8 research outputs found

    NASTyLinker: NIL-Aware Scalable Transformer-based Entity Linker

    Full text link
    Entity Linking (EL) is the task of detecting mentions of entities in text and disambiguating them to a reference knowledge base. Most prevalent EL approaches assume that the reference knowledge base is complete. In practice, however, it is necessary to deal with the case of linking to an entity that is not contained in the knowledge base (NIL entity). Recent works have shown that, instead of focusing only on affinities between mentions and entities, considering inter-mention affinities can be used to represent NIL entities by producing clusters of mentions. At the same time, inter-mention affinities can help to substantially improve linking performance for known entities. With NASTyLinker, we introduce an EL approach that is aware of NIL entities and produces corresponding mention clusters while maintaining high linking performance for known entities. The approach clusters mentions and entities based on dense representations from Transformers and resolves conflicts (if more than one entity is assigned to a cluster) by computing transitive mention-entity affinities. We show the effectiveness and scalability of NASTyLinker on NILK, a dataset that is explicitly constructed to evaluate EL with respect to NIL entities. Further, we apply the presented approach to an actual EL task, namely to knowledge graph population by linking entities in Wikipedia listings, and provide an analysis of the outcome.Comment: Preprint of a paper in the research track of the 20th Extended Semantic Web Conference (ESWC'23

    The role of knowledge in determining identity of long-tail entities

    Get PDF
    The NIL entities do not have an accessible representation, which means that their identity cannot be established through traditional disambiguation. Consequently, they have received little attention in entity linking systems and tasks so far. Given the non-redundancy of knowledge on NIL entities, the lack of frequency priors, their potentially extreme ambiguity, and numerousness, they form an extreme class of long-tail entities and pose a great challenge for state-of-the-art systems. In this paper, we investigate the role of knowledge when establishing the identity of NIL entities mentioned in text. What kind of knowledge can be applied to establish the identity of NILs? Can we potentially link to them at a later point? How to capture implicit knowledge and fill knowledge gaps in communication? We formulate and test hypotheses to provide insights to these questions. Due to the unavailability of instance-level knowledge, we propose to enrich the locally extracted information with profiling models that rely on background knowledge in Wikidata. We describe and implement two profiling machines based on state-of-the-art neural models. We evaluate their intrinsic behavior and their impact on the task of determining identity of NIL entities

    Advanced Methods for Entity Linking in the Life Sciences

    Get PDF
    The amount of knowledge increases rapidly due to the increasing number of available data sources. However, the autonomy of data sources and the resulting heterogeneity prevent comprehensive data analysis and applications. Data integration aims to overcome heterogeneity by unifying different data sources and enriching unstructured data. The enrichment of data consists of different subtasks, amongst other the annotation process. The annotation process links document phrases to terms of a standardized vocabulary. Annotated documents enable effective retrieval methods, comparability of different documents, and comprehensive data analysis, such as finding adversarial drug effects based on patient data. A vocabulary allows the comparability using standardized terms. An ontology can also represent a vocabulary, whereas concepts, relationships, and logical constraints additionally define an ontology. The annotation process is applicable in different domains. Nevertheless, there is a difference between generic and specialized domains according to the annotation process. This thesis emphasizes the differences between the domains and addresses the identified challenges. The majority of annotation approaches focuses on the evaluation of general domains, such as Wikipedia. This thesis evaluates the developed annotation approaches with case report forms that are medical documents for examining clinical trials. The natural language provides different challenges, such as similar meanings using different phrases. The proposed annotation method, AnnoMap, considers the fuzziness of natural language. A further challenge is the reuse of verified annotations. Existing annotations represent knowledge that can be reused for further annotation processes. AnnoMap consists of a reuse strategy that utilizes verified annotations to link new documents to appropriate concepts. Due to the broad spectrum of areas in the biomedical domain, different tools exist. The tools perform differently regarding a particular domain. This thesis proposes a combination approach to unify results from different tools. The method utilizes existing tool results to build a classification model that can classify new annotations as correct or incorrect. The results show that the reuse and the machine learning-based combination improve the annotation quality compared to existing approaches focussing on the biomedical domain. A further part of data integration is entity resolution to build unified knowledge bases from different data sources. A data source consists of a set of records characterized by attributes. The goal of entity resolution is to identify records representing the same real-world entity. Many methods focus on linking data sources consisting of records being characterized by attributes. Nevertheless, only a few methods can handle graph-structured knowledge bases or consider temporal aspects. The temporal aspects are essential to identify the same entities over different time intervals since these aspects underlie certain conditions. Moreover, records can be related to other records so that a small graph structure exists for each record. These small graphs can be linked to each other if they represent the same. This thesis proposes an entity resolution approach for census data consisting of person records for different time intervals. The approach also considers the graph structure of persons given by family relationships. For achieving qualitative results, current methods apply machine-learning techniques to classify record pairs as the same entity. The classification task used a model that is generated by training data. In this case, the training data is a set of record pairs that are labeled as a duplicate or not. Nevertheless, the generation of training data is a time-consuming task so that active learning techniques are relevant for reducing the number of training examples. The entity resolution method for temporal graph-structured data shows an improvement compared to previous collective entity resolution approaches. The developed active learning approach achieves comparable results to supervised learning methods and outperforms other limited budget active learning methods. Besides the entity resolution approach, the thesis introduces the concept of evolution operators for communities. These operators can express the dynamics of communities and individuals. For instance, we can formulate that two communities merged or split over time. Moreover, the operators allow observing the history of individuals. Overall, the presented annotation approaches generate qualitative annotations for medical forms. The annotations enable comprehensive analysis across different data sources as well as accurate queries. The proposed entity resolution approaches improve existing ones so that they contribute to the generation of qualitative knowledge graphs and data analysis tasks

    Linking named entities to Wikipedia

    Get PDF
    Natural language is fraught with problems of ambiguity, including name reference. A name in text can refer to multiple entities just as an entity can be known by different names. This thesis examines how a mention in text can be linked to an external knowledge base (KB), in our case, Wikipedia. The named entity linking (NEL) task requires systems to identify the KB entry, or Wikipedia article, that a mention refers to; or, if the KB does not contain the correct entry, return NIL. Entity linking systems can be complex and we present a framework for analysing their different components, which we use to analyse three seminal systems which are evaluated on a common dataset and we show the importance of precise search for linking. The Text Analysis Conference (TAC) is a major venue for NEL research. We report on our submissions to the entity linking shared task in 2010, 2011 and 2012. The information required to disambiguate entities is often found in the text, close to the mention. We explore apposition, a common way for authors to provide information about entities. We model syntactic and semantic restrictions with a joint model that achieves state-of-the-art apposition extraction performance. We generalise from apposition to examine local descriptions specified close to the mention. We add local description to our state-of-the-art linker by using patterns to extract the descriptions and matching against this restricted context. Not only does this make for a more precise match, we are also able to model failure to match. Local descriptions help disambiguate entities, further improving our state-of-the-art linker. The work in this thesis seeks to link textual entity mentions to knowledge bases. Linking is important for any task where external world knowledge is used and resolving ambiguity is fundamental to advancing research into these problems

    Enhancing knowledge acquisition systems with user generated and crowdsourced resources

    Get PDF
    This thesis is on leveraging knowledge acquisition systems with collaborative data and crowdsourcing work from internet. We propose two strategies and apply them for building effective entity linking and question answering (QA) systems. The first strategy is on integrating an information extraction system with online collaborative knowledge bases, such as Wikipedia and Freebase. We construct a Cross-Lingual Entity Linking (CLEL) system to connect Chinese entities, such as people and locations, with corresponding English pages in Wikipedia. The main focus is to break the language barrier between Chinese entities and the English KB, and to resolve the synonymy and polysemy of Chinese entities. To address those problems, we create a cross-lingual taxonomy and a Chinese knowledge base (KB). We investigate two methods of connecting the query representation with the KB representation. Based on our CLEL system participating in TAC KBP 2011 evaluation, we finally propose a simple and effective generative model, which achieved much better performance. The second strategy is on creating annotation for QA systems with the help of crowd- sourcing. Crowdsourcing is to distribute a task via internet and recruit a lot of people to complete it simultaneously. Various annotated data are required to train the data-driven statistical machine learning algorithms for underlying components in our QA system. This thesis demonstrates how to convert the annotation task into crowdsourcing micro-tasks, investigate different statistical methods for enhancing the quality of crowdsourced anno- tation, and ïŹnally use enhanced annotation to train learning to rank models for passage ranking algorithms for QA.Gegenstand dieser Arbeit ist das Nutzbarmachen sowohl von Systemen zur Wissener- fassung als auch von kollaborativ erstellten Daten und Arbeit aus dem Internet. Es werden zwei Strategien vorgeschlagen, welche fĂŒr die Erstellung effektiver Entity Linking (Disambiguierung von EntitĂ€tennamen) und Frage-Antwort Systeme eingesetzt werden. Die erste Strategie ist, ein Informationsextraktions-System mit kollaborativ erstellten Online- Datenbanken zu integrieren. Wir entwickeln ein Cross-Linguales Entity Linking-System (CLEL), um chinesische EntitĂ€ten, wie etwa Personen und Orte, mit den entsprechenden Wikipediaseiten zu verknĂŒpfen. Das Hauptaugenmerk ist es, die Sprachbarriere zwischen chinesischen EntitĂ€ten und englischer Datenbank zu durchbrechen, und Synonymie und Polysemie der chinesis- chen EntitĂ€ten aufzulösen. Um diese Probleme anzugehen, erstellen wir eine cross linguale Taxonomie und eine chinesische Datenbank. Wir untersuchen zwei Methoden, die ReprĂ€sentation der Anfrage und die ReprĂ€sentation der Datenbank zu verbinden. Schließlich stellen wir ein einfaches und effektives generatives Modell vor, das auf unserem System fĂŒr die Teilnahme an der TAC KBP 2011 Evaluation basiert und eine erheblich bessere Performanz erreichte. Die zweite Strategie ist, Annotationen fĂŒr Frage-Antwort-Systeme mit Hilfe von "Crowd- sourcing" zu erstellen. "Crowdsourcing" bedeutet, eine Aufgabe via Internet an eine große Menge an angeworbene Menschen zu verteilen, die diese simultan erledigen. Verschiedene annotierte Daten sind notwendig, um die datengetriebenen statistischen Lernalgorithmen zu trainieren, die unserem Frage-Antwort System zugrunde liegen. Wir zeigen, wie die Annotationsaufgabe in Mikro-Aufgaben fĂŒr das Crowdsourcing umgewan- delt werden kann, wir untersuchen verschiedene statistische Methoden, um die QualitĂ€t der Annotation aus dem Crowdsourcing zu erweitern, und schließlich nutzen wir die erwei- erte Annotation, um Modelle zum Lernen von Ranglisten von Textabschnitten zu trainieren

    Robust Entity Linking in Heterogeneous Domains

    Get PDF
    Entity Linking is the task of mapping terms in arbitrary documents to entities in a knowledge base by identifying the correct semantic meaning. It is applied in the extraction of structured data in RDF (Resource Description Framework) from textual documents, but equally so in facilitating artificial intelligence applications, such as Semantic Search, Reasoning and Question and Answering. Most existing Entity Linking systems were optimized for specific domains (e.g., general domain, biomedical domain), knowledge base types (e.g., DBpedia, Wikipedia), or document structures (e.g., tables) and types (e.g., news articles, tweets). This led to very specialized systems that lack robustness and are only applicable for very specific tasks. In this regard, this work focuses on the research and development of a robust Entity Linking system in terms of domains, knowledge base types, and document structures and types. To create a robust Entity Linking system, we first analyze the following three crucial components of an Entity Linking algorithm in terms of robustness criteria: (i) the underlying knowledge base, (ii) the entity relatedness measure, and (iii) the textual context matching technique. Based on the analyzed components, our scientific contributions are three-fold. First, we show that a federated approach leveraging knowledge from various knowledge base types can significantly improve robustness in Entity Linking systems. Second, we propose a new state-of-the-art, robust entity relatedness measure for topical coherence computation based on semantic entity embeddings. Third, we present the neural-network-based approach Doc2Vec as a textual context matching technique for robust Entity Linking. Based on our previous findings and outcomes, our main contribution in this work is DoSeR (Disambiguation of Semantic Resources). DoSeR is a robust, knowledge-base-agnostic Entity Linking framework that extracts relevant entity information from multiple knowledge bases in a fully automatic way. The integrated algorithm represents a collective, graph-based approach that utilizes semantic entity and document embeddings for entity relatedness and textual context matching computation. Our evaluation shows, that DoSeR achieves state-of-the-art results over a wide range of different document structures (e.g., tables), document types (e.g., news documents) and domains (e.g., general domain, biomedical domain). In this context, DoSeR outperforms all other (publicly available) Entity Linking algorithms on most data sets

    Joint Discourse-aware Concept Disambiguation and Clustering

    Get PDF
    This thesis addresses the tasks of concept disambiguation and clustering. Concept disambiguation is the task of linking common nouns and proper names in a text – henceforth called mentions – to their corresponding concepts in a predefined inventory. Concept clustering is the task of clustering mentions, so that all mentions in one cluster denote the same concept. In this thesis, we investigate concept disambiguation and clustering from a discourse perspective and propose a discourse-aware approach for joint concept disambiguation and clustering in the framework of Markov logic. The contributions of this thesis are fourfold: Joint Concept Disambiguation and Clustering. In previous approaches, concept disambiguation and concept clustering have been considered as two separate tasks (SchĂŒtze, 1998; Ji & Grishman, 2011). We analyze the relationship between concept disambiguation and concept clustering and argue that these two tasks can mutually support each other. We propose the – to our knowledge – first joint approach for concept disambiguation and clustering. Discourse-Aware Concept Disambiguation. One of the determining factors for concept disambiguation and clustering is the context definition. Most previous approaches use the same context definition for all mentions (Milne & Witten, 2008b; Kulkarni et al., 2009; Ratinov et al., 2011, inter alia). We approach the question which context is relevant to disambiguate a mention from a discourse perspective and state that different mentions require different notions of contexts. We state that the context that is relevant to disambiguate a mention depends on its embedding into discourse. However, how a mention is embedded into discourse depends on its denoted concept. Hence, the identification of the denoted concept and the relevant concept mutually depend on each other. We propose a binwise approach with three different context definitions and model the selection of the context definition and the disambiguation jointly. Modeling Interdependencies with Markov Logic. To model the interdependencies between concept disambiguation and concept clustering as well as the interdependencies between the context definition and the disambiguation, we use Markov logic (Domingos & Lowd, 2009). Markov logic combines first order logic with probabilities and allows us to concisely formalize these interdependencies. We investigate how we can balance between linguistic appropriateness and time efficiency and propose a hybrid approach that combines joint inference with aggregation techniques. Concept Disambiguation and Clustering beyond English: Multi- and Cross-linguality. Given the vast amount of texts written in different languages, the capability to extend an approach to cope with other languages than English is essential. We thus analyze how our approach copes with other languages than English and show that our approach largely scales across languages, even without retraining. Our approach is evaluated on multiple data sets originating from different sources (e.g. news, web) and across multiple languages. As an inventory, we use Wikipedia. We compare our approach to other approaches and show that it achieves state-of-the-art results. Furthermore, we show that joint concept disambiguating and clustering as well as joint context selection and disambiguation leads to significant improvements ceteris paribus
    corecore