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ABSTRACT

Cross-Lingual Transfer of Natural Language Processing

Systems

Mohammad Sadegh Rasooli

Accurate natural language processing systems rely heavily on annotated datasets. In

the absence of such datasets, transfer methods can help to develop amodel by transferring

annotations from one or more rich-resource languages to the target language of interest.

These methods are generally divided into two approaches: 1) annotation projection from

translation data, aka parallel data, using supervised models in rich-resource languages,

and 2) direct model transfer from annotated datasets in rich-resource languages.

In this thesis, we demonstrate different methods for transfer of dependency parsers

and sentiment analysis systems. We propose an annotation projection method that per-

forms well in the scenarios for which a large amount of in-domain parallel data is avail-

able. We also propose a method which is a combination of annotation projection and

direct transfer that can leverage a minimal amount of information from a small out-of-

domain parallel dataset to develop highly accurate transfer models. Furthermore, we pro-

pose an unsupervised syntactic reordering model to improve the accuracy of dependency

parser transfer for non-European languages. Finally, we conduct a diverse set of experi-

ments for the transfer of sentiment analysis systems in different data settings.

A summary of our contributions are as follows:

• We develop accurate dependency parsers using parallel text in an annotation pro-

jection framework. We make use of the fact that the density of word alignments is



a valuable indicator of reliability in annotation projection.

• We develop accurate dependency parsers in the absence of a large amount of par-

allel data. We use the Bible data, which is in orders of magnitude smaller than

a conventional parallel dataset, to provide minimal cues for creating cross-lingual

word representations. Our model is also capable of boosting the performance of

annotation projection with a large amount of parallel data. Our model develops

cross-lingual word representations for going beyond the traditional delexicalized

direct transfer methods. Moreover, we propose a simple but effective word trans-

lation approach that brings in explicit lexical features from the target language in

our direct transfer method.

• We develop different syntactic reordering models that can change the source tree-

banks in rich-resource languages, thus preventing learning a wrong model for a

non-related language. Our experimental results show substantial improvements

over non-European languages.

• We develop transfer methods for sentiment analysis in different data availability

scenarios. We show that we can leverage cross-lingual word embeddings to create

accurate sentiment analysis systems in the absence of annotated data in the target

language of interest.

We believe that the novelties that we introduce in this thesis indicate the usefulness of

transfermethods. This is appealing in practice, especially sincewe suggest eliminating the

requirement for annotating new datasets for low-resource languages which is expensive,

if not impossible, to obtain.
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Chapter 1

Introduction

“And among His Signs is the creation of the heavens and the earth, and the
variations in your languages and your colors: verily in that are Signs for those
who know.”

— Quran, The Romans (30), 22.

Natural language processing, aka computational linguistics, is the task of understanding

human languages with computers. One exciting aspect of this task is its interdisciplinary

essence: researchers in different fields including artificial intelligence, applied linguistics,

and social sciences are interested in making use of natural language processing to achieve

a better understanding of language and human interactions. The explosion in using the

internet, for which textual data is a fundamental content in it, has led industry to invest

considerable resources in natural language processing.

There are different levels of linguistic information that are important to understand-

ing languages. These levels include morphology (understanding internal word structure),

syntax, semantics, discourse, and pragmatics [Jurafsky and Martin, 2009]. For example,

Figure 1.1 shows an example of different types of linguistic information for a simple En-

glish sentence. Many artificial intelligence models have been used to make natural lan-

guage processing more accurate; among them, machine learning has shown promising

improvements in languages such as English. Figure 1.3 shows the progress in different

tasks for the English language. These improvements are often achieved by learning a
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Sequa makes and repairs jet engines .
NN VBZ CC VBZ NN NNS PUNC
B-NP B-VP I-VP I-VP B-NP I-NP O

make.01 repair.01 engine.01

ROOT

SBJ COORD CONJ

OBJ

NMOD

PUNC

A0

A0
A1

A1
A1

Figure 1.1: An English sentence with different types of linguistic information: arrows
on top show syntactic dependencies based on the dependency grammar, arrows at the
bottom show the semantic dependencies (dependency-based semantic role labeling), the
two lines bellow the words show part-of-speech, aka word category, information and
phrase boundary information where “B-” shows the start of a phrase and “I-” shows the
middle of a phrase. The third row bellow the words show the word sense of predicate
words (predicate word sense disambiguation).

machine learning model from a large corpus of text data annotated with linguistic infor-

mation; these annotations are usually obtained by hiring expert linguists.

We focus on the tasks of dependency parsing and sentiment analysis in this thesis.

In the following sections we first give some background on these tasks, then give an

overview of the developed methods in this thesis.

1.1 Dependency Parsing

A dependency tree is a representation inspired by the dependency grammar, a gram-

mar that is introduced by the French linguist, Lucien Tesniére [Tesnière, 1953] and has

been reformulated in different linguistic studies such as the meaning-text theory [Mel’čuk

and Polguere, 1987], and the word grammar [Hudson, 1984]. The basic assumption under-

lying dependency grammar is the idea that asymmetrical dependency relations between
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Bell , based in Los Angeles , makes and distributes electronic , computer and building product .

nsubj

p

partmod

adpmod compmod

adpobj

p

ROOT

cc

conj

amod

p

conj

cc

conj

dobj

p

Figure 1.2: An example (projective) dependency tree from theWall Street Journal treebank
[Marcus et al., 1993]. The dependencies are derived from the Google universal treebank
annotation standard [McDonald et al., 2013].

words create a dependency tree for a sentence [Kübler et al., 2009]. In a dependency tree,

each word has exactly one parent and an unrestricted number of dependents. The root for

a tree is represented using the dummy Root token. An example dependency tree is shown

in Figure 1.2. Statistical dependency parsers attempt to determine a dependency tree for

a sentence such that the likelihood or score of that dependency tree is greater than that

of other possible trees for that particular sentence. The likelihood or score can either be

defined by a generative or a discriminative model.

Dependency parsing, compared to the phrase structure grammar, is a more flexible

way to represent a tree structure for free word order languages [Kübler et al., 2009]. Many

applications includingmachine translation (e.gQuirk et al. [2005], Shen et al. [2008], Katz-

Brown et al. [2011a], and Sennrich and Haddow [2016]), open information extraction (e.g.

Wu and Weld [2010] , Angeli et al. [2015], and Bhutani et al. [2016]), semantic role label-

ing (e.g. Hacioglu [2004], Björkelund et al. [2009], and Marcheggiani and Titov [2017]),

grammatical error correction [Tetreault et al., 2010], disfluency detection (e.g. Rasooli and

Tetreault [2013], Honnibal and Johnson [2014], and Yoshikawa et al. [2016]), and question
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answering (e.g. Cui et al. [2005], and Hakimov et al. [2017]) make use of dependency trees.

1.2 Sentiment Analysis

Sentiment analysis is a standard multi-label classification problem. The input is a

sequence of words and the output is the sentiment label of that sequence, usually among

three possible labels: negative, positive, and neutral. The input text can be a sentence, a

document or an entity in a sentence or document [Liu, 2012a]. For many simple examples

in natural languages, one can employ simple indicator features such as the presence of the

words “good” or “lazy” (e.g. “He is a good student.” vs. “He is a lazy student.”) to develop a

sentiment analysis system. However, many real examples in natural languages comprise

complicated linguistic structures that are not easy to understand by a system based on bag-

of-words features. In recent years, different machine learning algorithms have been used

to overcome the challenges in sentiment analysis [Pang et al., 2002; Pang and Lee, 2004;

Agarwal et al., 2011; Socher et al., 2011; Kim, 2014].

1.3 Our Motivation

When one wants to apply a state-of-the-art technique on a new language, the pri-

mary challenge would be to find an appropriate and relatively large annotated dataset.

Unfortunately, this requirement might not be satisfied for many languages in the world.

Moreover, annotating a new dataset is very expensive and time-consuming; e.g., anno-

tating the Chinese treebank took five years of effort [Hwa et al., 2005]. Unsupervised

learning could be a potential solution to this problem. In unsupervised language learn-

ing, the goal is to learn a language without using annotated data in that language. There
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Figure 1.3: State-of-the-art progress on English natural language processing tasks includ-
ing part-of-speech (POS) tagging, dependency parsing (based on unlabeled attachment
score), named entity recognition (NER) based of F-score, and dependency-based semantic
role labeling (SRL) F-score.

has been a considerable amount of work on unsupervised learning in different tasks, e.g.,

Figure 1.4 shows the progress in unsupervised dependency parsing on English as a sim-

ulation for a truly low-resource language. As shown in the figure, the improvements are

substantial but compared to a supervised parser, the best accuracy of an unsupervised

parser lags considerably behind that of a supervised parser.

An alternative approach is to use transfer methods. The core idea behind transfer

methods is to make use of annotations in rich-resource languages and transfer those an-

notations to a languagewithout annotation. Thuswe can benefit from the fact that despite

idiosyncratic linguistic phenomena in different languages, there are still many similari-

ties that we can use to transfer information from one language to another one. Transfer

methods can leverage parallel data, aka translated text, along with supervised models in

rich-resource languages. For example, in annotation projection, we have parallel data for
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Figure 1.4: State-of-the-art progress in unsupervised dependency parsing of English. The
models are from Klein and Manning [2004], Cohen et al. [2009], Cohen and Smith [2009],
Blunsom and Cohn [2010], Spitkovsky et al. [2011a], Spitkovsky et al. [2012], Spitkovsky
et al. [2013], and Le and Zuidema [2015]. The supervised model is from the result of Dozat
and Manning [2016].

which sentences in a rich-resource language are translated to sentences in a low-resource

language. We can process the sentences in the rich-resource language with a supervised

model, and then project that supervised information using the translation cues.

1.4 Transfer Methods

Transfer methods aim to transfer common universal linguistic information from one

or many rich-resource languages to a low-resource target language. There are generally

two types of transfer methods: annotation projection and direct transfer, aka direct model

transfer. A combination of annotation projection and direct transfer can also be used: in

chapters 5 and 7, we show that we can leverage the combined method.
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1.4.1 Annotation Projection

Annotation projection is a classic but effective cross-lingual transfer technique, especially

when parallel corpora from multiple sources are available. In single-source annotation

projection, it is assumed that a parallel corpus is available where sentences {s(i)}mi=1 from

the source language Ls are aligned to sentences {t(i)}mi=1 in a low-resource language Lt;

i.e. s(i) and t(i) are translations of each other for i = 1 . . .m.

Labeled training examplesD = {(xi, yi)}ni=1 exist for the source language Ls. Thus, a

supervised systemMsup is first trained on D and afterward, the trained systemMsup is

used to predict the labels of the source-side parallel translated text {ys(i)}mi=1. Those labels

are projected to the target-side translation; i.e. ys(i) → yt(i) . After applying projection,

the target-side translation text {t(i)}mi=1 is used along with the projected labels {yt(i)}mi=1

to train the target modelMproj . The trained modelMproj is the final model for analyzing

text in the target language.

Multi-source transfer is an extension to single-source transfer. In this setting, there

are k source languages, each with separate labeled training data. It is also assumed that

there exists multi-parallel corpora where every target language sentence has k source

language translations. In this setting, one can apply the same projection technique to

create a supervised modelMi
sup for each source language Li (i = 1, · · · k) and project

labels to the target language sentence. Then majority voting is applied on the k projected

labels for each target sentence to get the most reliable projected label. As with single-

source projection, a supervised system is then trained on the projected data to get the

final modelMproj .
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root
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Mohammad Sadegh Rasooli Cross-Lingual Transfer of Natural Language Processing Systems

Figure 1.5: Example of annotation projection for dependency parsing from English to
Persian in the Bible data. Persian words are written from left to right for the ease of rep-
resentation, and the lexical translations are written bellow each word. Red dependencies
are the wrong ones, and yellow words have missing alignment.

Projecting labels to a target language is straightforward for traditional classification

tasks such as sentiment analysis. In structured prediction, such as dependency parsing,

projection is more complicated than simply projecting one label from a source sentence to

a target sentence. Multi-source projection might need a dynamic programming algorithm

to extract a tree (or a set of trees in the case of having missing alignments) from a set

of possible trees in the projected dependencies. Figure 1.5 shows an example from an

English sentence to a Persian sentence. As shown in the figure, different types of error

occur due to different reasons, such as an incorrect supervised parse, incorrect alignments

and translation divergence.

1.4.2 Direct Transfer

In direct transfer, a system can be trained on a source language dataset directly, with

an unrestricted number of source languages. In other words, a supervised system can

be trained on the concatenation of k labeled datasets ∪ki=1Di from k source languages
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or it can use the outcome of an ensemble of k single-source direct transfer models. The

advantage of direct transfer is the ability to directly use the gold labels of the source data

in a single model without having to train separate source-language and target-language

models. With multi-source, it can directly combine training data from different source

languages in a single model. Moreover, the dependence on parallel data is reduced; it is

possible to train a direct transfer model without any parallel data, namely if a bilingual

dictionary or parallel data is available.

The main problem with direct transfer is that most of the common features do not

generalize beyond each source language: for example, lexical features in one language

are unlikely to appear in other languages. Moreover, a direct transfer model might be

incorrect due to the differences in syntactic word order or other linguistic differences

across languages.

1.5 Thesis Overview

Theprimary contribution of this thesis is to show the effectiveness of different transfer

approaches for natural language processing both in scenarios for which a large set of

translation data is available and in scenarios forwhichwe have limited access to annotated

data. The summary of our contributions are as follows:

• Dependency parsing:

– We present a model (chapter 4) that can leverage a large amount of parallel

text to develop dependency parsers without supervision in target languages.

Our experimental results show that our models outperform substantially over

9



previous work in transfer methods and unsupervised parsing.

– We present a model (chapter 5) that tailors a small parallel text such as the

Bible data as well as treebanks in rich-resource languages to develop very

accurate dependency parsers in a target language.

– We present a state-of-the-art transfer method (chapter 6) that tries to reorder

syntactic trees in rich-resource treebanks before using them in a transfer sce-

nario. We show that this method improves over strong transfer methods es-

pecially for non-European languages, in the absence of large parallel data.

• Sentiment analysis: We conduct a broad set of experiments to show that similar

to dependency parsing, transfer methods can work well in sentiment analysis for

low-resource languages (chapter 7) .

The mentioned contributions are important to us in different aspects: first and fore-

most, we give different solutions for developing accurate natural language processing

models in the absence of annotated data. For example, when using the small Bible paral-

lel dataset, our final dependency model improves the unlabeled attachment accuracy by

a 10% absolute difference over a strong baseline on 68 datasets (38 languages). Table 1.1

compares our results in Chapter 5 to previous work: as shown in the table, our mod-

els outperforms all previous work with a large gap, and performs close to a supervised

parser. There is a clear reason why not relying on annotated data is important in low-

resource languages. We are not required to spend a huge amount of money to annotate a

data. Moreover, our approach can give us a natural language processing model in a short

amount of time as opposed to a long time annotation effort.
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Language MX14 LA16 ZB15 GCY16 AMB16 Our Model Supervised
en – – 70.5 – – 77.5 93.8
de 74.3 76.0 62.5 65.0 65.2 82.1 85.3
es 75.5 78.9 78.0 79.0 80.2 82.6 86.7
fr 76.5 80.8 78.9 77.6 80.6 83.9 86.3
it 77.7 79.4 79.3 78.4 80.7 84.4 88.8
pt 76.6 – 78.6 81.8 81.2 85.6 89.4
sv 79.3 83.0 75.0 78.2 79.0 84.5 88.1

avg\en 76.7 – 75.4 76.3 77.8 83.9 87.4

Table 1.1: Comparison of our work using the Europarl data with previous work in terms of
unlabeled attachment score: MX14 [Ma and Xia, 2014], LA16 [Lacroix et al., 2016], ZB15
[Zhang and Barzilay, 2015], GCY16 [Guo et al., 2016], and AMB 16 [Ammar et al., 2016b],.
“Supervised” refers to the performance of the parser trained on fully gold standard data
in a supervised fashion (i.e. the practical upper-bound of our model). “avg\en” refers to
the average accuracy for all datasets except English.

This thesis is organized as follows: Chapter 2 provides background on natural lan-

guage processing and machine learning, Chapter 3 briefly overviews related work on

transfer methods in dependency parsing and sentiment analysis, Chapter 4 describe a

transfer method for dependency parsing based on annotation projection, Chapter 5 de-

scribes our approach for transfer of dependency parsers in the absence of large amounts

of parallel data, Chapter 6 describes a method for improving the transfer of dependency

parsers with syntactic reordering of source treebanks in rich-resource languages, Chap-

ter 7 conducts a broad set of experiments on different transfer methods for sentiment

analysis in different data settings, and Chapter 8 makes a conclusion.

The work in Chapter 4 is published as a conference paper [Rasooli and Collins, 2015],

and the work in Chapter 5 is published as a journal article [Rasooli and Collins, 2017]. The

work in Chapter 7 is a joint work with colleagues at Columbia University and is published

as a journal article [Rasooli et al., 2017]. The latterwork has some other parts such as using

comparable corpora but since I was not directly involved in that part of research, I have
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not included that in Chapter 7.
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Chapter 2

Background

In this chapter, we briefly overview some of the natural language processing and machine

learning methods that we use in this thesis.

2.1 Natural Language Processing

We now overview some of the algorithms in natural language processing that we use

in this thesis.

2.1.1 Automatic Word Alignment

Word alignment models aim to find the best translation links between words in a pair

of translated sentences. Previous work [Brown et al., 1993; Vogel et al., 1996; Och and

Ney, 2003; Dyer et al., 2010; Dyer et al., 2011; Dyer et al., 2013; Simion et al., 2013] has

considered automatic word alignment as an unsupervised learning problem. The seminal

IBM models [Brown et al., 1993] and the HMM-based model [Och and Ney, 2003] are the

ones that we use in our experiments.

In general, for a sentence pair (s(i), t(i)) where s(i) = [s
(i)
1 , · · · , s(i)mi ] and t(i) =

[t
(i)
1 , · · · , t(i)ki

], the goal is to find source-to-target alignments a(i) = a
(i)
1 , · · · , a(i)ki

where

a
(i)
j shows the index of a source word that is aligned to the jth target word where a(i)j = 0
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indicates a NULL alignment. The IBM models assume that a source word can be aligned

to zero or many target words. The relation between an alignment a, a source sentence s

and a target sentence t is formulated as the joint probability of the target sentence and its

alignment links given the source sentence. The best alignment parameter θ∗ is found as:

θ∗ = argmax
θ

N∏
i=1

∑
a(i)

pθ(t
(i), a(i)|s(i))

= argmax
θ

N∏
i=1

mi∑
a
(i)
1 =0

mi∑
a
(i)
2 =0

· · ·
mi∑

a
(i)
ki

=0

pθ(t
(i), a

(i)
1 , · · · , a(i)ki

|s(i))

TheExpectation-Maximization (EM) algorithm [Dempster et al., 1977] is used to obtain

the best parameter θ∗ for the alignment model. After finding θ∗, we can find the best

scoring alignment a∗(i) for each sentence pair (s(i), t(i)) with a greedy argmax function.

Although one-to-many alignment is a realistic phenomenon is natural languages,

some tasks such as annotation projection for dependency parsing need one-to-one align-

ments. One simple way to obtain one-to-one alignments is to run the alignment model

twice: once from source to target, and once from target to source. By getting the in-

tersected alignments, we miss some of the alignments that only occur in one side of the

alignments but the final alignments will always be one-to-one and are high precision.

Figure 2.1 shows a simple example of word alignment.
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This is a simple example to show word alignments .

	áK
 @ ¹K
 ÈA
�
JÓ èXA� ø@QK.

	
àA

�
�

	
�

	
àX@X ø 	P@Q

�
KÑë Aë è �P@ð

�
I�@ .

Figure 2.1: A simple example of word alignments for an English-Persian translation pair.
The Persian sentence is shown from left to right for the ease of representation, while Per-
sian is written from right to left. Bidirectional arrays indicate that an alignment is found
both in the source-to-target and target-to-source directions. The red arrow indicates that
the word in the Persian sentence does not get any target-to-source alignments, leading to
a NULL alignment for “ 	àX@X” after running alignment intersection.

2.1.2 Dependency Parsing

In this section, after providing some formal definitions, we describe those parsing algo-

rithms that we use throughout this thesis.

Definition 2.1 Dependency tree: A dependency tree y for sentence x = [x1, · · · , xn] is

defined as a set of dependency arcs y = {(i→ j); ∀ 1 ≤ j ≤ n & 1 ≤ i ≤ n+1 & i ̸= j},

such that the following conditions are hold [Kübler et al., 2009]:

• Root property: ∃ j s.t (n+ 1→ j) ∈ y.

• Single-head property: (i→ j) ∈ y ⇒ ∄ k ̸= i s.t. (k → j) ∈ y.

• Acyclicity property: (i → j) ∈ y ⇒ ∄ j →∗ i; where j →∗ i denotes a dependency

path from node j to i.

Definition 2.2 Projective tree: A tree is projective if and only if one can draw its depen-

dency arcs on top of words without creating any crossing arcs (as in Figure 1.2). Formally,
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the following condition should hold for a tree to be projective:

∄ (k,m, l, u) such that

m < l < k < u or l < k < u < m

and ((l→ u) ∈ y or (l← u) ∈ y)

and ((m→ k) ∈ y or (m← k) ∈ y)

Any tree that is not projective is called nonprojective; nonprojective trees occur more

frequently in free-word order languages. Projective parsing is usually easier [McDon-

ald and Satta, 2007] and most sentences in many languages are projective. There exists

different parsing algorithms for deriving projective and nonprojective dependency trees.

Graph-based Parsing

Graph-based parsers define the parsing problem as finding the maximum spanning tree

of a directed graph. These parsers define the score of a tree as the sum of the score of

each arc in the tree. Figure 2.2 shows one such example in which the best tree is recov-

ered from the space of all possible trees, an exponential number of possibilities. Thanks

to independence assumption between arcs, dynamic programming solutions for such a

problem exist for projective parsing [Eisner, 1996; McDonald et al., 2005a] and an effi-

cient algorithm exists for nonprojective parsing [Chu, 1965; Edmonds, 1967; Tarjan, 1977;

McDonald et al., 2005b].

Definition 2.3 Score of a dependency tree y in a first-order graph-based model is defined as
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Bell , based in Los Angeles , makes and distributes electronic , computer and building product .

Figure 2.2: All possible dependency arcs for the English sentence in Figure 1.2. The dark
edges show the correct dependencies. Graph-based parsers use dynamic programming to
recover the best tree in polynomial time.

the sum of the score of each arc in that tree:

score(y) =
∑

(i→j)∈y

λ(i, j)

where λ(i, j) is the score of the (i→ j) arc.

Definition 2.4 The goal of a first-order graph-based parser is to find the highest-scoring

dependency tree for a sentence x:

y∗ = arg max
y∈Y(x)

score(y)

where Y(x) is the space of all possible dependency trees for sentence x. The argmax

function is often solved by a dynamic programming algorithm. Depending on the projectivity

constraint, Y(x) can only enumerate projective, or both projective and nonprojective trees.

In this thesis, we only use the first-order graph-based parsers: the Eisner algo-
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rithm [Eisner, 1996] can recover the best projective tree in O(n3) for a sentence of n

words; and the Chu-Liu-Edmunds algorithm [Chu, 1965; Edmonds, 1967] does nonprojec-

tive parsing withO(n2) time complexity. It is worth noting that there are different exten-

sions of graph-based parsing such as the higher-order arc-factoredmodels (e.g. McDonald

and Pereira [2006], Carreras [2007], Koo and Collins [2010], and Ma and Zhao [2012]).

Transition-based Parsing

Transition-based, aka shift-reduce, parsing is one of the most popular frameworks in de-

pendency parsing. A transition system is an abstract machine that contains a configura-

tion (a current parsing state) and transitions between configurations. The goal is to map

a sentence x to a tree y by applying incremental transitions. The core idea is to start from

a pre-defined initial state configuration and apply a sequence of deterministic transitions

to reach a pre-defined terminal state.

Definition 2.5 Given a set R of dependency types, and a sentence x = [x1, ...xn, xn+1]

where xn+1 is the Root token, a configuration for x is a triple c = (σ, β, A), where

1. σ is a sequence of indices i corresponding to positions in x; σ is usually referred as a

stack,

2. β is a sequence of indices i corresponding to positions in x; β is usually referred as a

buffer,

3. A is a set of dependency arcs (i r−→ j) where 1 ≤ i ≤ n+ 1, 1 ≤ j ≤ n, and r ∈ R.

The initial configuration comprises a buffer with all the words of the sentence in order

in which they appear, and an empty stack. In the terminal state, the buffer contains the
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dummy Root token and the stack is empty.1

Different transitions have been suggested for transition-based parsing: arc-eager

[Nivre, 2003], arc-standard [Nivre, 2004] and arc-hybrid [Kuhlmann et al., 2011], etc.

Usually these algorithms perform comparably, with slight deviations depending on the

dataset to which they are applied.

Definition 2.6 The arc-eager transitions are as follows [Nivre, 2003]:

• Shift (σ, i|β,A)⇒ (σ|i, β, A)

• Right-Arc(r) (σ|i, j|β,A)⇒ (σ|i|j, β, A ∪ (i
r−→ j))

• Left-Arc(r) (σ|i, j|β,A)⇒ (σ, j|β,A ∪ (j
r−→ i))

• Reduce (σ|i, β, A)⇒ (σ, β, A)

Figure 2.3 shows a sequence of transitions for a short English sentence with the arc-

eager algorithm.

One of the challenges in training transition-based parsers is the construction of train-

ing data; there is spurious ambiguity in transition-based parsers such that the same tree

can be derived from multiple different transition sequences. Early work [Nivre et al.,

2006] considered a set of rules to create static oracles that generate a deterministic tran-

sition for a configuration with more than one possible gold-standard transition . A better

alternative is to use dynamic oracles [Goldberg and Nivre, 2013], which are dynamically

created depending on the current classifier weights and the current sentence. One inter-

1 Depending on the transition system and the initial place of the dummy root token, this condition
might slightly differ.
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Act. Stack Buffer Arc(h,d)
Shift [] [I1, want2, to3, parse4, a5, sentence6, .7, ROOT 8]
Left-Arc(nsubj) [I1] [want2, to3, parse4, a5, sentence6, .7, ROOT 8] (2

nsubj−−−→ 1)
Shift [] [want2, to3, parse4, a5, sentence6, .7, ROOT 8]
Shift [want2] [to3, parse4, a5, sentence6, .7, ROOT 8]
Left-arc(aux) [want2, to3] [parse4, a5, sentence6, .7, ROOT 8] (4

aux−−→ 3)

Right-arc(xcomp) [want2] [parse4, a5, sentence6, .7, ROOT 8] (2
xcomp−−−−→ 4)

Shift [want2, parse4] [a5, sentence6, .7, ROOT 8]
Left-arc(det) [want2, parse4, a5] [sentence6, .7, ROOT 8] (6

det−−→ 5)

Right-arc(dobj) [want2, parse4] [sentence6, .7, ROOT 8] (4
dobj−−→ 6)

Reduce [want2, parse4, sentence6] [.7, ROOT 8]
Reduce [want2, parse4] [.7, ROOT 8]
Right-arc(punct) [want2] [.7, ROOT 8] (2

punct−−−→ 7)
Reduce [want2, .7] [ROOT 8]
Left-arc(root) [want2] [ROOT 8] (8

root−−→ 2)
DONE! [ROOT 8]

Figure 2.3: A sample action sequence with arc-eager actions for the sentence “I want to
parse a sentence.”.

esting property of dynamic oracles is that they enable us to easily train on partial trees or

parse a partial tree such that the given arcs are preserved after parsing.

Beam Decoding for Transition-Based Parsing A greedy transition-based parser might

make a wrong decision in the earlier configurations. An early mistake propagates to

next states, leading to a incorrect parse tree with many incorrect dependencies. This is

in contrast to the graph-based parser in which the decisions are optimal according to

local features. Beam decoding is a way to compensate for the greedy mistakes. For a

transition system with 2n actions, for every action step from 1 to 2n, the parser keeps a

maximum of b different configurations in memory, and expands all of them to generate

new configurations for the parser. The beam decoder selects the b highest scoring new

configurations among the generated ones to step forward to the next action step. In the

2nth step, the parser picks the highest scoring configuration as the final decision and

picks its arc set as the output parse tree. In practice, adding the size of the beam more
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Figure 2.4: The influence of beam size on each training iterations for Yara parser [Rasooli
and Tetreault, 2015] on the Penn Treebank development data [Marcus et al., 1993].

than a certain threshold—usually between 32 and 100— does not lead to any improvement

in the final performance. Figure 2.4 shows the accuracy of beam search for the arc-eager

algorithm with different beam sizes for an arc-eager parser [Rasooli and Tetreault, 2015].

As shown in the figure, the accuracy of the parser converges to a certain number after the

beam size of 64.

In practice, one should train a beam decoder in beammode [Zhang andClark, 2008]. In

this mode, a scoring function from a classifier helps the current model to expand the beam

and find the best possible search path to the final state. Afterwards, the parser updates

the classifier weights with respect to the best search path vs. the gold-standard path. This

strategy is called “standard update”: the parser waits until the decoder reaches the final

state and then updates the parameters of the classifier. In practice, this strategy does not

lead to a set of useful parameters: the parser might explore some search spaces that are

very different from the gold-standard path. Moreover, it slows down learning and gives

lower performance [Huang et al., 2012]. There are different strategies to compensate for
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this problem, in which two of them are frequently used in transition-based dependency

parsing:

• Early update [Collins and Roark, 2004]: The parser stops exploring the beam when-

ever the gold-standard path falls off the beam.

• Max-violation update [Huang et al., 2012]: The decoder explores the beam until the

terminal state but updates the beam with respect to a state in which the highest-

scoring element in the beam has the largest score difference to the correct action

sequence; the correct action sequence does not necessarily need to stay in the beam.

Max-violation represents the worst mistake that the classifier makes in the beam

compared to the gold action. In general, this strategy leads to a fewer number of

training epochs and slightly better performance for dependency parsing.

2.1.3 Word Representations

The main type of features used in different natural language processing applications are

lexical features; i.e. words. Depending on the task, other features such as part-of-speech

tags are used but the most influential type of feature is the lexical features. Empirically,

ignoring lexical features decreases the final performance of any natural language pro-

cessing system significantly. There are three main issues when one deals with lexical

features:

• Out-of-vocabulary words: Word frequencies in languages follow the Zipfian dis-

tribution: the frequency of each word is inversely proportional to its rank in the fre-

quency list of a large sample text of that language [Zipf, 1935]. That being said, most
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of the words in a text corpus have a very low frequency even in a large sample, lead-

ing to a distribution with a heavy tail. As a consequence, many words in any testing

data are not seen in the training data: the problem of out-of-vocabulary words is

a challenge in natural language processing. Figure 2.5 shows the logarithm-scale

frequency of words in the Penn Treebank [Marcus et al., 1993]. As shown in the

figure, nearly half of the word types occur only once in the data.

• Representing categorical features: In traditional machine learning methods such

as the maximum entropy models [Ratnaparkhi, 1996], each feature is converted to a

binary indicator feature, indicating whether a categorical feature exists in the input

(as value 1) or not (as value 0) . That leads to a huge sparse feature vector in which

only a few of the values in the vector are non-zero.

• Cross-lingual lexical features: When dealing with cross-lingual data, as in our

case, vocabularies have a small overlap across languages. One solution would be

to represent lexical features of all languages in a shared space where semantically

similar words are similar in the shared space. One can create a lexical abstraction

by mapping words to vectors or cluster ids.

We use two types of word representation throughout this thesis: 1) hierarchical word

clusters, and 2) word embedding vectors.

Hierarchical Word Clusters

A clustering is a function C(w) that maps each word w in a vocabulary to a cluster

C(w) ∈ {1 . . . K}, where K is the number of clusters. A hierarchical clustering is a func-
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Figure 2.5: Zipfian distribution of the English words in the training section of the Penn
Treebank [Marcus et al., 1993].

tion C(w, l) that maps a word w together with an integer l to a cluster at level l in the

hierarchy. The goal of hierarchical word clustering is to map each word in a vocabulary

to a point in a hierarchy in which words in a close neighborhood in the hierarchy should

be syntactically or semantically similar. As one example, the Brown clustering algorithm

[Brown et al., 1992] gives a hierarchical clustering. The level l allows cluster features at

different levels of granularity.

Brown Clustering Brown clustering [Brown et al., 1992] is a class-based bigram lan-

guagemodel inwhich eachword in the vocabulary receives a unique bitstring as its cluster

identity. Figure 2.6 shows a small vocabulary with the hierarchical bitstring assignments

from the Brown clustering algorithm. One can view this algorithm as unsupervised part-

of-speech induction with a bigram transition model such that every word in the training

data can have only one possible part-of-speech tag. Probability of a data with N tokens

and n unique wordsw1, · · · , wn is defined as the product of their bigram transitions. Here
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Figure 2.6: A simplified depiction of the hierarchical word clusters for some English
words. This example is taken from the hierarchy shown by Koo et al. [2008].

the algorithm assumes that every word wi has a unique cluster assignment C(wi):

P (wi|wi−1) = P (wi|C(wi))P (C(wi)|C(wi−1))

Definition 2.7 Given a clustering assignment C , the quality measure for that assignment

with respect to the data is defined as following:

Quality(C) =
logP (w1, · · · , wn)

n
=

log
∏n

i=1 P (wi|C(wi))P (C(wi)|C(wi−1))

n

The original work by Brown et al. [1992] uses a greedy heuristic algorithm to find

the best clustering of the data. A naive implementation has a time complexity of O(n5).

Brown et al. [1992] proposed and algorithm to reduce this runtime toO(n3). This runtime

is still not tractable for a large corpus. To solve this issue, a precomputation trick is

used to reduce this runtime to O(N + nm2) in which m is the number of clusters. The
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Inputs: Corpus with N tokens and n distinct word types w1, · · · , wn ordered by decreas-
ing frequency; m: number of clusters where m ≤ n.

Algorithm:
Initialize active clusters C = {{w1}, · · · , {wm}}
for i = m+1 to n+m− 1 do

if i ≤ n then
Set C = C ∪ {{wi}}

Merge c, c′ ∈ C that cause the smallest decrease in the likelihood of the corpus (def.
2.7).

Output: The clustering C.

Figure 2.7: Brown clustering algorithm.

algorithm in figure 2.7 shows the pseudo-code for deriving the Brown clusters using the

greedy heuristic. As shown in the pseudo-code, the algorithm starts with assigning m

unique clusters to the m most frequent words. It then visits other words according to

their decreasing frequency order, assigns a new ((m+1)th) cluster to the new word, and

merges two of the clusters based on the quality measure. Thus at each step, the algorithm

ends up with exactly m clusters.

When dealing with a very large corpus, even theO(N+nm2) is very time-consuming.

There are other alternatives, such as [Stratos et al., 2015], to obtain the clustering assign-

ments with a more efficient computational complexity. Using word clusters has shown

promising results in dependency parsing [Koo et al., 2008], part-of-speech tagging and

named entity recognition [Turian et al., 2010]. Word clusters are usually used as addi-

tional features in a traditional classifier such as the log-linear model or the Perceptron

algorithm.
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Word Embeddings

Word embedding models embed each word into a d-dimensional vector by creating a

matrix inRN×d from a vocabulary withN words. The goal is to obtain a set of vectors for

words in the vocabulary such that semantically similar words are similar in vector space.

One famous model for obtaining word embeddings is the Skip-gram model by Mikolov et

al. [2013b]: given a sequence of training words w1, · · · , wT , the objective function of the

Skip-gram model maximizes the average log-probability of the data:

1

T

T∑
t=1

∑
−c≤j≤c,j ̸=0

log p(wO = wt+j|wI = wt)

where c is the size of the training context. The probability p(wO|wI) can be defined pro-

portional to the dot product of the “word” representation of wO and “context” represen-

tation of wI . Defining two different vectors for context words and words gives more

flexibility to the model for distinguishing between the word being targeted and its con-

text:

p(wO|wI) =
exp(v

′⊤
wO

vwI
)∑

w∈V exp(v
′⊤
w vwI

)

where V is the vocabulary. The softmax function in the above equation normalizes over

a large vocabulary V . This normalization is computationally expensive and memory in-

tensive. Mikolov et al. [2013b] use an approximate softmax function by sampling k words

from the vocabulary:

logσ(v′⊤
wO

vwI
) +

k∑
i=1

Ewi∼Pn(V)[logσ(v
′⊤
wi
vwI

)]
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where σ is the sigmoid function, and Pn(w) is the noise distribution that draws k sample

words from the vocabulary. Mikolov et al. [2013b] empirically found that the unigram

distribution proportional to the unigram count of each word raised by 3
4
rd power gives

a better performance than the uniform and flat unigram distributions in standard word

analogy and similarity tasks. With this approximate method, called negative sampling, we

are able to maximize the likelihood of a pair of input and context words in contrast to k

noise context examples.

Skip-gram model is not the only way to achieve word embedding vectors. Other

methods such as the continuous bag-of-words (CBOW) model [Mikolov et al., 2013a],

Glove [Pennington et al., 2014], and the spectral method of Stratos et al. [2015] exist. It

is not clear which model gives the best accuracy: it depends on the target task in which

those embeddings might be used.

2.2 Machine Learning for NLP

In this section, we briefly describe two of the main machine learning algorithms that

we use in this thesis. In general, machine learning methods can be divided into three

types: 1) supervised learning, 2) unsupervised learning, and 3) semi-supervised learning.

In supervised learning, data with output labels are provided to the learner, while in un-

supervised learning, the learner aims to learn a pattern from input data without know-

ing the output labels. Semi-supervised learning is used in scenarios in which some (but

not enough) supervision is provided to the learner. Most importantly, semi-supervised

learning uses both labeled and unlabeled data. In this chapter, we overview two of the

supervised learning methods that we use in this thesis.
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2.2.1 Structured Learning with Perceptron

The Perceptron algorithm is one of the earliest machine learning methods that tried to

mimic the behavior of the human brain. It was originally proposed by Rosenblatt [1958]

as an intuitive way to learn from labeled data with binary labels. There are formal

proofs [Novikoff, 1963; Freund and Schapire, 1999] that show this algorithmmakes a finite

number of mistakes for learning a linearly separable data until it reaches a vector that can

perfectly discriminate between examples having the zero and one labels. In a traditional

sense, Perceptron is a binary discriminative classifier that can give linear classifiers. The

algorithm is as follows: given a dataset D = {(x1, y1), · · · , (xn, yn)} such that each data

point xi is a d-dimensional real vector and yi ∈ {0, 1}, Perceptron learns a weight vector

ω ∈ Rd and a bias term b, such that:

zi = I(ω⊤xi + b ≥ 0)

where I is the indicator function. It starts with a zero weight vector and bias term, and

visits every data point once at a time. Whenever the above condition does not hold for

zi, i.e. zi ̸= yi, it updates its weights according to the following equation:

ω = ω + (yi − zi)xi

and

b = b+ (yi − zi)
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The algorithm converges when no mistake is made by the classifier.

Learning Structures with Perceptron

The Perceptron algorithm is a binary classifier while many problems in natural language

processing are multi-label structured prediction. Moreover, the features in natural lan-

guage problems are categorical: they are words, part-of-speech tags, and other types of

string-based features. A standard way to make use of any classifier including the Per-

ceptron algorithm is to convert each feature to a binary indicator feature. For example,

if presence of a word is important to us, we can have a separate binary feature for that

word. For example, the following feature shows a binary indicator feature for input x and

output label y (among all possible labels in Y = {y1, · · · , yl}) such that this feature is

non-zero only if the input x is the word “going” and the output label is “subject”.

fk(x, y) =


1 if x = going and y = subject

0 otherwise

where k is the feature index in the binary feature vector. It is worth noting that one can

extend this trick to other ways of representing features in data; e.g. joint existence of

two words, or a pair of word and tag, or even the count of occurrence of a word, with the

expense ofmaking featuresmore complicated and sparser in the final feature vector. Thus,

each feature in the sparse feature vector can be defined with arbitrary or even overlapping

features.

Collins [2002] proposed a simple but effective way to incorporate multi-label struc-
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tured prediction with Perceptron: in the case of using structures, such as dependency

parsing, a feature vector of a tree can be defined as the sum of all feature vectors in the

structure. For example, for graph-based parsing, each substructure is defined as the arcs

of the tree. In other words, a structure y is decomposed into substructures or arcs, where

arc r = (head(i)→ i) gets its own feature vector f(x, r) ∈ RD. The final feature vector

of the structure can be seen as the sum of the feature vectors:

f(x, y) =
∑
r∈y

f(x, r) ∈ RD

Thus the score of a structure y from input x can be defined as multiplication of its

feature vector by the weight vector ω ∈ RD:

score(y|x;ω) = ω⊤f(x, y) = ω⊤
∑
r∈y

f(x, r) =
∑
r∈y

ω⊤f(x, r)

Therefore given an input x, the best structure can be defined as the maximum scoring

structure among (usually exponential number of) possible structures.

y∗ = arg max
y∈Y(x)

score(y|x;ω)

where Y(x) is the set of all possible structures. Dynamic programming or beam search is

usually used to solve argmax function.

Collins [2002] found that averaging all parameters during all iterations [Freund and

Schapire, 1999] gives more reliable parameters in different natural language processing
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Inputs: 1) Training data D = {(x1, y1), · · · , (xn, yn)}, 2) Feature function f(x, y) that maps an
(x, y) pair to a D-dimensional vector; 3) T : number of training epochs.

Initialization: Set aωj = 0, ωj = 0 ∀j ∈ {1, · · · , D}.

Algorithm:
c = 0
for t = 1 to T do

for i = 1 to n do
c = c + 1
zi = argmaxy∈Y(xi) ω

⊤f(xi, y) ▷ Use dynamic programming or beam search.
if zi ̸= yi then ▷ Apply sparse updates.

for each j where fj(xi, yi) ̸= 0 do
Set ωj = ωj + fj(xi, yi)
Set aωj = aωj + c · fj(xi, yi)

for each j where fj(xi, zi) ̸= 0 do
Set ωj = ωj − fj(xi, zi)
Set aωj = aωj − c · fj(xi, zi)

aω = ω − aω
c ▷ Calculate averaged weights.

Output: aω.

Figure 2.8: Pseudo-code for the averaged structured Perceptron algorithm. The trivial
implementation of the averaging trick is not efficient. Daumé III [2006] used the trick in
this pseudo-code to make averaging efficient.

tasks:

aω =

∑T×n
i=1 ω(i)

T × n

The above averaging technique is inherently expensive for sparse feature vectors. Daumé

III [2006] propose a simple trick to get the averaged values with less complexity. Figure 2.8

depicts the algorithm with the averaging trick from Daumé III [2006] for structured pre-

diction.

2.2.2 Learning with Artificial Neural Networks

Although linear classifiers have shown promising results in previouswork, they are inher-

ently restricted. First and foremost, they are linear classifiers; they work well if the data is

32



linearly separable. This is not the case in many problems. Second, feature engineering is a

cumbersome step in traditional classifiers. Moreover, extracting binary indicator features

is not computationally efficient; e.g. He et al. [2013] showed that 80% of computation

time in a parser with binary indicator features is dedicated to feature computation. In

[Bohnet, 2010], within a highly engineered parser, 91% of the computation is dedicated

to features. Vector-based features such as word embeddings are good alternatives for bi-

nary indicator features but it is not straightforward to incorporate higher order features

with embedding vectors (see [Bansal et al., 2014] for a set of parsing experiments with a

traditional classifier for a graph-based parser using the word embedding features).

Neural networks, aka deep learning, with several layers of computation can address

this problemwith the expense of lack of convexity and formal proof of convergence. More

importantly, deep models are able to learn representations, even for input features, either

from scratch or initialized by pre-trained embedding vectors. This ability has proven to

be empirically useful for many natural language processing tasks.

This section describes some of the deep learning models that we use in this thesis.

Feedforward Networks

We start by going back to the definition of parameters in the multi-label Perceptron al-

gorithm (§2.2.1). In the multi-label Perceptron algorithm, for input x and set of l possible

labels in Y , we have the following parameters:

• A feature function f(x, y) ∈ RD where y ∈ Y .

• Output weight matrix ω ∈ Rl×D and bias term b ∈ Rl. We show the bias term for
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each label y as by ∈ R.

The only parameters that are learned during training with Perceptron are the output

weight matrix and the bias terms. The score of a label y is calculated as the following:

score(y|x;ω, b) = ω⊤f(x, y) + by

In contrast, a multi-class feedforward network has the following parameters [Collins,

2017]:

• A parameter set θ which is a collection of feedforward parameters.

• A function ϕ(x; θ) ∈ Rd that maps input x to a feedforward representation.

• Output weight matrix ω ∈ Rl×d and bias term b ∈ Rl. We show the weight vector

and the bias term for each label y ∈ Y as ωy and by.

The probability of each label is defined by the score of that label normalized by the

softmax function:

p(y|x; θ, ω, b) = escore(y|x;θ,ω,b)∑
y′∈Y e

score(y′|x;θ,ω,b)

where the score function is defined as:

score(y|x; θ, ω, b) = ω⊤y ϕ(x; θ) + by

There are two main differences in the feedforward model compared to Perceptron:
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1. The feature function ϕ(x; θ) is not dependent on the output label. Thus, we do not

need to compute the feature function for every label, thereby, making the compu-

tation much faster.

2. The parameters in the feature function θ are arbitrary. It can be any non-linear

differentiable function.

Feature function example The following feature function is used in the feedforward

transition-based parser of Weiss et al. [2015]2:

• For each configuration, 20 word features, 20 part-of-speech features, and 12 depen-

dency label features are used.

• Each word feature wi for i = 1, · · · , 20 is embedded with a vector using a word

embedding dictionary: E(w)[wi] ∈ Rdw .

• Each part-of-speech feature ti is embedded with a vector using a POS embedding

dictionary: E(t)[ti] ∈ Rdt .

• Each dependency label feature ri is embedded with a vector using a dependency

label embedding dictionary: E(r)[ri] ∈ Rdr .

• All embedding values are updateable with backpropagation. The input is defined

as the concatenation of all embedding features:

I(S) = [E(w)[w1]; · · · ;E(w)[w20];E
(t)[t1]; · · · ;E(t)[t20];E

(r)[r1]; · · · ;E(r)[r12]]

where I(S) ∈ RdE and dE = 20 · (dw + dt) + 12 · dr.

2This feature function is inspired by Chen and Manning [2014].
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• The embedding layer is multiplied by a hidden layer with matrixH1 ∈ Rdh1×dE and

summed with a hidden bias termB1 ∈ Rdh1 . The output is activated by the rectified

linear unit (RELU) [Nair and Hinton, 2010] function:

h1 = RELU(H1I(S) +B1) = max(H1I(S) +B1, 0) ∈ Rdh1

• The output of the first hidden layer is fed to the second hidden layer with H2 ∈

Rdh2×dh1 and B2 ∈ Rdh2 :

h2 = RELU(H2 · h1 +B2) = max(H2 · h1 +B2, 0) ∈ Rdh2

In summary, the feature function of the model byWeiss et al. [2015] is not linear anymore.

That leads to a function that models higher levels of interaction between different word,

part-of-speech and dependence label features.

Gradient-Based Learning In gradient-based learning, one should define a dif-

ferentiable loss function, such as the log-likelihood loss function L(θ, ω, b) =

−
∑n

i=1 log p(yi|xi; θ, ω, b). In stochastic gradient descent (SGD) [Bottou, 2010], one ran-

dom example or a small minibatch of examples are taken into account in each iteration

of training. There are two main benefits to this strategy: first, the model can be scaled

to large datasets; and second, the model empirically converges faster than computing the

loss with respect to all of the training data instances. With single-layer models, calcu-

lating the derivatives is straightforward, but in cases where the number of layers and

activation functions is more than one and the layers have shared sources (such as word
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Inputs: 1) Training data D = {(x1, y1), · · · , (xn, yn)}, 2) Feedforward feature function ϕ(x; θ);
3) T : number of training epochs; and 4) a sequence of learning rates η1, · · · , ηT .

Initialization: Initialize parameters θ, ω, and b randomly.

Algorithm:
for t = 1 to T do

Sample a minibatch xr1 , · · · , xrb drawn from b random integers {ri}bi=1 uniformly from
{1 · · ·n}.

Set L(θ, ω, b) = −
∑b

i=1 log p(yi|xri ;θ,ω,b)

b
for each parameter θj ∈ θ do

Set θj = θj − η(t) · dL(θ,ω,b)dθj

for each label y ∈ Y do
Set ωy = ωy − η(t) · dL(θ,ω,b)dωy

Set by = by − η(t) · dL(θ,ω,b)dby

Output: θ, ω, and b .

Figure 2.9: Pseudo-code for the minibatched stochastic gradient descent (SGD) algorithm
with the log-likelihood objective function.

embedding features), calculating the derivatives is not straightforward. The backpropaga-

tion algorithm tries to solve this problem by defining the notion of computation graph. We

leave details of computation graph: for more information, see Goldberg [2017]. Figure 2.9

shows the pseudo-code of the SGD algorithm with the log-likelihood function.

Recurrent Neural Networks

One drawback of feedforward networks is their insensitivity to long-distance contextual

dependencies in sequential data such as sentences. For example, a word in a sentence

might convey different senses in different contexts. Besides polysemy, a word with one

sense might have a different syntactic role depending on its position in a sentence.

Recurrent neural networks (RNNs) define a generic recurrent function that converts

a sequence x1, · · · , xn to a sequence of vectors h1, · · · , hn where hi ∈ Rh is the recurrent
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representation for the ith position. The RNN function gets the recurrent representation

from the previous position and the current input, and outputs the vector representation

of the current position:

hi = RNN(xi, hi−1; θ)

where θ is the set of parameters in the recurrent network. The backpropagation algorithm

can be applied through time steps.

Long short-termmemories (LSTM) Long short-termmemories (LSTM) [Hochreiter and

Schmidhuber, 1997] is a variant of recurrent neural networks that have recently become

very popular. In each state, a forget cell, an input cell, and an output cell are calculated

to decide which of the previous inputs should be ignored and which ones should be kept

for the next step. The original RNN function involves multiplication while LSTM involves

entrywise products and summations. Thus LSTM does not have the vanishing gradient

problem in the original RNN function. LSTM has many variants; the following is one of

the variants of the LSTM function [Goldberg, 2017]:
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Forget gate : f = σ(xjW
xf

+ h⊤j−1W
hf

)⊤

Input gate : i = σ(xjW
xi

+ h⊤j−1W
hi

)⊤

z = tanh(xjW
xz

+ h⊤j−1W
hz

)⊤

Memory cell : cj = f ⊙ cj−1 + i⊙ tanh(z)

Output gate : o = σ(xjW
xo

+ h⊤j−1W
ho

)⊤

LSTM representation : hj = o⊙ tanh(cj)

where⊙ is the entrywise product, and σ is the sigmoid function, the following dimensions

are used for the matrices:

xj ∈ Rdx

cj, hj, i, f, o, z ∈ Rdh

W xi

,W xf

,W xo

,W xz ∈ Rdx×dh

W hi

,W hf

,W ho

,W hz ∈ Rdh×dh

Birdirectional Deep RNNs In many applications, it is more effective to read a sequence

both from right to left and left to right. In other words, two different RNNs are used to

model sequences one from left to right and the other from right to left.
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Figure 2.10: Example of a deep BiRNN for a input sentence with four words. There are 3
layers of bidirectional RNNs in this example..

hj = BiRNN(x1:n, j; θ
→, θ←) = [h→j ;h←j ]

h→j = RNN(xj, h
→
j−1; θ

→)

h←j = RNN(xj, h
←
j+1; θ

←)

Moreover, it is shown that one can stack different layers of RNN or BiRNNs to obtain
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a deeper representation of a sequence:

hn
j = BiRNN(hn−1

1:n , j; θ
n−→, θ

n←−)

. . .

h2
j = BiRNN(h1

1:n, j; θ
2−→, θ

2←−)

h1
j = BiRNN(x1:n, j; θ

1−→, θ
1←−)

Figure 2.10 shows a simple example of deep bidirectional recurrent neural network

model.
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Chapter 3

Related Work

This chapter briefly overview related work for dependency parsing and sentiment analy-

sis.

3.1 Cross-Lingual Transfer of Dependency Parsers

There has recently been a great deal of work on syntactic transfer. As mentioned in

1.4, there are two main categories of transfer methods: annotation projection and direct

transfer.

3.1.1 Annotation Projection for Parsing

The annotation projection approach, where dependencies from one language are trans-

ferred through translation alignments to another language, has been considered by several

authors [Hwa et al., 2005; Ganchev et al., 2009; McDonald et al., 2011; Ma and Xia, 2014;

Lacroix et al., 2016; Agić et al., 2016; Schlichtkrull and Søgaard, 2017]. This prior work

involves various innovations such as the use of posterior regularization [Ganchev et al.,

2009], the use of entropy regularization and parallel guidance [Ma and Xia, 2014], and a

method for training on partial annotations that are projected from source to target lan-

guage [Spreyer and Kuhn, 2009].
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3.1.2 Direct Syntactic Transfer

A number of methods [Zeman and Resnik, 2008; McDonald et al., 2011; Cohen et al., 2011;

Naseem et al., 2012; Täckström et al., 2013; Rosa and Zabokrtsky, 2015] directly learn

delexicalized models that can be trained on universal treebank data from one or more

source languages, then applied to the target language. More recent work has introduced

cross-lingual representations—for example cross-lingual word-embeddings—that can be

used to improve performance [Zhang and Barzilay, 2015; Guo et al., 2015; Duong et al.,

2015a; Duong et al., 2015b; Guo et al., 2016; Ammar et al., 2016b]. These cross-lingual

representations are usually learned from parallel translation data.

A number of authors have considered incorporating universal syntactic proper-

ties, such as dependency order, by selectively learning syntactic attributes from similar

source languages or learning universal rules [Naseem et al., 2012; Täckström et al., 2013;

Zhang and Barzilay, 2015; Ammar et al., 2016a]. More recently, Wang and Eisner [2016]

have developed a synthetic treebank as a universal treebank to help learn parsers for new

languages. Martínez Alonso et al. [2017] try a very different approach in cross-lingual

transfer by using a ranking approach.

A number of authors [Täckström et al., 2012; Guo et al., 2015; Guo et al., 2016] have

introduced methods that learn cross-lingual representations that are then used in syntac-

tic transfer. Most of these approaches introduce constraints to a clustering or embedding

algorithm that encourage words that are translations of each other to have similar repre-

sentations.

One approach would be to use hand-crafted translation lexicons, for example, Pan-
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Lex [Baldwin et al., 2010] (e.g. see Duong et al. [2015b]), which covers 1253 language

varieties, Google translate (e.g., see Ammar et al. [2016c]), or Wiktionary (e.g., see Dur-

rett et al. [2012] for an approach that uses Wiktionary for cross-lingual transfer). These

resources are potentially very rich sources of information.

3.1.3 Treebank Translation

Recent work [Tiedemann et al., 2014; Tiedemann and Agić, 2016] has considered treebank

translation, where a statistical machine translation system (e.g., MOSES [Koehn et al.,

2007]) is used to translate a source language treebank into the target language, complete

with reordering of the input sentence. Practically, a reliable machine translation system

needs a large amount of parallel data. If this assumption holds, one might be able to use it

for dependency parsing. Previous work on treebank translation [Tiedemann et al., 2014;

Tiedemann and Agić, 2016] gives a lower performance than annotation projection. The

lexicalization approach described in our work is a simple form of treebank translation,

where we use a word-to-word translation model. In spite of its simplicity, it is an effective

approach.

3.1.4 Unsupervised Parsing

There has been a huge amount of work on purely unsupervised methods for learning

dependency syntax [Klein and Manning, 2004; Smith and Eisner, 2005; Headden III et

al., 2009; Cohen and Smith, 2009; Berg-Kirkpatrick and Klein, 2010; Naseem et al., 2010;

Gillenwater et al., 2010; Brody, 2010; Spitkovsky et al., 2011b; Mareček and Straka, 2013;
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Spitkovsky et al., 2013; Cerisara et al., 2013; Jiang et al., 2016; Qiao et al., 2016; Cai et

al., 2017]. These methods are interesting in their own right, as a model of how natural

language syntax can be acquired in an unsupervised fashion; however, their performance

is some way below the performance of methods using cross-lingual transfer. For example,

the results of Spitkovsky et al. [2013] are 64.4% accuracy on section 23 of the Wall Street

Journal treebank; results on the German, Italian, Portuguese and Spanish CONLL data sets

are 56.2%, 56.8%, 74.5%, and 61.7% respectively (average over these 4 languages is 62.3%).

This is compared to an average accuracy of 72.2% for the approach of Ma and Xia [2014]

on these 4 languages on the CONLL datasets, and an average accuracy of 76.05% on the

universal treebank. Some of this prior work [Naseem et al., 2010; Rasooli and Faili, 2012]

has made use of linguistic universals in the induction of unsupervised models: the work

of Naseem et al. [2010] reports accuracy of 66.1% on dependency parsing of sentences

of length 20 words or less, again significantly lower than the results of the annotation

projection model of Ma and Xia [2014].

3.2 Cross-Lingual Transfer for Sentiment Analysis

While the vast majority of work in sentiment analysis has focused on English [Hu and

Liu, 2004; Liu, 2012b; Socher et al., 2013], there have been many studies on cross-lingual

analysis and transfer across languages.

3.2.1 Machine Translation for Sentiment Transfer

Cross-lingual sentiment systems have mostly focused on projection methods using in-

domain corpora [Mihalcea et al., 2007], and on machine translation methods which either
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translate the target language text into a resource-rich language such as English and apply

an English sentiment model [Wan, 2008; Salameh et al., 2015], or translate the English

labeled data into the target language and build a target-language system [Balahur and

Turchi, 2014]. Recent neural network approaches include that of Zhou et al. [2016a],

who developed a hierarchical attention model by translating the training data into the

target language and modeling both the source and target side using a bidirectional LSTM,

and Zhou et al. [2015] who also translated the source training data and used denoising

autoencoders to create bilingual embeddings incorporating sentiment information from

labeled data and their translations. These approaches rely on machine translation of in-

domain text and would unlikely be applicable in a low resource setting where in-domain

parallel data or high quality MT are not available. Previous work has also focused on

developing language-specific systems for a new language, e.g. Mukund and Srihari [2010].

for Urdu and and Joshi et al. [2010] for Hindi; these methods when available are beneficial

to augment cross-lingual techniques.

Duh et al. [2011] has argued that even if perfect machine translation were avail-

able, it would not be a complete solution for the cross-lingual sentiment task, for if that

were viewed as a domain adaptation task, machine translation systems would produce

“domain-mismatch” between vocabulary distributions in the original and translated data,

with limited sentiment vocabulary in the translated data.
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3.2.2 Direct Sentiment Transfer

Meng et al. [2012] avoided the use of an MT system by instead developing a cross-lingual

mixture model which maximizes the likelihood of generating a bilingual Chinese-English

parallel corpus and determining word generation probabilities for the sentiment classes,

where labeled data in the target language need not be available. This approach is comple-

mentary to our direct transfer method. Instead of using a cross-lingual mixture model,

we train systems directly on source language data using cross-lingual word vector repre-

sentations. As with Meng et al. [2012], we utilize parallel data. In our case, the parallel

data is used either to create automatic dictionaries and cross-lingual embeddings, or for

annotation projection. Moreover, we explore many source-target language pairs as well

as parallel corpora from religious text that is out-of-domain but more likely to be available

for under-resourced languages.

It is worth noting that there are a few complementary methods that are similar to the

direct transfer model without using machine translation. For example Zhou et al. [2014]

used a bilingual corpus and stacked autoencoders to create shared sentence represen-

tations for Chinese and English sentences from which sentiment models were trained

directly on English labels. Chen et al. [2016] trained a direct transfer model using an ad-

verserial deep averaging network, whereby the model tries to create language-invariant

bilingual representations that are not recognizable by a language predictor. Unlike these

approaches, our strategy leverages data from different source languages and parallel data

from both in-domain and religious text, and our projection method applies a new con-

figuration of majority voting when more than one translation is available for a target

47



language sentence.
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Part I

Cross-Lingual Transfer of Dependency

Parsers
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Chapter 4

Density-Driven Cross-Lingual Transfer of Dependency Parsers

4.1 Introduction

In recent years there has been a great deal of interest in dependency parsing models

for natural languages. Supervised learning methods have been shown to produce highly

accurate dependency-parsing models; unfortunately, these methods rely on human-

annotated data, which is expensive to obtain, leading to a significant barrier to the de-

velopment of dependency parsers for new languages. Recent work has considered un-

supervised methods (e.g. [Klein and Manning, 2004; Headden III et al., 2009; Gillenwa-

ter et al., 2011; Mareček and Straka, 2013; Spitkovsky et al., 2013; Le and Zuidema, 2015;

Grave and Elhadad, 2015]), or methods that transfer linguistic structures across languages

(e.g. [Cohen et al., 2011; McDonald et al., 2011; Ma and Xia, 2014; Tiedemann, 2015;

Guo et al., 2015; Zhang and Barzilay, 2015; Xiao and Guo, 2015]), in an effort to reduce or

eliminate the need for annotated training examples. Unfortunately the accuracy of these

methods generally lags quite substantially behind the performance of fully supervised

approaches.

This chapter describes novel methods for the transfer of syntactic information be-

tween languages. As in previous work [Hwa et al., 2005; Ganchev et al., 2009; McDonald et
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The political priorities must be set by this House and the MEPs .

Die politischen Prioritäten müssen von diesem Parlament und den Europaabgeordneten abgesteckt werden .

Figure 4.1: An example projection from English to German in the EuroParl data [Koehn,
2005]. The English parse tree is the output from a supervised parser, while the Ger-
man parse tree is projected from the English parse tree using translation alignments from
GIZA++.

al., 2011; Ma and Xia, 2014], our goal is to induce a dependency parser in a target language

of interest without any direct supervision (i.e., a treebank) in the target language: instead

we assume access to parallel translations between the target and one or more source lan-

guages, and to supervised parsers in the source languages. We can then use alignments

induced using tools such as GIZA++ [Och and Ney, 2003], to transfer dependencies from

the source language(s) to the target language (example projections are shown in Figure

4.1). A target language parser is then trained on the projected dependencies.

Our contributions are as follows:

• We demonstrate the utility of dense projected structures when training the target-

language parser. In the most extreme case, a “dense” structure is a sentence in

the target language where the projected dependencies form a fully projective tree

that includes all words in the sentence (we will refer to these structures as “full”

trees). In more relaxed definitions, we might include sentences where at least some

proportion (e.g., 80%) of the words participate as a modifier in some dependency,
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or where long sequences (e.g., 7 words or more) of words all participate as modi-

fiers in some dependency. We give empirical evidence that dense structures give

particularly high accuracy for their projected dependencies.

• We describe a training algorithm that builds on the definitions of dense structures.

The algorithm initially trains the model on full trees, then iteratively introduces

increasingly relaxed definitions of density. The algorithm makes use of a train-

ing method that can leverage partial (incomplete) dependency structures, and also

makes use of confidence scores from a perceptron-trained model.

In spite of the simplicity of our approach, our experiments demonstrate significant

improvements in accuracy over previous work. In experiments on transfer from a single

source language (English) to a single target language (German, French, Spanish, Italian,

Portuguese, and Swedish), our average dependency accuracy is 78.89%. When using mul-

tiple source languages, average accuracy is improved to 82.18%. This is a 5.51% absolute

improvement over the previous best results reported on this data set, 76.67% for the ap-

proach of Ma and Xia [2014]. To give another perspective, our accuracy is close to that

of the fully supervised approach of McDonald et al. [2005b], which gives 84.29% accuracy

on this data. To the best of our knowledge these are the highest accuracy parsing results

for an approach that makes no use of treebank data for the language of interest.

4.2 Our Approach

This section describes our approach, giving definitions of parallel data and of dense

projected structures; describing preliminary exploratory experiments on transfer from
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German to English; describing the iterative training algorithm used in our work; and

finally describing a generalization of the method to transfer from multiple languages.

4.2.1 Parallel Data Definitions

We assume that we have parallel data in two languages. The source language, for which

we have a supervised parser, is assumed to be English. The target language, for which

our goal is to learn a parser, will be referred to as the “foreign” language. We describe the

generalization to more than two languages in §4.2.5.

We use the following notation. Our parallel data is a set of examples (e(k), f (k)) for

k = 1 . . . n, where each e(k) is an English sentence, and each f (k) is a foreign sentence.

Each e(k) = e
(k)
1 . . . e

(k)
sk where e(k)i is a word, and sk is the length of k’th source sentence.

Similarly, f (k) = f
(k)
1 . . . f

(k)
tk

where f
(k)
j is a word, and tk is the length of k’th foreign

sentence.

A dependency is a four-tuple (l, k, h,m) where l ∈ {e, f} is the language, k is the

sentence number, h is the head index, m is the modifier index. Note that if l = e then we

have 0 ≤ h ≤ sk and 1 ≤ m ≤ sk, conversely if l = f then 0 ≤ h ≤ tk and 1 ≤ m ≤ tk.

We use h = 0 when h is the root of the sentence.

For any k ∈ {1 . . . n}, j ∈ {0 . . . tk}, Ak,j is an integer specifying which word in

e
(k)
1 . . . e

(k)
sk , word f

(k)
j is aligned to. It is NULL if f (k)

j is not aligned to anything. We have

Ak,0 = 0 for all k: that is, the root in one language is always aligned to the root in the

other language.

In our experiments, we use intersected alignments from GIZA++ [Och and Ney, 2003]
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to provide the Ak,j values.

4.2.2 Projected Dependencies

We now describe various sets of projected dependencies. We use D to denote the set

of all dependencies in the source language: these dependencies are the result of pars-

ing the English side of the translation data using a supervised parser. Each dependency

(l, k, h,m) ∈ D is a four-tuple as described above, with l = e. We will use P to denote

the set of all projected dependencies from the source to target language. The set P is

constructed from D and the alignment variables Ak,j as follows:

P = {(l, k, h,m) : l = f ∧ (e, k, Ak,h, Ak,m) ∈ D}

We say the k’th sentence receives a full parse under the dependencies P if the de-

pendencies (f, k, h,m) for k form a projective tree over the entire sentence: that is, each

word has exactly one head, the root symbol is the head of the entire structure, and the

resulting structure is a projective tree. We use T100 ⊆ {1 . . . n} to denote the set of all

sentences that receive a full parse under P . We then define the following set:

P100 = {(l, k, h,m) ∈ P : k ∈ T100}

We say the k’th sentence receives a dense parse under the dependencies P if the de-

pendencies of the form (f, k, h,m) for k form a projective tree over at least 80% of the

words in the sentence. We use T80 ⊆ {1 . . . n} to denote the set of all sentences that
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receive a dense parse under P . We then define the following set,

P80 = {(l, k, h,m) ∈ P : k ∈ T80}

We say the k’th sentence receives a span-s parse where s is an integer if there is a

sequence of at least s consecutive words in the target language that are all seen as a

modifier in the set P . We use Ss to refer to the set of all sentences with a span-s parse.

We define the sets

P≥7 = {(l, k, h,m) ∈ P : k ∈ S7}

P≥5 = {(l, k, h,m) ∈ P : k ∈ S5}

P≥1 = {(l, k, h,m) ∈ P : k ∈ S1}

Finally, we also create datasets that only include projected dependencies that are con-

sistent with respect to part-of-speech (POS) tags for the head andmodifier words in source

and target data. We assume a function POS(k, j, i)which returns TRUE if the POS tags for

words f (k)
j and e

(k)
i are consistent. The definition of POS-consistent projected dependen-

cies is then as follows:

P̄ = {(l, k, h,m) ∈ P : POS(k, h,Ak,h) ∧ POS(k,m,Ak,m)}

We experiment with two definitions for the POS function. The first imposes a hard

constraint, that the POS tags in the two languages must be identical. The second imposes

a soft constraint, that the two POS tags must fall into the same equivalance class: the
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POS Constraints P dense P100 Train on P100#sen Acc. #sen Acc. #sen Acc.
No Restriction 968k 74.0 65k 81.4 23k 83.0 69.5
Hard match 927k 80.1 26k 88.0 8k 90.1 68.0
Soft match 904k 80.0 52k 84.9 18k 85.8 70.6

Table 4.1: Statistics showing the accuracy for various definitions of projected trees: see
§4.2.2 for definitions of P , P100 etc. Columns labeled “Acc.” show accuracy when the
output of a supervised German parser is used as gold standard data. Columns labeled
“#sen” show number of sentences. “dense” shows P100 ∪ P80 ∪ P≥7 and “Train” shows
accuracy on test data of a model trained on the P100 trees.

equivalence classes used are listed in §4.3.1.

Given this definition of P̄ , we can create sets P̄100, P̄80, P̄≥7, P̄≥5, and P̄≥1, using

analogous definitions to those given above.

4.2.3 Preliminary Experiments with Transfer from English to German

Throughout the experiments in this chapter, we used German as the target language for

development of our approach. Table 4.1 shows some preliminary results on transferring

dependencies from English to German. We can estimate the accuracy of dependency

subsets such as P100, P80, P≥7 and so on by comparing these dependencies to the depen-

dencies from a supervised German parser on the same data. That is, we use a supervised

parser to provide gold standard annotations. The full set of dependenciesP give 74.0% ac-

curacy under this measure; results for P100 are considerably higher in accuracy, ranging

from 83.0% to 90.1% depending on how POS constraints are used.

As a second evaluationmethod, we can test the accuracy of amodel trained on theP100

data. The benefit of the soft-matching POS definition is clear. The hard match definition

harms performance, presumably because it reduces the number of sentences used to train
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Inputs: Sets P100, P80, P≥7, P≥5, P≥1 as defined in §4.2.2

Algorithm:
θ1 = Train(P100)
P1
100 = CDecode(P80 ∪ P≥7, θ1)

θ2 = Train(P100 ∪ Top(P1
100, θ

1))
P2
100 = CDecode(P80 ∪ P≥5, θ2)

θ3 = Train(P100 ∪ Top(P2
100, θ

2))
P3
100 = CDecode(P≥1, θ3)

θ4 = Train(P100 ∪ Top(P3
100, θ

3))
Output: Parameter vectors θ1, θ2, θ3, θ4.

Figure 4.2: The learning algorithm of the density-driven method.

the model.

Throughout the rest of this chapter, we use the soft POS constraints in all projection

algorithms.1

4.2.4 The Training Procedure

We now describe the training procedure used in our experiments. We use a Perceptron-

trained shift-reduce parser, similar to that of Zhang and Nivre [2011]. We assume that

the parser is able to operate in a “constrained” mode, where it returns the highest scoring

parse that is consistent with a given subset of dependencies. This can be achieved via

zero-cost dynamic oracles [Goldberg and Nivre, 2013].

We assume the following definitions:

• Train(D) is a function that takes a set of dependency structures D as input, and

returns a model θ as its output. The dependency structures are assumed to be full

1The hard constraint is also used by Ma and Xia [2014].
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trees: that is, they correspond to fully projected trees with the root symbol as their

root.

• CDecode(P , θ) is a function that takes a set of partial dependency structures P ,

and a model θ as input, and as output returns a set of full trees D. It achieves this

by constrained decoding of the sentences in P under the model θ, where for each

sentence we use beam search to search for the highest scoring projective full tree

that is consistent with the dependencies in P .

• Top(D, θ) takes as input a set of full trees D, and a model θ. It returns the top m

highest scoring trees in D (in our experiments we used m = 200, 000), where the

score for each tree is the Perceptron-based score normalized by the sentence length.

Thus we return the 200,000 trees that the Perceptron is most confident on. In cases

where |D| < m, the entire set D is returned.

Figure 4.2 shows the learning algorithm. It generates a sequence of parsing models,

θ1 . . . θ4. In the first stage of learning, the model is initialized by training on P100. The

method then uses this model to fill in the missing dependencies on P80 ∪ P≥7 using the

CDecode method; this data is added to P100 and the model is retrained. The method is

iterated, at each point adding in additional partial structures (note thatP≥7 ⊆ P≥5 ⊆ P≥1,

hence at each stage we expand the set of training data that is parsed using CDecode).

4.2.5 Generalization to Multiple Languages

We now consider the generalization to learning from multiple languages. We again as-

sume that the task is to learn a parser in a single target language, for example German.
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We assume that we now havemultiple source languages. For example, in our experiments

with German as the target, we used English, French, Spanish, Portuguese, Swedish, and

Italian as source languages. We assume that we have fully supervised parsers for all source

languages. We will consider two methods for combining information from the different

languages:

Method 1: Concatenation In this approach, we form sets P , P100, P80, P≥7 etc. from

each of the languages separately, and then concatenate the data to give new definitions of

P , P100,P80, P≥7 etc. That is, dependency structures projected from different languages

are taken to be entirely separate from each other.

Method 2: Voting In this case, we assume that each target language sentence is aligned

to a source language sentence in each of the source languages. This is the case, for exam-

ple, in the Europarl data, where we have translations of the same material into multiple

languages. We can then create the setP of projected dependencies using a voting scheme.

For any word (k, j) seen in the target language, each source language will identify a head-

word (this headword may be NULL if there is no alignment giving a dependency). We

simply take the most frequent headword chosen by the languages. After creating the set

P , we can create subsets such as P100, P80, P≥7 in exactly the same way as before.

Once the various projected dependency training sets have been created, we train the

dependency parsing model using the algorithm given in §4.2.4.
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L en→trgt concat→trgt voting→trgt
θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4 θ1 θ2 θ3 θ4

de 70.56 72.86 73.74 74.32 73.47 75.17 75.59 76.34 78.17 79.29 79.36 79.68
es 75.69 77.27 77.29 78.17 79.53 79.57 79.67 80.28 79.82 80.76 81.16 80.86
fr 77.03 78.54 78.70 79.91 81.23 81.79 82.30 82.24 82.17 82.75 82.47 82.72
it 77.35 78.64 79.06 79.46 81.49 82.25 82.02 82.49 82.58 82.95 83.45 83.67
pt 75.98 77.96 78.29 79.38 80.29 81.73 81.53 82.23 80.12 81.70 81.69 82.07
sv 78.68 80.28 80.81 82.11 82.53 83.78 83.83 83.80 82.85 83.76 83.85 84.06

avg 75.88 77.59 77.98 78.89 79.76 80.72 80.82 81.23 80.95 81.87 82.00 82.18

Table 4.2: Parsing accuracies of different methods on the test data using the gold standard
POS tags. The models θ1 . . . θ4 are described in §4.2.4. “en→trgt” is the single-source
setting with English as the source language. “concat→trgt” and “voting→trgt” are results
with multiple source languages for the concatenation and voting methods.

4.3 Experiments

We now describe experiments using our approach. We first describe data and tools

used in the experiments, and then describe results.

4.3.1 Data and Tools

Data We use the EuroParl data [Koehn, 2005] as our parallel data and the Google uni-

versal treebank (v2; standard data) [McDonald et al., 2013] as our evaluation data, and

as our training data for the supervised source-language parsers. We use seven languages

that are present in both Europarl and the Google universal treebank: English (used only

as the source language), and German, Spanish, French, Italian, Portuguese and Swedish.

Word Alignments We use Giza++2 [Och and Ney, 2003] to induce word alignments.

Sentences with length greater than 100 and single-word sentences are removed from the

parallel data. We follow common practice in training Giza++ for both translation direc-

2http://www.statmt.org/moses/giza/GIZA++.html
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tions, and taking the intersection of the two sets as our final alignment. Giza++ default

alignment model is used in all of our experiments.

The Parsing Model For all parsing experiments we use the Yara parser3 [Rasooli

and Tetreault, 2015], a reimplementation of the k-beam arc-eager parser of Zhang and

Nivre [2011]. We use a beam size of 64, and Brown clustering features4 [Brown et al., 1992;

Liang, 2005]. The parser gives performance close to the state of the art: for example on

section 23 of the Penn WSJ treebank [Marcus et al., 1993], it achieves 93.32% accuracy,

compared to 92.9% accuracy for the parser of [Zhang and Nivre, 2011].

POS Consistency As mentioned in §4.2.2, we define a soft POS consistency constraint

to prune some projected dependencies. A source/target language word pair satisifies this

constraint if one of the following conditions hold: 1) the POS tags for the two words

are identical; 2) the word forms for the two words are identical (this occurs frequently

for numbers, for example); 3) both tags are in one of the following equivalence classes:

{ADV ↔ ADJ} {ADV ↔ PRT} {ADJ ↔ PRON} {DET ↔ NUM} {DET ↔ PRON} {DET ↔

NOUN} {PRON↔ NOUN} {NUM↔ X} {X↔ .}. These rules were developed primarily on

German, with some additional validation on Spanish. These rules required a small amount

of human engineering, but we view this as relatively negligible.

Parameter Tuning We used German as a target language in the development of our

approach, and in setting hyper-parameters. The parser is trained using the averaged

3https://github.com/yahoo/YaraParser
4https://github.com/percyliang/brown-cluster
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Model en→ trgt concat voting sup(1st) sup(ae)
de 73.01 74.70 78.77 80.29 84.25
es 76.31 78.33 79.17 82.17 84.66
fr 77.54 79.71 80.77 81.33 84.95
it 78.14 80.82 82.03 83.90 87.03
pt 78.14 80.81 80.67 84.80 88.08
sv 79.31 80.81 82.03 81.12 84.87
avg 77.08 79.20 80.57 82.27 85.64

Table 4.3: Parsing results with automatic part of speech tags on the test data. Sup (1st) is
the supervised first-order dependency parser [McDonald et al., 2005b] and sup (ae) is the
Yara arc-eager parser [Rasooli and Tetreault, 2015].

structured perceptron algorithm [Collins, 2002] with max-violation updates [Huang et

al., 2012]. The number of iterations over the training data is 5 when training model θ1 in

any setting, and 2, 1 and 4 when training models θ2, θ3, θ4 respectively. These values are

chosen by observing the performance on German. We use θ4 as the final output from the

training process: this is found to be optimal in English to German projections.

4.3.2 Results

This section gives results of our approach for the single source, multi-source (concatena-

tion) and multi-source (voting) methods. Following previous work [Ma and Xia, 2014],

we use gold-standard part-of-speech (POS) tags on test data. We also provide results with

automatic POS tags.

Results with a Single Source Language The first set of results are with a single source

language; we use English as the source in all of these experiments. Table 4.2 shows the

accuracy of parameters θ1 . . . θ4 for transfer into German, Spanish, French, Italian, Por-

tuguese, and Swedish. Even the lowest performing model, θ1, which is trained only on
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Model ge15 zb15 zb_s15 mph11 mx14 en→ trgt concat voting sup(1st) sup(ae)

de 51.0 62.5 74.2 69.77 74.30 74.32(+0.02) 76.34(+2.04) 79.68(+5.38) 81.65 85.34

es 59.2 78.0 78.4 68.72 75.53 78.17(+2.64) 80.28(+4.75) 80.86(+5.33) 83.92 86.69

fr 59.0 78.9 79.6 73.13 76.53 79.91(+3.38) 82.24(+5.71) 82.72(+6.19) 83.51 86.24

it 55.6 79.3 80.9 70.74 77.74 79.46(+1.72) 82.49(+4.75) 83.67(+5.93) 85.47 88.83

pt 57.0 78.6 79.3 69.82 76.65 79.38(+2.73) 82.23(+5.58) 82.07(+5.42) 85.67 89.44

sv 54.8 75.0 78.3 75.87 79.27 82.11(+2.84) 83.80(+4.53) 84.06(+4.79) 85.59 88.06

avg 56.1 75.4 78.4 71.34 76.67 78.89(+2.22) 81.23(+4.56) 82.18(+5.51) 84.29 87.50

Table 4.4: Comparison to previous work: ge15 [Grave and Elhadad, 2015, Figure 4], zb15
[Zhang and Barzilay, 2015], zb_s15 [Zhang and Barzilay, 2015, semi-supervised with 50
annotated sentences], mph11 [McDonald et al., 2011] and mx14 [Ma and Xia, 2014] on
the Google universal treebank v2. The mph11 results are copied from [Ma and Xia, 2014,
Table 4]. All results are reported on gold part of speech tags. The numbers in parentheses
are absolute improvements over [Ma and Xia, 2014]. Sup (1st) is the supervised first-
order dependency parser used by [Ma and Xia, 2014] and sup(ae) is the Yara arc-eager
supervised parser [Rasooli and Tetreault, 2015].

full trees, has a performance of 75.88%, close to the 76.15% accuracy for the method of

[Ma and Xia, 2014]. There are clear gains as we move from θ1 to θ4, on all languages. The

average accuracy for θ4 is 78.89%.

Results with Multiple Source Languages, using Concatenation Table 4.2 shows results

using multiple source languages, using the concatenation method. In these experiments

for a given target language we use all other languages in our data as source languages.

The performance of θ1 improves from an average of 75.88% for a single source language,

to 79.76% for multiple languages. The performance of θ4 gives an additional improvement

to 81.23%.

Results with Multiple Source Languages, using Voting The final set of results in Ta-

ble 4.2 are for multiple languages using the voting strategy. There are further improve-

ments: model θ1 has average accuracy of 80.95%, and model θ4 has average accuracy of

82.18%.
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Results with Automatic POS Tags We use our final θ4 models to parse the treebank

with automatic tags provided by the same POS tagger used for tagging the parallel data.

Table 4.3 shows the results for the transfer methods and the supervised parsing models

of McDonald et al. [2011] and Rasooli and Tetreault [2015]. The first-order supervised

method of McDonald et al. [2005b] gives only a 1.7% average absolute improvement in

accuracy over the voting method. For one language (Swedish), our method actually gives

improved accuracy over the 1st order parser.

L
en → trg concat voting

P80 ∪ P≥7 P100 P80 ∪ P≥7 P100 P80 ∪ P≥7 P100

sen# dep# len acc. sen# len acc. sen# dep# len acc. sen# len acc. sen# dep# len acc. sen# dep# acc.
de 34k 9.6 28.3 84.7 18k 6.8 85.8 98k 9.4 28.8 84.1 51k 6.3 88.0 75k 10.8 23.5 84.5 47k 8.2 91.4
es 108k 10.9 31.4 87.3 20k 7.4 89.4 536k 11.0 31.8 86.3 89k 7.5 89.8 346k 17.0 28.5 86.1 109k 12.1 89.2
fr 70k 10.1 32.8 85.8 13k 6.7 84.1 342k 10.5 33.0 87.5 47k 6.9 89.5 303k 14.9 29.9 87.4 78k 11.7 91.2
it 57k 10.0 31.2 84.4 9k 6.3 76.9 434k 11.1 31.3 84.7 70k 7.4 87.2 301k 15.2 28.5 84.5 101k 12.4 87.9
pt 489k 10.0 31.0 85.2 10k 6.0 84.0 462k 11.1 31.3 81.4 77k 7.3 85.4 222k 12.4 30.3 81.3 39k 8.8 85.8
sv 81k 10.4 25.8 83.1 30k 7.4 87.8 255k 9.5 23.6 84.6 79k 6.8 89.7 211k 12.2 25.2 84.2 86k 9.5 88.8
avg 140k 10.2 30.1 85.1 17k 6.8 84.7 354k 10.4 30.0 84.8 69k 7.0 88.3 243k 13.7 27.6 84.7 77k 10.4 89.0

Table 4.5: Table showing statistics on projected dependencies for the target languages, for
the single-source, multi-source (concat) and multi-source (voting) methods. “sen#” is the
number of sentences. “dep#” is the average number of dependencies per sentence. “len”
is the average sentence length. “acc.” is the percentage of projected dependencies that
agree with the output from a supervised parser.

Comparison to Previous Results Table 4.4 gives a comparison of the accuracy on the

six languages, using the single source and multiple source methods, to previous work. As

shown in the table, our model outperforms all models: among them, the results of Mc-

Donald et al. [2011] and Ma and Xia [2014] are directly comparable to us because they use

the same training and evaluation data. The recent work of Xiao and Guo [2015] uses the

same parallel data but evaluates on CoNLL treebanks but their results are lower than Ma

and Xia [2014]. The work of [Guo et al., 2015] evaluates on the same data as ours but uses

different parallel corpora. They only reported on three languages (German: 60.35, Span-
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ish: 71.90 and French: 72.93) which are all far bellow our results. The work of Grave and

Elhadad [2015] is the state-of-the-art fully unsupervised model with minimal linguistic

prior knowledge. The model of Zhang and Barzilay [2015] does not use any parallel data

but uses linguistic information across languages. Their semi-supervised model selectively

samples 50 annotated sentences but our model outperforms their model.

Compared to the results of McDonald et al. [2011] and Ma and Xia [2014] which are

directly comparable, there are clear improvements across all languages; the highest ac-

curacy, 82.18%, is a 5.51% absolute improvement over the average accuracy for Ma and

Xia [2014].

4.4 Analysis

We conclude with some analysis of the accuracy of the projected dependencies for the

different languages, for different definitions (P100, P80 etc.), and for different projection

methods. Table 4.5 gives a summary of statistics for the various languages. Recall that

German is used as the development language in our experiments; the other languages can

be considered to be test languages. In all cases the accuracy reported is the percentage

match to a supervised parser used to parse the same data.

There are some clear trends. The accuracy of theP100 datasets is high, with an average

accuracy of 84.7% for the single source method, 88.3% for the concatenation method, and

89.0% for the voting method. The voting method not only increases accuracy over the

single source method, but also increases the number of sentences (from an average 17k

to 77k) and the average number of dependencies per sentence (from 6.8 to 10.4).

The accuracy of the P80 ∪ P≥7 datasets is slightly lower, with around 83-87% accu-
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El informe presentado por la red abarca una serie de temas muy vasta .

(a)

La Comisión debe proponer medidas para corregir estas verdaderas desviaciones .

(b)

Podŕıa lograr sus fines si los distintos páıses de la Unión partieran del mismo punto .

(c)

Hemos visto cooperación entre estos páıses en esta área .

(d)

Confirma la importancia de abordar el desaf́ıo de la sostenibilidad con una combinación de consolidación fiscal y reformas estructurales .

(e)

Figure 4.3: Randomly selected examples of Spanish dependency structures derived using
the voting method. Dashed/red dependencies are mismatches with the output of a su-
pervised Spanish parser; all other dependencies match the supervised parser. In these
examples, 92.4% of dependencies match the supervised parser; this is close to the average
match rate on Spanish of 89.2% for the voting method.

racy for the single source, concatenation and voting methods. The voting method gives

a significant increase in the number of sentences—from an average of 140k to 243k. The

average sentence length for this data is around 28 words, considerably longer than the

66



P100 data; the addition of longer sentences is very likely beneficial to the model. For the

voting method the average number of dependencies is 13.7, giving an average density of

50% on these sentences.

The accuracy for the different languages, in particular for the voting data, is surpris-

ingly uniform, with a range of 85.8-91.4% for theP100 data, and 81.3-87.4% for theP80∪P≥7

data. The number of sentences for each language, the average length of those sentences,

and average number of dependencies per sentence is also quite uniform, with the excep-

tion of German, which is a clear outlier. German has fewer sentences, and fewer depen-

dencies per sentence: this may account for it having the lowest accuracy for our models.

Future work should investigate why this is the case: one hypothesis is that German has

quite different word order from the other languages (it is V2, and verb final), which may

lead to a degradation in the quality of the alignments from GIZA++, or in the projection

process.

Finally, figure 4.3 shows some randomly selected examples from the P100 data for

Spanish, giving a qualitative feel for the data obtained using the voting method.

4.5 Conclusions

We have described a density-driven method for the induction of dependency parsers

using parallel data and source-language parsers. The key ideas are a series of increasingly

relaxed definitions of density, together with an iterative training procedure that makes

use of these definitions. The method gives a significant gain over previous methods, with

dependency accuracies approaching the level of fully supervised methods.
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Chapter 5

Cross-Lingual Syntactic Transfer with Limited Resources

5.1 Introduction

Creatingmanually-annotated syntactic treebanks is an expensive and time consuming

task. Recently there has been a great deal of interest in cross-lingual syntactic transfer,

where a parsing model is trained for some language of interest, using only treebanks

in other languages. There is a clear motivation for this in building parsing models for

languages for which treebank data is unavailable.

In the previous chapter we showed that using parallel resources is beneficial for the

transfer task. This chapter considers the problem of cross-lingual syntactic transfer with

limited resources of monolingual and translation data. Specifically, we use the Bible cor-

pus of Christodouloupoulos and Steedman [2014] as a source of translation data, and

Wikipedia as a source of monolingual data. We deliberately limit ourselves to the use of

Bible translation data because it is available for a very broad set of languages: the data

from Christodouloupoulos and Steedman [2014] includes data from 100 languages. The

Bible data contains a much smaller set of sentences (around 24,000) than other transla-

tion corpora, for example Europarl [Koehn, 2005], which has around 2 million sentences

per language pair. This makes it a considerably more challenging corpus to work with.
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Similarly, our choice of Wikipedia as the source of monolingual data is motivated by the

availability of Wikipedia data in a very broad set of languages.

We introduce a set of simple but effective methods for syntactic transfer, as follows:

• We describe a method for deriving cross-lingual clusters, where words from dif-

ferent languages with a similar syntactic or semantic role are grouped in the same

cluster. These clusters can then be used as features in a shift-reduce dependency

parser.

• We describe a method for transfer of lexical information from the target language

into source language treebanks, using word-to-word translation dictionaries de-

rived from parallel corpora. Lexical features from the target language can then be

integrated in parsing.

• We describe a method that integrates the above two approaches with the density-

driven approach to annotation projection.

Experiments show that our model outperforms previous work on a set of European

languages from the Google universal treebank [McDonald et al., 2013]. We achieve 80.9%

average unlabeled attachment score (UAS) on these languages; in comparison the work

of Zhang and Barzilay [2015], Guo et al. [2016] and Ammar et al. [2016b] have a UAS

of 75.4%, 76.3% and 77.8%, respectively. All of these previous works make use of the

much larger Europarl [Koehn, 2005] corpus to derive lexical representations. When using

Europarl data instead of the Bible, our approach gives 83.9% accuracy, a 1.7% absolute

improvement over the density-driven approach. Finally, we conduct experiments on 38

datasets (26 languages) in the universal dependencies v1.3 [Nivre et al., 2016]. Ourmethod
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has an average unlabeled dependency accuracy of 74.8% for these languages, more than 6%

higher than the density-driven method. Thirteen datasets (10 languages) have accuracies

higher than 80.0%.1

5.2 Background

This section gives a description of the underlying parsing models used in our experi-

ments, the data sets used, and a baseline approach based on delexicalized parsing models.

5.2.1 The Parsing Model

Weassume that the parsingmodel is a discriminative linearmodel, where given a sentence

x, and a set of candidate parses Y(x), the output from the model is

y∗(x) = arg max
y∈Y(x)

θ · ϕ(x, y)

where θ ∈ Rd is a parameter vector, and ϕ(x, y) is a feature vector for the pair

(x, y). In our experiments we use the shift-reduce dependency parser of Rasooli and

Tetreault [2015], which is an extension of the approach in Zhang and Nivre [2011]. The

parser is trained using the averaged structured Perceptron [Collins, 2002].

We assume that the feature vector ϕ(x, y) is the concatenation of three feature vectors:

• ϕ(p)(x, y) is an unlexicalized set of features. Each such feature may depend on

the part-of-speech (POS) tag of words in the sentence, but does not depend on the

identity of individual words in the sentence.

1 The parser code is available at https://github.com/rasoolims/YaraParser/tree/transfer.
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• ϕ(c)(x, y) is a set of cluster features. These features require access to a dictionary

that maps each word in the sentence to an underlying cluster identity. Clusters

may, for example, be learned using the Brown clustering algorithm [Brown et al.,

1992]. The features may make use of cluster identities in combination with POS

tags.

• ϕ(l)(x, y) is a set of lexicalized features. Each such feature may depend directly on

word identities in the sentence. These features may also depend on part-of-speech

tags or cluster information, in conjunction with lexical information.

Parsing Features

We used all features in Zhang and Nivre [2011], which describes features based on the

word and part-of-speech at various positions on the stack and buffer of the transition

system. In addition, we expand the Zhang and Nivre [2011] features to include clusters,

as follows: whenever a feature tests the part-of-speech for a word in position 0 of the stack

or buffer, we introduce features that replace the part-of-speech with the Brown clustering

bit-string of length 4 and 6. Whenever a feature tests for the word identity at position 0

of the stack or buffer, we introduce a cluster feature that replaces the word with the full

cluster feature. We take the cross product of all features corresponding to the choice of 4

or 6 length bit string for part-of-speech features.

5.2.2 Data Assumptions

Throughout this chapter we will assume that we havem source languages L1 . . .Lm, and

a single target language Lm+1. We assume the following data sources:
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Source language treebanks. We have a treebank Ti for each language i ∈ {1 . . .m}.

Part-of-speech (POS) data. We have hand-annotated POS data for all languages

L1 . . .Lm+1. We assume that the data uses a universal POS set that is common across

all languages.

Monolingual data. We have monolingual, raw text for each of the (m + 1) languages.

We use Di to refer to the monolingual data for the ith language.

Translation data. We have translation data for all language pairs. We use Bi,j to refer

to translation data for the language pair (i, j) where i, j ∈ {1 . . . (m+ 1)} and i ̸= j.

In our main experiments we use the Google universal treebank [McDonald et al.,

2013] as our source language treebanks2 (this treebank provides universal dependency

relations and POS tags), Wikipedia data as our monolingual data, and the Bible from

Christodouloupoulos and Steedman [2014] as the source of our translation data. In addi-

tional experiments we use the Europarl corpus as a source of translation data, in order to

measure the impact of using the smaller Bible corpus.

5.2.3 A Baseline Approach: Delexicalized Parsers with Self-Training

Given the data assumption of a universal POS set, the feature vectors ϕ(p)(x, y) can be

shared across languages. A simple approach is then to simply train a delexicalized parser

using treebanks T1 . . . Tm, using the representation ϕ(x, y) = ϕ(p)(x, y) (see [McDonald

et al., 2013; Täckström et al., 2013]).
2We also train our best performing model on the newly released universal treebank v1.3 [Nivre et al.,

2016]. See §5.4.3 for more details.
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Feature Description
82A Order of subject and verb
83A Order of object and verb
85A Order of adposition and noun phrase
86A Order of genitive and noun
87A Order of adjective and noun
88A Order of demonstrative and noun

Table 5.1: The six properties from the world atlas of language structures (WALS) [Dryer
and Haspelmath, 2013] used to select the source languages for each target language in
our experiments.

Our baseline approach makes use of a delexicalized parser, with two refinements:

WALS properties. We use the six properties from the World Atlas of Language Struc-

tures (WALS) [Dryer and Haspelmath, 2013] to select a subset of closely related languages

for each target language. These properties are shown in Table 5.1. The model for a target

language is trained on treebank data from languages where at least 4 out of 6 WALS prop-

erties are common between the source and target language.3 This gives a slightly stronger

baseline. Our experiments showed an improvement in average labeled dependency accu-

racy for the languages from 62.52% to 63.18%. Table 5.2 shows the set of source languages

used for each target language. These source languages are used for all experiments in this

chapter.

Self-training. We use self-training [McClosky et al., 2006] to further improve parsing

performance. Specifically, we first train a delexicalizedmodel on treebanks T1 . . . Tm; then

use the resulting model to parse a dataset Tm+1 that includes target-language sentences

which have POS tags but do not have dependency structures. We finally use the auto-

3There was no effort to optimize this choice; future work may consider more sophisticated sharing
schemes.
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Target Sources
en de, fr, pt, sv
de en, fr, pt
es fr, it, pt
fr en, de, es, it, pt, sv
it es, fr, pt
pt en, de, es, fr, it, sv
sv en, fr, pt

Table 5.2: The selected source languages for each target language in the Google universal
treebank v2 [McDonald et al., 2013]. A language is chosen as a source language if it has
at least 4 out of 6 WALS properties in common with the target language.

matically parsed data T ′m+1 as the treebank data and retrain the model. This last model

is trained using all features (unlexicalized, clusters, and lexicalized). Self-training in this

way gives an improvement in labeled accuracy from 63.18% to 63.91%.

5.2.4 Translation Dictionaries

Our only use of the translation data Bi,j for i, j ∈ {1 . . . (m+1)} is to construct a transla-

tion dictionary t(w, i, j). Here i and j are two languages, w is a word in language Li, and

the output w′ = t(w, i, j) is a word in language Lj corresponding to the most frequent

translation of w into this language.

We define the function t(w, i, j) as follows: We first run the GIZA++ alignment pro-

cess [Och and Ney, 2003] on the data Bi,j . We then keep intersected alignments between

sentences in the two languages. Finally, for each word w in Li, we define w′ = t(w, i, j)

to be the target language word most frequently aligned to w in the aligned data. If a word

w is never seen aligned to a target language word w′, we define t(w, i, j) = NULL.
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Inputs: 1) Monolingual texts Di for i = 1 . . . (m + 1); 2) a function t(w, i, j) that translates a
word w ∈ Li to w′ ∈ Lj ; and 3) a parameter α such that 0 < α < 1.

Algorithm:
D = {}
for i = 1 to m+ 1 do

for each sentence s ∈ Di do
for p = 1 to |s| do

Sample ā ∼ [0, 1)
if ā ≥ α then

continue
Sample j ∼ unif{1, ...,m+ 1}\{i}
w′ = t(sp, i, j)
if w′ ̸= NULL then

Set sp = w′

D = D ∪ {s}
Use the algorithm of Stratos et al. [2015] on D to learn a clustering C.

Output: The clustering C.

Figure 5.1: An algorithm for learning a cross-lingual clustering. In our experiments we
used the parameter value α = 0.3.

5.3 Our Approach

We now describe an approach that gives significant improvements over the baseline.

§5.3.1 describes a method for deriving cross-lingual clusters, allowing us to add cluster

features ϕ(c)(x, y) to the model. §5.3.2 describes a method for adding lexical features

ϕ(l)(x, y) to the model. §5.3.3 describes a method for integrating the approach with the

density-driven approach. Finally, §7.4 describes experiments. We show that each of the

above steps leads to improvements in accuracy.

5.3.1 Learning Cross-Lingual Clusters

We now describe a method for learning cross-lingual clusters. This follows previous work

on cross-lingual clustering algorithms [Täckström et al., 2012]. A cross-lingual hierarchi-
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cal clustering is a function C(w, l) where the clusters are shared across the (m+ 1) lan-

guages of interest. That is, the wordw can be from any of the (m+1) languages. Ideally, a

cross-lingual clustering should put words across different languages which have a similar

syntactic and/or semantic role in the same cluster. There is a clear motivation for cross-

lingual clustering in the parsing context. We can use the cluster-based features ϕ(c)(x, y)

on the source language treebanks T1 . . . Tm, and these features will now generalize beyond

these treebanks to the target language Lm+1.

We learn a cross-lingual clustering by leveraging the monolingual data sets

D1 . . .Dm+1, together with the translation dictionaries t(w, i, j) learned from the trans-

lation data. Figure 5.1 shows the algorithm that learns a cross-lingual clustering. The

algorithm first prepares a multilingual corpus, as follows: for each sentence s in the

monolingual dataDi, for each word in s, with probability α, we replace the word with its

translation into some randomly chosen language. Once this data is created, we can easily

obtain a cross-lingual clustering. Figure 5.1 shows the complete algorithm. The intuition

behind this method is that by creating the cross-lingual data in this way, we bias the clus-

tering algorithm towards putting words that are translations of each other in the same

cluster.

5.3.2 Treebank Lexicalization

We now describe how to introduce lexical representations ϕ(l)(x, y) to the model. Our ap-

proach is simple: we take the treebank data T1 . . . Tm for them source languages, together

with the translation lexicons t(w, i,m+ 1). For any word w in the source treebank data,
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Inputs: 1) Source treebanks Ti for i = 1...m; 2) function t(w, i,m + 1) that translates a
word w ∈ Li to w′ ∈ Lm+1.

Algorithm:
for i = 1 to m do

for sentence s ∈ Ti do
for j = 1 to |s| do

w′ = t(sj, i,m+ 1)
original_word(sj) = sj
sj = w′ ▷ sj = NULL iff w′ = NULL

Outputs: ∪mi=1 modified Ti

Figure 5.2: Algorithm for lexicalizing the source treebanks with target words.

we can look up its translation t(w, i,m+1) in the lexicon, and add this translated form to

the underlying sentence. Features can now consider lexical identities derived in this way.

In many cases the resulting translation will be the NULL word, leading to the absence of

lexical features. However, the representations ϕ(p)(x, y) and ϕ(c)(x, y) still apply in this

case, so the model is robust to some words having a NULL translation. Figure 5.2 shows

the pseudo-code for the lexicalization approach.

5.3.3 Integration with the Density-Driven Projection Method

In this section we describe a method for integrating our approach with the cross-lingual

transfer method, which makes use of density-driven projections.

In annotation projection methods [Hwa et al., 2005; McDonald et al., 2011], it is as-

sumed that we have translation data Bi,j for a source and target language, and that we

have a dependency parser in the source language Li. The translation data consists of

pairs (e, f) where e is a source language sentence, and f is a target language sentence.

A method such as GIZA++ is used to derive an alignment between the words in e and f ,
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for each sentence pair; the source language parser is used to parse e. Each dependency

in e is then potentially transferred through the alignments to create a dependency in the

target sentence f . Once dependencies have been transferred in this way, a dependency

parser can be trained on the dependencies in the target language.

The density-driven approach makes use of various definitions of “density” of the pro-

jected dependencies. For example, P100 is the set of projected structures where the pro-

jected dependencies form a full projective parse tree for the sentence; P80 is the set of pro-

jected structures where at least 80% of the words in the projected structure are a modifier

in some dependency. An iterative training process is used, where the parsing algorithm

is first trained on the set T100 of complete structures, and where progressively less dense

structures are introduced in learning.

We integrate our approach with the density-driven approach as follows: consider the

treebanks T1 . . . Tm created using the lexicalization method of §5.3.2. We add all trees in

these treebanks to the set P100 of full trees used to initialize the density-driven method.

In addition we make use of the representations ϕ(p), ϕ(c) and ϕ(l), throughout the learning

process.

5.4 Experiments

This section first describes the experimental settings, then reports results.

5.4.1 Data and Tools

Data In the first set of experiments, we consider 7 European languages studied in sev-

eral pieces of previous work [Ma and Xia, 2014; Zhang and Barzilay, 2015; Guo et al., 2016;
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Lang. en de es fr it pt sv
#Sen. 31.8 20.0 13.6 13.6 10.1 6.1 3.9
#Token 750.5 408.2 402.3 372.1 311.1 169.3 60.6
#Type 3.8 6.1 2.7 2.4 2.1 1.6 1.3

Table 5.3: Sizes of themonolingual datasets for each of our languages. All numbers are inmillions.

Ammar et al., 2016a; Lacroix et al., 2016]. More specifically, we use the 7 European lan-

guages in the Google universal treebank (v.2; standard data) [McDonald et al., 2013]. As in

previouswork, gold part-of-speech tags are used for evaluation. We use the concatenation

of the treebank training sentences, Wikipedia data and the Bible monolingual sentences

as our monolingual raw text. Table 5.3 shows statistics for the monolingual data. We use

the Bible from Christodouloupoulos and Steedman [2014], which includes data for 100

languages, as the source of translations. We also conduct experiments with the Europarl

data (both with the original set and a subset of it with the same size as the Bible) to study

the effects of translation data size and domain shift. The statistics for translation data is

shown in Table 5.4.

In a second set of experiments, we run experiments on 38 datasets (26 languages) in

the more recent Universal Dependencies v1.3 corpus [Nivre et al., 2016]. The full set of

languages we use is listed in Table 5.9.4 We use the Bible as the translation data, and

Wikipedia as the monolingual text. The standard training, development and test set splits

are used in all experiments. The development sets are used for analysis, given in §5.5 of

this chapter.

4We excluded languages that are not completely present in the Bible of Christodouloupoulos and Steed-
man [2014] (Ancient Greek, Basque, Catalan, Galician, Gothic, Irish, Kazakh, Latvian, Old Church Slavonic,
and Tamil). We also excluded Arabic, Hebrew, Japanese and Chinese, as these languages have tokenization
and/or morphological complexity that goes beyond the scope of this chapter. Future work should consider
these languages.
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Data Lang. en de es fr it pt sv

Bible tokens 1.5M 665K 657K 732K 613K 670K 696K
types 16K 20K 27K 22K 29K 29K 23K

EU-S tokens 718K 686K 753K 799K 717K 739K 645K
types 22K 41K 31K 27K 30K 32K 39K

Europarl tokens 56M 50M 57M 62M 55M 56M 46M
types 133K 400K 195K 153K 188K 200K 366K

Table 5.4: Statistics for the Bible, sampled Europarl (EU-S) and Europarl datasets. Each individual
Bible text file from Christodouloupoulos and Steedman [2014] consists of 24720 sentences, except
for English datasets, where two translations into English are available, giving double the amount
of data. Each text file from the sampled Europarl datasets consists of 25K sentences and Europarl
has approximately 2 million sentences per language pair.

Brown Clustering Algorithm We use the off-the-shelf Brown clustering tool5 [Liang,

2005] to train monolingual Brown clusters with 500 clusters. The monolingual Brown

clusters are used as features over lexicalized values created in ϕ(l), and in self-training ex-

periments. We train our cross-lingual clustering with the off-the-shelf-tool6 from Stratos

et al. [2015]. We set the window size to 2 with a cluster size of 500.7

Parsing Model We use the k-beam arc-eager dependency parser of Rasooli and

Tetreault [2015], which is similar to the model of Zhang and Nivre [2011]. We modify

the parser such that it can use both monolingual and cross-lingual word cluster features.

The parser is trained using the the maximum violation update strategy [Huang et al.,

2012]. We use three epochs of training for all experiments. We use the DEPENDABLE

Tool [Choi et al., 2015] to calculate significance tests on several of the comparisons (details

are given in the captions to tables 5.5, 5.6, and 5.9).

5https://github.com/percyliang/brown-cluster
6https://github.com/karlstratos/singular
7Usually the original Brown clusters are better features for parsing but their training procedure does

not scale well to large datasets. Therefore we use the more efficient algorithm from Stratos et al. [2015] on
the larger cross-lingual datasets to obtain word clusters.
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L Baseline Our method using the Bible
§5.3.1 §5.3.2 §5.3.3

LAS UAS LAS UAS LAS UAS LAS UAS
en 58.2 65.5 65.0 72.3 66.3 74.0 70.8 76.5
de 49.7 59.1 51.6 59.7 54.9 62.6 65.2 72.8
es 68.3 77.2 73.1 79.6 76.6 81.9 76.7 82.1
fr 67.3 77.7 69.5 79.9 74.4 81.9 75.8 82.2
it 69.7 79.4 71.6 80.0 74.7 82.8 76.1 83.3
pt 71.5 77.5 76.9 81.5 81.0 84.4 81.3 84.7
sv 62.6 74.2 63.5 75.1 68.2 78.7 71.2 80.3
avg 63.9 72.9 67.3 75.5 70.9 78.1 73.9 80.3

Table 5.5: Performance of different models in this chapter; first the baseline model, then
models trained using the methods described in sections §5.3.1–5.3.3. All results make use
of the Bible as a source of translation data. All differences in UAS and LAS are statistically
significant with p < 0.001 using McNemar’s test, with the exception of “de” UAS/LAS
Baseline vs. 3.1 (i.e., 49.7 vs 51.6 UAS and 59.1 vs 59.7 LAS are not significant differences).

Word alignment We use the intersected alignments from GIZA++ [Och and Ney, 2003]

on translation data. We exclude sentences in translation data with more than 100 words.

5.4.2 Results on the Google Treebank

Table 5.5 shows the dependency parsing accuracy for the baseline delexicalized approach,

and for models which add 1) cross-lingual clusters (§5.3.1); 2) lexical features (§5.3.2); and

3) integration with the density-driven method. Each of these three steps gives significant

improvements in performance. The final LAS/UAS of 73.9/80.3% is several percentage

points higher than the baseline accuracy of 63.9/72.9%.

Comparison to the Density-Driven Approachusing Europarl Data Table 5.6 shows ac-

curacies for the density-driven, first using Europarl data and second using the Bible alone

(with no cross-lingual clusters or lexicalization). The Bible data is considerably smaller

than Europarl (around 100 times smaller), and it can be seen that results using the Bible
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Lang.
Bible Europarl-Sample Europarl

Density This Chapter Density This Chapter Density This Chapter
LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS

en 59.1 66.4 70.8 76.5 64.3 72.8 70.2 76.2 68.4 76.3 71.1 77.5
de 60.2 69.5 65.2 72.8 61.6 72.0 64.9 73.0 73.0 79.7 75.6 82.1
es 70.3 76.8 76.7 82.1 72.0 78.3 76.0 81.5 74.6 80.9 76.6 82.6
fr 69.9 76.9 75.8 82.2 71.9 79.0 75.7 82.5 76.3 82.7 77.4 83.9
it 71.1 78.5 76.1 83.3 73.2 80.4 76.2 82.9 77.0 83.7 77.4 84.4
pt 72.1 76.4 81.3 84.7 75.3 79.7 81.61 84.8 77.3 82.1 82.1 85.6
sv 66.5 76.3 71.2 80.3 71.9 80.6 73.5 81.6 75.6 84.1 76.9 84.5
avg 67.0 75.7 73.9 80.3 70.0 77.6 74.0 80.4 74.6 81.3 76.7 82.9

Table 5.6: Results for our method using different sources of translation data. “Density”
refers to the density-driven approach; “Our model” gives results using the methods de-
scribed in sections 5.3.1–5.3.3 of this chapter. The “Bible” experiments use the Bible data
of Christodouloupoulos and Steedman [2014]. The “Europarl” experiments use the Eu-
roparl data of Koehn [2005]. The “Europarl-Sample” experiments use 25K randomly cho-
sen sentences from Europarl; this gives a similar number of sentences to the Bible data.
All differences in LAS and UAS in this table between the density and “our model” settings
(i.e., for the Bible, Europarl-Sample and Europarl settings) are found to be statistically
significant according to McNemar’s sign test.

Lang. MX14 LA16 ZB15 GCY16 AMB16 DD Our model SupervisedBible Europarl
UAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS

en – – 59.8 70.5 – – – – 68.4 76.3 70.8 76.5 71.1 77.5 92.0 93.8
de 74.3 76.0 54.1 62.5 55.9 65.0 57.1 65.2 73.0 79.7 65.2 72.8 75.6 82.1 79.4 85.3
es 75.5 78.9 68.3 78.0 73.0 79.0 74.6 80.2 74.6 80.9 76.7 82.1 76.0 82.6 82.3 86.7
fr 76.5 80.8 68.8 78.9 71.0 77.6 73.9 80.6 76.3 82.7 75.8 82.2 77.4 83.9 81.7 86.3
it 77.7 79.4 69.4 79.3 71.2 78.4 72.5 80.7 77.0 83.7 76.1 83.3 77.4 84.4 86.1 88.8
pt 76.6 – 72.5 78.6 78.6 81.8 77.0 81.2 77.3 82.1 81.3 84.7 82.1 85.6 87.6 89.4
sv 79.3 83.0 62.5 75.0 69.5 78.2 68.1 79.0 75.6 84.1 71.2 80.3 76.9 84.5 84.1 88.1

avg\en 76.7 – 65.9 75.4 69.3 76.3 70.5 77.8 75.6 82.2 74.4 80.9 77.7 83.9 83.5 87.4

Table 5.7: Comparison of our work using the Bible and Europarl data, with previous work:
MX14 [Ma and Xia, 2014], LA16 [Lacroix et al., 2016], ZB15 [Zhang and Barzilay, 2015],
GCY16 [Guo et al., 2016], AMB 16 [Ammar et al., 2016b], and DD (the density-driven ap-
proach). “Supervised” refers to the performance of the parser trained on fully gold stan-
dard data in a supervised fashion (i.e. the practical upper-bound of our model). “avg\en”
refers to the average accuracy for all datasets except English.

are several percentage points lower than the results for Europarl (75.7% UAS vs. 81.3%

UAS). Integrating cluster-based and lexicalized features described in the current chapter

with the density-driven approach closes much of this gap in performance (80.3% UAS).
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Thus we have demonstrated that we can get close to the performance of the Europarl-

based models using only the Bible as a source of translation data. Using our approach

on the full Europarl data gives an average UAS of 82.9%, an improvement from the 81.3%

UAS of the density-driven approach.

Table 5.6 also shows results when we use a random subset of the Europarl data, in

which the number of sentences (25,000) is chosen to give a very similar size to the Bible.

It can be seen that accuracies using the Bible vs. the Europarl-Sample are very similar

(80.3% vs. 80.4% UAS), suggesting that the size of the translation corpus is much more

important than the genre.

Comparison to Other Previous Work Table 5.7 compares the accuracy of our method

to the following related work: 1) Ma and Xia [2014], who describe an annotation pro-

jection method based on entropy regularization; 2) Lacroix et al. [2016], who describe an

annotation projection method based on training on partial trees with dynamic oracles; 3)

Zhang and Barzilay [2015], who describe a method that learns cross-lingual embeddings

and bilingual dictionaries from Europarl data, and uses these features in a discrimina-

tive parsing model; 4) Guo et al. [2016], who describe a method that learns cross-lingual

embeddings from Europarl data and uses a shift-reduce neural parser with these repre-

sentations; 5) Ammar et al. [2016b]8, who use the same embeddings as Guo et al. [2016],

within an LSTM-based parser; and 6) The density-driven approach on the Europarl data.

Our method gives significant improvements over the first three models, in spite of us-

ing the Bible translation data rather than Europarl. When using the Europarl data, our

8This work was later published under a different title [Ammar et al., 2016a] without including UAS
results.
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Lang. Density-driven Our model (§5.3.3)
Bible Europarl

LAS UAS LAS UAS LAS UAS
en 66.2 74.4 67.8 74.4 68.0 75.1
de 71.6 78.8 61.9 70.3 73.6 80.8
es 72.3 79.2 73.8 79.9 74.2 80.7
fr 73.5 80.8 72.6 79.9 75.0 82.3
it 74.9 82.0 74.0 81.7 75.3 82.6
pt 75.4 80.7 79.2 83.3 80.4 84.4
sv 73.4 82.0 67.3 77.2 73.7 82.2
avg 72.5 79.7 70.9 78.1 74.3 81.2

Table 5.8: The final results based on automatic part of speech tags.

method improves the state-of-the-art model of the density-driven approach.

Performance with Automatic POS Tags For completeness, Table 5.8 gives results for

our method with automatic part-of-speech tags. The tags are obtained using the model of

Collins [2002]9 trained on the training part of the treebank dataset. Future work should

study approaches that transfer POS tags in addition to dependencies.

5.4.3 Results on the Universal Dependencies v1.3

Table 5.9 gives results on 38 datasets (26 languages) from the newly released universal

dependencies corpus [Nivre et al., 2016]. Given the number of treebanks and to speed up

training, we pick source languages that have at least 5 out of 6 common WALS properties

with each target language. Our experiments are carried out using the Bible as our transla-

tion data. As shown in Table 5.9, our method consistently outperforms the density-driven

method and for many languages the accuracy of our method gets close to the accuracy

9https://github.com/rasoolims/SemiSupervisedPosTagger
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Dataset Density-driven Our model Supervised
LAS UAS LAS UAS LAS UAS

it 74.3 81.3 79.8 86.1 88.4 90.7
sl 68.2 75.9 78.6 84.1 86.3 89.1
es 69.1 77.5 76.3 84.1 83.5 86.9
bg 66.2 79.5 72.0 83.6 85.5 90.5
pt 66.7 75.8 74.8 83.4 83.0 86.7
es-ancora 68.9 77.5 74.6 83.1 86.5 89.4
fr 72.0 77.9 76.6 82.6 84.5 87.1
sv-lines 67.5 76.7 73.3 82.4 81.0 85.4
pt-br 68.3 75.2 76.2 82.0 87.8 89.7
sv 65.9 75.7 71.7 81.3 83.6 87.7
no 71.7 78.8 74.3 81.2 88.0 90.5
pl 65.4 77.6 70.1 81.0 85.1 90.3
hr 55.8 70.2 65.9 80.9 76.2 85.1
cs-cac 61.1 70.3 69.0 78.5 82.4 87.6
da 63.1 72.8 68.3 77.8 80.8 84.3
en-lines 67.0 75.9 68.6 77.3 80.7 84.6
cs 59.0 68.1 67.2 76.4 84.5 88.7
id 38.0 55.7 57.8 76.0 79.8 85.1
de 61.3 72.8 64.9 75.7 80.2 85.8
ru-syntagrus 56.0 70.7 61.6 75.3 82.0 87.8
ru 56.7 64.8 65.4 74.8 71.9 77.7
cs-cltt 57.5 65.4 65.6 74.7 77.1 81.4
ro 54.6 67.4 60.7 74.6 78.2 85.3
la 54.5 71.6 55.7 72.8 43.1 52.5
nl-lassysmall 51.5 62.6 61.9 71.7 76.5 80.6
el 53.7 66.7 59.6 71.0 79.1 83.1
et 48.9 65.6 56.9 70.9 75.9 82.9
hi 34.4 50.6 49.9 69.9 89.4 92.9
hu 26.1 48.9 55.0 69.9 69.5 79.4
en 59.7 68.1 61.8 69.0 85.3 88.1
fi-ftb 50.3 63.2 56.5 67.5 73.3 79.7
fi 49.8 60.8 57.3 66.4 73.4 78.2
la-ittb 44.1 55.4 51.8 62.8 76.2 80.9
nl 40.6 49.4 50.1 62.0 70.1 75.0
la-proiel 43.6 60.3 45.0 61.3 64.9 72.9
sl-sst 42.4 59.2 47.6 60.6 63.4 70.4
fa 44.4 53.2 46.5 56.0 84.1 87.5
tr 05.3 18.5 32.7 51.9 65.6 78.8
Average 56.7 68.1 64.0 74.8 78.9 83.8

Table 5.9: Results for the density driven method and ours using the Bible data on the
universal dependencies v1.3 [Nivre et al., 2016]. The table is sorted by the performance
of our method. The last major columns shows the performance of the supervised parser.
The abbreviations are as follows: bg (Bulgarian), cs (Czech), da (Danish), de (German),
el (Greek), en (English), es (Spanish), et (Estonian), fa (Persian (Farsi)), fi (Finnish), fr
(French), hi (Hindi), hr (Croatian), hu (Hungarian), id (Indonesian), it (Italian), la (Latin),
nl (Dutch), no (Norwegian), pl (Polish), pt (Portuguese), ro (Romanian), ru (Russian), sl
(Slovenian), sv (Swedish), and tr (Turkish). All differences in LAS and UAS in this table
were found to be statistically significant according toMcNemar’s sign test with p < 0.001.
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of the supervised parser. In all the languages, our method is significantly better than the

density-driven method using the McNemar’s test with p < 0.001.

Accuracy on some languages (e.g., Persian (fa) and Turkish (tr)) is low, suggesting that

future work should consider more powerful techniques for these languages. There are two

important facts to note. First, the number of fully projected trees in some languages is so

low such that the density-driven approach cannot start with a good initialization to fill

in partial dependencies. For example Turkish has only one full tree with only six words,

Persian with 25 trees, and Dutch with 28 trees. Second, we observe very low accuracies

in supervised parsing for some languages in which the number of training sentences is

very low (for example, Latin has only 1326 projective trees in the training data).

5.5 Analysis

We conclude with some analysis of the accuracy of the method on different depen-

dency types, across the different languages. Table 5.10 shows precision and recall on

different dependency types in English (using the Google treebank). The improvements

in accuracy when moving from the delexicalized model to the Bible or Europarl model

apply quite uniformly across all dependency types, with all dependency labels showing

an improvement.

Table 5.11 shows the dependency accuracy sorted by part-of-speech tag of themodifier

in the dependency. We break the results into three groups: G1 languages, where UAS is at

least 80% overall; G2 languages, where UAS is between 70% and 80%; and G3 languages,

where UAS is less than 70%. There are some quite significant differences in accuracy

depending on the POS of the modifier word. In the G1 languages, for example, ADP, DET,

86



dependency freq Delexicalized Bible Europarl
prec./rec. f1 prec./rec. f1 prec./rec. f1

adpmod 10.6 57.2/62.7 59.8 67.1/71.8 69.4 70.3/73.8 72.0
adpobj 10.6 65.5/69.1 67.2 75.3/77.4 76.3 75.9/79.2 77.6
det 9.5 72.5/75.6 74.0 84.3/86.3 85.3 86.6/89.8 88.2
compmod 9.1 83.7/ 59.9 69.8 87.3/70.2 77.8 89.0/73.0 80.2
nsubj 8.0 69.7/60.0 64.5 82.1/77.5 79.7 83.0/78.1 80.5
amod 7.0 76.9/72.3 74.5 83.0/78.7 80.8 80.9/77.9 79.4
ROOT 4.8 69.3/70.4 69.8 85.0/85.1 85.0 83.8/85.8 84.8
num 4.6 67.8/55.3 60.9 70.7/55.2 62.0 75.0/63.0 68.5
dobj 4.5 60.8/80.3 69.2 64.0/84.9 73.0 68.4/86.6 76.5
advmod 4.1 65.9/61.9 63.8 72.7/68.1 70.3 69.6/68.8 69.2
aux 3.5 76.6/93.9 84.4 90.2/95.9 93.0 89.6/96.4 92.9
cc 2.9 67.6/61.7 64.5 73.1/73.1 73.1 73.1/73.3 73.2
conj 2.8 46.3/56.1 50.7 45.6/62.9 52.9 48.1/62.8 54.5
dep 2.0 90.5/25.8 40.1 99.2/33.8 50.4 92.0/34.4 50.1
poss 2.0 72.1/30.6 43.0 77.9/45.8 57.7 78.2/42.1 54.7
ccomp 1.6 76.2/28.4 41.3 88.0/61.3 72.3 82.3/69.1 75.1
adp 1.2 20.0/0.5 0.9 92.7/42.1 57.9 91.7/23.3 37.1
nmod 1.2 60.7/48.1 53.7 56.3/47.1 51.3 52.6/46.2 49.2
xcomp 1.2 66.6/48.6 56.2 85.1/65.3 73.9 78.3/71.0 74.5
mark 1.1 37.8/24.6 29.8 73.8/50.3 59.8 62.8/53.8 57.9
advcl 0.8 23.6/22.3 22.9 38.7/38.8 38.8 38.0/42.9 40.3
appos 0.8 8.5/43.0 14.3 20.4/61.0 30.6 26.4/61.7 37.0
auxpass 0.8 88.9/91.4 90.1 96.8/97.1 97.0 98.6/98.6 98.6
rcmod 0.8 38.2/33.3 35.6 46.8/54.6 50.4 52.7/55.0 53.8
nsubjpass 0.7 73.2/64.9 68.8 87.6/77.0 82.0 85.5/75.8 80.3
acomp 0.6 86.8/92.5 89.6 83.3/93.5 88.1 91.0/93.9 92.4
adpcomp 0.6 42.0/70.2 52.5 47.9/61.5 53.9 55.4/47.1 50.9
partmod 0.6 20.2/36.0 25.8 36.7/49.1 42.0 31.0/40.7 35.2
attr 0.5 67.7/86.4 75.9 76.5/92.1 83.6 72.6/92.7 81.4
neg 0.5 74.7/85.0 79.6 93.3/91.0 92.1 92.6/89.8 91.2
prt 0.3 27.4/92.2 42.2 32.4/96.6 48.5 31.9/97.4 48.1
infmod 0.2 30.7/72.4 43.2 38.4/64.4 48.1 42.6/63.2 50.9
expl 0.1 84.8/87.5 86.2 93.8/93.8 93.8 91.2/96.9 93.9
iobj 0.1 51.7/78.9 62.5 88.9/84.2 86.5 36.4/84.2 50.8
mwe 0.1 0.0/0.0 0.0 5.3/2.1 3.0 11.1/10.4 10.8
parataxis 0.1 5.6/19.6 8.7 17.3/47.1 25.3 14.6/45.1 22.0
cop 0.0 0.0/0.0 0.0 0.0/0.0 0.0 0.0/0.0 0.0
csubj 0.0 12.8/33.3 18.5 22.2/26.7 24.2 25.0/46.7 32.6
csubjpass 0.0 100.0/100.0 100.0 100.0/100.0 100.0 50.0/100.0 66.7
rel 0.0 100.0/6.3 11.8 90.9/62.5 74.1 66.7/37.5 48.0

Table 5.10: Precision, recall and f-score of different dependency relations on the English
development data of the Google universal treebank. The major columns show the depen-
dency labels (“dep.”), frequency (“freq.”), the baseline delexicalized model (“delex”), and
our method using the Bible and Europarl (“EU”) as translation data. The rows are sorted
by frequency.
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POS G1 G2 G3
freq% acc. freq% acc. freq% acc.

NOUN 22.0 77.6 30.0 71.2 25.3 58.0
ADP 16.9 92.3 10.9 92.3 11.2 90.6
DET 11.9 96.4 3.0 92.4 3.6 86.6
VERB 11.7 74.5 13.5 66.1 17.1 52.2
PROPN 8.1 79.0 4.7 65.2 6.8 49.5
ADJ 8.0 88.5 12.7 86.9 8.4 73.6
PRON 5.4 87.7 5.9 82.2 7.6 71.1
ADV 4.3 76.0 6.6 70.9 5.6 61.9
CONJ 3.6 71.8 4.7 63.0 4.2 60.4
AUX 2.7 91.5 1.7 88.9 3.0 70.6
NUM 2.2 79.5 2.3 68.4 2.0 75.7
SCONJ 1.8 80.5 1.9 77.2 2.6 65.0
PART 0.9 80.2 1.8 64.3 1.9 45.0
X 0.2 52.3 0.1 40.5 0.6 36.9
SYM 0.1 64.3 0.1 40.9 0.1 45.5
INTJ 0.1 78.5 0.0 51.7 0.3 60.2

Table 5.11: Accuracy of unlabeled dependencies by POS of the modifier word, for three
groups of languages for the universal dependencies experiments in Table 5.9: G1 (lan-
guages with UAS ≥ 80), G2 (languages with 70 ≤ UAS < 80), G3 (languages with
UAS < 70). The rows are sorted by frequency in the G1 languages.

ADJ, PRON and AUX all have over 85% accuracy; in contrast NOUN, VERB, PROPN, ADV

all have accuracy that is less than 80%. A very similar pattern is seen for the G2 languages,

with ADP, DET, ADJ, and AUX again having greater than 85% accuracy, but NOUN, VERB,

PROPN and ADV having lower accuracies. These results suggest that difficulty varies

quite significantly depending on the modifier POS, and different languages show the same

patterns of difficulty with respect to the modifier POS.

Table 5.12 shows accuracy sorted by the POS tag of the headword of the dependency.

By far the most frequent head POS tags are NOUN, VERB, and PROPN (accounting for

85% of all dependencies). The table also shows that for all language groups G1, G2, and

G3, the f1 scores for NOUN, VERB and PROPN are generally higher than the f1 scores for
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POS G1 G2 G3
freq% prec. rec. f1 freq% prec. rec. f1 freq% prec. rec. f1

NOUN 43.9 85.4 88.6 87.0 43.5 77.3 81.2 79.2 34.5 67.1 71.0 69.0
VERB 32.0 83.5 83.6 83.6 35.4 74.9 77.9 76.4 41.3 63.8 66.5 65.1
PROPN 9.1 84.0 84.0 84.0 4.1 67.6 63.2 65.3 6.4 57.2 54.8 56.0
ADJ 4.5 76.2 72.4 74.3 5.7 75.7 56.0 64.4 5.8 64.9 49.1 55.9
PRON 1.4 79.3 68.3 73.4 1.4 81.5 61.4 70.0 2.2 65.2 49.1 56.0
NUM 1.2 77.2 72.4 74.7 1.0 52.0 41.8 46.3 0.7 62.5 54.7 58.3
ADV 1.0 54.0 39.0 45.3 1.5 56.5 27.2 36.7 1.2 44.1 25.8 32.6
ADP 0.6 39.8 6.5 11.2 0.3 25.0 0.9 1.7 0.3 40.5 8.3 13.8
SYM 0.3 79.0 81.1 80.1 0.1 41.5 66.3 51.0 0.1 55.3 52.2 53.7
DET 0.3 36.3 22.6 27.8 0.1 60.6 30.6 40.7 0.1 67.6 25.3 36.8
AUX 0.2 35.7 3.7 6.6 0.0 17.2 6.7 9.6 0.8 33.3 2.2 4.2
X 0.1 52.4 52.2 52.3 0.1 42.5 41.6 42.1 0.4 39.7 42.7 41.1
SCONJ 0.1 36.8 10.0 15.7 0.1 45.7 5.8 10.3 0.1 30.0 13.5 18.7
PART 0.1 26.7 3.0 5.4 0.1 15.9 4.3 6.8 0.1 26.7 36.8 30.9
CONJ 0.1 47.8 6.5 11.4 0.1 3.3 0.9 1.4 0.1 51.7 10.2 17.0
INTJ 0.0 52.4 47.8 50.0 0.0 20.0 7.1 10.5 0.1 44.2 43.0 43.6

Table 5.12: Precision, recall and f-score of unlabeled dependency attachment for different
POS tags as head for three groups of languages for the universal dependencies experi-
ments in Table 5.9: G1 (languages with UAS ≥ 80), G2 (languages with 70 ≤ UAS < 80),
G3 (languages with UAS < 70). The rows are sorted by frequency in the G1 languages.

other head POS tags.

Finally, Table 5.13 shows precision and recall for different dependency labels for the

G1, G2 and G3 languages. We again see quite large differences in accuracy between dif-

ferent dependency labels. The G1 language dependencies, with the most frequent label

nmod, has an F-score of 75.2. In contrast, the second most frequent label, case, has 93.7

F-score. Other frequent labels with low accuracy in the G1 languages are advmod, conj,

and cc.
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Dep. G1 G2 G3
freq% prec. rec. f1 freq% prec. rec. f1 freq% prec. rec. f1

nmod 15.8 74.0 76.3 75.2 16.4 67.3 72.2 69.7 17.3 56.9 57.6 57.3
case 15.3 92.6 94.7 93.7 10.7 92.4 93.5 93.0 10.7 90.2 90.2 90.2
det 11.8 96.5 96.4 96.4 3.5 91.8 91.9 91.9 3.8 79.1 86.4 82.6
nsubj 6.5 85.3 86.8 86.0 7.5 75.5 73.5 74.5 7.8 61.0 63.2 62.1
amod 6.4 92.9 94.0 93.5 10.8 90.1 90.9 90.5 5.3 75.7 82.9 79.1
dobj 5.3 93.0 90.8 91.9 7.1 84.3 81.8 83.0 5.7 71.9 72.6 72.3
root 5.3 84.8 85.2 85.0 6.8 77.5 77.9 77.7 7.9 64.9 65.7 65.3
advmod 4.1 73.4 72.2 72.8 7.1 68.1 69.3 68.7 5.3 54.8 58.7 56.7
conj 4.0 60.4 68.1 64.0 5.8 50.2 56.6 53.2 4.2 41.3 48.1 44.5
cc 3.4 71.2 71.2 71.2 4.5 63.5 63.3 63.4 3.9 60.6 61.6 61.1
mark 3.3 85.1 87.0 86.0 2.2 76.2 79.6 77.9 3.4 70.9 71 71
acl 2.4 65.9 61.6 63.7 1.7 49.7 51.3 50.5 2.0 32.6 28.7 30.5
aux 2.2 91.5 93.6 92.5 1.2 86.8 91.1 88.9 2.2 66.4 78.2 71.8
name 1.9 86.5 86.2 86.4 1.3 75.3 72.1 73.6 0.8 27.8 45.1 34.4
cop 1.6 73.1 74.5 73.8 1.3 67.7 52.5 59.1 2.1 50.8 51.2 51
nummod 1.4 83.8 86.0 84.9 1.6 73.9 77.6 75.7 1.4 79.2 81.7 80.5
advcl 1.3 60.1 59.8 60.0 1.3 57.4 48.8 52.7 2.0 42.6 38.1 40.2
appos 1.3 73.9 64.9 69.1 0.8 51.2 48.9 50.0 0.5 31.3 32.1 31.7
mwe 0.9 57.7 15.6 24.6 0.5 66.2 15.1 24.6 0.3 31.9 15.6 20.9
xcomp 0.8 82.9 74.6 78.6 1.2 76.2 73.4 74.8 1.0 40.7 62.9 49.5
ccomp 0.8 72.8 70.8 71.8 0.6 63.1 64.1 63.6 1.2 42.8 40.3 41.5
neg 0.7 89.5 88.1 88.8 0.7 81.2 82.1 81.6 1.1 73.6 72 72.8
iobj 0.7 98.7 91.1 94.7 0.5 96.3 71.0 81.7 1.1 97.1 67.1 79.3
expl 0.6 90.9 84.7 87.7 0.7 87.3 86.8 87.1 0.1 62.5 45 52.3
auxpass 0.5 95.7 96.5 96.1 0.7 98.3 93.5 95.8 1.2 92.3 49.8 64.7
nsubjpass 0.5 94.6 89.9 92.2 0.7 96.1 85.0 90.2 0.6 94.4 67.2 78.5
parataxis 0.4 56.0 32.4 41.1 0.9 52.2 36.8 43.2 0.4 30.4 33.2 31.7
compound 0.4 74.2 66.2 69.9 0.6 72.5 63.6 67.8 4.4 84.7 51.6 64.1
csubj 0.2 77.0 52.5 62.4 0.3 88.1 57.3 69.4 0.2 45.9 31.3 37.2
dep 0.1 70.4 52.4 60.1 0.6 91.2 38.5 54.2 0.5 17.7 16.2 16.9
discourse 0.1 75.6 58.5 66.0 0.1 53.3 60.0 56.5 0.7 77.1 48.4 59.4
foreign 0.0 62.2 69.7 65.7 0.1 98.4 60.7 75.1 0.1 30.9 19.3 23.8
goeswith 0.0 35.7 29.4 32.3 0.1 75.0 19.6 31.1 0.0 26.1 16.7 20.3
csubjpass 0.0 100.0 73.9 85.0 0.0 93.3 71.2 80.8 0.1 87.5 19.7 32.2
list 0.0 – – – 0.0 77.0 45.6 57.3 0.1 71.4 18.5 29.4
remnant 0.0 90.0 25.7 40.0 0.0 27.3 10.2 14.8 0.1 92.3 11.8 20.9
reparandum 0.0 – – – 0.0 – – – 0.1 100.0 34.6 51.4
vocative 0.0 55.6 31.3 40.0 0.0 57.4 52.9 55.1 0.1 84.5 58.6 69.2
dislocated 0.0 88.9 30.8 45.7 0.0 54.5 60.0 57.1 0.0 92.0 48.9 63.9

Table 5.13: Precision, recall and f-score for different dependency labels for three groups
of languages for the universal dependencies experiments in Table 5.9: G1 (languages with
UAS ≥ 80), G2 (languages with 70 ≤ UAS < 80), G3 (languages with UAS < 70). The
rows are sorted by frequency in the G1 languages.
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It goes on to plug a few diversified Fidelity funds by name .

nsubj
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Shares of three brokerage firms rose after they reported earnings .
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num

compmod

adpobj
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mark
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num
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Figure 5.3: Two English sentences for which our method (either using the Bible or Eu-
roparl as a source of translation data), correctly recovers the full tree, but the baseline
method gives an incorrect parse. The bottom edges show the incorrect dependency pre-
dictions made by the baseline parser: colored dependency edges show both labeled and
unlabeled attachment errors while the white-colored dependencies show correct label as-
signment but wrong head selection.

Qualitative Analysis We find interesting examples for which our method predicts the

correct tree, including some long sentences (Figures 5.4a and 5.4b). Except for very short

sentences with basic grammatical structures, the baseline parser completely fails to re-

cover the correct structure. In Figure 5.3, two examples are depicted for which the baseline

parser has a very low accuracy while our method is fully accurate. In the first example,

the baseline parser attaches the root node to a wrong verb (“plug” instead of “goes”) and

subsequently attaches incorrect dependents. In the first example in Figure 5.3, the base-

line parser cannot find the head of the noun phrase (“diversified Fidelity funds”). Because
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(a)

The market seems to be straightening out ; we ’re taking a wait-and-see attitude ’ ” says Cathleen B. Stewart , executive vice president of marketing .
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The market seems to be straightening out ; we ’re taking a wait-and-see attitude ’ ” says Cathleen B. Stewart , executive vice president of marketing .
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(b)

But the old Dodger slugger wisely offered no prediction about when good times would return to his side .
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But the old Dodger slugger wisely offered no prediction about when good times would return to his side .
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Figure 5.4: Two English sentences from the development data for which our method with
the Europarl data correctly recovers the full tree, but the baseline model and the Bible-
based model have some errors. The correct dependency parse is shown above each sen-
tence. Incorrect dependencies from the baseline model are shown with solid red edges
(top figure in each case) and incorrect dependencies from the Bible model are shown with
dashed green edges (bottom figure in each case).

of the lack of lexical features, the baseline parser attaches the word “after” as a preposi-

tional phrase instead of assigning it as a dependent for the adverbial clause (“they reported

earnings”).
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It also negotiated an arrangement with Cable News Network under which CNN would agree to air its last-minute creations .
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Figure 5.5: An example English sentence where the supervised parser could correctly
recover the full tree but our model using Europarl has some incorrect dependency pre-
dictions (shown at the bottom of the tree).

Figure 5.4a shows two examples in which the parser trained using the Europarl data

is the only model to parse the sentences perfectly. As expected, the baseline parser does

a poor job in parsing these sentences. Surprisingly however, the parser from our ap-

proach using the Bible data is able to predict the majority of dependencies correctly. In

the first example, it has two labeled errors and one punctuation attachment error10 and

just one attachment error: it attaches “taking” as a conjunction for “straightening” in-

stead of attaching it as a “parataxis” for the word “seems”. In the second example, there

is a prepositional attachment error for the word “about” and consequently another at-

tachment error because “about” is not the dependent of “prediction” in that sentence. In

general, we can see that the parser trained with the Bible data is able to recover correct

dependencies, largely beating the baseline.

Figure 5.5 shows an example in which the fully supervised parser is completely accu-

rate but our best parser makes some errors. In this specific example, the word “which”

has a determiner POS tag and is wrongly attached as a determiner to the next noun, while

it should be a prepositional object. To compensate for that, the parser wrongly attaches

“CNN” to “under” as a prepositional object. There is also a labeled attachment error for

10Punctuation is not included in evaluation.
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the word “under”.

From the above examples, we can conclude that having more translation data helps

distinguish between correct and incorrect attachments. Having more accurate projected

trees help improve the syntactic ordering, and having more translation data gives rise to

the quality of word clusters and lexical features.

5.6 Conclusions

We have described a method for cross-lingual syntactic transfer that is effective in a

scenario where a large amount of translation data is not available. We have introduced a

simple, direct method for deriving cross-lingual clusters, and for transferring lexical infor-

mation across treebanks for different languages. Experiments with this method show that

the method gives improved performance over previous work that makes use of Europarl,

a much larger translation corpus.
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Chapter 6

Low-Resource Syntactic Transfer with Unsupervised Source

Reordering

6.1 Introduction

There has recently been a great deal of interest in cross-lingual transfer of dependency

parsers, for which a parser is trained for a target language of interest using the treebanks

in other languages. By using transfer methods, we can eliminate the need for the ex-

pensive and time-consuming task of treebank annotation for low-resource languages. In

previous chapters, we have shown promising results on a set of European languages but

it fails to give a promising performance in non-European languages, due to the lack of

large parallel datasets for annotation projection, and significant word order differences

with European languages for direct model transfer. This chapter considers the problem

of dependency parser transfer in a scenario where a large parallel data is not available.

Inspired by Chapter 5, we use the Bible data as our parallel data in addition to available

monolingual raw text from Wikipedia and gold-standard treebanks Ti—for i = 1 . . . k—

in k source languages. The main goal of this work is to reorder gold-standard source

treebanks Ti to make those treebanks syntactically more similar to the target language of

interest. We use two different approaches for source treebank reordering: 1) reordering
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based on dominant dependency directions according to the projected dependencies, 2)

learning a classifier on the alignment data. We show that an ensemble of these methods

with the baseline method leads to higher performance for the majority of datasets in our

experiments.

The main contributions of this work are as follows:

• We propose two different syntactic reordering methods based on the projected de-

pendencies. The first model is based on the dominant dependency direction in the

target language according to the projected dependencies. The second model learns

a reordering classifier from the small set of aligned sentences in the Bible parallel

data.

• We run an extensive set of experiments on 68 treebanks for 38 languages. We show

that by just using the Bible data, we are able to achieve significant improvements

in non-European languages while maintaining a high accuracy in European lan-

guages.

• We show that our transfer model outperforms a supervised model for the cases in

which the gold-standard treebank is very small. This indicates the strength of our

model when the language is truly low-resource.

Our final model improves over two strong baselines, two deep parsingmodels inspired

by the non-neural state-of-the-art models of Chapters 4 and 5. Our final results improve

the performance on non-European languages by an average UAS absolute improvement

of 3.3% and LAS absolute improvement of 2.4%.
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6.2 Background

Our transfer approach is inspired by the state-of-the-art transfer method in Chapter 5.

That model trains on the concatenation of projected dependencies P and all of the source

treebanks T1 . . . Tk. It applies the following techniques to achieve a highly accurate parser:

1) It uses cross-lingual word clusters as additional features for their shift-reduce parser,

2) It translates each source word to the target language using the dictionaries extracted

from the Bible word alignments; though there are many cases for which a translation is

not available for word. As a consequence, the treebank becomes a partially translated

data, 3) It gradually adds the projected dependencies to the training data according to

the density of projections using the self-training approach in the density-driven model in

Chapter 4.

We make the following changes to the model in Chapter 5: 1) Instead of using a

perceptron-based shift-reduce parser, we use our reimplementation of the state-of-the-

art neural biaffine graph-based parser of Dozat and Manning [2016]; 2) Since we use a

neural parser, instead of using cross-lingual word clusters, we use cross-lingual word em-

beddings that are trained using Word2Vec [Mikolov et al., 2013a] with exactly the same

pseudo-corpus approach of Chapter 5; and 3) Our graph-based parser is able to directly

train on partial trees, thus we do not need to apply self-training in order to be able to train

on projected dependencies; instead we directly train on the set of projected dependencies

for which at least 80% of words have projected dependencies or there is a span of length

l ≥ 5 such that all words in that span achieve a projected dependency. This is the same

as the definition of dense structures P80 ∪ P≥5 in Chapter 4.
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I had a routine surgery for an ingrown toenail .
nsubj
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det
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(a) Original tree.

I a surgery routine for an toenail ingrown had .

nsubj

ROOT

det amod

obj

casedet
amod

nmod

punct

(b) Persian-specific reordered tree.

Figure 6.1: An example of a gold-standard English tree that is reordered to look similar
to the Persian syntactic order.

6.3 Approach

Training directly on a treebank from different languages might lead to a wrong model

due to the differences in syntactic ordering between the source and target languages.

This problem is not really harmful when the target language is a European language,

since many of the gold-standard treebanks are from the European language family. Our

experiments show that if one aims to train a transfer model for a non-European language,

the model fails to be as accurate as that of a European language.

In general, for a head h that has c modifiers m1 . . .mc, we decide to put each of the

dependents mi on the left or right of the head h. After placing them the correct side

of the head, the order in the original source sentence is preserved. Figure 6.1 shows a

real example of an English tree that is reordered for the sake of Persian as our target

language of interest. Here we see that we have a verb-ending sentence such that the

nominal modifiers come after the noun. If one aims to translate this English sentence

word by word, the reordered sentence gives a very good translation without any change

in the sentence.

As mentioned earlier, we use two different approaches for source treebank reorder-
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ing: 1) reordering based on dominant dependency directions according to the projected

dependencies, 2) learning a classifier on the alignment data. Now we describe each of the

mentioned methods.

6.3.1 Model 1: Reordering Based on Dominant Dependency Direction

We extract dominant dependency directions according to the projected dependencies P

from the alignment data, and use the information for reordering source treebanks. Let the

tuple ⟨i,m, h, r⟩ show the dependency of them’th word in the i’th projected sentence for

which the h’th word is the parent with the dependency label r. ⟨i,m, NULL, NULL⟩ shows

an unknown dependency for them’th: this occurs in projected dependency data for which

some of the words in the target language do not achieve a projected dependency. We use

the notation h(i,m) to show the head index of the m’th word in the i’th sentence and

r(i,m) to show its dependency label.

Definition 6.1 Dependency direction: d(i,m) shows the dependency direction of the m’th

modifier word in the i’th sentence:

d(i,m) =


1 if h > m

−1 otherwise

Definition 6.2 Dependency direction proportion: Dependency direction proportion of each

dependency label l with direction d ∈ {−1, 1} is defined as:

α(P)(l, d) =

∑|P|
i=1

∑|P(i)|
m=1 I(r(i,m) = l & d(i,m) = d)∑|P|
i=1

∑|P(i)|
m=1 I(r(i,m) = l)
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Definition 6.3 Dominant dependency direction: For each dependency label l, we show the

dominant dependency direction λ(P)(l) = d if α(P)(l, d) > 0.75. In cases where there is no

dominant dependency direction, λ(P)(l) = 0.

We consider the following dependency labels for extracting dominant dependency

direction information: nsubj, obj, iobj, csubj, ccomp, xcomp, obl, vocative, expl, dislo-

cated, advcl, advmod, aux, cop, nmod, appos, nummod, acl, amod. We ignore most of the

function word dependencies (such as “mark”), and other non-core dependencies such as

conjunction.

Reordering condition Given a set of projections P , we can calculate the dominant de-

pendency direction information for the projections λ(P). Similar to the projected depen-

dencies, we extract supervised dominant dependency directions from the gold-standard

source treebank D: λ(D). When we encounter a gold-standard dependency relation

⟨i,m, h, r⟩ in a source treebank D, we change the direction if the following condition

holds:

λ(D)(r) ̸= λ(P)(r) and λ(P)(r) = −d(i,m)

In other words, if the source and target languages do not have the same dominant

dependency direction for r and the dominant direction of the target language is the reverse

of the current direction, we change the direction of that dependency.
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6.3.2 Model 2: Reordering Classifier

We now describe our approach for learning a reordering classifier for a target language

using the alignment data. Our method has two steps; the first step prepares the training

data from the automatically aligned parallel data, and the second step learns a classifier

from the training data.

Preparing Training Data from Alignments

The goal of this step is to reorder source language sentences in the parallel data via the

guidance from automatic word alignments. The parallel data is the concatenation of paral-

lel data from all source languages translated to the target language. We use the reordered

data as training data for the classifier.

Given a parallel data set (e(i), f (i)) for i = 1 . . . n that contains pairs of source and

target sentences e(i) and f (i), we extract one-to-one word alignments a(i) = a
(i)
1 . . . a

(i)
si

where si is the number of tokens in the source sentence e(i). In cases where a
(i)
j is not

NULL1, 1 ≤ a
(i)
j ≤ ti shows the index of the target sentence for which ti is the length

of the target sentence. By applying a simple heuristic based on alignment information

a(i), we can create a new mapping µ(i) = µ
(i)
1 . . . µ

(i)
si that maps each index 1 ≤ j ≤ si

in the original sentence to a unique index 1 ≤ µ
(i)
j ≤ si in the reordered sentence. We

assume that we have a supervised parser for the source language; thus we can obtain

dependency information for each index ⟨i,m, h, r⟩. The decision about the direction of

1A NULL value indicates a missing alignment.
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The LORD is a man of war : the LORD is his name .
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God man war is name his Jehovah is .

det

nsubj

cop
det

root

case
nmod

punct

det

nsubj

cop

nmod

parataxis

punct

Figure 6.2: A reordering example from the Bible for English-Persian language pair. The
Persian words are written from left to right for the ease of presentation. The arrows
bellow the English words show the new dependency direction with respect to the word
alignments to the Persian side. The reordered sentence would be “The LORD a man of
war is : his name the LORD is .”.

each dependency can be made based on the following condition:

d∗(i,m) =


1 if µ

(i)
h > µ

(i)
m

−1 otherwise

In other words, we decide about the new order of a dependency according the mapping

µ(i).

Figure 6.2 shows an example for the data preparation step. As shown in the figure, the

new directions for the English words are decided according to the Persian alignments.
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Classifier

The reordering classifier uses the recurrent representation of the input sentence and de-

cides about the new direction of each dependency. For a source sentence e(i) = e
(i)
1 . . . e

(i)
si

that belongs to a source language L, we first obtain its recurrent representation η(i) =

η
(i)
1 . . . η

(i)
si by running a deep (3 layers) bi-directional LSTM [Hochreiter and Schmidhu-

ber, 1997], where η(i)j ∈ Rdh . For every dependency tuple ⟨i,m, h, r⟩, we use a multi-layer

Perceptron (MLP) to decide about the new order dir ∈ {−1, 1} of the m’th word with

respect to its head h:

p(dir|i,m, h, r) = softmax(Wϕ(i,m, h, r))

where W ∈ R2×dϕ and ϕ(i,m, h, r) ∈ Rdϕ is as follows:

ϕ(i,m, h, r) = relu(Hq(i,m, h, r) +B)

where relu is the rectified linear unit activation [Nair and Hinton, 2010], H ∈ Rdϕ×dq ,

B ∈ Rdϕ , and q(i,m, h, r) ∈ Rdq is as follows:

q(i,m, h, r) = [η(i)m ; η
(i)
h ;R[r]; Λ[I(h > m)];L[L]]

where η
(i)
m and η

(i)
h are the recurrent representations for the modifier and head words

respectively, R is the dependency relation embedding dictionary that embeds every de-

pendency relation to a Rdr vector, Λ is the direction embedding for the original position
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I had a routine surgery for an ingrown nail .

η1 η2 η3 η4 η5 η6 η7 η8 η9 η10

L[en]λ[−1]R[obj]

concat

H
×

+ B

W
relu

dir = 1argmax

obj

λ(Den)(obj) = −1 λ(Pfa)(obj) = 1

dir = 1

Figure 6.3: Two different approaches for reordering the dependency order for the example
in Figure 6.1. The reordering classifier is shown on top, for the dependency relation be-
tween the words “had” and “surgery” with an “obj” relation. At the bottom, the reordering
model based on dominant dependency direction information is shown.

of the head with respect to its head and embeds each direction to a 2-dimensional vector,

and L is the language embedding dictionary that embeds the source language id L to a

RdL vector.

Input Embedding Layer The input to the recurrent layer is the concatenation of the

following vectors:

• Original source wordw: we use the sum of two vectors for the original source word.

The first vector is the pretrained cross-lingual word embedding C[w] ∈ Rdw that

is fixed during training, and the second is a randomly initialized word embedding

vector E[w] ∈ Rdw .
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• Translation of the source word w to the target language (t(w)): This translation

word comes from the extracted dictionary from the Bible alignments. We use the

same fixed and updateable word embedding dictionary to embed this translation to

a vector. In cases where a translation does not exist, we set t(w) = w.

• Part-of-speech (POS) tag p: we embed the POS tag to a randomly initialized POS

embedding vector T [p] ∈ Rdp .

Figure 6.3 shows a graphical depiction of the two reordering models that we use in

this work.

6.4 Experiments

Datasets and Tools Weuse 68 datasets from 38 languages in the Universal Dependencies

corpus version 2.0 [Nivre et al., 2017]. The languages are Arabic (ar), Bulgarian (bg), Cop-

tic (cop), Czech (cs), Danish (da), German (de), Greek (el), English (en), Spanish (es), Esto-

nian (et), Basque (eu), Persian (fa), Finnish (fi), French (fr), Hebrew (he), Hindi (hi), Croat-

ian (hr), Hungarian (hu), Indonesian (id), Italian (it), Japanese (ja), Korean (ko), Latin (la),

Lithuanian (lt), Latvian (lv), Dutch (nl), Norwegian (no), Polish (pl), Portuguese (pt), Ro-

manian (ro), Russian (ru), Slovak (sk), Slovenian (sl), Swedish (sv), Turkish (tr), Ukrainian

(uk), Vietnamese (vi), and Chinese (zh).

We use the Bible data from Christodouloupoulos and Steedman [2014] for the 38 lan-

guages. We extract word alignments using Giza++ [Och and Ney, 2003]. Following Chap-

ter 4, we obtain intersected alignment and apply POS consistency to filter potentially in-

correct alignments. We use the Wikipedia dump data to extract monolingual data for the
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languages in order to train monolingual embeddings. We follow the method in Chapter 5

to use the extracted dictionaries from the Bible and monolingual text from Wikipedia to

create cross-lingual word embeddings. We use the UDPipe pretrained models [Straka and

Straková, 2017] to tokenize Wikipedia, and a reimplementation of the Perceptron tagger

of Collins [2002] to achieve automatic POS tags.

Supervised Parsing Models We trained our supervised models on the union of all

datasets in a language for obtaining the supervised parsers. It is worth noting that there

are two major changes that we make to the neural parser of Dozat and Manning [2016] in

our implementation using the Dynet library [Neubig et al., 2017]: first, we add a one-layer

character BiLSTM for representing the character information for each word. The final

character representation is obtained by concatenating the forward representation of the

last character and the backward representation of the first character. The concatenated

vector is summed with the randomly initialized as well as fixed pre-trained cross-lingual

word embedding vectors. Second, inspired byWeiss et al. [2015], we maintain the moving

average parameters to obtain more robust parameters at decoding time.

We excluded the following languages from the set of source languages for annota-

tion projection due to their low supervised accuracy: Estonian, Hungarian, Korean, Latin,

Lithuanian, Latvian, Turkish, Ukrainian, Vietnamese, and Chinese.

6.4.1 Baseline Transfer Models

We use two baseline models: 1) Annotation projection: This model only trains on the

projected dependencies. 2) Annotation projection + direct transfer: Inspired by the state-
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of-the-art method in Chapter 5, we train on a concatenation of source treebanks from all

37 languages (i.e. excluding the target language), and the projected dependencies in the

target language. To speed up training, we sample at most thousand sentences from each

treebank, comprising a training data of about 37K sentences.

6.4.2 Reordering Ensemble Model

We noticed that our reordering models perform better in non-European languages, and

perform slightly worse in European languages. We use the following ensemble model to

make use of all of the three models (annotation projection + direct transfer, and the two

reordering models), to make sure that we always obtain an accurate parser.

The ensemble model is as follows: given three output trees for the i’th sentence

⟨ij,m, hj, rj⟩ for j = 1, 2, 3 in the target languageL, where the first tuple (j = 1) belongs

to the baseline model, the second (j = 2) and third (j = 3) belong to the two reordering

models, we weight each dependency edge with respect to the following conditions:

ω(m,h, r) = z(m,h, r) ·
3∑

j=1

c(j,L) · I(⟨ij,m, h, r⟩)

where c(j,L) is a coefficient that putsmoreweight on the first or the other two outputs

depending on the target language family:

c(j,L) =



2 if j = 1 & L is European

2 if j > 1 & L is not European

1 otherwise
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and z(m,h, r) is a simple weighting depending on the dominant order information:

z(m,h, r) =



1 if direction(⟨m,h⟩) = −λ(P)(r)

3 if direction(⟨m,h⟩) = λ(P)(r)

2 otherwise (λ(P)(r) = 0)

We run the Eisner first-order graph-based algorithm [Eisner, 1996] on top of the edge

weights ω to extract the best possible tree.

6.4.3 Parameters

We run all of the transfer models with 4000 mini-batches, in which each mini-batches

contains approximately 5000 tokens. We follow the same parameters as in Dozat and

Manning [2016] and use a dimension of 100 for character embeddings. For the reordering

classifier, we use the Adam algorithm [Kingma and Ba, 2014] with default parameters to

optimize the log-likelihood objective. We filter the alignment data to keep only those

sentences for which at least half of the source words have an alignment. We randomly

choose 1% of the reordering data as our heldout data. Table 6.1 shows the parameter

values that we use in the reordering classifier.

6.4.4 Results

Table 6.2 shows the results on the Universal Dependencies corpus [Nivre et al., 2017]. As

shown in the table, the algorithm based on the dominant dependency direction improves

the accuracy on most of the non-European languages and performs slightly worse than
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Variable Notation Size
Word embedding dw 100
POS embedding dp 100
Bi-LSTM dh 400
Dependency relation embedding dr 50
Language ID embedding dL 50
Hidden layer dϕ 200
Number of BiLSTM layers – 3
Mini-batch size (tokens) – ∼ 1000

Table 6.1: Parameter values in the reordering classifier model.

the baseline model in the European languages. The ensemble model, besides its simplicity,

improves over the baseline in most of the languages, leading to an average UAS improve-

ment of 0.9 for all languages and 3.3 for non-European languages. This improvement is

very significant in many of the non-European languages; for example, from an LAS of

37.6 to 52.7 in Coptic, from a UAS of 44.9 to 53.7 in Basque2, from a UAS of 40.6 to 47.0

in Chinese. Our model also outperforms the supervised models in Ukrainian and Latvian.

That is an interesting indicator that for cases that the training data is very small for a lan-

guage (37 sentences for Ukrainian, and 153 sentences for Latvian), our transfer approach

outperforms the supervised model. We believe that developing a transfer model gives a

higher accuracy than a supervised model from just a few number of sentences.

6.5 Analysis

In this section, we briefly describe our analysis based on the results in the ensemble

model and the baseline. Table 6.3 shows the size of projected dependencies that we use in

our experiments. As shown in the table, for some languages such as Coptic, the number

2Although Basque is geographically in the Europe, it is regarded as an isolated non-European language.
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L Data
Baselines Reordering SupervisedProjection Direct+Proj Dominant Classifier Ensemble Difference

UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
cop cop 2.0 0.4 58.5 37.6 69.1 52.7 65.5 50.9 69.6 52.7 11.1 15.1 86.9 80.1
eu eu 39.5 22.0 44.9 29.0 53.7 34.0 48.6 32.2 53.7 34.4 8.8 5.4 81.9 75.9
zh zh 23.6 10.8 40.6 17.8 47.3 25.4 45.4 23.5 47.0 25.6 6.4 7.8 81.1 74.8
vi vi 44.6 26.8 51.2 33.6 55.3 34.5 50.4 34.2 55.1 34.5 4.0 0.9 66.2 56.7
tr tr_pud 44.7 19.9 46.6 24.5 50.3 26.7 42.6 22.0 49.9 26.3 3.4 1.8 56.7 31.7
fa fa 54.4 46.2 61.8 53.0 64.3 54.7 63.0 53.4 65.1 55.4 3.3 2.4 87.8 83.6
ar ar_pud 60.3 44.2 65.2 50.5 68.2 52.0 66.5 51.4 68.3 52.3 3.2 1.8 71.9 58.8
id id 59.9 42.8 72.1 56.0 73.6 56.5 72.9 56.8 74.6 56.7 2.5 0.6 84.8 77.4
tr tr 44.6 23.9 46.6 29.3 48.9 30.6 44.9 26.6 49.0 30.0 2.4 0.7 64.2 52.5
he he 63.1 46.9 70.4 55.4 72.4 54.9 71.6 55.7 72.7 55.4 2.3 0.0 88.2 82.4
ar ar 49.5 36.8 58.9 46.8 60.8 48.3 59.2 46.9 61.2 48.8 2.3 2.0 85.6 78.9
ja ja 54.8 38.9 65.2 46.5 65.9 46.8 64.1 44.8 66.6 46.8 1.4 0.3 94.5 92.7
ja ja_pud 58.6 44.1 66.8 51.5 67.4 51.5 64.7 48.4 67.9 51.9 1.1 0.4 94.7 93.5
ko ko 34.3 17.3 43.0 24.8 43.5 23.8 43.6 26.4 44.1 24.7 1.1 -0.2 76.2 69.9
hi hi_pud 53.4 43.3 58.2 47.6 58.3 47.5 58.8 48.5 58.9 48.2 0.6 0.6 70.2 55.6
lt lt 60.6 42.5 66.6 49.5 63.7 46.8 64.6 46.0 67.2 49.9 0.6 0.4 54.8 40.0
cs cs_cac 33.9 14.8 76.2 66.9 76.3 66.7 75.2 65.8 76.7 67.4 0.5 0.6 92.1 88.3
cs cs_cltt 13.7 5.1 69.4 59.7 69.7 59.5 66.6 57.8 70.0 60.3 0.5 0.6 88.9 84.9
fr fr_partut 81.6 75.2 84.3 77.8 84.9 78.4 84.4 78.1 84.8 78.4 0.5 0.5 90.0 85.1
hr hr 70.6 59.9 79.4 69.9 79.3 69.5 77.9 67.7 79.9 70.1 0.5 0.2 86.8 80.4
el el 62.3 47.2 75.9 63.9 75.4 63.1 74.7 62.5 76.4 64.1 0.4 0.2 88.0 84.4
ru ru_pud 75.7 65.8 81.1 72.2 80.9 72.2 79.9 70.7 81.5 72.7 0.4 0.5 86.5 74.1
de de 71.4 62.3 75.4 67.1 75.6 67.1 75.5 66.4 75.8 67.3 0.4 0.2 85.9 81.2
fr fr 80.2 72.9 83.0 75.9 82.9 75.9 83.3 75.9 83.4 76.2 0.4 0.3 90.4 86.9
cs cs 33.9 14.5 74.6 65.3 74.1 64.4 73.0 63.7 75.0 65.8 0.4 0.5 92.5 89.1
fi fi_pud 64.1 52.5 67.2 55.0 66.8 55.0 67.3 55.1 67.5 55.5 0.4 0.5 81.6 74.5
nl nl 59.2 48.2 68.5 55.2 69.6 55.9 68.3 54.4 68.8 55.4 0.4 0.1 83.5 76.6
ru ru 68.9 59.4 75.1 63.9 75.4 64.1 74.5 63.4 75.5 64.3 0.4 0.4 85.7 77.9
la la_ittb 56.4 42.5 63.0 49.2 63.2 49.5 62.4 48.7 63.3 49.7 0.4 0.4 89.5 86.5
no no_nynorsk 72.5 62.9 76.4 68.1 76.5 68.0 76.1 67.3 76.8 68.4 0.3 0.3 91.3 88.8
uk uk 55.1 36.9 64.3 46.1 64.5 45.7 61.7 42.2 64.6 45.9 0.3 -0.2 43.3 22.1
bg bg 80.4 69.4 83.8 73.8 84.0 73.8 83.1 73.0 84.1 73.9 0.3 0.1 90.9 86.0
en en_lines 75.6 66.5 77.8 69.0 78.9 69.9 77.0 68.2 78.1 69.2 0.3 0.3 85.8 80.5
fi fi_ftb 63.9 46.5 66.0 48.3 65.8 47.6 65.7 48.1 66.3 48.4 0.3 0.1 81.1 74.4
ru ru_syntagrus 69.4 57.5 73.9 62.2 73.8 61.8 73.2 61.2 74.2 62.3 0.3 0.1 91.3 88.3
fi fi 60.6 48.7 64.6 51.9 63.5 51.2 63.7 51.1 64.8 52.0 0.2 0.1 80.9 73.5
hu hu 58.3 41.1 67.8 49.0 67.8 48.9 65.8 47.4 68.0 49.1 0.2 0.1 78.2 69.8
cs cs_pud 35.7 16.6 77.5 69.3 76.7 67.6 76.2 67.7 77.7 69.4 0.2 0.2 89.9 84.4
nl nl_lassysmall 61.8 52.1 73.9 63.4 73.8 62.8 73.0 61.9 74.0 63.3 0.2 0.0 91.3 87.3
sl sl_sst 58.4 44.1 61.7 47.7 61.6 47.7 61.6 47.4 61.9 48.0 0.2 0.3 70.6 63.6
en en_pud 73.5 65.5 75.9 69.3 77.1 69.9 74.5 67.7 76.0 69.4 0.2 0.2 88.3 84.2
de de_pud 74.1 65.3 77.8 68.9 77.7 68.5 76.9 67.4 78.0 68.8 0.1 0.0 85.9 79.0
pl pl 77.6 64.7 79.9 67.9 79.7 67.5 79.5 67.2 80.1 68.0 0.1 0.1 89.4 83.3
sv sv_lines 77.2 67.7 81.1 71.6 80.7 71.1 80.1 70.4 81.3 71.7 0.1 0.1 86.9 81.5
en en 70.1 61.6 72.8 64.6 73.5 65.2 71.6 63.5 72.9 64.8 0.1 0.3 88.2 84.8
es es 78.5 68.0 83.1 73.8 83.2 73.8 82.3 72.8 83.2 73.9 0.1 0.1 89.3 83.9
sv sv 75.3 67.0 79.0 70.9 78.8 70.9 78.2 70.0 79.1 71.0 0.1 0.1 86.7 82.3
en en_partut 72.0 65.3 77.4 71.1 78.0 71.1 76.3 69.9 77.5 71.2 0.1 0.1 88.4 83.0
sv sv_pud 75.9 67.4 80.5 72.1 80.2 72.0 79.2 71.0 80.6 72.1 0.1 0.0 84.0 77.6
it it 81.3 74.4 85.0 79.0 85.4 79.5 84.4 78.1 85.1 79.1 0.1 0.0 92.1 89.5
lv lv 59.0 43.6 63.3 47.2 62.1 45.6 60.7 44.7 63.3 47.0 0.1 -0.1 71.3 61.2
ro ro 72.8 59.0 76.8 64.2 76.2 63.7 75.3 63.2 76.8 64.3 0.1 0.1 89.6 83.5
et et 63.1 40.8 66.7 46.0 65.6 45.8 65.5 45.2 66.7 46.1 0.1 0.2 71.6 60.7
pt pt 62.6 50.7 84.1 76.9 83.7 76.6 83.4 76.2 84.2 77.1 0.0 0.2 90.6 85.6
pt pt_br 60.6 47.7 81.3 71.2 80.8 70.8 80.8 70.4 81.4 71.3 0.0 0.2 91.6 89.0
no no_bokmaal 78.0 70.5 80.5 73.2 80.6 73.4 79.7 72.1 80.5 73.2 0.0 0.0 92.1 89.7
fr fr_pud 81.0 72.8 83.7 75.7 84.2 76.2 83.3 75.2 83.7 75.7 0.0 0.0 89.1 83.8
es es_pud 81.3 70.9 84.3 75.6 84.6 76.0 83.6 74.6 84.3 75.7 0.0 0.1 89.1 80.8
it it_pud 83.8 76.0 87.3 81.3 87.5 81.3 86.5 79.9 87.3 81.2 0.0 -0.1 91.9 88.4
fr fr_sequoia 79.1 73.0 82.2 76.4 81.6 75.8 81.9 76.0 82.2 76.4 0.0 0.0 90.4 86.7
la la 49.2 33.6 53.9 36.2 51.3 33.3 54.0 35.5 53.9 35.4 0.0 -0.8 67.2 54.5
sl sl 76.4 67.6 82.1 74.2 81.3 73.0 81.3 73.3 82.0 74.2 -0.1 0.0 88.9 85.4
es es_ancora 77.7 66.2 82.4 72.7 82.0 72.2 81.4 71.3 82.3 72.5 -0.1 -0.3 91.1 87.0
da da 70.7 61.7 75.7 67.4 75.3 66.7 74.6 66.2 75.6 67.2 -0.1 -0.2 83.1 79.3
pt pt_pud 63.5 51.8 82.7 75.8 82.5 75.8 82.0 74.8 82.6 75.7 -0.2 -0.1 86.4 78.5
la la_proiel 59.2 46.2 61.5 47.4 60.9 47.1 60.2 46.0 61.3 47.2 -0.2 -0.2 80.9 75.4
sk sk 73.6 63.8 78.7 71.0 78.0 69.8 77.1 68.7 78.5 70.7 -0.2 -0.3 83.5 77.9
hi hi 58.7 47.2 63.7 50.0 62.3 49.0 62.6 49.3 62.7 49.4 -1.0 -0.6 94.2 90.4
Avg All 62.0 49.7 71.2 59.3 71.7 59.6 70.6 58.7 72.1 60.0 0.9 0.7 83.9 77.3
Avg Non-EU 46.6 32.0 57.1 40.9 60.1 43.1 57.8 41.9 60.4 43.3 3.3 2.4 80.3 72.2

Table 6.2: Dependency parsing results, in terms of unlabeled attachment accuracy (UAS)
and labeled attachment accuracy (LAS) after ignoring punctuations, on the Universal De-
pendencies v2 [Nivre et al., 2017] test sets using supervised part-of-speech tags. The re-
sults are sorted by their “difference” between the ensemble model and the baseline. The
rows for non-European languages are highlighted with cyan. The rows that are high-
lighted by pink are the ones that the transfer model outperforms the supervised model.
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ar ← → ← ← → ← → ← ← ← ← → ← ← ←
bg ← → → ← → ← → → ← → → ← ←cop ← ← → ← → ← → ← → ← ← ←cs ← ← ← → ← → ← → ← ←
da ← → ← → ← → ← ← → → ← ← ←
de ← → ← ← → → ←
el ← → ← → ← → ← → ← ← ←en ← → ← → ← → ← → ← → → ← ← ←es ← → ← → ← → ← → → → → ← ←
et ← → ← → ← → ← → → → → ← ←eu → ← ← → →
fa ← → ← ← ← ← → → ← → → → →
fi ← → ← → ← → ← → → → ← ← ←
fr ← ← → ← → ← → → → → ← ←
he ← ← → ← ← → ← → ← ← ← ← ← ←
hi → → ← ← ← → → → → → → →
hr ← → ← → ← → ← → → ←
hu ← → → ← ← ← → → ←
id ← → ← ← → ← → ← → → ← ← ←
it ← → ← → ← → → → → ← ←
ja → ← ← → → → → → → → →
ko → → → ← → → → → → → → →
la ← → ← ← ← ← → ← ← ←
lt ← → → → ← → → → ← ←
lv ← → → ← → ← → ← → → → ←
nl ← → ← → ← → → ←no ← → ← → ← → ← ← → → ← ← ←
pl ← → ← ← ← ← → ← ←
pt ← ← → ← → → → ← → ←ro ← → ← → ← → → → ← → → ← ←ru ← → ← → ← → ← ← → ← ← ←
sk ← → → ← → ← → ← → ← ←
sl ← → ← → ← → ← → ← → ← ←sv ← → ← → ← → ← ← ← → → ← ← ←
tr → → ← → → → → → → → → → →
uk ← → ← → ← → ← ← ← ← → ← ← ←
vi ← ← ← → ← → → ← ← → → ← ← ←
zh → → → ← → ← → → → → ← ←

Figure 6.4: A graphical depiction of dominant dependency direction for different lan-
guages (the gray color shows no dominant order) based on projected dependencies in the
Bible data.

of dense projected dependencies is too small such that the parser gives a worse learned

model than a random baseline.

The dominant dependency direction model generally performs better than the clas-

sifier. Our manual investigation shows that the classifier kept many of the dependency

directions unchanged, while the dominant dependency direction model changed the di-

rection. Therefore, the dominant direction model gives a higher recall with the expense

of loosing precision. The training data for the reordering classifier is very noisy due to

wrong alignments. We believe that the dominant direction model, besides its simplicity,

is a more robust classifier for reordering, though the classifier is helpful in an ensemble

setting. Figure 6.4 shows the dominant dependency directions of different dependency
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relations for the languages in our experiments. As shown in the figure, the dominant de-

pendency direction for many of the relations is not necessarily the same such as in “aux”,

“advcl”, and “obj”.

Tables 6.4 and 6.5 show the differences in parsing f-score of dependency relations,

and part-of-speech as head. As we see in table 6.4, for noun modifiers (“nmod”) we see

more consistent improvements, while in other relations such as “nsubj”, there is less con-

sistency. Table 6.5 shows that we are able to improve the head dependency relation for

the three most important head POS tags in the dependency grammar. We see that this

improvement is consistent for non-European languages.

6.6 Conclusion

We have described a cross-lingual dependency transfer method that takes into ac-

count the problem of word order differences between the source and target languages.

We have shown that applying projection-driven reordering improves the accuracy of non-

European languages while maintaining the high accuracies in European languages.
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L. Sen. Len. Density
ar 985 19.1 0.58
bg 11546 27.7 0.75
cop 2 2.0 1.00
cs 138 25.0 0.41
da 9955 23.9 0.73
de 15181 28.0 0.75
el 3428 27.7 0.64
en 44576 28.7 0.85
es 20811 26.8 0.80
et 881 22.7 0.59
eu 171 20.9 0.62
fa 3688 27.4 0.61
fi 10240 25.1 0.74
fr 20316 28.1 0.82
he 1623 21.3 0.63
hi 2539 30.0 0.54
hr 9363 25.4 0.73
hu 1165 29.2 0.57
id 1557 27.4 0.53
it 16599 27.4 0.77
ja 604 33.5 0.48
ko 447 15.2 0.61
la 10442 19.9 0.77
lt 3945 22.5 0.68
lv 2774 22.2 0.76
nl 3155 30.7 0.55
no 20807 27.1 0.83
pl 10875 25.9 0.75
pt 140 32.6 0.49
ro 11443 28.7 0.72
ru 13853 24.8 0.77
sk 16269 25.6 0.78
sl 14139 26.6 0.76
sv 18373 27.7 0.79
tr 310 20.7 0.52
uk 463 23.6 0.63
vi 773 31.5 0.53
zh 181 33.0 0.46

Avg. 7994 25 0.7

Table 6.3: Sizes of the projected dependencies in the Bible data. The second column shows
the number of sentences, the third column shows the average sentence length, and the
last column shows the proportion of projected dependencies with respect to the number
of words in the sentences.
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lang data acl advmod amod conj nmod nsubj obj obl root
ar ar 33.6/35.4 66.0/66.3 80.4/84.0 41.5/42.7 60.8/63.8 54.9/41.5 54.6/69.8 48.8/52.6 29.3/30.2
ar ar_pud 37.1/42.3 62.3/61.0 74.1/80.9 48.2/49.2 66.0/69.1 61.3/58.6 69.8/78.7 51.1/55.1 63.5/67.4
bg bg 61.7/62.9 77.0/77.6 92.1/92.3 67.8/67.4 75.4/76.5 84.9/84.5 92.8/92.9 79.4/79.3 82.3/81.9
cop cop 12.1/28.6 64.5/63.5 50.0/80.0 32.1/22.2 44.0/52.9 82.2/83.2 66.7/64.5 56.3/67.8 60.6/60.6
cs cs 49.7/50.2 68.9/69.1 89.4/89.8 57.1/57.6 63.6/65.4 71.3/72.1 78.2/78.2 70.5/70.8 79.8/80.0
cs cs_cac 52.5/53.5 66.7/65.6 89.1/89.5 61.9/61.9 66.1/67.9 72.6/74.0 79.9/79.9 72.2/72.8 79.6/80.1
cs cs_cltt 49.6/49.3 44.9/45.5 89.4/89.8 46.7/46.2 60.0/63.2 70.3/71.5 76.8/76.9 57.5/59.2 76.7/76.1
cs cs_pud 53.2/53.9 71.4/70.8 89.5/89.9 64.4/64.9 62.1/63.8 76.4/76.9 83.3/83.6 72.5/72.6 83.5/83.2
da da 51.9/52.9 70.8/69.6 84.5/84.9 69.1/68.8 62.6/62.0 83.7/83.9 85.5/86.0 60.4/61.0 75.0/73.5
de de 41.8/39.4 63.9/64.3 85.7/87.2 62.0/62.5 64.8/65.5 76.2/76.7 76.8/77.8 67.5/69.3 79.3/79.2
de de_pud 52.6/51.1 64.9/66.0 86.5/87.5 61.8/62.9 70.8/70.3 81.1/82.2 80.8/81.5 68.5/68.7 83.0/82.8
el el 40.0/41.9 73.1/73.1 83.7/85.3 55.8/55.6 59.0/60.8 71.0/71.9 85.4/85.0 67.5/68.2 77.9/77.4
en en 49.2/50.3 77.2/77.0 76.8/77.8 64.4/64.5 54.2/54.3 80.7/80.6 80.5/81.1 64.6/65.2 80.9/80.7
en en_lines 59.9/61.4 72.2/72.5 83.4/83.4 63.8/64.8 64.5/64.9 83.1/83.4 85.3/86.2 74.9/75.3 81.8/82.0
en en_partut 51.6/52.9 72.9/73.6 84.1/85.7 60.1/60.3 58.7/58.7 82.0/81.5 80.7/81.5 70.9/71.6 87.0/86.7
en en_pud 56.3/58.1 74.7/74.8 79.9/80.9 64.7/65.0 65.7/65.9 81.8/82.3 82.3/83.1 70.0/70.0 86.9/86.6
es es 59.7/60.4 76.6/77.3 88.3/88.8 60.6/61.5 77.8/78.2 80.8/81.3 91.1/91.4 78.2/78.4 82.2/80.5
es es_ancora 58.0/57.2 72.5/71.2 88.7/88.8 64.2/64.1 79.0/79.3 86.2/86.1 86.9/87.0 74.2/74.2 86.4/85.2
es es_pud 57.9/58.7 72.6/70.6 91.0/90.9 68.8/69.2 81.0/81.1 85.7/85.8 93.5/93.3 74.1/74.9 84.9/85.5
et et 48.5/47.3 69.3/68.9 73.6/74.5 54.1/54.7 63.6/62.9 75.5/75.1 76.6/76.8 44.5/42.6 73.1/73.7
eu eu 2.6/4.9 56.3/57.2 64.3/62.7 36.9/40.9 19.6/49.1 51.5/61.9 44.9/60.3 13.1/26.5 54.0/58.7
fa fa 39.0/46.3 40.9/45.8 79.3/81.7 42.2/44.6 64.1/66.8 45.4/52.5 58.2/67.0 55.7/64.3 59.2/63.3
fi fi 46.1/44.1 61.8/62.0 78.7/80.0 60.1/60.8 54.1/56.3 70.7/71.8 70.1/68.9 58.9/57.3 72.9/72.6
fi fi_ftb 38.5/37.0 62.2/62.8 77.4/78.1 56.4/56.9 42.3/43.8 72.3/72.5 73.4/72.3 75.3/76.1 72.0/72.5
fi fi_pud 50.2/50.5 65.4/65.9 79.2/80.0 63.5/64.6 58.7/59.7 72.7/73.3 70.4/70.8 64.4/63.8 76.9/77.8
fr fr 53.8/54.7 75.0/75.6 88.5/88.5 62.3/62.2 76.5/77.2 85.8/85.8 89.4/90.6 69.3/70.6 81.0/81.3
fr fr_partut 57.3/61.1 77.8/78.3 87.8/87.4 61.9/62.2 76.2/77.0 84.2/84.4 90.9/91.2 73.1/74.3 84.0/85.4
fr fr_pud 66.3/66.5 74.2/73.8 89.9/90.1 67.3/67.5 77.6/77.6 83.2/83.5 92.7/92.8 72.8/73.3 84.6/83.9
fr fr_sequoia 53.2/52.7 71.6/72.1 90.5/90.4 60.8/60.7 77.0/76.9 82.9/81.9 91.6/91.8 70.9/71.1 84.8/85.4
he he 40.7/41.6 53.1/54.9 77.1/78.8 48.2/51.1 72.1/75.3 60.2/65.3 76.8/77.2 69.2/71.1 63.3/63.6
hi hi 43.5/44.6 58.0/50.4 75.4/75.6 40.5/38.3 65.7/65.4 47.3/49.3 70.3/69.8 50.8/53.4 68.8/68.2
hi hi_pud 28.1/28.1 50.6/52.3 75.6/75.5 39.5/40.6 64.8/65.7 49.5/50.8 59.4/61.2 48.9/51.2 56.5/58.9
hr hr 56.5/56.5 71.2/71.7 90.4/90.5 64.1/65.4 76.5/77.1 78.9/79.5 87.3/88.0 73.7/74.5 79.3/81.5
hu hu 32.8/30.2 69.6/69.8 82.4/83.3 52.1/52.5 44.4/49.0 71.5/72.5 79.0/78.8 72.9/73.9 69.3/69.0
id id 45.6/45.9 77.9/79.9 59.2/74.0 56.1/57.5 73.3/77.8 80.0/82.2 81.1/85.3 73.4/77.4 82.9/83.7
it it 65.4/64.4 74.3/76.1 87.3/88.2 61.2/60.4 80.5/80.5 80.1/78.6 91.8/92.6 75.2/76.4 80.1/79.3
it it_pud 65.8/65.8 78.2/78.6 89.6/89.7 67.3/66.8 82.5/82.7 87.7/87.2 93.1/93.4 77.6/77.8 87.5/86.9
ja ja 19.6/21.3 66.2/66.1 67.4/63.3 2.1/1.2 72.7/73.7 51.6/51.9 80.1/86.3 64.9/67.5 35.8/36.1
ja ja_pud 23.9/27.9 58.5/60.8 70.1/66.9 1.2/1.4 68.4/68.7 50.7/53.0 82.8/86.6 62.6/64.2 41.2/38.4
ko ko 39.4/43.3 58.9/60.4 71.9/77.7 15.8/19.3 24.4/25.5 40.0/38.1 67.2/69.1 58.1/59.0 66.3/65.1
la la 28.6/27.6 56.3/56.9 34.6/34.5 41.5/40.6 34.6/36.5 63.8/65.3 63.5/61.2 67.4/63.8 70.6/70.3
la la_ittb 38.0/38.4 65.2/65.3 69.4/69.4 51.1/50.4 49.0/51.0 60.0/61.3 68.9/68.0 59.3/60.6 67.6/67.6
la la_proiel 43.1/43.9 63.5/63.8 62.2/62.5 52.2/52.1 66.0/65.1 65.6/66.7 73.7/73.1 68.1/67.3 70.0/69.3
lt lt 33.3/33.3 77.2/76.7 72.2/71.8 57.0/59.4 78.4/80.8 69.5/69.3 67.1/64.3 58.0/56.8 67.3/63.6
lv lv 37.1/36.0 73.8/75.0 65.7/67.1 46.9/48.2 47.9/47.0 70.2/71.1 69.4/69.2 58.3/57.1 72.6/72.5
nl nl 43.9/45.3 60.3/60.7 84.7/86.7 65.9/66.3 65.8/65.0 68.2/68.4 57.4/58.7 59.5/60.8 67.9/67.5
nl nl_lassysmall 45.9/45.4 73.0/74.5 81.5/81.6 69.0/68.4 73.9/73.3 76.2/77.1 80.6/81.0 69.2/68.7 83.1/84.1
no no_bokmaal 62.9/63.7 72.4/72.3 89.2/89.8 66.8/67.1 69.5/69.6 84.2/84.1 89.0/88.9 72.6/72.6 81.3/81.4
no no_nynorsk 56.8/58.3 62.4/62.6 87.3/88.3 66.0/66.8 66.7/67.5 78.1/78.5 83.9/83.7 64.5/65.1 77.0/77.3
pl pl 58.0/58.2 78.1/78.4 79.8/80.7 68.9/69.6 68.7/69.7 75.3/74.8 83.2/83.1 78.8/79.2 86.5/86.0
pt pt 55.2/55.7 72.4/73.0 88.6/88.1 67.3/66.8 80.3/80.4 80.9/81.9 88.2/88.2 76.3/75.8 80.3/79.5
pt pt_br 55.7/56.9 73.0/73.2 84.8/85.1 59.4/59.5 68.1/67.7 78.2/78.4 91.1/90.8 84.7/85.6 75.0/74.2
pt pt_pud 56.9/56.2 73.1/72.9 88.4/88.8 63.6/63.9 80.6/79.9 83.3/82.8 89.1/89.0 72.2/71.2 83.0/82.6
ro ro 55.8/55.1 64.9/65.6 80.3/80.7 58.3/58.9 72.2/72.9 76.5/76.8 89.2/89.5 74.6/74.9 81.6/81.1
ru ru 44.0/42.4 65.2/67.0 85.8/86.5 56.0/56.3 71.0/71.6 69.3/69.1 82.6/83.8 77.5/77.3 76.4/75.6
ru ru_pud 55.9/56.2 69.9/70.4 90.3/91.1 68.5/68.4 76.3/77.8 84.6/84.9 90.0/91.1 76.2/76.7 84.4/84.1
ru ru_syntagrus 56.4/56.4 65.1/65.8 83.9/84.7 57.2/57.1 69.4/70.5 74.7/74.6 87.6/88.4 75.0/75.3 76.0/75.7
sk sk 61.3/60.5 76.6/79.1 86.7/86.5 68.6/68.4 66.1/65.6 74.6/74.7 83.1/83.2 78.0/76.5 87.0/86.8
sl sl 76.4/77.1 68.4/69.1 89.0/89.1 72.8/73.0 75.7/75.7 78.7/78.8 88.2/87.9 78.2/78.3 82.5/82.3
sl sl_sst 52.7/57.8 58.4/58.5 82.1/82.6 46.3/45.8 55.1/57.2 64.8/64.8 76.6/75.8 64.1/64.4 67.9/67.6
sv sv 68.7/68.4 68.9/68.7 90.8/91.1 68.8/69.6 68.0/67.9 85.3/85.1 87.6/88.5 68.3/69.1 82.4/82.6
sv sv_lines 69.8/69.3 73.8/73.9 89.4/90.1 66.3/66.6 67.4/67.1 86.7/86.6 90.2/90.5 75.1/75.6 84.5/85.0
sv sv_pud 62.4/61.7 75.0/75.0 90.6/91.1 68.8/69.4 69.4/69.1 85.0/85.5 87.7/88.3 72.5/72.2 85.4/85.8
tr tr 30.6/16.8 49.6/46.6 64.6/66.2 29.5/31.5 38.1/35.4 55.4/54.5 52.2/59.7 45.0/49.6 49.2/58.7
tr tr_pud 32.0/22.6 34.2/38.5 65.2/67.5 29.5/35.4 58.4/62.2 39.8/41.6 61.0/64.7 56.0/61.5 42.3/56.1
uk uk 39.9/40.6 70.6/71.0 72.0/72.4 52.9/52.8 37.0/41.5 67.4/68.2 69.2/68.9 61.2/60.6 70.6/69.9
vi vi 55.3/56.5 65.1/64.1 39.6/59.3 35.6/38.1 57.3/63.0 50.0/52.5 57.6/62.6 46.6/51.4 55.8/57.5
zh zh 23.9/19.5 66.4/70.8 63.8/70.7 25.4/29.9 38.7/53.9 32.4/39.9 39.3/41.0 47.6/50.7 26.8/33.5

Table 6.4: Unlabeled attachment f-score of some of the frequent dependency relations for
the baseline and the reordering ensemble model. We show the the two numbers separated
by slash. We show the green color for improvement and the red color for worse result in
the ensemble model; the darkness of the color indicates the level of difference.
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lang data ADJ NOUN VERB
ar ar 40.4/46.7 70.6/72.5 55.3/58.8
ar ar_pud 32.3/39.7 73.2/75.9 67.2/70.1
bg bg 70.6/71.1 85.8/86.2 86.2/86.5
cop cop 0.0/0.0 63.4/75.7 64.6/76.4
cs cs 64.8/64.9 77.9/78.5 76.5/76.7
cs cs_cac 66.0/65.7 79.7/80.5 77.3/77.6
cs cs_cltt 55.9/56.5 76.9/77.7 68.3/68.9
cs cs_pud 71.2/70.9 79.4/80 80.2/80.3
da da 70.9/71.2 79.5/79.3 79.5/79.6
de de 65.7/66.7 81.3/81.5 75.8/76.3
de de_pud 61.3/62.4 81.5/81.5 81.0/81.2
el el 64.3/64.8 79.8/80.5 75.6/75.8
en en 77.7/78.8 70.6/70.4 81.0/81.3
en en_lines 74.4/74.7 78.3/78.5 82.2/82.8
en en_partut 71.9/72.1 76.6/76.7 82.6/82.7
en en_pud 69.5/70.6 75.4/75.5 81.2/81.6
es es 75.6/74.6 88.0/88.4 80.6/80.9
es es_ancora 71.3/71.4 87.4/87.4 83.0/82.9
es es_pud 66.5/66.3 89.0/89.1 83.2/83.2
et et 59.5/59.6 59.6/59.5 75.4/75.5
eu eu 31.1/35.4 37.6/47.9 52.4/61.2
fa fa 46.2/51.6 68.7/70.7 53.7/59.7
fi fi 65.8/66.3 61.8/62.5 70.5/70.5
fi fi_ftb 64.7/65.5 64.7/65.1 69.2/69.5
fi fi_pud 58.1/59.4 63.8/64.1 74.6/74.8
fr fr 74.1/74.6 87.3/87.5 81.9/82.7
fr fr_partut 72.2/72.9 88.4/88.8 83.1/83.8
fr fr_pud 71.3/71.1 88.7/88.8 81.0/81.1
fr fr_sequoia 72.0/72.0 86.5/86.6 82.2/82
he he 64.7/69.1 75.6/77.8 68.1/70.6
hi hi 22.3/23.5 75.9/74.9 57.5/57.9
hi hi_pud 48.1/49.3 67.8/67.9 56.6/58.7
hr hr 72.3/71.8 82.2/82.4 83.1/83.8
hu hu 42.5/43.3 71.8/72.5 73.6/73.7
id id 63.2/67.3 70.7/74.5 78.0/79.7
it it 61.4/63.3 89.1/89.1 85.2/85.4
it it_pud 71.7/72.0 90.7/90.7 87.1/87.2
ja ja 52.8/59.5 73.1/74.6 65.1/66.5
ja ja_pud 60.4/65.4 71.5/72.6 66.7/68.3
ko ko 55.7/52.9 23.5/24.3 52.4/54.3
la la 35.1/35.6 43.8/44.4 58.8/58.5
la la_ittb 57.9/57.4 65.5/66.5 63.5/63.6
la la_proiel 55.2/55.4 61.8/61.6 64.3/64.1
lt lt 54.0/57.1 70.8/72.2 69.7/69.7
lv lv 58.7/60.2 57.0/57.2 70.3/70.6
nl nl 57.7/61.3 81.9/81.7 66.4/67.2
nl nl_lassysmall 46.4/47.6 79.8/80 75.4/75.3
no no_bokmaal 76.0/75.9 83.4/83.4 84.2/84.4
no no_nynorsk 69.7/70.5 81.4/81.8 79.6/79.9
pl pl 66.1/67.2 79.2/79.4 85.2/85.2
pt pt 72.1/73.3 88.7/88.8 82.9/82.7
pt pt_br 39.5/39.5 88.2/88.2 77.8/77.7
pt pt_pud 61.4/60.5 89.0/88.8 81.2/81.2
ro ro 55.6/56.4 79.3/79.5 80.3/80.3
ru ru 52.3/53.1 77.9/78.5 79.8/80
ru ru_pud 64.4/64.5 83.1/83.7 81.9/82.4
ru ru_syntagrus 57.3/56.9 78.7/79.2 74.3/74.6
sk sk 69.5/69.5 80.5/80.3 84.0/83.5
sl sl 73.6/72.6 83.3/83.4 85.2/85.2
sl sl_sst 60.6/61.6 69.4/69.6 67.4/67.1
sv sv 77.0/76.9 82.8/82.9 81.1/81.4
sv sv_lines 78.7/78.9 85.1/85.1 83.1/83.3
sv sv_pud 77.2/77.3 83.4/83.4 83.8/84.1
tr tr 42.3/46.8 49.4/47.9 48.0/51.5
tr tr_pud 43.2/46.7 50.0/52 49.5/53.5
uk uk 49.3/48.8 64.1/64.6 71.9/72.3
vi vi 31.5/35.7 50.6/56.5 55.1/58.3
zh zh 47.7/52.1 47.5/56.4 43.0/45.7

Table 6.5: Unlabeled attachment f-score of POS tags as heads for the baseline and the
reordering ensemble model. We show the the two numbers separated by slash, the green
color for improvement, and the red color for worse result in the ensemble model; the
darkness of the color indicates the level of difference.
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Chapter 7

Cross-Lingual Sentiment Transfer with Limited Resources

7.1 Introduction

Online discussion forums and social media are often used to express subjective views.

They are frequently exploited to express political viewpoints or to post reviews, but they

can also be used in serious situations such as disasters where people post about their

experiences. In such cases, negative sentiment can be an indication of continued prob-

lems while positive sentiment can be an indication that the situation has been happily

resolved. Sentiment analysis involves assigning a sentiment label, usually positive, neg-

ative, or neutral, to a given text. While there has been quite a bit of work on identifying

sentiment in English (e.g. Socher et al. [2013], Zhang et al. [2016]), and some in languages

such as Chinese (e.g. Wan [2008]), Arabic (e.g. Abdul-Mageed and Diab [2011]) and Span-

ish (e.g. Brooke et al. [2009]), there has been much less work in identifying sentiment for

low-resource languages where sentiment-labeled data or even machine translation sys-

tems do not exist. Yet emergency situations requiring humanitarian assistance can occur

in areas where such languages are spoken; for example, the remote mountainous Xin-

jiang Autonomous Region in China where the Uyghur language is spoken was the site

of a major earthquake. When such disasters occur, the ability to quickly develop sys-
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tems for recognizing the sentiment posted by locals in their native languages can help

humanitarian organizations quickly identify and respond to the areas of greatest need.

Most previous work in cross-lingual sentiment analysis (e.g. Duh et al. [2011], Bal-

ahur and Turchi [2014], Salameh et al. [2015], Zhou et al. [2016a], and Zhou et al. [2016b])

has typically assumed the availability of a full machine translation system, manually cre-

ated lexicons, or in-domain parallel corpora. In the event of the occurrence of an incident

situation, such resources may not be available for the target language. Furthermore, pre-

vious work has focused on a small number of languages and has solely used English as

the source language. However, if labeled training data is available in languages in the

same family as the target language, it would be useful to utilize such data from multiple

source language families to build better sentiment transfer models.

In this chapter, our goal is to create robust sentiment analysis systems for languages

or settings where no labeled sentiment training data exists and where machine transla-

tion capabilities are minimal. We create cross-lingual sentiment systems for multiple lan-

guages, leveraging parallel data from different genres. We consider the standard source-

to-target cross-lingual transfer scenario as well as a multilingual scenario in which mul-

tiple source languages are used to transfer information to a target language. Our target

languages come from a range of Indo-European, Turkic, Afro-Asiatic, Uralic, and Sino-

Tibetan language families.

We consider two main approaches for transferring sentiment: annotation projection

and direct transfer. We apply the classical annotation projection in a new setting with a

large number of different sources to project supervised labels from the source languages

to the target language. Our direct transfer approach directly trains a sentiment analysis
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system on the labeled sentences of the source language(s) and applies the trained model

directly on the target language. Our goal in this chapter is to show through experimen-

tation the value of these two approaches and the impact of the availability of different

resources.

The main contributions of this chapter are the following:

• We introduce a novel direct transfer method using deep learning with a partial

lexicalization strategy. The approach relies on translating some input words into

the target languages while keeping the structure of the source language. Therefore,

our model does not rely on having fully translated text.1

• We introduce a simple but effective annotation projection strategy which uses a

state of the art sentiment system that is easily and quickly applied to any new

language. Our projection model works particularly well for non-Indo-European

languages even when in-domain data is not available.

• We systematically experiment with different methods based on direct transfer and

projection to develop sentiment analysis systems in the absence of rich resources.

Our experiments on a set of 16 different languages show that we can create a ro-

bust model. Our experiments study the effect of parallel data from different genres,

single and multi-source transfer, and manual dictionaries. Our use of the Bible and

Quran for parallel data simulate a low resource scenario for languages where more

resources do exist.

Our experiments show that both our approaches benefit from having multiple source

1The source code for the direct transfer model is available here: https://github.com/rasoolims/
senti-lstm
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languages and in some cases the performance of the transfer method is close to the su-

pervised model. We show that the direct transfer approach does particularly well with

out-of-domain data and when multiple source languages are available, while projection

is more suited for in-domain data and for non-European language families. An ensemble

of the two approaches results in further performance boosts in the multi-source setting.

Our error analysis treating English as a low-resource language concludes that our transfer

model makes very reasonable errors on tweets with out-of-vocabulary words.

7.2 Annotation Projection

Annotation projection requires only a simple, fast and easily transferable model. For

this we choose to use Naive Bayes Logistic Regression with word embedding features

(NBLR + POSwemb) [Yu et al., 2017] to train systems for both source-side labeled data

and target-side projected data. This is an extension of Wang and Manning [2012]. The

advantage of this model is that it can be quickly trained whenever a new language is

introduced, which makes it potentially more efficient for the low-resource scenario of

developing a system within one day as training time is less than that of a deep learning

model.

The model uses two types of features: sparse and dense. The sparse features include

ngrams up to length 3. For each ngram t in sentence x, the model counts the number of

times that the ngram occurs with each possible label l in the training data and stores it as

f l(t) . It defines two vectors pl and ql for each label l, where each ngram t in sentence x

has the following values:
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
pl(t) = α + f l(t)

ql(t) = α +
∑

y ̸=l f
y(t)

where α is a smoothing constant. Finally the following log-count ratio is defined:

rl = log
(
pl/||pl||1
ql/||ql||1

)

where ||pl||1 and ||ql||1 are the L-1 norm values of the corresponding vectors. The

value rl(t) for any ngram t not appearing in sentence x is zero, leading to a very sparse

vector. Hence, as opposed to having a sparse count vector (as in traditional machine

learning methods), we show the features by the concatenation of its log-count ratios:

r(x) = [rnegative; rneutral; rpositive]

where ; shows the concatenation operator. Thus, if the number of seen ngrams in the

training data is m, the feature vector r will be a sparse vector in R3m.2

For the dense feature representation, we group words according to their part-of-

speech (POS) tags in the set P = {NOUN, VERB, ADJECTIVE} and average their pre-

trained word embedding vectors. The concatenation of the three averaged word vectors

and the sparse vector r(x) is the final input feature to the logistic regression classifier.

2In the case of using English as the supervised source language, we also append additional positive and
negative indicator features as additional unigrams and calculate their log ratio counts. These indicators are
extracted from the sentiment lexicons of Wilson et al. [2005] and Hu and Liu [2004].
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7.3 Direct Transfer

The main problem with direct transfer is that most of the common features do not

generalize beyond each source language: for example, lexical features in one language

are unlikely to appear in other languages. We apply the following techniques to address

this problem:

• Word representation features: We train cross-lingual word representations such

that words with similar meanings in different languages have similar representa-

tions. We use the method in chapter5 to train cross-lingual word embeddings and

word clusters. As a reminder, chapter 5 uses cross-lingual dictionaries to apply

random code-switching on monolingual texts (e.g. Wikipedia) in all source and

target languages. This leads to a concatenation of monolingual texts in different

languages for which each sentence has words from different languages. The code-

switched text is trained to derive word clusters and embeddings.

• Lexicalization with code-switching: This approach allows us to enhance the direct

transfer model by using lexicalized features directly from the target language while

at the same time preserving the source language structure. It assumes that either a

parallel corpus or bilingual dictionary is available.

We use a simple deterministic partial translation strategy inspired from chapter 5.

First, we use the parallel corpora to create source-target word alignments using

GIZA++ [Och and Ney, 2003]. The word alignments are used to create bilingual

dictionaries. During training, the bilingual dictionaries are used to translate words

from the labeled source training data to the target language. We translate all words
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that have an entry in the dictionaries. Therefore, since many words do not exist

in the bilingual dictionaries, the resulting training data looks like code-switched

text. The following sentence is an example English sentence partially translated to

German via the dictionary extracted from Quran and Bible (the underlined words

are not translated): post:weggingst a:ein photo to:zu facebook.

7.3.1 Deep Learning Model

Direct transfer requires a powerful model that can fully benefit from cross-lingual word

representations and utilize the context and structure of the input text in order to deter-

mine sentiment labels. For this we choose to model direct transfer using long short-term

memory (LSTM) networks [Hochreiter and Schmidhuber, 1997]. The input to our model is

a sequence of nwords in the sentence x = {x1, x2, · · · , xn}. We assume the lexicalization

step is applied on the words in the training data if a dictionary exists.

Embedding Layer We use the following features for every word in a sentence. For all

the following features, if a source training word can be translated into the target language

and its translation has an entry in the word embeddings dictionary, we use that as the

feature; otherwise we use the source word feature as the input feature:

• A fixed pre-trained cross-lingual word embedding xce ∈ Rdce extracted from the

method in §5.1.

• A randomly initialized word embedding xe ∈ Rde for every word in the sentence.

• The cross-lingual word cluster embedding xcc ∈ Rdcc to represent the word cluster

identity of each word.
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post:weggingst a:ein photo to:zu facebook

f1 f2 f3 f4 f5

Average

LSTMF

LSTMB

LSTMF

LSTMB

LSTMF

LSTMB

LSTMF

LSTMB

LSTMF

LSTMB

LSTMb(f[5:1]) LSTMf (f[1:5]) p(x)

MLP

Figure 7.1: A graphical depiction of the neural network model in our direct transfer ap-
proach. This is an example of an English tweet translated to German. The words are
shown at the bottom with their translation appearing after colon (“:”) for which under-
lined words are not translated. The circles (fi) show the embedding layer, the LSTMs are
shown on top of the embedding layer and the average layer on the right side of the words.
All the intermediate layers are concatenated and fed to a multi-layer perceptron (MLP).
More details are given in §7.3.

• In the case of single source transfer from English, we also use the fixed two-

dimensional Sentiwordnet [Baccianella et al., 2010] score xsw ∈ R2 that represents

the likelihood of a word being positive or negative. We simply translate Sentiword-

net lexicon to the target language by using the translation dictionaries.

Intermediate Layer The input for every word xi to the intermediate layer is the con-

catenation of the embedding features: f ∈ Rdf = [xi
ce;x

i
e;x

i
cc;x

i
sw]. The intermediate

layer is composed of the following structures:

• Recurrent layer: We use a Bidirectional LSTM (BiLSTM) for representing the se-

quence of words in the sentence: a forward pass LSTMf (f[1:n]) ∈ Rdrec×df gives
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the final representation of the sentence by looking from the beginning to the end,

and the backward pass LSTMb(f[n:1]) ∈ Rdrec×df looks from the end to the begin-

ning. Then the output of the two LSTMs are concatenated as r(x) ∈ R2·drec .

• Average layer: The average layer p(x) ∈ Rdf is the average over all the input

features f for all words in the sentence. This layer represents the bag-of-words

information of the sentence without taking the sequence information into account.

Output Layer The two intermediate layers r(x) and p(x) are concatenated and fed to

a hidden layer H ∈ Rdh×(2·drec+df ) activated by rectified linear units (ReLU) [Nair and

Hinton, 2010]:

H(x) = ReLU(H([r(x); p(x)]))

Finally the hidden layer output is fed to the output softmax layer. We use the log-

likelihood objective function with the Adam optimizer [Kingma and Ba, 2014] to learn

the model parameters.

7.4 Experimental Settings

We have conducted a diverse set of experiments in order to evaluate our methods and

determine the impact of the availability of different resources. We experiment with two

scenarios:

• Parallel data: In this setting, we experimentwith both the annotation projection and

direct transfer approaches. In order to determine the effect of domain and genre,
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we use different types of parallel corpora: religious text, contemporary political text

and relatively in-domain and in-genre data from the Linguistic Data Consortium.

• Manual translation dictionaries: Instead of automatically creating dictionaries from

word alignments, we use the manual translation dictionaries extracted from Wik-

tionary3 and use them in the direct transfer model. The Wiktionary entries are

noisy and for some languages, the coverage of the lexicon is very low.

7.4.1 Datasets, Tools and Settings

Labeled sentiment data We downloaded tweets labeled with sentiment for 12 languages

from Mozetič et al. [2016]4 as well as SentiPers data [Hosseini et al., 2018], a set of dig-

ital products reviews for Persian, as our source languages. All labeled data is annotated

for positive, negative, and neutral. The evaluation languages are Arabic (ar), Bulgarian

(bg), German (de), English (en), Spanish (es), Croatian (hr), Hungarian (hu), Polish (pl),

Portuguese (pt), Russian (ru), Slovak (sk), Slovene (sl), Swedish (sv), Uyghur (ug) and Chi-

nese (zh). We use 80% of the data as training, 10% for development and 10% of the data

for testing. We use all development data sets to train the supervised models. We set the

number of training epochs for the transfer model by looking at the performance on the

Persian development data. As labeled training data for Uyghur, Chinese and Arabic is ei-

ther unavailable or much smaller (in the case of Arabic) than that of Mozetič et al. [2016]’s

Twitter data, we have used these three languages only as target languages. For evaluation

data, we employed a native informant for Uyghur and Chinese to annotate a small num-

3https://www.wiktionary.org/
4Not all tweets from Mozetič et al. [2016] are available anymore (some of them were deleted).
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ber of sentences, and for Arabic, we used the newly released evaluation data of SemEval

2017 Task 45. Table 7.1 shows the data sizes.

Dataset Train Test
#sen #tok #types #sen #tok #types

Arabic – – – 6100 115401 19474
Bulgarian 23739 313003 52922 2958 38685 12545
Chinese – – – 487 10243 3213
Croatian 56212 726037 88966 7025 90544 23827
English 46623 601284 39294 5828 75147 10857
German 63669 822605 78353 7961 102822 19907
Hungarian 36167 427951 83931 4520 53588 17750
Persian 15000 331431 13840 3027 67926 6886
Polish 116105 1455273 136089 14517 182194 37018
Portuguese 62989 712852 41982 7872 89553 12440
Russian 44757 522218 84463 5594 64779 18823
Slovak 40470 576611 82281 5058 71131 20751
Slovene 74238 1106211 108735 9277 137371 29899
Spanish 137106 2007046 91419 17133 249690 27942
Swedish 32600 494139 42446 4074 61423 11698
Uyghur – – – 346 6805 3560

Table 7.1: Training and evaluation sizes for different languages. We ignored the hash tags,
URLs and name mentions in the data.

Parallel data We use the following parallel corpora:

• Bible and Quran: The motivation for experimenting with religious data is that it is

a lot more likely to be available for many languages, even very low-resource lan-

guages. We use theQuran and Bible translations as out-of-domain parallel datasets,

from a very different genre than our test data, and thus create a low resource

scenario for languages that have larger resources available. We use the corpus

of Christodouloupoulos and Steedman [2014] for the Bible dataset and the Tanzil

5http://alt.qcri.org/semeval2017/task4/
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translations6 for the Quran. This dataset has multiple translations for some lan-

guages.7 When using the annotation projection approach, in cases where we have

more than one Quran English translation for a target-language sentence, we run

the model on all translations and apply majority voting to get the most frequent

label.

• Europarl : We use the Europarl data [Koehn, 2005] as contemporary political text.

We restricted ourselves to those sentences that are translated to all of the 10 lan-

guages (Bulgarian, German, English, Spanish, Hungarian, Polish, Portuguese, Slo-

vak, Slovene, and Swedish). That comprised a total of 294738 sentences for all lan-

guages.

• Linguistic Data Consortium (LDC) parallel data: The LDC packages are produced un-

der the Low Resource Languages for Emergent Incidents (LORELEI) program and

consist of a combination of the following genres: news, discussion forums, and so-

cial networks such as Twitter. We use seven English to target parallel translations

from the LDC data: Chinese (16440 sentences)8, Persian (57087 sentences)9, Hun-

garian (157931 sentences)10, Arabic (49446 sentences), Russian (193967 sentences)11,

6http://tanzil.net/trans/
7We excluded a subset of the translations from Russian and English that are interpretations as opposed

to translations. For Russian, we use the Krachkovsky, Kuliev, Osmanov, Porokhova, and Sablukov trans-
lations and for English, we use the Ahmedali, Arberry, Daryabadi, Itani, Mubarakpuri, Pickthall, Qarai,
Qaribullah, Sahih, Sarwar, Shakir, Wahiduddin, and Yusufali translations.

8LDC2016E30_LORELEI_Mandarin
9LDC2016E93_LORELEI_Farsi

10LDC2016E99_LORELEI_Hungarian
11LDC2016E95_LORELEI_Russian
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Spanish (345940 sentences)12, and Uyghur (99272 sentences)13. Since our evaluation

set consists of Twitter data except for Persian, LDC has the most similar genres to

our evaluation datasets.

Automatic dictionaries We use GIZA++ [Och and Ney, 2003] to create automatic word

alignments between source and target words from the parallel sentence-aligned corpora.

After getting the intersected alignments from the two alignment directions, we choose

the most frequent translation for each word in order to prune alignment noise.

POS tagging and tokenization OpenNLP is used to split sentences. To tokenize words,

we use the Stanford Chinese segmenter [Chang et al., 2008], Madamira Arabic tok-

enizer [Pasha et al., 2014]14, Hazm Persian tokenizer15, European tokenizers in the Eu-

roparl package, and OpenNLP16 for all other languages. We use the POS information in

the Universal Dependencies17 to train POS taggers for the NBLR+POSwemb (annotation

projection) model.

Embeddings and Brown clusters We use the Wikipedia dump data set to train the

monolingual and cross-lingual word embeddings and Brown clusters. We use the

Word2vec tool18 with its default setting and dimension of 300 for all of our embeddings

12LDC2016E97_LORELEI_Spanish
13LDC2016E57_LORELEI_IL3_Incident_Language_Pack_

for_Year_1_Eval
14Madamira is used in low-resource mode with the form-based ATB_BWFORM tokenization scheme.
15https://github.com/sobhe/hazm
16https://opennlp.apache.org/
17http://universaldependencies.org/
18https://code.google.com/archive/p/word2vec/
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(monolingual and cross-lingual), except for the comparable embeddings where we used

a window size of 10. We trained monolingual and cross-lingual word clusters with the

method of Stratos et al. [2014] with 500 clusters.

Model settings We set the following parameters for the NBLR +POSwemb model: α =

1, C = 0.01 or 0.05. We use the LIBLINEAR package [Fan et al., 2008] implemented in

the sklearn software19. The Dynet library [Neubig et al., 2017] with its default settings

is used for the neural network. We use 7 epochs for the single-source transfer and 2

epochs for the multi-source transfer with concatenation. The following parameters are

used: dce = 300, de = 400, dcc = 50, drec = 400, dh = 400, and batch size of 10K.

All our models were tuned only when supervised data was assumed available or pro-

jected. When we applied our direct transfer models to the new language, we did not do

any additional tuning on the target language, except in the case of Persian, which we used

as a development language.

7.4.2 Baseline Approaches

We use two simple baselines. The first translates the Sentiwordnet lexicon [Baccianella

et al., 2010] to each target language by using the dictionaries extracted from the Bible

and Quran parallel data. It decides to give positive/negative sentiment, if the average

positive/negative score is at least 0.1 higher than the average negative/positive score.

Otherwise it assigns the neutral label. The second baseline assigns all sentences neutral

majority label of the English training data.

19http://scikit-learn.org/stable/
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7.5 Results and Discussion

This section reports and discusses our results showing the performance of the anno-

tation projection and direct transfer models under the availability of different resources:

in-domain parallel corpora (LDC), contemporary European political text (EP), and out-of-

domain parallel corpora (BQ), which is available for every language. For direct transfer,

we additionally have comparable data (CP) andWiktionary (WK). Models in all languages

apply three-way sentiment classification (positive, negative, and neutral). Since accuracy

can be misleading if the majority label from the source language data is dominantly pre-

dicted, we use F1 score macro-averaged over the three classes as our evaluation metric.

Significance is computed using the bootstrap significance method [Berg-Kirkpatrick et

al., 2012].

7.5.1 English to Target Transfer

In the first set of experiments, we conduct single-source transfer by using only English as

the source language. The results for projection and direct transfer are depicted in Table 7.2

for difference resources. The single-source transfer approaches perform significantly bet-

ter (p < 0.05) than the Neut majority baseline for all languages and significantly better

than the Senti baseline in all cases except with Ugyhur, where our evaluation set is quite

small, and in some languages with CP and WK, where the transfer is dependent on the

quality of the Wikipedia resources.

We see some trends appearing in terms of the impact of different resources. First, and

unsurprisingly, using in-domain data (LDC) enables significant increases in performance
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Language Baselines Projection Direct Sup.
Neut Senti BQ EP LDC CP WK BQ EP LDC

Arabic 18.6 25.6 29.8 – 37.2 21.1 31.0 37.3 – 30.0 –
Bulgarian 22.4 30.6 29.4 38.7 – 28.6 45.3‡ 33.0 43.5 – 54.5
Chinese 19.7 35.6 39.8 – 52.7 32.7 66.8‡ 30.3 – 56.3 –
Croatian 12.8 19.8 24.2 – – 13.9 – 30.8‡ – – 61.6
German 23.9 32.0 41.0 47.3 – 37.7 51.0‡ 43.5 45.4 – 59.9
Hungarian 16.5 29.2 29.9 38.1 47.0‡ 22.4 40.8 41.1 31.8 42.3 60.4
Persian 17.9 25.3 26.5 – 33.1 20.7 31.7 40.1‡ – 26.5 67.8
Polish 13.8 26.0 27.9 38.8 – 30.2 32.9 41.7 43.3‡ – 64.5
Portuguese 17.3 22.9 36.4 39.3 – 22.2 35.4 38.6 39.3 – 51.1
Russian 20.0 29.5 36.1 – 48.0 25.3 43.8 44.8 – 48.1 69.2
Slovak 11.9 19.2 23.3 30.0 – 24.6 36.6‡ 22.6 20.4 – 70.1
Slovene 20.6 28.1 31.8 44.6‡ – 25.3 32.1 32.2 40.1 – 58.6
Spanish 19.3 25.3 36.0 41.8 42.7 27.7 37.7 42.6 39.4 42.2 45.4
Swedish 16.1 22.7 35.0 44.6 – 31.1 40.4 39.1 49.0‡ – 62.5
Uyghur 23.6 36.7 37.4 – 38.6 25.7 28.0 30.0 – 37.5 –
Average 18.3 27.2 32.3 40.4 42.8 25.9 39.5 36.5 39.1 41.1 60.5

Table 7.2: F1 macro-averaged scores of different methods in the single-source (English to
target) transfer setting. “Neut” predicts the majority label of the source data (English)
and “Senti” refers to the baseline Sentiwordnet method. The “sup.” column refers to the
supervised LSTMmodel. “CP” refers to the use of embeddings extracted from comparable
corpora, “WK” refers to the full direct model using theWiktionary lexicon. “BQ”, “EP” and
“LDC” refer to the different parallel datasets used in our experiments: Bible and Quran as
“BQ”, Europarl as “EP” and the LDC in-domain parallel datasets. ‡ indicates that the best
result is significantly better than the second-best (and also other) numbers.

for most languages. For projection, using LDC outperforms both BQ and EP in all cases.

For direct transfer, LDC outperforms BQ and EP in all cases except for Persian, Arabic,

and Spanish (where both closely approach the supervised bound). Interestingly, BQ actu-

ally ends up being a better choice for Persian and Arabic because the BQ corpus is larger

or has more unique Quran translations than LDC parallel translations, leading to a dic-

tionary with higher coverage. The quality of direct transfer is affected by the coverage of

the dictionary that was extracted, particularly for languages which have morphologically

complex words.
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Second, when comparing automatic vs. manual (Wiktionary) dictionaries, the result

depends heavily on the quality of Wiktionary for that language. Wiktionary significantly

outperforms BQ in 4 out of 14 languages, such as Chinese, where the manual dictionary is

of exceptionally high quality; in the remaining cases, BQ is either better or the two are in-

distinguishable. The quality of dictionary is an important factor in direct transfer because

both the cross-lingual embeddings and code-switching are the result of those dictionaries.

Wiktionary is better for languages such as German and Chinese but less so in Arabic and

Persian, where many of the Wiktionary entries occur in their uninflected forms, but we

have large BQ corpora for both Arabic and Persian and so better BQ performance.

In comparing projection with direct transfer, direct transfer does significantly better

than projection in the low resource BQ setting. This applies to all cases except Chinese

and Uyghur and the results are indistinguishable for two other languages, Slovene and

Swedish. Thus, for low resource settings without in-domain data, we can conclude that

direct transfer is a better than projection; this makes sense because it relies on dictionar-

ies and embeddings rather than projecting sentences which are not relevant for sentiment

analysis. On the other hand, with EP, projection does better in five out of nine cases and

with LDC, projection does better than direct transfer in five out of seven cases. These re-

sults imply that if we do have high-quality in-domain parallel data, projecting annotations

from English seems to be preferable.

Our results for English-Chinese are comparable in magnitude to those of previous

work, e.g Meng et al. [2012]; note we do 3-way classification instead of 2-way.
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Language BQ EP LDC
-cs +cs -cs +cs -cs +cs

Arabic 26.4 37.3 – – 36.7 30.0
Bulgarian 24.7 33.0 24.6 43.5 – –
Chinese 16.5 30.3 – – 55.9 56.3
Croatian 18.5 30.8 – – – –
German 36.0 43.5 40.5 45.4 – –
Hungarian 30.2 41.1 28.2 31.8 40.6 42.3
Persian 18.4 40.1 – – 34.9 26.5
Polish 23.6 41.7 24.6 43.3 – –
Portuguese 20.2 38.6 26.5 39.3 – –
Russian 24.1 44.8 – – 43.4 48.1
Slovak 15.1 22.6 17.9 20.4 – –
Slovene 35.2 32.2 31.8 40.1 – –
Spanish 27.0 42.6 27.3 39.4 40.9 42.2
Swedish 23.5 39.1 29.4 49.0 – –
Uyghur 16.1 30.0 – – 25.4 37.5
Average 23.7 36.5 27.9 39.1 39.7 41.1

Table 7.3: Experimental results on the English to target direct transfer with and without
code-switching (“-cs”, “+cs”) on the labeled data. “BQ” is the Bible andQuran parallel data,
“EP” is the Europarl data and “LDC” is the LDC parallel data. The underlined numbers
are not significantly better than the all-neutral baseline.

Effect of partial lexicalization Table 7.3 shows the results with and without applying

target-language lexicalization. The results with BQ and EP shows that the process of

translating lexical items (code-switching) is essential to improving performance. This

effect is not as pronounced or as consistentwhen using LDC,where the quality of bilingual

embeddings is already high enough that it suffices for training the direct model without

much additional lexicalization.

7.5.2 Multi-Source Transfer

In this set of experiments, we use training datasets from all languages (except that of the

target language) as source languages, with English now included as a target low-resource
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language. For projection, as described in §7.2, we applied majority voting on sentences

aligned to translations in more than one language. For direct transfer, we experimented

with the two techniques described in §7.3: (1) Concatenation, where we concatenate all

the training sets from different languages and use that as the training data for a single

model, and (2) Ensemble, where we train a separate direct model for each source lan-

guage and then use the most frequent label assignment on the test data. We found that

the concatenation approach performs best on average, so we show those results for the

direct transfer model. Finally, we apply an ensemble of the projection and direct transfer

approaches: 1) projection, 2) concatenation, and 3) single-source ensembles. If the re-

sults are tied, we back up to concatenation, projection and the English label respectively.

Table 7.4 shows the results for different settings.

Comparing the single-source with the multi-source experiments, we see that having

multiple source languages results in a clear improvement for both projection and direct

transfer approaches, with significant improvements observed in most languages. The ex-

ceptions here are Chinese, where the single-source English-Chinese Wiktionary is espe-

cially good, Portuguese, where single-source is the same or slightly better, and Uyghur,

where the English projection model with LDC gives better results than using multiple

source languages; but this result is not statistically significant. In addition, direct transfer

now almost always outperforms projection (10 out of 16 languages for BQ, 9 out of 10

languages for EP). For Arabic, Chinese, and Uyghur, projection is better overall. We note

that in these three languages, word order and syntactic structure can be quite different

from the source and this may result in lower F-scores for direct transfer. 20

20We note that the best scoring system for Arabic on the SemEval 2017 test set had a macro-average
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Language Projection Direct Ensemble Sup.BQ EP BQ EP BQ EP
Arabic 45.8‡ – 26.6 – 38.8 – –
Bulgarian 38.4 42.7 41.6 48.4 43.4 49.1 54.5
Chinese 42.0 – 31.1 – 38.1 – –
Croatian 42.5 – 43.4 – 43.4 – 61.6
English 45.8 42.1 50.6 54.0 51.9 53.9 65.3
German 47.5 43.2 51.3 50.3 50.0 54.7‡ 59.9
Hungarian 33.8 48.5 50.7 53.8‡ 51.0 51.6 60.4
Persian 37.2 – 43.7‡ – 37.2 – 67.8
Polish 41.7 49.3 38.3 54.6‡ 45.1 52.1 64.5
Portuguese 38.5 34.0 34.3 37.8 38.9 37.9 51.1
Russian 41.6 – 46.2 – 48.3‡ – 69.2
Slovak 37.9 45.7 48.0 48.2‡ 37.8 46.7 70.1
Slovene 39.6 44.7 42.3 46.5 45.6 48.8‡ 58.6
Spanish 33.7 40.9 42.9 43.5 44.0 45.2‡ 45.4
Swedish 45.0 47.7 44.6 46.5 43.9 49.8‡ 62.5
Uyghur 33.4 – 27.5 – 29.0 – –
Average 40.3 43.9 41.4 48.4 42.9 49.0 60.8

Table 7.4: F1 macro-average scores with different models (Projection, Direct, Ensemble)
using different multi-parallel resources: Bible and Quran (BQ) and Europarl (EP) in the
multi-source experiments. ‡ indicates that the best number is significantly better than the
second-best number.

Language BQ EP
Arabic 39.1 (Slovak) –
Bulgarian 44.3 (Swedish) 44.8 (Swedish)
Chinese 37.6 (Swedish) –
Croatian 40.4 (Slovak) –
English 51.7 (Swedish) 49.0 (German)
German 46.5 (Swedish) 49.6 (Bulgarian)
Hungarian 44.4 (Russian) 48.8 (Polish)
Persian 42.6 (English) –
Polish 42.2 (Bulgarian) 50.7 (Hungarian)
Portuguese 39.1 (Croatian) 39.5 (Swedish)
Russian 44.8 (English) –
Slovak 42.8 (Swedish) 48.7 (Polish)
Slovene 45.5 (Croatian) 45.7 (Bulgarian)
Spanish 42.6 (English) 41.0 (German)
Swedish 46.7 (German) 49.0 (English)
Uyghur 31.5 (German) –

Table 7.5: F1 macro-average scores for best source language in the direct transfer model
with Bible and Quran (BQ) and Europarl (EP) parallel corpora.
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The ensemble of approaches also enables some gains over the direct transfer model,

particularly for the European languages, where the direct model is most effective. In

fact, we see that for some of these languages, especially Spanish, the performance of

the transfer method approaches that of the supervised model: this in particular is very

interesting because the supervised models use gold labeled in-domain data with careful

tuning while the transfer model is blindly trained on noisy or crafted datasets from other

languages.

Effect of Language Families We notice that European languages (e.g German, English,

Swedish, Spanish, Hungarian) tend to benefit a lot from the direct transfer model and

in particular the multi-source direct transfer and ensemble models. On the other hand,

languages like Arabic, Chinese, Uyghur benefit less from the direct transfer model and

have larger gains with projection. The non-Indo-European families are less syntactically

and semantically similar to the Indo-European source language families and are more

likely to incur changes in structure andword orderingwhenmoving from train to test. We

note that Hungarian, which is a Uralic language (also not Indo-European) does not follow

this pattern. This may be because it has some similarities with European and notably the

Balto-Slavic languages.

To investigate whether certain languages transfer sentiment better from each other,

we ran our direct transfer model separately using each source language and determined

for each target language the source language with highest performance. The results are

shown in Table 7.5 with BQ and EP.

For Arabic, Chinese, and Uyghur, which are the most different from the other lan-

recall and accuracy of 58 when training with supervised Arabic data [Rosenthal et al., 2017].
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guages, Slovak, Swedish and German are the best source languages. For the European

languages, we notice some interesting trends; for example, the Germanic families (En-

glish, Swedish and German) transfer well from each other and additionally are good

source languages in general. Slovene transfers well from its Southern Balto-Slavic sib-

lings (Croatian and Bulgarian), and Slovak gets its best performance (48.7 with EP) with

Polish (its Western Slavic sibling) as a source language. The Balto-Slavic languages (Slo-

vak, Polish, Croatian, Slovene, Bulgarian, and Russian) generally transfer well to each

other and to Hungarian. Surprisingly the Romance families (Portuguese and Spanish) are

not the best source languages for each other. There are of course other factors involved,

such as the quality and size of the training data in the different languages; more extensive

experiments would be required to do a full language family analysis.

7.6 Error Analysis

In order to better understand how the transfer model is doing and what kind of errors

it makes, we conducted an error analysis where we considered English to be a target

low-resource language. We sampled 100 errors of the best performing English models for

direct and projection, where at least one of the two models makes an error.

In our sample, the supervised model agrees with the gold label 63% of the time. Con-

sidering the 100 error samples, in 34% of cases, the direct model agrees with the gold label,

in 26% of cases, the projection model agrees with the gold label, and in the remaining 40%

of cases, both models make an error. Since the direct model performs better than pro-

jection when English is a target language, we analyzed the 66 samples from this model

and compared them with the predictions of the supervised model in order to understand
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whether the errors come from the model itself or from the sentiment transfer.

Generally, we found that the source of sentiment errors comes from the following

reasons: a key sentiment indicator was missed (e.g., “love,” “excited”, “bored”), there were

misleading sentiment words (e.g., “super” in context of “getting up super early”, “hand-

some” in context of a question), the tweet contained mispelled/rare words (e.g., “bff,”,

“bae”, “puta”), inference was required (e.g., “i need to seriously come raid your closet”

is positive without containing positive words), the correct answer was not clear or not

easily determined for a human annotator (e.g., “a mother’s job is forever”) , or the gold

label was clearly wrong (e.g “thanks for joining us tonight! we kept it as spoiler free as

possible!” has a neutral instead of positive gold label). There are thus many tweets in this

error sample where the sentiment is not clear cut.

The samples analyzing the transfer are divided into four groups with examples pro-

vided for each:

1. In the first group (48.5% of cases), the supervised model makes a correct prediction,

but the transfer model results in an error. Looking at examples in this group, we

found that this often occurs when the English target data contains rare, mispelled,

or informal language words which are unlikely to have been learned using either

cross-lingual representations or word alignments from parallel corpora.

• “fck na ! ! marshall ! bear nation hopes your aight ! ! !” (negative, transfer

predicts positive)

• “eagles might get doored tonight :’(” (negative, transfer predicts positive)

2. In the second group (26% of cases), the supervised model and the transfer model
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make the same error and thus the cause for the error likely comes from the model

rather than the transfer. We determined that 6 of these cases have an incorrect

gold label, and 11 result from errors of the supervised model where the answer was

unclear, key sentiment was missed, or inference was required.

• “don ’t let anyone discourage you from following your dreams ! it was one of

the best decisions i made because it changed my lif …” (gold negative [wrong],

transfer predicts positive)

• “can ’t wait to be an uncle again a wee boy this time , surely his names got to be

jack if no , at least make it his middle name” (gold positive [requires inference],

transfer predicts neutral)

3. In the third group (16.6% of cases), the supervised and transfer model make different

kinds of errors and thus the source of the error is likely from both the model itself

and the transfer. We determined that three of these cases have an incorrect gold la-

bel, and the remaining eight are an error of the supervised model where the answer

was unclear, key sentiment was missed, inference was required, or the sentence

contained misleading sentiment words.

• “mount gambier that was rad and sweaty as hell , just one show left on the tour

for us tomorrow in adelaide ” (gold positive [misleading sentiment], supervised

neutral, transfer negative)

4. In the fourth group (9% of cases), the gold and supervised models agree, but the

transfer model, which was trained on different data, actually makes a better pre-

diction.
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• “this photo taken on 9th september with high quality one of my bday gifts from

my friend thank you brother” (gold and supervised predict neutral, transfer pre-

dicts positive)

A large number of errors are clearly because of the transfer, but there are also sev-

eral cases where even the supervised model makes the same error as the transfer model.

The errors the transfer models make are reasonable because of the difficult nature of the

Twitter data and the vocabulary it learns from out of domain (BQ or EP) parallel data.

7.7 Conclusion

We have developed and experimented with two transfer methods for sentiment anal-

ysis in a diverse set of scenarios. We explored the impact of the availability of different

resources includingmultiple gold labeled datasets in rich-resource languages, parallel data

of different genres and domains, and manually and automatically generated dictionaries.

Our experiments show that using multiple source languages yields the best results for

most target languages. Naturally, we saw that having similar genre and domain as the

training data produces better results than out-of-domain and dissimilar genres; however,

with our partial lexicalization strategy, out-of-domain parallel corpora still prove to be an

effective low-resource setting.

We have shown that both projection and direct transfer are effective approaches for

transferring sentiment in these low-resource scenarios. Direct transfer is the best per-

former with multiple source languages from related language families, and when high-

quality parallel data is not available. Projection is the best performer when parallel in-
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domain data is available and with target languages which differ structurally from the

source languages. We also found that the ensemble of projection and direct transfer ap-

proaches can lead to higher and more robust performance for several of the European

languages.
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Chapter 8

Conclusion

“Therefore the language of mutual understanding is different indeed: to be one
in heart is better than to be one in language.”

— Masnvai, Jalal ad-Din Mohammad Rumi (1207-1273).

Transfer methods have several attractive qualities. They address the lack of annotated

data in low-resource languages. They are usually fast to develop, and their accuracy,

compared to an unsupervised learning method, is much closer to a supervised model.

In this thesis, we have proposed several methods to make use of transfer methods

for dependency parsing and sentiment analysis. Our empirical results show a substantial

improvement over previously state-of-the-art results, reducing the performance gap to

supervised models. We have shown that in the presence of a large amount of translation

data, we are able to obtain a highly accurate transfer model that its performance is very

close to that of a supervised model. Moreover, we have shown that when a large amount

of translation data is not available, we can still leverage annotated data in other languages

via using the cross-lingual word representations and syntactic reordering. A summary of

the contributions of this thesis is as follows:

• Developing accurate dependency parsers using annotation projection on a large

amount of translation data.

• Developing a method for learning cross-lingual word representations, including
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word clusters and word embeddings. We show that using those cross-lingual rep-

resentations works well in dependency parsing and sentiment analysis.

• Developing an accurate method for dependency parsing without the availability of

a large amount of translation data. We show that a combination of a direct transfer

model and annotation projection along with using cross-lingual word representa-

tions and partial lexicalization can substantially improve the accuracy of a transfer

method. Our empirical results on a large amount of parallel data have shown fur-

ther improvements on dependency parsing over our annotation projection method.

• Developing unsupervised syntactic reordering models that help reduce errors in

languages from different families in a direct transfer model.

• Conducting a diverse set of experiments on sentiment analysis transfer both for in-

domain and out-of-domain data, small translation data and large translation data.

We have developed models using annotation projection and direct transfer as well

as an ensemble of them.

We believe that these contributions are important to natural language processing. Our

methods are straightforward to use for new languages for which annotated data is not

available. Furthermore, one can study language families and origins of languages by using

the transfer methods as indicators of language similarity measures. One other interesting

aspect of our work is the study of syntactic dependency order across languages without

having any direct supervision. We believe that there are several potential avenues for

improvement over reordering models.
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8.1 Future Work

There are several things that are appealing to us as a potential subject for future work.

• Cross-lingual representation of sentences: Many of the methods that we proposed

in chapters 5-7 are based on the assumption that cross-lingual word embeddings

are perfect in representing similar concepts and function words across different

languages. This assumption is very ambitious: if it were the case, we would have

models with higher accuracies. There has been a great deal of research on develop-

ing cross-lingual word embeddings [Ruder, 2017], however, we do not believe that

the current methods are good enough for transferring linguistic annotations across

languages from different language families. We think that relying on word-level

cross-lingual representations is not technically reasonable for transfer methods;

instead, developing sentence-level cross-lingual representations can be beneficial.

Hence, two semantically similar sentences in two languages should obtain similar

vector-based representations. It is worth noting that, when we use a mixture of

direct transfer and annotation projection with neural networks, we implicitly de-

velop a cross-lingual sentence representation but it is not clear to what extent this

representation can be improved in a pre-training step.

• Holistic transfer of many natural language processing tasks: We only explored

two tasks in natural language processing, namely dependency parsing and senti-

ment analysis. One interesting subject for research would be to develop a holistic

model that works well on different natural language processing tasks.
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• Applying transfer models on downstream tasks: Tasks such as dependency

parsing are not the ultimate goal for natural language processing: we should

be able to apply a dependency parser to downstream applications. One impor-

tant example is machine translation. Recent work [Katz-Brown et al., 2011b;

Lerner and Petrov, 2013] has used supervised parsing models for improving ma-

chine translation. The key question is can we use a transfer method to improve

machine translation systems. One other example is cross-lingual question answer-

ing system, where the knowledge base is a union of different knowledge bases from

different languages.

• Transfer between closely-related languages: Transferring information between

closely related languages such as the Arabic dialects, Turkic families, etc., is an

appealing subject to pursue. We think that transferring between related languages

might be easier than languages that are not similar but they still have their own

problems such as false friends, dialectal variations of the same words, and slight

changes in syntactic order.

Each of the above ideas for future work can be interesting on their own right. We

believe that transfer methods are not sufficiently explored in the natural language pro-

cessing community; thus more research is required to make these methods practically

more useful.
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