291 research outputs found

    Improving Machine Translation Quality with Denoising Autoencoder and Pre-Ordering

    Get PDF
    The problems in machine translation are related to the characteristics of a family of languages, especially syntactic divergences between languages. In the translation task, having both source and target languages in the same language family is a luxury that cannot be relied upon. The trained models for the task must overcome such differences either through manual augmentations or automatically inferred capacity built into the model design. In this work, we investigated the impact of multiple methods of differing word orders during translation and further experimented in assimilating the source languages syntax to the target word order using pre-ordering. We focused on the field of extremely low-resource scenarios. We also conducted experiments on practical data augmentation techniques that support the reordering capacity of the models through varying the target objectives, adding the secondary goal of removing noises or reordering broken input sequences. In particular, we propose methods to improve translat on quality with the denoising autoencoder in Neural Machine Translation (NMT) and pre-ordering method in Phrase-based Statistical Machine Translation (PBSMT). The experiments with a number of English-Vietnamese pairs show the improvement in BLEU scores as compared to both the NMT and SMT systems

    Exploiting Cross-Lingual Representations For Natural Language Processing

    Get PDF
    Traditional approaches to supervised learning require a generous amount of labeled data for good generalization. While such annotation-heavy approaches have proven useful for some Natural Language Processing (NLP) tasks in high-resource languages (like English), they are unlikely to scale to languages where collecting labeled data is di cult and time-consuming. Translating supervision available in English is also not a viable solution, because developing a good machine translation system requires expensive to annotate resources which are not available for most languages. In this thesis, I argue that cross-lingual representations are an effective means of extending NLP tools to languages beyond English without resorting to generous amounts of annotated data or expensive machine translation. These representations can be learned in an inexpensive manner, often from signals completely unrelated to the task of interest. I begin with a review of different ways of inducing such representations using a variety of cross-lingual signals and study algorithmic approaches of using them in a diverse set of downstream tasks. Examples of such tasks covered in this thesis include learning representations to transfer a trained model across languages for document classification, assist in monolingual lexical semantics like word sense induction, identify asymmetric lexical relationships like hypernymy between words in different languages, or combining supervision across languages through a shared feature space for cross-lingual entity linking. In all these applications, the representations make information expressed in other languages available in English, while requiring minimal additional supervision in the language of interest

    Investigating multilingual approaches for parsing universal dependencies

    Get PDF
    Multilingual dependency parsing encapsulates any attempt to parse multiple languages. It can involve parsing multiple languages in isolation (poly-monolingual), leveraging training data from multiple languages to process any of the included languages (polyglot), or training on one or multiple languages to process a low-resource language with no training data (zero-shot). In this thesis, we explore multilingual dependency parsing across all three paradigms, first analysing whether polyglot training on a number of source languages is beneficial for processing a target language in a zero-shot cross-lingual dependency parsing experiment using annotation projection. The results of this experiment show that polyglot training produces an overall trend of better results on the target language but a highly-related single source language can still be better for transfer. We then look at the role of pretrained language models in processing a moderately low-resource language in Irish. Here, we develop our own monolingual Irish BERT model gaBERT from scratch and compare it to a number of multilingual baselines, showing that developing a monolingual language model for Irish is worthwhile. We then turn to the topic of parsing Enhanced Universal Dependencies (EUD) Graphs, which are an extension of basic Universal Dependencies trees, where we describe the DCU-EPFL submission to the 2021 IWPT shared task on EUD parsing. Here, we developed a multitask model to jointly learn the tasks of basic dependency parsing and EUD graph parsing, showing improvements over a single-task basic dependency parser. Lastly, we revisit the topic of polyglot parsing and investigate whether multiview learning can be applied to the problem of multilingual dependency parsing. Here, we learn different views based on the dataset source. We show that multiview learning can be used to train parsers with multiple datasets, showing a general improvement over single-view baselines

    One Model to Rule them all: Multitask and Multilingual Modelling for Lexical Analysis

    Get PDF
    When learning a new skill, you take advantage of your preexisting skills and knowledge. For instance, if you are a skilled violinist, you will likely have an easier time learning to play cello. Similarly, when learning a new language you take advantage of the languages you already speak. For instance, if your native language is Norwegian and you decide to learn Dutch, the lexical overlap between these two languages will likely benefit your rate of language acquisition. This thesis deals with the intersection of learning multiple tasks and learning multiple languages in the context of Natural Language Processing (NLP), which can be defined as the study of computational processing of human language. Although these two types of learning may seem different on the surface, we will see that they share many similarities. The traditional approach in NLP is to consider a single task for a single language at a time. However, recent advances allow for broadening this approach, by considering data for multiple tasks and languages simultaneously. This is an important approach to explore further as the key to improving the reliability of NLP, especially for low-resource languages, is to take advantage of all relevant data whenever possible. In doing so, the hope is that in the long term, low-resource languages can benefit from the advances made in NLP which are currently to a large extent reserved for high-resource languages. This, in turn, may then have positive consequences for, e.g., language preservation, as speakers of minority languages will have a lower degree of pressure to using high-resource languages. In the short term, answering the specific research questions posed should be of use to NLP researchers working towards the same goal.Comment: PhD thesis, University of Groninge

    Predicting Linguistic Structure with Incomplete and Cross-Lingual Supervision

    Get PDF
    Contemporary approaches to natural language processing are predominantly based on statistical machine learning from large amounts of text, which has been manually annotated with the linguistic structure of interest. However, such complete supervision is currently only available for the world's major languages, in a limited number of domains and for a limited range of tasks. As an alternative, this dissertation considers methods for linguistic structure prediction that can make use of incomplete and cross-lingual supervision, with the prospect of making linguistic processing tools more widely available at a lower cost. An overarching theme of this work is the use of structured discriminative latent variable models for learning with indirect and ambiguous supervision; as instantiated, these models admit rich model features while retaining efficient learning and inference properties. The first contribution to this end is a latent-variable model for fine-grained sentiment analysis with coarse-grained indirect supervision. The second is a model for cross-lingual word-cluster induction and the application thereof to cross-lingual model transfer. The third is a method for adapting multi-source discriminative cross-lingual transfer models to target languages, by means of typologically informed selective parameter sharing. The fourth is an ambiguity-aware self- and ensemble-training algorithm, which is applied to target language adaptation and relexicalization of delexicalized cross-lingual transfer parsers. The fifth is a set of sequence-labeling models that combine constraints at the level of tokens and types, and an instantiation of these models for part-of-speech tagging with incomplete cross-lingual and crowdsourced supervision. In addition to these contributions, comprehensive overviews are provided of structured prediction with no or incomplete supervision, as well as of learning in the multilingual and cross-lingual settings. Through careful empirical evaluation, it is established that the proposed methods can be used to create substantially more accurate tools for linguistic processing, compared to both unsupervised methods and to recently proposed cross-lingual methods. The empirical support for this claim is particularly strong in the latter case; our models for syntactic dependency parsing and part-of-speech tagging achieve the hitherto best published results for a wide number of target languages, in the setting where no annotated training data is available in the target language

    Understanding the structure and meaning of Finnish texts: From corpus creation to deep language modelling

    Get PDF
    Natural Language Processing (NLP) is a cross-disciplinary field combining elements of computer science, artificial intelligence, and linguistics, with the objective of developing means for computational analysis, understanding or generation of human language. The primary aim of this thesis is to advance natural language processing in Finnish by providing more resources and investigating the most effective machine learning based practices for their use. The thesis focuses on NLP topics related to understanding the structure and meaning of written language, mainly concentrating on structural analysis (syntactic parsing) as well as exploring the semantic equivalence of statements that vary in their surface realization (paraphrase modelling). While the new resources presented in the thesis are developed for Finnish, most of the methodological contributions are language-agnostic, and the accompanying papers demonstrate the application and evaluation of these methods across multiple languages. The first set of contributions of this thesis revolve around the development of a state-of-the-art Finnish dependency parsing pipeline. Firstly, the necessary Finnish training data was converted to the Universal Dependencies scheme, integrating Finnish into this important treebank collection and establishing the foundations for Finnish UD parsing. Secondly, a novel word lemmatization method based on deep neural networks is introduced and assessed across a diverse set of over 50 languages. And finally, the overall dependency parsing pipeline is evaluated on a large number of languages, securing top ranks in two competitive shared tasks focused on multilingual dependency parsing. The overall outcome of this line of research is a parsing pipeline reaching state-of-the-art accuracy in Finnish dependency parsing, the parsing numbers obtained with the latest pre-trained language models approaching (at least near) human-level performance. The achievement of large language models in the area of dependency parsing— as well as in many other structured prediction tasks— brings up the hope of the large pre-trained language models genuinely comprehending language, rather than merely relying on simple surface cues. However, datasets designed to measure semantic comprehension in Finnish have been non-existent, or very scarce at the best. To address this limitation, and to reflect the general change of emphasis in the field towards task more semantic in nature, the second part of the thesis shifts its focus to language understanding through an exploration of paraphrase modelling. The second contribution of the thesis is the creation of a novel, large-scale, manually annotated corpus of Finnish paraphrases. A unique aspect of this corpus is that its examples have been manually extracted from two related text documents, with the objective of obtaining non-trivial paraphrase pairs valuable for training and evaluating various language understanding models on paraphrasing. We show that manual paraphrase extraction can yield a corpus featuring pairs that are both notably longer and less lexically overlapping than those produced through automated candidate selection, the current prevailing practice in paraphrase corpus construction. Another distinctive feature in the corpus is that the paraphrases are identified and distributed within their document context, allowing for richer modelling and novel tasks to be defined

    Computational models for multilingual negation scope detection

    Get PDF
    Negation is a common property of languages, in that there are few languages, if any, that lack means to revert the truth-value of a statement. A challenge to cross-lingual studies of negation lies in the fact that languages encode and use it in different ways. Although this variation has been extensively researched in linguistics, little has been done in automated language processing. In particular, we lack computational models of processing negation that can be generalized across language. We even lack knowledge of what the development of such models would require. These models however exist and can be built by means of existing cross-lingual resources, even when annotated data for a language other than English is not available. This thesis shows this in the context of detecting string-level negation scope, i.e. the set of tokens in a sentence whose meaning is affected by a negation marker (e.g. ‘not’). Our contribution has two parts. First, we investigate the scenario where annotated training data is available. We show that Bi-directional Long Short Term Memory (BiLSTM) networks are state-of-the-art models whose features can be generalized across language. We also show that these models suffer from genre effects and that for most of the corpora we have experimented with, high performance is simply an artifact of the annotation styles, where negation scope is often a span of text delimited by punctuation. Second, we investigate the scenario where annotated data is available in only one language, experimenting with model transfer. To test our approach, we first build NEGPAR, a parallel corpus annotated for negation, where pre-existing annotations on English sentences have been edited and extended to Chinese translations. We then show that transferring a model for negation scope detection across languages is possible by means of structured neural models where negation scope is detected on top of a cross-linguistically consistent representation, Universal Dependencies. On the other hand, we found cross-lingual lexical information only to help very little with performance. Finally, error analysis shows that performance is better when a negation marker is in the same dependency substructure as its scope and that some of the phenomena related to negation scope requiring lexical knowledge are still not captured correctly. In the conclusions, we tie up the contributions of this thesis and we point future work towards representing negation scope across languages at the level of logical form as well
    • 

    corecore