), which has been
augmented with POS tags by Barrett, Agić, and Søgaard (2015). They
tried for POS induction both on token-level and type-level features.
They found that eye-tracking features significantly improved tagging
accuracy and that type-level eye-tracking features helped more than
token-level. We use the same architecture as Barrett et al. (2016).

keystroke logs also reflect the processing durations, but of writ-
ing. Pauses, burst and revisions in keystroke logs are used to investi-
gate the cognitive process of writing (Baaijen, Galbraith, and Glopper,
2012; Matsuhashi, 1981). Immonen and Mäkisalo (2010) found that
for English-Finnish translation and monolingual Finnish text produc-
tion, predicate phrases are often preceded by short pauses, whereas
adpositional phrases are more likely to be preceded by long pauses.
Pauses preceding noun phrases grow with the length of the phrase.
They suggest that the difference is explained by the fact that the pro-
cessing of the predicate begins before the production of the clause
starts, whereas noun phrases and adpositional phrases are processed
during writing. Pre-word pauses from keystroke logs have been ex-
plored with respect to multi-word expressions (Goodkind and Rosen-
berg, 2015) and have also been used to aid shallow parsing (Plank,
2016a) in a multi-task bi-LSTM setup.

prosodic features provide knowledge about how words are
pronounced (tone, duration, voice etc.). Acoustic cues have already
been used to improve unsupervised chunking (Pate and Goldwater,
2011) and parsing (Pate and Goldwater, 2013). Pate and Goldwater
(2011) cluster the acoustic signal and use cluster label as a discrete
feature whereas Pate and Goldwater (2013) use a quantized word
duration feature.

Plank (2016a) and Goodkind and Rosenberg (2015) also used a
single keystroke feature (keystroke pre-word pause) and the former
study also discretized the feature. Our work, in contrast, uses acoustic
and keystroke features as multi-dimensional, continuous word repre-
sentations.
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Figure 8.1: The percentage of overlapping word types for pairs of modali-
ties. Overlapping words are used for projecting word representa-
tions into a shared space. Read column-wise. E.g. when combin-
ing eigenwords and prosody, only 1.2% of the 46973 eigenvector
word types are overlapping (bottom left), and 97.8% of the 598

prosody word types are overlapping (top right).

8.3 modalities

In our experiments, we begin with five sets of word representations:
prosody, keystroke, gaze as recorded in the GECO corpus, gaze as
recorded in the Dundee corpus, as well as standard, text-based word
embeddings from eigenwords. See below for details and references.
All modalities except the pre-trained word embeddings reflect human
processing of language. For all modalities, we use type-level-averaged
features of lower-cased word types.

The choice of using type-averaged features is motivated by Bar-
rett et al. (2016), who tried both token-level and type-averaged eye-
tracking features for POS induction and found that type-level gaze
features worked better than token-level. Type-averaged features also
have the advantage of not relying on access to the auxillary data at
test time. Type-level averages are simply looked up in an embedding
file for all previously seen words. On the other hand, type-level fea-
tures obviously do not represent ambiguities, e.g., beat as a verb and
a noun separately. All our features, except log-transformed word fre-
quencies were normalized.

We run unsupervised induction experiments for all (25 − 1 = 31)
combinations of our five data sources on the development sets to de-
termine which data types contribute to the task. We consider three
different ways of combining modalities, two of which learn a projec-
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Modality n found pairs Weigh. av. cor.

Prosody 31 0.369

Keystroke 1082 0.060

GECO 2449 -0.030

Dundee 4066 -0.035

Eigenwords 9828 0.197

Table 8.1: Results on word association norms from wordvectors.org. Corre-
lation weighted by number of found pairs per word embedding
type.

tion into a shared space using word overlap as supervision, and one
simply concatenates the embedding spaces. The combination meth-
ods are further described in Section 8.4.

We list the number of word types per modality and percentage of
pair-wise overlapping words in Figure 8.1. We only use existing data
from native speaking participants, for reproducibility and in order
not to get learner effects ie. biases introduced by non-native speakers.
Section 8.3.2, Section 8.3.3, and Section 8.3.4 describe each modality
in detail, and how we compute the word representations. Section 8.3.1
describes a set of basic features used in all of our experiments.

8.3.1 Basic features

Like Li, Graça, and Taskar (2012), we append a small set of basic fea-
tures to all our feature sets: features relating to orthography such as
capitalization, digits and suffix. Furthermore we append log word fre-
quency and word length. Word frequencies per million are obtained
from BNC frequency lists (Kilgarriff, 1995). Word length and word
frequency explain around 70% of the variance in the eye movement
(Carpenter and Just, 1983) and are therefore also important for esti-
mating the impact of gaze features beyond such information. Plank
(2016a) used keystroke features for shallow chunking and did not
find any benefit of normalizing word length by pre-word pause be-
fore typing each word, but Goodkind and Rosenberg (2015) did find
a strong logarithmic relationship between word length and pre-word
pause as well as between word frequency and pre-word pause.

8.3.2 Dundee and GECO eye-tracking corpora

We use two different eye-tracking corpora. The GECO corpus (Cop
et al., 2017) and the Dundee Corpus (Kennedy, Hill, and Pynte, 2003)
are the two largest eye movement corpora with respect to word count.
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We use the native English part of the GECO corpus and the English
part of the Dundee Corpus. The GECO corpus is publicly available1

and the Dundee Corpus is available for research purposes.

participants and data The Dundee Corpus is described in
Kennedy and Pynte (2005). The Dundee Corpus consists of the eye
movements of 10 readers as they read the same 20 newspaper arti-
cles. For GECO, all 14 participants in the native English part read a
full Agatha Christie novel. Both corpora contain > 50.000 words per
reader. All participants for both corpora are adult, native speakers of
English and skilled readers.

self-paced reading Both eye-tracking corpora reflect natural
reading by making the reading self-paced and using naturally occur-
ring, contextualized text.

features Eye movements – like most features reflecting human
processing – are very susceptible to experiment-specific effects e.g. in-
structions and order effects such as fatigue. Furthermore, the GECO

corpus has a slightly different eye movement feature set than what
we have for the Dundee corpus. Therefore we treat the two eye move-
ment corpora as two individual modalities in order to assess their
individual contributions. GECO has 34 features reflecting word-based
processing. Dundee has 30 word-based features that were extracted
from the raw data and previously used for POS induction by Barrett
et al. (2016). For GECO, we use the features that are already extracted
by the authors of the corpus. Both corpora include five word-based
features e.g., first fixation duration (which is a measure said to reflect
early syntactic and semantic integration), total fixation time and fix-
ation probability. The Dundee Corpus has more features concerning
the context words whereas GECO has pupil size and many features
distinguishing the different passes over a word.

8.3.3 Prosody

The prosody features are described in detail in Frermann and Frank
(2017) and are freely available.2 They are derived from the Brent
(Brent and Siskind, 2001) and Providence (Demuth, Culbertson, and
Alter, 2006) portions of the CHILDES corpus (MacWhinney, 2000),
comprising longitudinal datasets of raw speech directed to 22 chil-
dren, and its transcription. Word-level speech-text alignments were
obtained automatically using forced alignment. For each token-level
audio snippet, a set of 88 prosody features was extracted based on
a previously established feature set (Eyben et al., 2016), including

1 http://expsy.ugent.be/downloads/geco/

2 https://github.com/ColiLea/prosodyAOA

http://expsy.ugent.be/downloads/geco/
https://github.com/ColiLea/prosodyAOA
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standard features derived from F0–F3 formants, spectral shape and
rhythm features, intensity and MFCC features among others. Type-
level prosody features were obtained as averaged token-level features
for each word type.

8.3.4 Keystroke features

We extracted keystroke features from the publicly available data from
Killourhy and Maxion (2012). This data contains key hold times and
pauses of all key presses of 20 subjects as they completed transcrip-
tion and free composition tasks. We only used data from the free
composition part. A pause is defined by the authors as the duration
from keydown to keydown. The free composition data consists of a
total of 14890 typed words and 2198 word types.

For each word, we extracted the following features:

• average key hold duration of all characters associated with pro-
ducing the word.

• pre-word pause

• hold duration of space key before word

• pause length of space key press pause before word

• ratio of keypresses used in the word production to length of the
final word.

For each word, we also included these five features for up to 3

words before. In total, we have 5 ∗ 4 = 20 keystroke features. We use
lower-cased word type averages, as with the other modalities.

8.3.5 Eigenwords

Eigenwords are standard, pre-trained word embeddings, induced us-
ing spectral-learning techniques (Dhillon, Foster, and Ungar, 2015).
We used the 30-dimensional, pre-trained eigenvectors.3

8.3.6 Preliminary evaluation

Our application of these word representations and their combinations
is unsupervised POS and syntactic chunk induction, but before pre-
senting our projection methods in Section 8.4 and our experiments
in Section 8.5, we present a preliminary evaluation of the different
modalities using word association norms.

3 http://www.cis.upenn.edu/~ungar/eigenwords/

http://www.cis.upenn.edu/~ungar/eigenwords/
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Table 8.1 shows the weighted correlation between cosine distances
in the representations and the human ratings in the word associa-
tion norm datasets available at wordvectors.org (Faruqui and Dyer,
2014a). Eigenwords, not surprisingly, correlates better than the repre-
sentation based on processing data – with the exception of prosody.
The correlation with prosody is non-significant, however, because of
the small sample size.

8.4 combining datasets

We now have word representations from different, complementary
modalities, with very different coverages, but all including a small
overlap. We assume that the different modalities contain complemen-
tary human text processing traces because they reflect different cogni-
tive processes, which motivates us to combine these different sources
of information. Our assumption is confirmed in the evaluation. The
fact that we have very low coverage for some modalities, and the fact
that we have an overlap between all our vocabularies, specifically mo-
tivates an approach, in which we use the intersection of word types to
learn a projection from two or more of these modalities into a shared
space. Obviously, we can also simply concatenate our representations,
but because of the low coverage of some modalities and because co-
projecting modalities has some regularization effect, we hypothesize
that it is better to learn a projection into a shared space. This hypoth-
esis is verified by the results in Section 8.6.

8.4.1 Concatenating modalities

The simplest way of combining the modalities is concatenating the
corresponding vectors for each word. The different modalities have
different dimensionalities, so we would need to perform dimension-
ality reduction to sum or average vectors, and the non-overlapping
words don’t allow for e.g. taking the outer product, so we simply
concatenate the vectors instead. We use 0 for missing values.

8.4.2 CCA

Section 8.4.2 and Section 8.4.3 describe two different projection meth-
ods for projecting the representations in the different modalities into
a shared space. We use the intersection of the lower-cased vocabulary
for the alignment, i.e., as a supervision signal. For example, if the
words man, dog and speak exist in both eigenword and keystroke data,
from these 2 x 3 vectors, CCA estimate the transformation for the vec-
tors for house, cat and boy, which (in this example) only exists in the
keystroke data.

wordvectors.org
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CCA, as originally proposed by Hotelling (1936), is a method of find-
ing the optimum linear combination between two sets of variables, so
the set of variables are transformed onto a projected space while the
correlation is maximized. We use the implementation of Faruqui and
Dyer (2014b) made for creating bilingual embeddings. We use modal-
ities instead of languages. The size of the projected space is smaller
than or equal to the original dimension.

We incrementally combine modalities and project them to new,
shared spaces using the intersection of the lower-cased vocabulary.
We add them by the order of word type count starting with the modal-
ity with most word types. For the first projection only, we reduce the
size of the projected space. We set the ratio of the first projected space
(only two modalities) to 0.6 based on POS induction results on devel-
opment data using the setup described in Section 8.5.

8.4.3 SVD and Inverted Softmax

As an alternative to CCA, but closely related, we also use a projec-
tion method proposed and implemented by Smith et al. (2017), which
uses (singular value decomposition and inverted softmax feature pro-
jection (SVD+IS)). This method uses a reference space, rather than pro-
jecting all modalities into a new space.

Smith et al. (2017) apply SVD+IS to obtain an orthogonal transforma-
tion matrix that maps the source language into the target language. In
addition, in order to estimate their confidence on the predicted target,
they use an inverted softmax function for determining the probability
that a target word translates back into a source word.

Like for CCA, we incrementally project datasets onto each other
starting with the most word-type rich modality. We use the highest
dimensionality of any of our representations (88 dimensions).

8.5 experiments

This section presents our POS and syntactic chunk induction experi-
ments. We present the datasets we used in our experiments, the se-
quence tagging architecture, based on second-order HMM, as well as
the dictionary we used to constrain inference at training and test time.

8.5.1 Data

For unsupervised POS induction, we use Ontonotes 5.0 (Weischedel
et al., 2013) for training, development and test. We set all hyper-
parameters on the newswire (nw) domain, optimizing performance
on the development set. Size of the development set is 154,146 to-
kens. We run individual experiments on each of the seven domains,
with these hyper-parameters, reporting performance on the relevant



86 induction of linguistic categories with reading , speaking , and writing

Rules

DET → NP

VERB → VP

NOUN|PRONOUN|NUM → NP

. → O

ADJ → NP|ADJP

ADV → NP|VP|ADVP|AD

PRT → NP|PRT

CONJ → O|NP

ADP → PP|VP|SBAR

Table 8.2: Heuristics for expanding our POS dictionary to chunks

test set. The domains are broadcast conversation (bc), broadcast news
(bn), magazines (mz), newswire (nw), the Bible (pt), telephone con-
versations (tc), and weblogs (wb). We also train and test unsuper-
vised POS induction on the CoNLL 2007 (Nivre et al., 2007) splits
of the PTB (Marcus, Marcinkiewicz, and Santorini, 1993) using the
hyper-parameter settings from Ontonotes. We mapped all POS labels
to Google’s coarse-grained, universal POS tagset (Petrov, Das, and Mc-
Donald, 2011). For model selection, we select based both on best re-
sults on Ontonotes nw development as well as PTB development sets.

For syntactic chunk induction, we use the bracketing data from PTB

with the standard splits for syntactic chunking. We tune hyperparam-
eters for chunking on the development set and select best models
based on the development result.

8.5.2 Model

We used a modification of the implementation of a type-constrained,
SHMM-ME from Li, Graça, and Taskar (2012). It is a second-order ver-
sion of the first order maximum entropy HMM presented in (Berg-
Kirkpatrick et al., 2010) with the important addition that it is con-
strained by a crowd-sourced tag dictionary (Wiktionary). This means
that for all words in the Wiktionary, the model is only allowed to
predict one of the tags listed for it in Wiktionary

The same model was used in Barrett et al. (2016) to improve unsu-
pervised POS inducing using gaze data from the Dundee Corpus, and
in Bingel, Barrett, and Søgaard (2016) to augment an unsupervised
POS tagger with features from fMRI recordings.

The number of EM iterations used for inducing our taggers was
tuned using eigenvector embeddings on the development data, con-
sidering values 1..50. POS performance peaked at iterations 30 and 31.
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Feature set TA

No embeddings 60.32

Eigenwords 59.26

Best combined models

CCA Dun_GECO_Pros 63.33*†

SVD+IS GECO_Key_Pros 62.91*

Concat Eig_GECO_Key 61.16

Table 8.3: Chunk tagging accuracy. Best models from CCA, SVD+IS and con-
catenation. Model section on development set. * p < .001 Mcnemar
mid-p test when comparing to no embeddings. † p < .001 Mcne-
mar mid-p test when comparing to Eigenwords.)

We use 30 in all our POS experiments. For syntactic chunking, we use
48 iterations, which led to the best performance on the PTB develop-
ment data using only eigenword embeddings.

8.5.3 Wiktionary

The Wiktionary constrains the predicted tags in our model. The better
the Wiktionary, the better the predictions.

For POS-tagging we used the same Wiktionary dump4 that Li, Graça,
and Taskar (2012) used in their original experiments. The Wiktionary
dump associated word types with Google’s universal parts-of-speech
labels.

For chunking, Wiktionary does not provide direct information about
the possible labels of words. We instead apply simple heuristics to re-
late POS information to syntactic chunking labels. Since we already
know the relation between words and POS labels from Wiktionary, we
can compute the transitive closure in order to obtain a dictionary re-
lating words with syntactic chunking labels. We present the heuristics
in Table 8.2.

Note that the rules are rather simple. We do not claim this is the
best possible mapping. We are relying on these simple heuristics only
to show that it is possible to learn syntactic chunkers in an unsuper-
vised fashion by relying on a combination of features from different
modalities and a standard, crowd-sourced dictionary.

4 https://code.google.com/archive/p/wikily-supervised-pos-tagger/
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Ontonotes PTB

Feature set bc bn mz nw pt tc wb avg

No embeddings 83.1 84.41 85.32 84.94 85.14 77.8 85.93 83.81 82.83

Eigenwords 83.16 84.68* 85.48 85.07 85.31 78.07 85.88 83.95 83.38*

Best Ontonotes NW models

CCA Eig_Dun 83.45*† 84.99* 85.79* 85.38*† 85.2 77.99 86.38*† 84.17 84.28*†

SVD+IS Dun_GECO_Key 83.24 84.76 86.22*† 85.33*† 85.44 77.84 85.95 84.11 84.25*†

Concat Eig_Dun_GECO 83.39*† 84.78* 85.8*† 85.36*† 85.45 78.38* 86.21† 84.19 83.91*†

Best PTB models

CCA Eig_Dun 83.45*† 84.99* 85.79* 85.38*† 85.2 77.99 86.38*† 84.17 84.28*†

SVD+IS Dun_Key 83.24 84.59 86.12*† 85.28*† 85.39 77.90 85.86 84.05 84.24*†

Concat Eig_Pros 83.22 84.54 85.67 85.01 84.98 77.98 85.97 83.91 84.22*†

Table 8.4: POS tagging accuracies for baselines and the model combinations
that performed best on newswire development data (nw). Best
performance per domain is boldfaced. *) p < .001 McNemar mid-
p test when compared to the no embeddings condition for the
corresponding test set. †) p < .001 McNemar mid-p test when com-
pared to eigenwords for the corresponding test set.

8.6 results

All our POS tagging accuracies can be seen in Table 8.4. Our first
observation is that human processing data helps unsupervised POS

induction. In fact, the models augmented with processing data are
consistently better than the baseline without vector representations, as
well as better than only using distributional word embeddings.

Generally, CCA seems to find the best projection into a common
space for system combinations. For PTB, the CCA-aligned model is the
best and this result is significant (p < .001) when comparing both to
no embeddings and eigenwords. For Ontonotes 5.0, CCA is better than
the other projection methods in 4/7 domains, but when averaging,
concatenation gets the higher result.

The standard embeddings are often part of the best combinations,
but the human processing data contributes with important informa-
tion; in 4/7 domains as well as on PTB data, we see a significantly
better performance (p < .001) with a combination of modalities when
comparing to eigenwords.

Aligning Dundee with eigenwords is the best POS model both ac-
cording to the Ontonotes 5.0 NW development set and the PTB devel-
opment set. Dundee is the most frequent modality in the six best POS

induction models with five appearances. Eigenwords is second most
frequent with four appearances.

The syntactic chunking accuracies are in Table 8.3. Also here CCA is
the better combination method. For chunking, all combined models
are better than no embeddings and eigenwords. The improvement is
significant compared to no embeddings except for concatenation (p <
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Keystroke Dundee GECO

Dundee 16.84

GECO 11.39 1.02

CCA all 13.98 3.72 3.09

Table 8.5: Graph similarities in [0,∞), 0 = identical.

.001). For CCA, the result is significantly better than no embeddings
and eigenwords.

For chunking, GECO data appears in all best models and is thus the
most frequent modalities. Keystroke and prosody appears in two best
models each.

(a) Keystroke (b) Dundee

(c) Geco (d) All

Figure 8.2: Nearest neighbor graphs for 15 frequent nouns.

8.7 analysis

8.7.1 POS error analysis

In this subsection we will explore what is learnt in the best model
(CCA-alligned eigen_dundee) compared to the eigenwords baseline.
We analyse the POS predictions on the seven Ontonotes development
sets and compare the best model to the model using only eigenwords
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best model vs. baseline Dev.

. 0.0 11.05

ADJ 10.13 7.22

ADP 8.40 11.51

ADV 11.22 5.62

CONJ 1.44 3.65

DET 2.28 10.31

NOUN 31.22 23.89

NUM 0.32 1.03

PRON 0.80 6.37

PRT 0.83 2.58

VERB 33.37 16.52

X 0.0 0.25

Table 8.6: Distribution of POS tags in the subset where the best model made
correct predictions and the baseline made wrong predictions com-
pared to the general development set distribution.

embeddings. The grand mean accuracy for the eigenwords baseline
is 87.30. The best model is slightly better with 87.49.

There are 3120 words that are predicted correctly by the best model
and wrong by the baseline model. We’ll look into these specifically.
Table 8.6 show the distribution of POS tags in this improved subset
compared to the general distribution in the development sets. Punc-
tuation is not improved, since we use a similar punctuation template
for both models. For adjectives, adverbs, nouns, and verbs we see
improvements compared to the overall distribution. Especially nouns
and verbs, which are also the most numerous classes, are overrepre-
sented in the improved subset.

6.52% of the words in the improved subset are not represented in
the tag dictionary. In the general development set 3.27% of the words
are not in the tag dictionary. This suggests that the best model does
better for words that are not in the tag dictionary than the baseline
model.

8.7.2 What is in the vectors?

nearest neighbor graphs We include a detailed analysis of
subgraphs of the nearest neighbor graphs in the embedding spaces
of keystrokes, Dundee, GECO, and CCA projection of all modalities.
Specifically, we consider the nearest neighbor graphs among the 15
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most frequent unambigous nouns, according to Wiktionary.5 See Fig-
ure 8.2 for plots of the nearest neighbor graphs. The prosody features
containing less than 600 word types only contained 2 of the 15 nouns
and is therefore not included in this analysis.

Projecting word representations into a shared space using linear
methods assumes approximate isomorphism between the embedding
spaces - or at least their nearest neighbor graphs. We use the VF2

algorithm (Cordella et al., 2001) to verify that the subgraphs are not
isomorphic, but this can also be seen directly from Figure 8.2. Neither
keystroke and gaze embeddings, nor the two different gaze-induced
embeddings are isomorphic.

Since none of the modalities induce isomorphic nearest neighbor
graphs, this does not tell us much about similarities between modal-
ities. To quantify the similarity of non-isomorphic graphs, we use
eigenvector similarity (Shigehalli and Shettar, 2011), which we calcu-
late by computing the Laplacian eigenvalues for the nearest neigh-
bors, and for each graph, find the smallest k such that the sum of
the k largest eigenvalues is <90% of the eigenvalues. We then take
the smallest k of the two, and use the sum of the squared differences
between the largest k eigenvalues as our similarity metric.

Using this metric to quantify graph similarity, we see in Table 8.5
that, not surprisingly, the gaze graphs are the most similar. The pro-
jected space is more similar to the gaze spaces, but balances gaze and
keystroke information. The GECO embeddings agree more with the
keystrokes than the Dundee embeddings does.

t-sne plots We take words that – according to the Wiktionary
– can only have one tag and sort them by BNC frequency (Kilgarriff,
1995) in descending order. For these words and their POS tags we get
the feature vector of the POS model yielding the highest result on both
Ontonotes and PTB: CCA-projected eigenwords and Dundee features.
For the first 200 occurrences of the frequency-sorted list, we reduce
dimensionality using t-Distributed Stochastic Neighbor Embedding
(t-SNE) (van der Maaten and Hinton, 2008) and plot the result. Fig-
ure 8.3 shows that 200 most frequent content words cluster with re-
spect to their POS tag, somewhat distinguishing verbs from nouns and
adjectives from adverbs in CCA space.

8.7.3 How big a Wiktionary do we need?

Our Wiktionary for English contains POS information for 72,817 word
types. Word types have 6.2 possible POS categories on average mean-
ing we have over 450.000 entries in our POS dictionary. For PTB, 70.0%
of wordtypes of the test set are covered by the dictionary. For the

5 Wiktionary is a crowd-sourced, imperfect dictionary, and one of the "unambiguous
nouns" is spends, which, we assume, you are more likely to encounter as a verb.
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chunking data, 70.4% of wordtypes of the test set are covered by the
dictionary. The English Wiktionary is thus much bigger than wik-
tionaries for low-resource language (Garrette and Baldridge, 2013).
How big a dictionary is needed to achieve good performance, and
can we get away with a smaller dictionary if we have processing data?
This section explores the performance of the model as a function of
the Wiktionary size.
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20 NOUN VERB

(a) NOUN and VERB
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(b) ADJ and VERB

Figure 8.3: t-SNE plots of CCA-projected eigen dundee features for pairs of
tags.

We sorted the Wiktionary by word frequency obtained from BNC

(Kilgarriff, 1995) and increased the Wiktionary size for the best POS

system starting with 0 (no dictionary). For each Wiktionary size, we
compare with the baseline without access to processing data and
eigenwords. The learning curve can be seen in Figure 8.4a and Fig-
ure 8.4b. We observe that having entries for the most frequent words
is a lot better than having no dictionary, and that the difference be-
tween our best system and the baseline exists across all dictionary
sizes. With 10,000 entries, all systems seems to reach a plateau.
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Figure 8.4: Learning curve assuming Wiktionary entries for k most frequent
words, comparing our best PoS induction system against our
baseline. On Ontonotes wb development data, 30 training iter-
ations.

8.8 discussion

genres and domains When collecting our human language pro-
cessing data, we did not control for genre. Our data sets span child-
directed speech, free text composition, and skilled adults reading fic-
tion and newspaper articles. The Dundee corpus (newspaper articles)
matches the genre of at least some of the Ontonotes test set. Immo-
nen and Mäkisalo (2010) found that for keystroke, genre does seem
to have an effect on average pause length, be it sentence initial, word
initial, clause initial or phrase initial. Texts organized linearly – e.g.
reports and narratives – require less pausing than texts with a global
approach, like expository, persuading and generalizing text. Our re-
sults show that human processing features transfer across genres, but
within-genre data would probably be beneficial for results.
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richer representations The type-level features we use do not
take context into account, and the datasets we use, are too small
to enrich our representations. Human processing data is more and
more readily available, however. Eye trackers are probably built into
the next generation of consumer hardware, and speech records and
keystroke logs are recordable with existing technology.

8.9 conclusion

We have shown how to improve unsupervised POS induction and syn-
tactic chunking significantly using data reflecting human language
processing. Our model, which is a second-order hidden Markov mo-
del, is the first to combine multidimensional, continuous features of
eye movements, prosody and keystroke logs. We have shown that
these features can be combined using projection techniques, even
when they only partially overlap in word coverage. None of our mod-
els require access to these features at test time. We experimented with
all combinations of modalities, and our results indicate that eye track-
ing is useful for both chunking and POS induction. Finally, we have
shown that the potential impact of human processing data also ap-
plies in a low-resource setting, i.e., when available tag dictionaries
are small.
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S E Q U E N C E C L A S S I F I C AT I O N W I T H H U M A N
AT T E N T I O N

abstract

Learning attention functions requires large volumes of data, but many
NLP tasks simulate human behavior, and in this paper, we show that
human attention really does provide a good inductive bias on many
attention functions in NLP. Specifically, we use estimated human atten-
tion derived from eye-tracking corpora to regularize attention func-
tions in recurrent neural networks. We show substantial improve-
ments across a range of tasks, including sentiment analysis, gram-
matical error detection, and detection of abusive language.

9.1 introduction

When humans read a text, they do not attend to all its words (Car-
penter and Just, 1983; Rayner and Duffy, 1988). For example, humans
are likely to omit many function words and other words that are
predictable in context and focus on less predictable content words.
Moreover, when they fixate on a word, the duration of that fixation
depends on a number of linguistic factors (Clifton, Staub, and Rayner,
2007; Demberg and Keller, 2008).

Since learning good attention functions for recurrent neural net-
works requires large volumes of data (Britz, Guan, and Luong, 2017;
Zoph et al., 2016), and errors in attention are known to propagate
to classification decisions (Alkhouli et al., 2016), we explore the idea
of using human attention, as estimated from eye-tracking corpora, as
an inductive bias on such attention functions. Penalizing attention
functions for departing from human attention may enable us to learn
better attention functions when data is limited.

Eye-trackers provide millisecond-accurate records on where humans
look when they are reading, and they are becoming cheaper and more
easily available by the day (San Agustin et al., 2009). In this paper,
we use publicly available eye-tracking corpora, i.e., texts augmented
with eye-tracking measures such as fixation duration times, and large
eye-tracking corpora have appeared increasingly over the past years.
Some studies suggest that the relevance of text can be inferred from
the gaze pattern of the reader (Salojärvi et al., 2003) – even on word-
level (Loboda, Brusilovsky, and Brunstein, 2011).
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contributions We present a recurrent neural architecture with
attention for sequence classification tasks. The architecture jointly
learns its parameters and an attention function, but can alternate be-
tween supervision signals from labeled sequences (with no explicit
supervision of the attention function) and from attention trajectories.
This enables us to use per-word fixation durations from eye-tracking
corpora to regularize attention functions for sequence classification
tasks. We show such regularization leads to significant improvements
across a range of tasks, including sentiment analysis, detection of
abusive language, and grammatical error detection. Our implementa-
tion is made available at https://github.com/coastalcph/Sequence_
classification_with_human_attention.

9.2 method

We present a recurrent neural architecture that jointly learns the recur-
rent parameters and the attention function, but can alternate between
supervision signals from labeled sequences and from attention tra-
jectories in eye-tracking corpora. The input will be a set of labeled
sequences (sentences paired with discrete category labels) and a set
of sequences, in which each token is associated with a scalar value
representing the attention human readers devoted to this token on
average.

The two input datasets, i.e., the target task training data of sen-
tences paired with discrete categories, and the eye-tracking corpus,
need not (and will not in our experiments) overlap in any way. Our
experimental protocol, in other words, does not require in-task eye-
tracking recordings, but simply leverages information from existing,
available corpora.

Behind our approach lies the simple observation that we can corre-
late the token-level attention devoted by a recurrent neural network,
even if trained on sentence-level signals, with any measure defined
at the token level. In other words, we can compare the attention de-
voted by a recurrent neural network to various measures, including
token-level annotation (Rei and Søgaard, 2018) and eye-tracking mea-
sures. The latter is particularly interesting as it is typically considered
a measurement of human attention.

We go beyond this: Not only can we compare machine attention
with human attention, we can also constrain or inform machine atten-
tion by human attention in various ways. In this paper, we explore
this idea, proposing a particular architecture and training method
that, in effect, uses human attention to regularize machine attention.

Our training method is similar to a standard approach to training
multi-task architectures (Bingel and Søgaard, 2017; Dong et al., 2015;
Søgaard and Goldberg, 2016), sometimes referred to as the alternat-
ing training approach (Luong et al., 2016): We randomly select a data

https://github.com/coastalcph/Sequence_classification_with_human_attention
https://github.com/coastalcph/Sequence_classification_with_human_attention
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point from our training data or the eye-tracking corpus with some
(potentially equal) probability. If the data point is sampled from our
training data, we predict a discrete category and use the computed
loss to update our parameters. If the data point is sampled from the
eye-tracking corpus, we still run the recurrent network to produce
a category, but this time we only monitor the attention weights as-
signed to the input tokens. We then compute the minimum squared
error between the normalized eye-tracking measure and the normal-
ized attention score. In other words, in multi-task learning, we op-
timize each task for a fixed number of parameter updates (or mini-
batches) before switching to the next task (Dong et al., 2015); in our
case, we optimize for a target task (for a fixed number of updates),
then improve our attention function based on human attention (for
a fixed number of updates), then return to optimizing for the target
task and continue iterating.

9.2.1 Model

Our architecture is a bi-LSTM (Hochreiter and Schmidhuber, 1997) that
encodes word representations xi into forward and backward repre-
sentations, and into combined hidden states hi (of slightly lower di-
mensionality) at every timestep. In fact, our model is a hierarchical
model whose word representations are concatenations of the out-
put of character-level LSTMs and word embeddings, following Plank,
Goldberg, and Søgaard (2016), but we ignore the character-level part
of our architecture in the equations below:

−→
hi = LSTM(xi,

−−→
hi−1) (9.1)

←−
hi = LSTM(xi,

←−−
hi+1) (9.2)

h̃i = [
−→
hi ;
←−
hi ] (9.3)

hi = tanh(Whh̃i + bh) (9.4)

The final (reduced) hidden state is sometimes used as a sentence
representation s, but we instead use attention to compute s by mul-
tiplying dynamically predicted attention weights with the hidden
states for each time step. The final sentence predictions y are then
computed by passing s through two more hidden layers:

s = ∑
i

ãihi (9.5)



100 sequence classification with human attention

y = σ(Wy tanh(Wỹs + bỹ) + by) (9.6)

From the hidden states, we directly predict token-level raw attention
scores ai:

ei = tanh(Wehi + be) (9.7)

ai = Waei + ba (9.8)

We normalize these predictions to attention weights ãi:

ãi =
ai

∑k ak
(9.9)

Our model thus combines two distinct objectives: one at the sentence
level and one at the token level. The sentence-level objective is to min-
imize the squared error between output activations and true sentence
labels ŷ.

Lsent = ∑
j
(y(j) − ŷ(j))2 (9.10)

The token-level objective, similarly, is to minimize the squared error
for the attention not aligning with our human attention metric.

Ltok = ∑
j

∑
t
(a(j)(t) − â(j)(t))2 (9.11)

These are finally combined to a weighted sum, using λ (between 0

and 1) to trade off loss functions at the sentence and token levels.

L = Lsent + λLtok (9.12)

Note again that our architecture does not require the target task
data to come with eye-tracking information. We instead learn jointly
to predict sentence categories and to attend to the tokens humans
tend to focus on for longer. This requires a training schedule that
determines when to optimize for the sentence-level classification ob-
jective, and when to optimize the machine attention at the token level.
We therefore define an epoch to comprise a fixed number of batches,
and sample every batch of training examples either from the target
task data or from the eye-tracking corpus, as determined by a coin
flip, the bias of which is tuned as a hyperparameter. Specifically, we
define an epoch to consist of n batches, where n is the number of train-
ing sentences in the target task data divided by the batch size. This
coin is potentially weighted, with data being drawn from the auxil-
iary task with some probability or a decreasing probability of 1

E+1 ,
where E is the current epoch; see Section 9.4 for hyper-parameters.
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9.3 data

As mentioned in the above, our architecture requires no overlap be-
tween the eye-tracking corpus and the training data for the target task.
We therefore rely on publicly available eye-tracking corpora. For sen-
timent analysis, grammatical error detection, and hate speech detec-
tion, we use publicly available research datasets that have been used
previously in the literature. All datasets were lower-cased.

Task Trains set Dev. set Test set

domain n sent domain n sent domain n sent

Sentiment
SemEval Twitter 7177 SemEval Twitter 1,205

SemEval Twitter 2,870

Sentiment SemEval SMS 2,094

Gram. err. FCE 28,731 FCE 2,222 FCE 2,720

Hatespeech Waseem (2016) 5,529 Waseem (2016) 690 Waseem (2016) 690

Hatespeech Waseem and Hovy (2016) 11,225 Waseem and Hovy (2016) 1403 Waseem and Hovy (2016) 1,403

Table 9.1: Overview over the tasks and datasets used.

9.3.1 Eye-tracking corpora

For our experiments, we concatenate two publicly available eye-track-
ing corpora, the Dundee Corpus (Kennedy, Hill, and Pynte, 2003) and
the reading parts of the ZuCo Corpus (Hollenstein et al., 2018), de-
scribed below. Both corpora contain eye-tracking measurements from
several subjects reading the same text. For every token, we compute
the mean duration of all fixations to this token as our measure of hu-
man attention, following previous work (Barrett et al., 2016; Gonzalez-
Garduno and Søgaard, 2018).

dundee The English part of the Dundee corpus (Kennedy, Hill,
and Pynte, 2003) comprises 2368 sentences and more than 50,000 to-
kens. The texts were read by ten skilled, adult, native speakers. The
texts are 20 newspaper articles from The Independent. The reading was
self-paced and as close to natural, contextualized reading as possible
for a laboratory data collection. The apparatus was a Dr Bouis Ocu-
lometer Eyetracker with a 1000 Hz monocular (right) sampling. At
most five lines were shown per screen while subjects were reading.

zuco The ZuCo corpus (Hollenstein et al., 2018) is a combined eye-
tracking and EEG dataset. It contains approximately 1,000 individual
English sentences read by 12 adult, native speakers. Eye movements
were recorded with the infrared video-based eye tracker EyeLink 1000
Plus at a sampling rate of 500 Hz. The sentences were presented at the
same position on the screen, one at a time. Longer sentences spanned
multiple lines. The subjects used a control pad to switch to the next
sentence and to answer the control questions, which allowed for nat-
ural reading speed. The corpus contains both natural reading and
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reading in a task-solving context. For compatibility with the Dundee
corpus, we only use the subset of the data, where humans were en-
couraged to read more naturally. This subset contains 700 sentences.
This part of the Zuco corpus contains positive, negative or neutral
sentences from the Stanford Sentiment Treebank (Socher et al., 2013)
for passive reading, to analyze the elicitation of emotions and opin-
ions during reading. As a control condition, the subjects sometimes
had to rate the quality of the described movies; in approximately 10%
of the cases. The Zuco corpus also contains instances where subjects
were presented with Wikipedia sentences that contained semantic re-
lations such as employer, award and job_title (Culotta, McCallum, and
Betz, 2006). The control condition for this tasks consisted of multiple-
choice questions about the content of the previous sentence; again,
approximately 10% of all sentences were followed by a question.

preprocessing of eye-tracking data Mean fixation dura-
tion (Mean fix dur) is extracted from the Dundee Corpus. For Zuco,
we divide total reading time per word token with the number of fixa-
tions to obtain mean fixation duration. The mean fixation duration is
selected empirically among gaze duration (sum of all fixations in the
first pass reading of the a word) and total fixation duration, and n fix-
ations. Then we average these numbers for all readers of the corpus
to get a more robust average processing time. Eye-tracking is known
to correlate with word frequency (Rayner and Duffy, 1988). We in-
clude a frequency baseline on the eye tracking text, BNC inv freq.
The word frequencies comes from the British National Corpus (BNC)
frequency lists (Kilgarriff, 1995). We use log-transformed frequency
per million. Before normalizing, we take the additive inverse of the
frequency, such that rare words get a high value, making it compara-
ble to gaze.

Mean fix dur and BNC inv freq are min-max-normalized to a
value in the range 0-1. Mean fix dur is normalized separately for
the two eye tracking corpora. We expect the experimental bias – espe-
cially the fact that ZuCo contains reading of isolated sentences and
Dundee contains longer texts – to influence the reading and therefore
separate normalization should preserve the signal within each corpus
better.

9.3.2 Sentiment classification

Table 9.1 presents an overview of all train, development and test sets
used in this paper.

Our first task is sentence-level sentiment classification. We note that
many sentiment analysis datasets contain document-level labels or
include more fine-grained annotation of text spans, say phrases or
words. For compatibility with our other tasks, we focus on sentence-
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level sentiment analysis. We use the SemEval-2013 Twitter dataset
(Rosenthal et al., 2015; Wilson et al., 2013) for training and devel-
opment. For test, we use a same-domain test set, the SemEval-2013

Twitter test set (Semeval Twitter POS | NEG), and an out-of-domain
test set, SemEval-2013 SMS test set (Semeval SMS POS | NEG). The
SemEval-2013 sentiment classification task was a three-way classifica-
tion task with positive, negative and neutral classes. We reduce the
task to binary tasks detecting negative sentences vs. non-negative and
vice versa. Therefore the dataset size is the same for POS and NEG
experiments.

9.3.3 Grammatical error detection

Our second task is grammatical error detection. We use the First
Certificate in English error detection dataset (FCE) (Yannakoudakis,
Briscoe, and Medlock, 2011). This dataset contains essays written by
English learners during language examinations, where any grammat-
ical errors have been manually annotated by experts. Rei and Yan-
nakoudakis (2016) converted the dataset for a sequence labeling task
and we use their splits for training, development and testing. Sim-
ilarly to Rei and Søgaard (2018), we perform sentence-level binary
classification of sentences that need some editing vs. grammatically
correct sentences. We do not use the token-level labels for training
our model.

9.3.4 Hate speech detection

Our third and final task is detection of abusive language; or more
specifically, hate speech detection. We use the datasets of Waseem
(2016) and Waseem and Hovy (2016). The former contains 6,909 tweets;
the latter 14,031 tweets. They are manually annotated for sexism and
racism. In this study, sexism and racism are conflated into one cate-
gory in both datasets. Both datasets are split in train, development
and test splits consisting of 80%, 10% and 10% of the tweets respec-
tively.

9.4 experiments

models In our experiments, we compare three models: (a) a base-
line model with automatically learned attention, (b) our model with
an attention function regularized by information about human atten-
tion, and finally, (c) a second baseline using frequency information
as a proxy for human attention and using the same regularization
scheme as in our human attention model.
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bl BNC inv freq Mean fix dur

task P R F1 P R F1 P R F1

SemEval SMS neg 43.55 45.41 43.77 45.82 48.65 45.24 47.15 46.98 45.77

SemEval SMS pos 65.79 50.81 57.08 65.92 51.04 57.45 65.46 52.95 58.50

SemEval Twitter neg 57.39 26.87 35.70 62.50 28.66 37.78 60.52 30.67 40.23

SemEval Twitter pos 77.96 53.88 63.63 79.66 54.66 64.78 78.77 55.35 64.96

FCE 79.01 89.33 83.84 79.18 89.26 83.89 79.03 90.28 84.28

Waseem (2016) 76.42 62.07 68.29 77.20 61.71 68.54 77.20 63.06 69.30

Waseem and Hovy (2016) 76.23 72.23 74.16 76.33 74.70 75.48 76.95 74.43 75.61

Mean 68.05 57.23 60.92 69.52 58.38 61.88 69.30 59.10 62.67

Table 9.2: Sentence classification results. P(recision), R(ecall) and F1. Aver-
ages over 10 random seeds. Best average F1 score per task is shown
in bold.

hyperparameters Basic hyper-parameters such as number of
hidden layers, layer size, and activation functions were following the
settings of Rei and Søgaard (2018). The dimensionality of our word
embedding layer was set to size 300, and we use publicly available
pre-trained Glove word embeddings (Pennington, Socher, and Man-
ning, 2014) that we fine-tune during training. The dimensionality of
the character embedding layer was set to 100. The recurrent layers
in the character-level component have dimensionality 100; the word-
level recurrent layers dimensionality 300. The dimensionality of our
feed-forward layer, leading to reduced combined representations hi,
is 200, and the attention layer has dimensionality 100.

Three hyper-parameters, however, we tune for each architecture
and for each task, by measuring sentence-level F1-scores on the de-
velopment sets. These are: (a) learning rate, (b) λ in Equation 9.12,
i.e., controlling the relative importance of the attention regularization,
and (c) the probability of sampling data from the eye-tracking corpus
during training.

For all tasks and all conditions (baseline, frequency-informed base-
line, and our human attention model), we perform a grid search over
learning rates [ .01 .1 1. ], Latt weight λ values [ .2 .4 .6 .8 1. ], and
probability of sampling from the eye-tracking corpus [ .125 .25 .5 1.,
decreasing ] – where decreasing means that the probability of sam-
pling from the eye-tracking corpus initially is 0.5, but drops linearly
for each epoch ( 1

E+1 ; see Section 9.2.1). We apply the models with the
best average F1 scores over three random seeds on the validation data,
to our test sets.

initialization Our models are randomly initialized. This leads
to some variance in performance across different runs. We therefore
report averages over 10 runs in our experiments below.
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9.5 results

Our performance metric across all our experiments is the sentence-
level F1 score. We report precision, recall and F1 scores for all tasks in
Table 9.2.

Our main finding is that our human attention model, based on
regularization from mean fixation durations in publicly available eye-
tracking corpora, consistently outperforms the recurrent architecture
with learned attention functions. The improvements over both base-
line and BNC frequency are significant (p < 0.01) using bootstrapping
(Calmettes, Drummond, and Vowler, 2012) over all tasks, with one
seed. The mean error reduction over the baseline is 4.5%.

Unsurprisingly, knowing that human attention helps guide our re-
current architecture, the frequency-informed baseline is also better
than the non-informed baseline across the board, but the human at-
tention model is still significantly better across all tasks (p < 0.01).
For all tasks except negative sentiment, we note that generally, most
of the improvements over the learned attention baseline for the gaze-
informed models, are due to improvements in recall. Precision is not
worse, but we do not see any larger improvements on precision either.
For the negative Semeval tasks, we also see larger improvements for
precision.

The observation that improvements are primarily due to increased
recall, aligns well with the hypothesis that human attention serves as
an efficient regularization, preventing overfitting to surface statistical
regularities that can lead the network to rely on features that are not
there at test time (Globerson and Roweis, 2006), at the expense of
target class precision.

9.6 analysis

We illustrate the differences between our baseline models and the
model with gaze-informed attention by the attention weights of an
example sentence. Though it is a single, cherry-picked example, it
is representative of the general trends we observe in the data, when
manually inspecting attention patterns. Table 9.3 presents a coarse vi-
sualization of the attention weights of six different models, namely
our baseline architecture and the architecture with gaze-informed at-
tention, trained on three different tasks: hate speech detection, neg-
ative sentiment classification, and error detection. The sentence is a
positive hate speech example from the Waseem and Hovy (2016) de-
velopment set. The words with more attention than the sentence av-
erage are bold-faced.

First note that the baseline models only attend to one or two coher-
ent text parts. This pattern was very consistent across all the sentences
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FCE SemEval Twitter NEG Waseem and Hovy (2016)

bl MFD bl MFD bl MFD

@CharlesClassiqk: @CharlesClassiqk: @CharlesClassiqk: @CharlesClaqqqqqqqssiqk: @CharlesClassiqk: @CharlesClassiqk:

sorry sorry sorry sorry sorry sorry

I’m I’m I’m I’m I’m I’m

not not not not not not

sexist sexist sexist sexist sexist sexist

BUT BUT BUT BUT BUT BUT

there there there there there there

is is is is is is

a a a a a a

double double double double double double

standards standards standards standards standards standards

there’s there’s there’s there’s there’s there’s

certain certain certain certain certain certain

rules rules rules rules rules rules

for for for for for for

dudes dudes dudes dudes dudes dudes

and and and and and and

there’s there’s there’s there’s there’s there’s

certain certain certain certain certain certain

rules rules rules rules rules rules

for for for for for for

fem. . . fem. . . fem. . . fem. . . fem. . . fem. . .

Table 9.3: One sentence marked as containing sexism from Waseem and
Hovy (2016) development set. Using trained baseline (Bl) and
gaze model (MFD) for three tasks: error detection, sentiment clas-
sification, and hate speech detection. Words with more attention
than sentence average are boldfaced.

we examined. This pattern was not observed with gaze-informed at-
tention.

Our second observation is that the baseline models are more likely
to attend to stop words than gaze-informed attention. This suggests
that gaze-informed attention has learned to simulate human attention
to some degree. We also see many differences between the jointly
learned task-specific, gaze-informed attention functions.

The gaze-informed hate speech classifier, for example, places con-
siderable attention BUT, which in this case is a passive-aggressive
hate speech indicator. It also gives weight to double standards and cer-
tain rules.

The gaze-informed sentiment classifier, on the other hand, focuses
more on sorry I am not sexist which, in isolation, reads like an apolo-
getic disclaimer. This model also gives weight to double standards and
certain rules

The gaze-informed grammatical error detection model gives atten-
tion to standards, which is ungrammatical, because of the morphologi-
cal number disagreement with its determiner a; it also gives attention
to certain rules, which is disagreeing, again in number, with there’s. It
also gives attention to the non-word fem.

Overall, this, in combination with our results in Table 9.3, suggests
that the regularization effect from human attention enables our archi-
tecture to learn to better attend to the most relevant aspects of sen-
tences for the target tasks. In other words, human attention provides
the inductive bias that makes learning possible.
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9.7 discussion and related work

gaze in nlp It has previously been shown that several NLP tasks
benefit from gaze information, including part-of-speech tagging (Bar-
rett and Søgaard, 2015b; Barrett et al., 2016), prediction of MWEs (Ro-
hanian et al., 2017) and sentiment analysis (Mishra et al., 2016b).

Gaze information and other measures from psycholinguistics have
been used in different ways in NLP. Some authors have used dis-
cretized, single features (Klerke, Goldberg, and Søgaard, 2016; Pate
and Goldwater, 2011, 2013; Plank, 2016a), whereas others have used
multidimensional, continuous values (Barrett et al., 2016; Bingel, Bar-
rett, and Søgaard, 2016). We follow Gonzalez-Garduno and Søgaard
(2018) in using a single, continuous feature. We did not experiment
with other representations, however. Specifically, we only considered
the signal from token-level, normalized mean fixation durations.

Fixation duration is a feature that carries an enormous amount
of information about the text and the language understanding pro-
cess. Carpenter and Just (1983) show that readers are more likely
to fixate on open-class words that are not predictable from context,
and Kliegl et al. (2004) show that a higher cognitive load results in
longer fixation durations. Fixations before skipped words are shorter
before short or high-frequency words and longer before long or low-
frequency words in comparison with control fixations (Kliegl and En-
gbert, 2005). Many of these findings suggest correlations with syntac-
tic information, and many authors have confirmed that gaze informa-
tion is useful to discriminate between syntactic phenomena (Barrett
and Søgaard, 2015a,b; Demberg and Keller, 2008).

Gaze data has also been used in the context of sentiment analysis
before (Mishra, Dey, and Bhattacharyya, 2017; Mishra et al., 2016b).
Mishra et al. (2016b) augmented a sentiment analysis system with
eye-tracking features, including first fixation durations and fixation
counts. They show that fixations not only have an impact in detecting
sentiment, but also improve sarcasm detection. They train a convolu-
tional neural network that learns features from both gaze and text and
uses them to classify the input text (Mishra, Dey, and Bhattacharyya,
2017). On a related note, Raudonis et al. (2013) developed a emo-
tion recognition system from visual stimulus (not text) and showed
that features such as pupil size and motion speed are relevant to ac-
curately detect emotions from eye-tracking data. Wang, Zhang, and
Zong (2017) use variables shown to correlate with human attention,
e.g. surprisal, to guide the attention for sentence representations.

Gaze has also been used in the context of grammaticality (Klerke,
Alonso, and Søgaard, 2015; Klerke et al., 2015), as well as in readabil-
ity assessment (Gonzalez-Garduno and Søgaard, 2018).

Gaze has either been used as features (Barrett, Keller, and Søgaard,
2016; Barrett and Søgaard, 2015a) or as a direct supervision signal in
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multi-task learning scenarios (Gonzalez-Garduno and Søgaard, 2018;
Klerke, Goldberg, and Søgaard, 2016). We are, to the best of our
knowledge, the first to use gaze to inform attention functions in RNNs.

human-inspired attention functions Ibraheem, Altieri, and
DeNero (2017), however, uses optimal attention to simulate human
attention in an interactive machine translation scenario, and Britz,
Guan, and Luong (2017) limit attention to a local context, inspired
by findings in studies of human reading. Rei and Søgaard (2018) use
auxiliary data to regularize attention functions in RNNs; not from psy-
cholinguistics data, but using small amounts of task-specific, token-
level annotations. While their motivation is very different from ours,
technically our models are very related. In a different context, Das et
al. (2017) investigated whether humans attend to the same regions as
neural networks solving visual question answering problems. Lind-
sey (2017) also used human-inspired, unsupervised attention in a
computer vision context.

other work on multi-purpose attention functions Whi-
le our work is the first to use gaze data to guide attention in a re-
current architectures, there has recently been some work on sharing
attention functions across tasks. Firat, Cho, and Bengio (2016), for ex-
ample, share attention functions between languages in the context of
multi-way neural machine translation.

sentiment analysis While sentiment analysis is most often con-
sidered a supervised learning problem, several authors have lever-
aged other signals than annotated data to learn sentiment analysis
models that generalize better. Felbo et al. (2017), for example, use
emoji prediction to pretrain their sentiment analysis models. Mishra
et al. (2018) use several auxiliary tasks, including gaze prediction, for
document-level sentiment analysis. There is a lot of previous work,
also, leveraging information across different sentiment analysis data-
sets, e.g., Liu, Qiu, and Huang (2016).

error detection In grammatical error detection, Rei (2017) used
an unsupervised auxiliary language modeling task, which is similar
in spirit to our second baseline, using frequency information as auxil-
iary data. Rei and Yannakoudakis (2017) go beyond this and evaluate
the usefulness of many auxiliary tasks, primarily syntactic ones. They
also use frequency information as an auxiliary task.

hate speech detection In hate speech detection, many signals
beyond the text are often leveraged (see Schmidt and Wiegand (2017)
for an overview of the literature). Interestingly, many authors have
used signals from sentiment analysis, e.g., Gitari et al. (2015), moti-
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vated by the correlation between hate speech and negative sentiment.
This correlation may also explain why we see the biggest improve-
ments with gaze-informed attention on those two tasks.

human inductive bias Finally, our work relates to other work
on providing better inductive biases for learning human-related tasks
by observing humans (Tamuz et al., 2011; Wilson et al., 2015). We
believe this is a truly exciting line of research that can help us push
research horizons in many ways.

9.8 conclusion

We have shown that human attention provides a useful inductive bias
on machine attention in RNNs for sequence classification problems.
We present an architecture that enables us to leverage human atten-
tion signals from general, publicly available eye-tracking corpora, to
induce better, more robust task-specific NLP models. We evaluate our
architecture and show improvements across three NLP tasks, namely
sentiment analysis, grammatical error detection, and detection of abu-
sive language. We observe that not only does human attention help
models distribute their attention in a generally useful way; human
attention also seems to act like a regulariser providing more robust
performance across domains, and it enables better learning of task-
specific attention functions through joint learning.
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P R E D I C T I N G M I S R E A D I N G S F R O M G A Z E I N
C H I L D R E N W I T H R E A D I N G D I F F I C U LT I E S

abstract

We present the first work on predicting reading mistakes in children
with reading difficulties based on eye-tracking data from real-world
reading teaching. Our approach employs several linguistic and gaze-
based features to inform an ensemble of different classifiers, includ-
ing multi-task learning models that let us transfer knowledge about
individual readers to attain better predictions. Notably, the data we
use in this work stems from noisy readings in the wild, outside of con-
trolled lab conditions. Our experiments show that despite the noise
and despite the small fraction of misreadings, gaze data improves
the performance more than any other feature group and our mod-
els achieve good performance. We further show that gaze patterns
for misread words do not fully generalize across readers, but that
we can transfer some knowledge between readers using multi-task
learning at least in some cases. Applications of our models include
partial automation of reading assessment as well as personalized text
simplification.

10.1 introduction

Reading disabilities are impairments affecting individuals’ access to
written sources, with downstream effects such as low self-confidence
in the classroom and limited access to higher education. Dyslexia, for
instance, while being highly prevalent with estimates reaching up to
17.5% of the entire population of the U.S. (Interagency Committee
on Learning Disabilities, 1987), often goes undiagnosed, such that
unattributed weaknesses in reading comprehension further intimi-
date affected persons. Due to these severe and broad-ranging impacts
of reading difficulties, many governments have implemented early
screening tests for dyslexia and other reading difficulties and provide
special training and assistance for struggling readers throughout the
educational system and into adulthood.

In Denmark, for example, such programs provide children with
specialist training through focused multi-week reading courses in
one-on-one or small group settings. Still, the specialized teachers can
only attend to one student at a time when closely monitoring their
reading, and the quality of any analysis is strictly limited by the
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Figure 10.1: Scanpath and fixations (blue circles) when reading a sentence.
This particularly clear example from our dataset shows ex-
tended processing time for misread words (marked in red).

human observer’s processing “bandwidth" while attending the live
reading.

As a possible mitigation, advances in eye-tracking technology – in
particular the increased availability of eye trackers – have made it
possible to reliably record children’s gaze during reading, both allow-
ing teachers to attend to their students’ reading post-hoc as well as
providing additional insight into reading strategies based on gaze, in-
cluding the development of these strategies over time. For the teacher
to track and keep records of reading mistakes (henceforth referred to
as misreadings), however, the students are still required to read out
loud, and the teacher has to review the entire reading and annotate
for misreadings.

In this work, we investigate to what extent we can predict mis-
readings from gaze patterns for individual words. While the aim is
not to fully automate reading reviews, being able to successfully pre-
dict misreadings from gaze data can be part of a semi-automatic sys-
tem for reading quality assessment and increase teacher efficiency by
pointing out potential misreadings for closer review.

Another motivation for this work comes from text simplification, in
particular from the observation that individuals’ highly specific read-
ing strengths and weaknesses require text simplification models to
be customized to specific users in order to unfold their full potential
and truly be helpful. Predicting misreadings in concrete reading sce-
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narios and based on individual gaze patterns can be used as a first
step in the typical lexical simplification pipeline (Shardlow, 2014).1

This task, known as complex word identification, has received a con-
siderable amount of attention in the literature, but has exclusively
been approached in a user-agnostic fashion.

The data used in this study are gaze recordings of children with
reading difficulties, reading Danish texts assigned by their reading
teacher as part of their reading intervention. The recordings stem
from EyeJustRead, an eye-tracking based software used in special
reading intervention in Danish schools.2 In Section 10.3, we discuss
further aspects of the treatment of gaze data in general and the col-
lection of the data used in this study in particular.

While the difficulty of processing a word is undoubtedly reflected
in the fixation time on that word (Rayner et al., 1989), many other fac-
tors affect fixation durations, the most prominent being word length
and word frequency, but also predictability and relative position in
sentence have strong effects–see Figure 10.1 for a particularly clear ex-
ample from our dataset. Notably, almost all analyses of eye-tracking
reading data use data collected in research laboratories, where these–
otherwise confounding–factors can be controlled for. We show that
we can perform reasonable misreading detection on real-world eye
tracking data, including a limited number of textual features to con-
trol for these factors.

contributions

a. We present the first work on the automatic detection of misread-
ings based on gaze patterns of children with reading difficulties.

b. This is, to the best of our knowledge, the first attempt at model-
ing noisy, real-world eye-tracking data from readers.

c. We also present, to the best of our knowledge, the first pub-
lished results using a multi-task learning setup to transfer knowl-
edge between individual readers for personalized, complex word
identification.

10.2 related work

Our work is a special case of complex word identification, a task
that has recently received a significant amount of interest, including
two shared tasks (Paetzold and Specia, 2016; Yimam et al., 2018). The

1 While today it may hardly sound plausible to equip each laptop with an eye-tracker
in order to track people’s reading, further technological advances may well make
this possible in the future. Recent development in eye-tracking technology has taken
it from expensive research equipment to a gaming interface with a price point as low
as $100.

2 http://www.eyejustread.com

http://www.eyejustread.com
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most successful approaches to these tasks had in common that they
employed ensembles of classifiers that learned from a number of se-
mantic and psycholinguistic features. Note however, that these previ-
ous approaches to complex word identification aimed at developing
generic models that took no account of any specifics of a certain user.

Children’s eye movements during reading are not as well-studied
as adults’, and previous studies typically analyze data collected in ex-
periments designed for research. The overall established observations
with regards to reading development are: older children have shorter
fixation durations, fewer fixations and fewer regressions. They have
a higher skipping probability and also higher saccade amplitude. See
Blythe and Joseph (2011) for a review. It is not conclusive whether
these variations follow chronological age or their increased reading
proficiency. Regardless of the underlying cause, due to the observed
systematic differences, the standard procedure is to control as closely
as possible for age and reading proficiency level when designing read-
ing experiments.

There are several psycholinguistic studies that show that also in
children, the typicality and plausibility of sentences (Joseph et al.,
2008) as well as temporary sentence ambiguity (Traxler, 2002) can be
traced in eye movements, suggesting that also other types of compre-
hension difficulties are reflected in the reading patterns.
Using gaze data to augment models is a recent addition to NLP. Pre-
vious approaches that have used gaze data in the context of natural
language processing include the work of Barrett et al. (2016), who aim
to improve part-of-speech induction with gaze features, Klerke, Gold-
berg, and Søgaard (2016), where gaze data is used as an auxiliary
task in sentence compression, and Klerke et al. (2015), where gaze
data is used to evaluate the output of machine translation. The most
related work is Klerke, Alonso, and Søgaard (2015) and Gonzalez-
Garduño and Søgaard (2017). Klerke, Alonso, and Søgaard (2015)
compared gaze from reading original, manually compressed, and au-
tomatically compressed sentences. They found that the proportion of
regressions to previously read text is sensitive to the differences in
human- and computer-induced complexity. Gonzalez-Garduño and
Søgaard (2017) show that text readability prediction improves sig-
nificantly from hard parameter sharing when models try to predict
word-based gaze features in a multi-task-learning setup. All of these
works, however, use gaze data that was collected under laboratory
conditions from skilled, adult readers.

10.3 gaze data

In eye-tracking studies, gaze data is normally sampled under experi-
mental circumstances, where e.g. instructions, location, environment,
lighting, participant sampling, textual features, order, duration etc.
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Cleaning step Reading sessions Unique readers Read pages Read words Misreadings

No cleaning 369 95 3161 73,965 644

Help word activated 366 95 3067 71,911 619

Fixation detection 366 95 3048 64,191 613

Bad calibration 335 87 2865 56,166 565

Marked by teacher 83 44 405 8,681 565

Table 10.1: Dataset size after each cleaning step

are controlled for. Our real-world data, on the contrary, lacks all of
these controls. While in controlled, cognitive psychology experiments,
fixation durations have proven to systematically correlate with cogni-
tive load (see Rayner et al. (1989) for a review), eye movements from-
real world applications have been largely understudied, and specific
findings from the literature on controlled data may not apply here or
may be swamped by extraneous factors. Further, the often-used statis-
tical tests of significant differences between gaze patterns lose some
of their legitimacy when data is retrieved under noisy conditions.

10.3.1 Data collection and preprocessing

The data we use in this work is collected in Danish schools using
commercial software specifically developed to record and track chil-
dren’s reading development. The system records the eye movements
and voice while the children are reading aloud. The teacher can af-
terwards replay the reading along with the recorded eye movements.
The software performs some low-level eye-movement analyses to help
the teacher understand how the child processes the text. The teacher
can mark which words are erroneously read by the child and later
access this and other basic statistics about the reading – see Klerke
et al. (2018) for a workflow description. The genre is children’s fiction
books and the children read contextualized, running text.

As the data is fairly noisy compared to data from laboratory-based
eye tracking experiments, we perform thorough cleaning before run-
ning any experiments. This cleaning procedure is described below.
Table 10.1 contains a summary of the dataset sizes after each clean-
ing step. Before any cleaning is performed, the dataset contains 369

reading sessions from 95 unique readers. In total it has 3,161 read
pages.

help word activated on page We start by removing all pages
where the reader activated the help word function, which dynami-
cally isolates and enlarges a single word on the screen. This dynamic
display generates a series of eye movements that do not resemble
typical reading activity. This step removes 94 pages.
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fixation detection We pre-process the raw gaze data by first
detecting fixations using a custom implementation of the algorithm
of Nyström and Holmqvist (2010). We remove fixations shorter than
40ms and longer than 1.5s.3 For the calculation of gaze features (see
below), we further discard all data points that are not detected as a
fixation on text (but instead on images or blank parts of the page). We
remove 19 pages where we do not have any fixations on text (e.g. due
to the reader just browsing through a book or because of technical
issues).

bad calibration Prior to reading, the student is prompted to
calibrate the eye tracker. In the data used in this study, most reading
sessions (91%) attain the best calibration score on a five-point scale,
while 6% miss a calibration score. The remaining 3% do not have the
best calibration score. We remove everything but the 91% with the
best calibration score.

Only parts of the readings have been reviewed and marked for mis-
readings by a teacher. However, whether a teacher reviewed a read-
ing or not is not explicitly encoded in the data. Thus, if there are no
marked misreadings in some session, we do not know whether this is
because this reading was not reviewed or because there actually were
no errors. We therefore remove all readings without any marked mis-
readings, as well as any data before the first marked misreading and
after the last marked misreading within marked sessions, assuming
that everything between these two points has been marked. Twelve
cleaned reading sessions only consist of one misread word – every-
thing before and after was removed. See Figure 10.2a for an overview
of the distribution of number of words per reading after this clean-
ing step. This leaves us with the subset of the readings that posed
most problems for the subjects. Figure 10.2b shows the distribution
of misread words in the cleaned dataset. It is worth noting that since
this is not controlled, experimental data, “misread" is not necessarily
interpreted equally by all teachers, or even consistently across mark-
ings from the same teacher, due to the lack of an annotation protocol.
We assume that “misread" means that the pronounced word deviates
substantially from the written word. Ultimately, we retain 83 reading
sessions from 44 readers with at least one misread word.

10.3.1.1 Apparatus

The eye tracker used is a Tobii Eye Tracker 4C with a sample rate
of 90 Hz. It is an affordable, consumer eye tracker targeted at gam-
ing. The laptop computers to which the trackers are attached, and
which run the software, are provided by the different institutions and

3 Removing short fixations also removes the majority of blinks which presents as a
sudden downward-upward pattern of saccades separated by a pause in the signal
or a short, falsely detected fixation.



10.3 gaze data 117

0

100

200

300

400

w
or

ds

(a) Words per
cleaned read-
ing session

0.0

0.2

0.4

0.6

0.8

1.0

M
is

re
ad

(b) Misreading
ratio per
cleaned
session

Figure 10.2: Distributions of total number of words and misreading ratios
per session after cleaning.

vary. Screen resolution is locked by the eye tracker software to 1366

x 768, and most systems reportedly run on a 14"–15.6" monitor. The
font size is 50pt, which is equivalent to approximately 6mm x-height.
Distance between baselines was approximately 18mm with the most
commonly used font–otherwise 24mm.

10.3.1.2 Subjects

The cleaned dataset contains 44 unique readers with different reading
durations. Readers are probably between 5 and 15 years old, which
is the official age of students in the Danish schools, but we do not
know their exact ages. To control for reading proficiency, we include
the texts’ readability scores as a feature in all experiments. All stu-
dents receive extra reading classes, because they struggle with read-
ing. Many of them are probably dyslexic, but we do not have access to
this information. Because this is not experimental data, the students
will have received different instructions from the teachers. We do not
know if they picked the text themselves or for how long they read
prior to each recording. They are not necessarily alone in the room,
but it is a fair assumption that they all make an effort to read cor-
rectly because they are recorded. The data comes from a number of
different systems that we were informed is in the range between 10

and 20, but the actual number of schools and teachers is unknown to
us. All children and their parents gave consent that the anonymized
eye-tracking data may be used for this research.
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10.3.2 Features

Reading patterns have been shown to be influenced by a number
of factors, including textual features and the instructions given to a
reader, such as encouraging a specific reading strategy. Readers, or
different groups of readers, furthermore display individual reading
styles which affect the eye movements (Benfatto et al., 2016). Other
factors include the reader’s individual skill level, cognitive abilities
and mood, among others.

We extract a number of gaze features that have been associated
with processing load. Some of our gaze features directly reflect the
processing load associated with a word, especially the two correlated
measures total fixation duration and number of re-fixations, but also the
mean fixation duration. Some gaze features are included to account for
preview effects (whether the next or previous word was fixated) as
well as the scan path immediately surrounding the word. We split the
gaze features into two groups: Gaze (W) for features directly associ-
ated with word-level processing and Gaze (C) for features associated
with the eye movements on the immediate context of the word. All
features are scaled to the [−1,1] interval.

We further extract a number of basic features that are known to
affect gaze features and thus need to be controlled for. These include
word length and word frequency (Hyönä and Olson, 1995), but also
position in sentence (Rayner, Kambe, and Duffy, 2000) and position
on the page have shown to affect reading for adults. We also include a
range of linguistic features that we expect to describe word difficulty.
All features and feature groups are listed in Table 10.2 and described
below.

gaze features During reading, the reader performs a series of
stable fixations of a couple of hundred milliseconds duration on aver-
age. Between fixations, the eyes perform rapid, targeted movements,
called saccades. All gaze features are computed on the word level and
use the application’s definition of the area of interest surrounding
each word.

For gaze duration, we extract both late and early processing mea-
sures. Late measure such as total fixation duration and number of re-
fixations reflect late syntactic and semantic processing in skilled adult
reading (Rayner et al., 1989). For children with reading difficulties,
we assume these measures to likely reflect processing difficulty.

For the first three passes over a word, we also extract the direction
and the word distance of both the ingoing and outgoing saccade.4

4 As we removed everything that was not a fixation on text before calculating the gaze
features, intermediary non-text fixations may have occurred between text fixations,
such as image fixations. We count the last/next fixated word. For example, if a word
has index 5, and the first pass incoming saccade is from word index 4, we get a
feature value of -1 for first pass ingoing.
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Basic Gaze on Word (W)

Is bold Number of fixations on word

Is italic First fixation duration

Is lowercase Mean fixation duration

Is uppercase Total fixation duration

Has punctuation Count of passes over the word

Line index on page Left pupil size

Word index on line Right pupil size

Page number Re-fixation counts

Position in sentence (relative) Fixations in first quarter count

Position in sentence (absolute) Fixations in second quarter count

Sentence length (characters) Fixations in third quarter count

Sentence length (words) Fixations in fourth quarter count

Word index Relative landing position of first fixation

Sentence index Relative landing position of last fixation

Word length (characters) Average character index of fixations

Gaze in Context (C) Linguistic

1st pass ingoing saccade dist. and dir. LIX score for entire text

1st pass outgoing saccade dist. and dir. Previous occurrences of word stem in text

2nd pass ingoing saccade dist. and dir. Previous occurrences of word type in text

2nd pass outgoing saccade dist. and dir. Vowel count

3rd pass ingoing saccade dist. and dir. Character perplexity

3rd pass outgoing saccade dist. and dir. Word frequency

Next word fixated Universal POS tag

Previous word fixated

Table 10.2: Overview of the feature groups used in the experiments.

These six features are expected to map the activity around the word
and, for example, show whether some word was part of sequential,
forward reading or occurred in a series of erratic saccades.

Four features indicate the landing positions of fixations in four equal-
ly-sized parts of the display width of a word. This captures whether
a word, for instance, has three fixations on the last quarter of its dis-
play width, which would be atypical and suggest that the reader is
struggling with the ending of this word. We further explicitly encode
the landing position of the first and last fixation. Note that because
of the anatomy of the eye, eye tracking can never be pixel-accurate,
but has at least 2° inaccuracy. For short words (or words printed very
small, which does not apply for this study) these features may be
misleading.

The data also provides pupil sizes for both eyes. It is well known
that the pupil dilates as response to external lighting factors, but
there is also evidence that the pupil systematically–but on a much
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smaller scale–dilates as a response to mental state, emotions or con-
centration (Beatty, Lucero-Wagoner, et al., 2000). In an experiment
collecting pupil size, one would control lighting, which was not pos-
sible in the present scenario. For all pupil measures, we subtracted
the same side mean of the reading session. We confirmed that all
changes larger than 0.6 times the mean were captured when remov-
ing short fixations, as they may be caused by the tracker mistaking
eyelashes for pupils during blinks.

basic features The basic features span 16 textual and presen-
tational features that are either directly accessible via the system or
easily obtainable. They are included in all our experiments and serve
as control features for the gaze features because we expect them to ex-
plain some of the variance in the gaze features, e.g. reading changes
over the course of a line and the course of a sentence (Just and Car-
penter, 1980). We further encode the line number a word is located in
on a page, as well as its position in that line.

linguistic features The linguistic features include the abso-
lute vowel count, which in Danish is highly correlated with the num-
ber of syllables. Universal POS tags are obtained from the Danish
Polyglot tagger.5 We also include the provided läsbarhetsindex (LIX)
(Björnsson, 1968), a Swedish readability metric (commonly also ap-
plied to Danish) that considers the mean sentence length and the
ratio of long words (more than 6 characters). The log word prob-
ability is estimated from a language model we train on the entire
Danish Wikipedia (downloaded in November 2017) using KenLM
(Heafield, 2011). Frequency affects processing load and thus fixation
duration for adults as well as dyslexic and neurotypical Finnish chil-
dren (Hyönä and Olson, 1995), but there is conflicting evidence wheth-
er text frequencies from adult text explain variance in children’s eye
movements (Blythe and Joseph, 2011). Character perplexity is esti-
mated using a 5-gram character language model, also using KenLM
on the Danish Wikipedia. The previous occurrence of stems and word
types is included as reading time for low-frequency words has shown
to decrease on later repeats in a text (Rayner, Raney, and Pollatsek,
1995). We use NLTK’s snowball stemmer for Danish.

10.4 model

In preliminary experiments, we observed that the relatively small
overall amount of data, as well as the low fraction of positive in-
stances, caused significant variation between repeated random restarts
of various classification algorithms. We thus approach the task of pre-
dicting misreadings from gaze with ensemble methods, training N

5 http://polyglot.readthedocs.io

http://polyglot.readthedocs.io
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Feature group F1

basic 18.78 †

+ gaze (w) 40.50 *

+ gaze (c) 18.49 †

+ linguistic 19.24 †

+ gaze (w) + gaze (c) 41.19 *

+ gaze (w) + linguistic 41.08 *

+ gaze (w) + linguistic 18.65 †

All features 40.42 *

Table 10.3: Performance across feature groups for Experiment 1. Scores are
averaged F1 over ten cross-validation folds. Using an indepen-
dent t-test, * and † indicate results from ten cross validation
rounds significantly different from basic and the best feature
combination basic + gaze(w) + gaze(c), respectively.

classifiers independently on the same data and letting them vote on
the instances in a held-out development set. Using this development
set, we then optimize a threshold t, which is the fraction of the num-
ber of classifiers that need to cast a positive vote on an item before
we accept it as such.

All of our ensembles consist of 10 random forest classifiers and
10 feed-forward neural networks. The random forests, in turn, con-
sist of 100 trees that create splits based on Gini impurity (Breiman,
2001). The neural network models are implemented in Pytorch and
trained with the Adam algorithm (Kingma and Ba, 2014), with an ini-
tial learning rate of 3 · 10−4 and a dropout rate of 0.2 on the hidden
layers, whose number and sizes we vary in our experiments. We fur-
ther employ early stopping, monitoring the loss on the development
set with a patience of 30 steps.

10.4.1 Multi-task learning for cross-user knowledge transfer

One of the central questions we investigate in this paper is to what
degree gaze patterns for misread words vary between readers, and
whether we can learn to transfer knowledge about predictors of mis-
readings between readers. We address these questions in the experi-
ments reported in Section 10.5.2, for which we use a multi-task learn-
ing (MTL) model that employs hard parameter sharing. MTL has re-
ceived significant attention in the natural language processing com-
munity over the past years (see Bjerva (2017) for a review). One of
the most intriguing properties of MTL is that it allows for the transfer
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Figure 10.3: Words and misreading counts for readings of three readers in
cross-user experiment

of knowledge between different tasks and datasets, which has been
investigated and exploited in a growing number of works (Bingel
and Søgaard, 2017; Klerke, Goldberg, and Søgaard, 2016; Martínez
Alonso and Plank, 2017), including work on the identification of com-
plex words (Bingel and Bjerva, 2018).

In this work, we view the different readers as different tasks, moti-
vated by Bingel and Bjerva (2018), who interpret different languages
as different tasks for cross-lingual complex word identification. We
define a feed-forward neural network model with one output layer
per reader, all of which are dense projections from a shared hidden
layer. In this framework, each training step consists of flipping a coin
to sample any of the tasks and retrieving a batch of training data for
this task. This batch is then used to optimize both the shared and the
respective task-specific parameters. For a detailed definition of the
model, see Bingel and Bjerva (2018).

10.5 experiments

10.5.1 Experiment 1: Across entire dataset

As a first experiment, we investigate the performance of our mod-
els and the predictiveness of the individual feature groups through
10-fold cross validation across the entire dataset. At each fold, we re-
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UserId Number of Words per reading Thereof misread

reading sessions Mean std.dev. Mean Std.dev.

10 7 285.9 67.5 16.6 9.9

15 6 219.2 148.1 5.0 2.3

16 5 91.6 32.7 8.0 3.1

Table 10.4: Statistics of (misread) words in sessions for the three readers with
most readings.

serve one tenth of the data for testing and another tenth to monitor
validation loss of the network as the early stopping criterion.

Note that we split the data randomly and do not stratify the cross-
validation splits in any way. In conjunction with the strong class im-
balance, this means that we are likely to encounter very different class
distributions across splits. This setup may generally lead to lower per-
formance scores, likely with greater variance. However, this was a
deliberate choice as we cannot assume a consistent class distribution
across train and test set in the real world, or in fact hardly any prior
knowledge with regards to class distribution in the test set. Random
splitting also means that data from the same reading will likely be dis-
tributed across train and test partitions for a certain cross-validation
iteration.

We perform a first baseline experiment with only the basic features
that we list in Table 10.2. On top of this baseline feature set, we per-
form further experiments, incorporating all combinations over the
other feature groups. The results we present in Table 10.3 are based
on the best respective model architecture for each feature combina-
tion, evaluated via the average over validation splits.6

10.5.2 Experiment 2: Cross-reader prediction

without reader’s own data In a second experiment, we are
interested in how well our model can predict misreadings for specific
readers. For this, we identify the three readers with most reading ses-
sions and perform a range of experiments, testing our models on the
readings of each of these readers after training them on all other data.
We denote the three most active readers by their unique, anonymized
IDs as they appear in the dataset: 10, 15 and 16. These readers have 7,
6 and 5 recorded and marked readings, respectively, and we present
statistics on these readings in Table 10.4 and Figure 10.3. As in the
previous experiment, we optimize our model through cross valida-

6 To address the variation in input dimensionality as we consider different feature
group combinations, we train models with different architectures: (i) a single hidden
layer with 20 units, (ii) two hidden layers with 20 units each, and (iii) a single hidden
layer with 40 units.
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Figure 10.4: F1 score distributions across test readings for each of the three
readers with most sessions for three tasks.

tion to tune hyperparameters and perform early stopping. We report
test data results for the model with optimal validation performance
in Figure 10.4, broken down into each reader’s different sessions.

learning from reader’s own data Complementing the setup
above, we now investigate how data from the same reader, but from
different reading sessions, can inform our models. Therefore, we fur-
ther perform cross-validation experiments across each reader’s ses-
sions. More concretely, for a reader with n marked readings, we per-
form n-fold cross validation, holding out one reading a time as a test
set and another to monitor validation loss for early stopping of the
neural model, while training on the remaining n− 2 readings.

mtl As outlined in Section 10.4.1, we now view readers as tasks
in an MTL model. For each of the three readers identified above and
for each test reading, we train an ensemble whose neural MTL models
define two outputs: one for the reader in question and one combined
output for all other readers in the entire dataset. The random forest
classifiers are trained on all remaining data except the held-out vali-
dation and test readings.

10.6 results and discussion

From Experiment 1, we observe that gaze features of the target word
itself contribute strongly to model improvements over the baseline of
textual features (see Table 10.3). Contextual gaze features and linguis-
tic features do so to a lesser degree. The best feature group combi-
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nation consists of the basic features and both gaze feature groups.
Adding the linguistic features to this seems to slightly dilute the
model.
The results from Experiment 2 in Figure 10.4 show that, at least for
these three readers, there is a considerable degree of specificity at-
tested in the reading patterns of misread words: in the scenario where
we learn only from other users’ gaze patterns (shown in light blue),
performance is generally worse than for the other approaches. The
high degree of reader specificity is also reflected in the comparison
between learning just across a single user’s readings and a multi-task
setup that also considers other readers. Here, we observe that the for-
mer attains higher mean F1 scores across readings for readers 10 and
16, although MTL is superior to the single-task setup for reader 15.
Another observation is that misreadings can generally be predicted
much better for reader 16 than for the other readers, which may in
part be due to the higher ratio of misread words in these readings.

As especially our cross-reader experiments show, there is reason to
believe that the manifestations of misreadings in gaze differ strongly
between these readers. However, since we do not have information on
the individual readers’ age or general reading proficiency, we cannot
confidently conclude whether the better stability of within-user exper-
iments attested in Figure 10.4 is due to reader-specific idiosyncrasies
or group-internal patterns (which would be supported by evidence
that readers 10 and 16 were more atypical readers than others in the
present dataset). We find some support for the latter hypothesis in lit-
erature describing children’s reading development, which identifies
a range of patterns common to young and low-proficiency readers.
These patterns include longer and more frequent fixations, shorter
saccadic amplitude and more regressions – all of which are also asso-
ciated with comprehension difficulties, see Blythe and Joseph (2011)
for a review. The presence of group-internal patterns is further sup-
ported by the observation that we are still able to successfully transfer
knowledge about readings patterns between users in some cases, in-
creasing performance for the readings of user 15.

One disadvantage of noisy, real-world data is that we do not know
to what degree similarities and differences in the data, as well as our
results, are influenced by chance, or whether they will generalize to
other gaze data. The fact that many parameters are outside of our con-
trol and also outside of our knowledge means that we cannot describe
certain biases in the data (such as age or reading skill) and consider
them as causes for statistical variations in model performance.

10.7 conclusion

This paper presented first work in the automatic prediction of reading
errors in children with dyslexia and other reading difficulties using
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real-world gaze data. We showed that despite the noisy conditions un-
der which this data was obtained, features we extract from the gaze
patterns are predictive of reading mistakes among children. Besides
the immediate application in automating some parts of reading teach-
ing, this could be exploited in personalized text simplification, where
gaze could be used as feedback to the system.

Our experiments further show that while gaze patterns for mis-
readings seem to be largely specific to individual readers or groups
of readers, we can successfully use MTL to transfer knowledge be-
tween readers at least in some cases. Note also that we have very lit-
tle knowledge of the age and general proficiency of specific readers,
including those investigated in our MTL experiments, and we expect
that our MTL approach can be much more successful between more
similar readers.
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11
C O N C L U S I O N A N D F U T U R E P E R S P E C T I V E S

I have presented eight studies each of which contributes uniquely to
a new subfield of NLP that uses data sources containing the cognitive
processing signal of text. The studies draw on well-documented con-
clusions from the field of psycholinguistics, where a wide range of
word properties are shown to be reflected in word-level eye-tracking
metrics. This knowledge is applied to established NLP tasks.

The key question of this thesis is how data reflecting the human
processing of text can benefit NLP.

In all studies evaluating NLP models, the human metrics consis-
tently outperform unmodified baselines and/or feature-enriched base-
lines. Together these studies provide substantial evidence that the
human text processing signal can be used to improve NLP. The su-
pervised models of this thesis evaluate on the following tasks: POS

tagging, dependency parsing, sentiment classification, grammatical
error detection, detection of abusive language, and prediction of mis-
readings. The weakly supervised models evaluate on POS induction
and chunk induction. This should not be considered the final set of
tasks where human data reflecting text processing can help. On the
contrary, more work should be done to validate this and uncover the
full spectrum.

Below I will provide answers to the questions, posed in Section 1.2.

To what extent can the human processing signal for a broad range of cate-
gories be extracted from the eye movements of a reader and be used for POS
tagging/syntactic parsing/POS induction?

Five studies in this thesis show that we can successfully extract the
word-level processing signal from eye-tracking data and use it for
syntax or word class prediction. The pilot experiments in Part ii show
that improving supervised POS tagging and supervised parsing with
gaze is possible, even across domains. In Chapter 6 and Chapter 7,
we successfully use eye-movement features to improve weakly super-
vised POS induction in a type-constrained SHMM-ME for English and
French, respectively. For both languages, type-level averaged features
outperform token-level features. The next step will be to obtain eye-
tracking data for low-resource languages and confirm this conclusion
for these languages.

Our results indicate that models should include a broad set of fea-
tures reflecting both early and late word processing as well as gaze
context features. Chapter 6 tries different gaze and baseline feature
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groups and finds that the best gaze feature group contain total fixa-
tion duration, mean fixation duration, n fixations and fixation prob-
ability. But this group alone is beat by frequency and word length
baselines. Only when gaze feature groups are combined, is the base-
line significantly beaten. Also results from the two pilot experiments
in Part ii suggest that the processing signal for word classes and syn-
tax is distributed over many gaze features.

To what extent does the processing signal transfer from one language to
another related language for POS induction?

The results in Chapter 7 suggest that the syntactic processing signal
from one language to some extent transfers to another. We use the sig-
nal from native English speakers to significantly improve POS induc-
tion for French but when training on French and testing on English,
the minor improvement was not significant. In other words, the way
English native speakers process English word classes is similar to the
way French native speakers process French word classes to an extent
where having eye-tracking data from a related language is better that
not having any. This is potentially useful for low-resource languages.
Future work should uncover the extent of this phenomenon includ-
ing the nature of the relatedness between languages for this transfer
to happen. Since it was not possible to get a significant improvement
for French to English, these two languages may almost be too dif-
ferent, even with comparable eye-tracking datasets. The asymmetry
could also be attributed to differences in Wiktionary quality, where
the English had a better fit for the data.

How will gaze data support POS induction when combined with other data
sources reflecting human text processing, such as features from keystroke
logs and acoustic features?

In Chapter 8, we combine the gaze data from the best model from
Chapter 6 with four partially overlapping datasets of human text
processing as well as pre-trained word embeddings. We find that
CCA was the best method for combining sources, and that the best
model for POS induction combined Dundee gaze features with pre-
trained word embeddings. But also keystroke and acoustic features
contributed to models that significantly outperformed the baseline.
Combining data sources may lead to more robust models and could
also be a pragmatic approach for low-resource languages. Since the
data sources in this study were of unequal size, it is difficult to de-
termine which source was more valuable for the tasks. Keystroke
and acoustic features were the two smallest datasets, so their poten-
tial should be explored further. Technology for collecting these data
sources is also mature enough to collect data on a larger scale.
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Chapter 8 is the first study in this thesis to only use type-level av-
eraged data. Since we did not need human data for the test set, we
are therefore able to evaluate our models on established NLP corpora,
instead of eye-tracking corpora. The results in Chapter 6 and Chap-
ter 7 showed that type-level averaged features are better than token-
level features. Obtaining type-level features is more resource-efficient
than obtaining data reflecting human text processing data at test time.
Type-level features should be considered an obvious choice for future
work.

To what extent can we use gaze features to guide the attention of a RNN for
sequence classification?

Chapter 9 presents another way of including eye-tracking data for
NLP, that does not require human data at test time. Gaze durations as
continuous values were predicted in a bi-LSTM where the prediction
of gaze was an auxiliary task which regularized the main task, thus
serving as an inductive bias. We obtained consistent improvements
over both a feature-enriched baseline and an unmodified baseline for
a wide range of established NLP tasks: grammatical error detection,
sentiment classification, and detection of abusive language. Using hu-
man data as inductive bias for NLP models seems like a promising
direction of research.

How can we model noisy real-word gaze data?

It is an interesting finding that human data collected in lab experi-
ments can contribute to a wide range of NLP tasks but for this idea
to really fly, we need to show that human data can contribute equally
well on a larger scale. Chapter 10 present the first attempt to model
real-world reading data. Although it is a small real-world dataset, it
introduces challenges related to noise, bad calibration, and missing in-
formation, which makes modelling more difficult than it would have
been using laboratory data. We do, however, find that it is possible to
achieve good performance when predicting misreadings.

11.1 limitations and challenges for future work

There is general evidence, for example by Osaka (1989), that charac-
teristics of the writing system influence eye movements. All studies in
this thesis use reading of alphabet characters. The conclusions drawn
at the end should be considered valid only for the studied languages.
Although some eye-tracking reading features do seem to generalize
across related languages and it seems intuitively likely that children
may exhibit more or less similar misreading behaviour in at least re-
lated languages, it is beyond the scope of this thesis to explore to what
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extent this holds. However, the fact that we can use the same method-
ology for several languages, and even show some transfer from one
language to another, means that it would make perfect sense for fu-
ture work to approach other languages and even writing systems us-
ing the same methodology that we propose.

Real-world human data sources present privacy issues beyond those
of laboratory data. Real-world data will contain information about
what people actually choose to read, say and type, and such data
is highly sensitive on an individual level and maybe also on a group-
level. It should be gathered and stored ethically. Unless this challenge
is solved adequately, it could prevent human data from being used
without legal consequences or result in data being abused which in
turn would discourage people from providing data.

Larger quantities of real-world data will also reduce the risk of
overfitting models to the specific data from one experiment, but in-
troduce other issues such as noise, missing data, domain biases, and
privacy issues. In the presented studies, only data from skilled, adult
reading is used, except in Chapter 10 that use data from children with
reading difficulties. But real-world data will contain data from neu-
rotypical people mixed with data from non-neurotypical people, just
to mention one factor that should not be logged according to ethical
issues, but will bias data heavily. This will be a challenge for future
work.
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