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a b s t r a c t

Identifying entities in text is an important step of semantic analysis. Some entity mentions comprise a
name or description, but many include no information that identifies them in the system’s knowledge
resources, which means that their identity cannot be established through traditional disambiguation.
Consequently, such NIL (not in lexicon) entities have received little attention in entity linking systems
and tasks so far. However, given the non-redundancy of knowledge on NIL entities, their lack of
frequency priors, their potentially extreme ambiguity, and their numerousness, they constitute an im-
portant class of long-tail entities and pose a great challenge for state-of-the-art systems. In this paper,
we describe a method for imputing identifying knowledge to NILs from generalized characteristics.
We enrich the locally extracted information with profile models that rely on background knowledge
in Wikidata. We describe and implement two profiling machines using state-of-the-art neural models.
We evaluate their intrinsic behavior and their impact on the task of determining the identity of NIL
entities.

© 2020 Published by Elsevier B.V.

1. Introduction

Knowledge scarcity is (unfortunately) a rather prevalent phe-
nomenon, with most instances being part of the Zipfian long tail.
Applications in Information Extraction (IE) suffer from hunger
for knowledge, i.e., a lack of information on the tail instances in
knowledge bases (KBs) and in communication. Knowledge miss-
ing during IE system processing is traditionally injected from KBs,
which attempt to mimic the background knowledge possessed
and applied by humans. However, current KBs are notoriously
sparse [1], especially on long-tail instances. Not only there are
many instances with scarce knowledge, but most (real or imag-
inary) entities in our world have no accessible representation
at all. This poses a limitation to the Entity Linking (EL) task, as
we are unable to determine the identity of the vast majority of
entities through traditional disambiguation.1

Within EL, the forms that refer to non-represented entities are
simply resolved with a reference to a ‘NIL’ (not in lexicon). Taking
a step further, the TAC-KBP NIL clustering task [2,3] requires the
forms which refer to the same NIL entity within a dataset to
be clustered together. We note, however, that the utility of this

∗ Corresponding author.
E-mail addresses: ilievski@isi.edu (F. Ilievski), hovy@cmu.edu (E. Hovy),

piek.vossen@vu.nl (P. Vossen), k.s.schlobach@vu.nl (S. Schlobach),
qzxie@cs.cmu.edu (Q. Xie).
1 In this work, Entity Linking refers to the task of mapping already recognized

entity mentions in text to their representation in a knowledge base.

clustering is limited to the current dataset — provided that no
additional information is stored about this entity, it is simply
not possible to distinguish it from any other NIL entity found in
another dataset, nor to link any form outside of this dataset to
that instance, as it contains no description whatsoever. Address-
ing these limitations and bridging the gap between NIL clustering
and EL, here we create formal descriptions for NIL entities that
can easily be stored and linked to in the future.

In a real setting, NIL clustering quickly becomes very com-
plex. Consider a document D1 that mentions a NIL entity with a
name ‘John Smith’. Given a mention of the same form in another
document D2, we need to decide whether the two documents
report on the same person, or a different one sharing the name.
Thousands such documents may exist, most of which describe
a different person, but some of which could still be about the
same person as D1. Moreover, there is no guarantee that the
information about this entity will be consistent across documents.

The lack of frequency priors among these instances (I), the
scarcity and non-redundancy of knowledge (II), and the unknown,
but potentially extreme, ambiguity (III) make the NIL entities
a special case of long-tail entities and a great challenge for IE
systems [4]. Considering these factors, the knowledge about the
NIL entities needs to be carefully extracted (with both high pre-
cision and recall), combined, and stored, in order to allow further
reasoning.

In this paper, we investigate the role of knowledge when
establishing the identity of NIL entities mentioned in text. We

https://doi.org/10.1016/j.websem.2020.100565
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expect that even with perfect attribute extraction, it is not always
trivial to determine the identity of a long-tail entity across docu-
ments due to heterogeneity of information: the information about
an entity found in different documents is not necessarily identical
or even comparable, as these have been written independently of
each other and might exhibit different framing that is relevant in
their context.

When two entity descriptions are not directly comparable,
how can one decide on their (non-)identity? For instance, if John
Smith in D1 is a Texas-based truck driver and the one in D2 is
a recent Harvard graduate, are they likely to be identical? Al-
though these two descriptions do not reinforce or contradict each
other in a logical sense, people immediately make a judgment
that allows them to fill such knowledge gaps with ease. These
judgments are based on knowledge about associations among
facet values and a continuously evolving collection of cognitive
expectations and stereotypical profiles [5].2 People assume that
they are entitled to fill knowledge gaps with their expectations
unless contradictory evidence is explicitly presented.

Growing amounts of data and the advent of workable neural
(deep) models raise the natural question: how can one build
models that capture such prominent cognitive skills of people?
How can one fill knowledge gaps when these cannot be dis-
tilled directly from communication nor retrieved from existing
knowledge bases? A popular computational task of completing
missing values in a knowledge graph is Knowledge Base Comple-
tion (KBC), where the system is asked to add new concrete facts
given other instantial information. We motivate a variant of KBC
called profiling, where we predict expectations over value classes
rather than predicting specific values with high precision. These
expectations should of course be conditioned on whatever (par-
tial) information is provided for any test case, and automatically
adjusted when any additional information is provided. We see
profiling as a common and potentially more helpful capability for
filling gaps in IE, where knowing preferences or ranges of expec-
tations (rather than concrete values) is often necessary in order to
perform reasoning and to direct interpretation on underspecified
(long-tail) data.

We design and implement two profiling machines, i.e., back-
ground knowledge models that fill knowledge gaps, based on
state-of-the-art neural methods. The profiling machines are eval-
uated extrinsically on a NIL clustering task, where the evaluation
data concerns long-tail event participants (of type Person) from
the gun violence domain. To enable this evaluation, we match
the local, incomplete context extracted from text to its corre-
sponding profile. We investigate the effect of profiling on top
of varying amount and quality of information extracted from
text. The robustness of our models is tested by a systematic
increase in the ambiguity of forms. By combining explicit and
implicit knowledge, we are able to gain insight into the role
of background knowledge models when establishing identity of
long-tail entities. In addition, we perform an intrinsic evaluation
of the behavior and performance of the profiling models.

We summarize the contributions of this paper as follows:

1. We formulate a set of hypotheses about the role of back-
ground knowledge models in establishing identity of long-
tail entities (Section 3).

2. We motivate a KBC-variant of profiling (Section 4) to sup-
port the interpretation of contextual, long-tail instances in
IE. In profiling, we predict expectations over value classes
rather than predicting specific values with high precision.

2 We consider the terms ‘attribute’, ‘property’, and ‘facet’ to be synonymous
in the context of this work. Hence, we will use them interchangeably.

3. We describe two generic state-of-the-art neural methods
that can be easily instantiated into profiling machines for
generation of expectations (Section 4).

4. We illustrate the usefulness of the profiling methods ex-
trinsically on a task of NIL clustering (Section 6). By de-
termining identity of entities without popularity or fre-
quency prior and under very high ambiguity, we deliber-
ately address the true challenges for the entities in the
distributional ‘tail’.

5. We evaluate the profiling methods intrinsically against
known values in Wikidata and against crowd judgments,
and compare the results to gain insight in the nature of
knowledge captured by profiles (Section 7).

6. All code and data is made available to facilitate future
research.

2. Related work

The task of determining identity of NIL entities has been
motivated by NIL clustering, a recent addition to the standard task
of EL. We review previous approaches for EL and NIL clustering
in Section 2.1. A knowledge-based reasoning over identity in
text resembles previous work on attribute extraction and slot
filling (Section 2.2). Existing tasks and typical state-of-the-art
approaches for filling knowledge gaps are covered in Sections 2.3
and 2.4.

2.1. Entity linking and NIL clustering

Entity Linking. EL facilitates the integration and reuse of
knowledge from existing KBs into corpora, established through
a link from an entity mention in text to its KB representation.
Many EL systems have been proposed in the past decade [6–11].
These systems typically rely on various probabilistic algorithms
for graph optimization or machine learning, in order to pick the
correct entity candidate for a surface form in a given context.

Most recent approaches for entity linking rely on entity and
word embeddings, trained over Wikipedia or its structured deriva-
tives. [12,13] show how to compute embeddings separately on a
knowledge graph (e.g., DBpedia) and on a collection of documents
(e.g., Wikipedia), and how to align both (e.g., by using information
from the hyperlinks in Wikipedia). These methods arguably work
well for unknown entities at test time. [14,15] apply such pre-
trained embeddings on the task of Entity Linking. At test time,
they compute an embedding of an entity mention and look for
the most similar entity embedding from the KB, using a metric
like cosine similarity. Notably, these works exclude NIL entities
from their evaluation. Another option is to train the entity and
word embeddings jointly over Wikipedia documents only, with
no alignment function needed [16]. The pre-trained embeddings
of each candidate are then compared (using cosine similarity)
with the embedding of the mention that is being resolved. This
similarity, enriched with other features about that candidate and
the textual content of a mention, is used as features in a neural
network that decides whether a candidate fits the textual context,
or not.

While state-of-the-art systems exhibit sophisticated architec-
tures and report high results, it has been argued and shown that
these base their performance on the frequent and unambiguous
‘head’ cases, while performance drops significantly when moving
towards the rare and ambiguous ‘long-tail’ entities [4,17,18]. The
analysis in [19] demonstrates that state-of-the-art EL systems
lack much human-like knowledge and argues that this causes the
lower performance on long-tail entities, where this knowledge
is most needed. Similarly, Sakor et al. [11] introduce the role of
background knowledge in targeting entity linking over short text.
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An extreme category of long-tail entities in the EL task are
the NIL entities. NIL entities are entities without a represen-
tation in a knowledge base [2]. These are typically considered
to have low frequencies within a corpus and/or to be domain-
specific. Esquivel et al. [18] report that around 50% of the people
mentioned in news articles are not represented in Wikipedia.
Since Wikipedia and its structured data counterparts are almost
exclusively used as an anchor in EL, this means that for half of all
people mentions, the EL task is nonsensical.

NIL clustering. The Text Analysis Conference’s Knowledge
Base Population (TAC-KBP) [2,3] challenge has introduced a task
of NIL clustering, asking systems to cluster NIL mentions that
are coreferential. Although state-of-the-art EL systems do not
perform NIL clustering or do not detail their clustering algorithm,
several NIL clustering approaches were proposed within the TAC
competitions. In [20], three baseline techniques to cluster NIL
entities are proposed: 1. ‘term’ (cluster terms that share the same
mention) 2. ‘coref’ (cluster based on in-document coreference)
3. ‘KB’ (use information from a KB where this NIL actually does
exist) . Graus et al. [21] first translate the full documents to
TF.IDF weighted vectors, then perform hierarchical agglomera-
tive clustering algorithm on the vectors of all documents that
were previously labeled as NIL by the system. [22] performs NIL
clustering together with EL, by first clustering mentions based
on their term and certain features: type, verbal context, etc.,
and then optionally linking the cluster to a KB entity. When
resolving a nominal mention, the most effective approach is to
apply within-document coreference resolution to resolve it to a
name mention [3]. Linking each identified nominal mention to its
closest person name mention can yield 67% accuracy [23].

Notably, NIL clustering is a fairly marginal part of the full
task of interpretation of entity mentions. The clustering of NILs
is either not done at all, or not reported/assumed to be done in
a default (perhaps term-based) manner. Reported methods are
typically based on the term itself, coreference, and verbal context.
We focus on establishing identity of NIL entities, and we apply
a method that is based on background knowledge models and
reasoning over entity attributes.

2.2. Attribute extraction

Previous work on attribute extraction in the field of Infor-
mation Retrieval (IR) [24,25] resembles our task and method in
several aspects: 1. multiple documents may point to the same
person, and there is ambiguity of person names; 2. many entities
belong to the long tail; 3. the method is to represent people with
attributes that are extracted from text; 4. modeling of instances
is based on a restricted set of attributes. However, given that the
goal is to find personal websites in a search engine, the context
of disambiguation is poorer. Moreover, in most cases, clustering
on a document level is sufficient, since there is a single central
entity per document.

The goal in the slot filling task is use a document collection to
fill in values for specific attributes (‘slots’) of given entities. The
per-attribute F1-scores show large variance between attributes,
between systems, and across datasets. Angeli et al. [26] report an
average slot filling F1-score of 37%, the average score in [27] is
53%, whereas the average F1-scores in the TAC KBP slot filling
competitions in 2016 and 2017 for English are between 10%
and 25%. Considering this instability in performance and the fact
that some of the properties we use were customized to fit the
information found in a document, we opted to build our own
lexical attribute extractors (described in Section 5.4), whose per-
formance is comparable to that reported in the aforementioned
papers.

2.3. Knowledge base completion (KBC)

Most facet values in both Freebase and Wikidata are miss-
ing [1]. KBC adds new facts to knowledge bases/graphs based on
existing ones. Two related tasks are link prediction (with the goal
to predict the subject or object of a given triplet, usually within
the top 10 results) and triplet completion (a binary task judging
whether a given triplet is correct).

In the past decade, KBC predominantly employed deep
embedding-based approaches, which can be roughly divided into
tensor factorization and neural network models [28]. TransE [29]
and ITransF [30] are examples of neural approaches that model
the entities and relations in embedding spaces, and use vector
projections across planes to complete missing knowledge. Tensor
factorization methods like [31] regard a knowledge graph as a
three-way adjacency tensor. Most similar to our work, Neural
Tensor Networks [32] also: 1. aim to fill missing values to mimic
people’s knowledge; 2. evaluate on structured relations about
people; 3. rely on embeddings to abstract from the actual people
to profile information.

Universal Schema [33] includes relations extracted from text
automatically, which results in larger, but less reliable, initial set
of relations and facts. It was designed for the needs of NLP tasks
such as fine-grained entity typing [34].

As apparent from the amount and diversity of work described
here, KBC research is a well-established research direction that
encapsulates various efforts to complement knowledge about
real-world instances with probable new facts. We define profiling
as a variant of KBC that aims: 1. to generate an expectation class
for every facet of a category/group, rather than suggesting missing
facts; 2. to provide a typical distribution (not a specific value) for
the attributes of a specific group. These differences make profiling
more useful for reasoning over incomplete data in NLP and AI
applications, and related to cognitive work on stereotypes.

KnowledgeVault (KV) [1] is a probabilistic KB by Google, which
fuses priors about each entity with evidence about it extracted
from text. Despite using a different method, the priors in KV serve
the same purpose as our profiles: they provide expectations for
all unknown properties of an instance, learned from factual data
on existing instances. Sadly, the code, the experiments, and the
output of this work are not publicly available, thus preventing
further analysis of the priors, their relation to cognitive/cultural
profiling as done by humans, and their applicability in IE identity
tasks.

2.4. Other knowledge completion variants

Several other, quite distinct research areas, are relevant to
profiling. We briefly list some of the most relevant work.

Data imputation. Data imputation refers to the procedure of
filling in missing values in databases. In its simplest form, this
procedure can be performed by mean imputation and hot-deck
imputation [35]. Model-based methods are often based on re-
gression techniques or likelihood maximization [36]. These efforts
focus on guessing numeric and interval-valued data, which is
a shared property with the related task of guesstimation [37].
In contrast, profiling aims to predict typical classes of values.
Moreover, it is unclear how to apply data imputation in IE use
cases.

Estimation of property values. Past work in IR attempted to
improve the accuracy of retrieval of long-tail entities by estimat-
ing their values based on observed head entities. Most similar
to profiling, the method in [38] estimates a property of a long-
tail entity based on the community/ies it belongs to, assuming
that each entity’s property values are shared with others from
the same community. Since the goal of this line of research is to
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improve the accuracy of retrieval, the generalization performed
is rather ad hoc, and the knowledge modeling and management
aspects have not been investigated in depth. Moreover, the code,
the experiments, and the results of this work are not available
for comparison or further investigation of its usefulness for IE
applications.

Social media analysis. Community discovery and profiling in
social media is a task that clusters the online users which belong
to the same community, typically using embeddings represen-
tation [39], without explicitly filling in (representing) missing
property values.

Local models that infer a specific property (e.g., user’s lo-
cation) based on other known information, such as her social
network [40] or expressed content [41], also address data spar-
sity. These models target specific facets and data types, thus they
are not generalizable to others. Similarly to models in KBC, they
lack cognitive support and fill specific instance values rather than
typical ranges of values.

Probabilistic models. Prospect Theory [42] proposes human-
inspired cognitive heuristics to improve decision making under
uncertainty. The Causal Calculus theory [43] allows one to model
causal inter-facet dependencies in Bayesian networks. Due to its
cognitive background and assumed inter-facet causality, profiling
is a natural task for such established probabilistic theories to be
applied and tested.

Stereotypes. Stereotype creation is enabled by profiling. The
practical uses of stereotypes are vast and potentially ethically
problematic. For example, [44] claims that embedding repre-
sentations of people carry gender stereotypes; they show that
the gender bias can be located in a low-dimensional space, and
removed when desired. We leave ethical and prescriptive con-
siderations for other venues, and note that artificially removing
certain profiling-relevant signals from the data makes embed-
dings far less useful for downstream IE tasks when evaluated
against human performance.

3. Task and hypotheses

This section provides an explanation of the NIL clustering task,
describes our notion of background knowledge, and lists the set
of hypotheses that we will investigate.

3.1. The NIL clustering task

NIL entities are those that do not have a representation in
the referent knowledge base K to which we are linking. Given
that most world entities are NIL entities, the real-world ambigu-
ity among NIL entities is potentially far larger compared to the
ambiguity of the non-NIL entities that constitute the majority of
our EL datasets. In addition, the lack of an existing representation
of these instances in a knowledge base and the minimal textual
information on them, means that there is very little redundancy
of information on the NIL entities. The ambiguity and knowledge
sparsity of these entities require systems to extract informa-
tion on NIL mentions carefully and with high precision, but also
to be able to have the right expectations about the pieces of
information that have been deliberately left out.

NIL clustering Similar to the NIL clustering task introduced
in TAC-KBP, the aim in this work is to cluster NIL mentions that
are coreferential. Formally, the set of forms fi,1, . . . , fi,n belongs
to the same cluster with the set of forms fj,1..., fj,m if and only if
they refer to the same entity instance.

3.2. Types of knowledge

NIL entities have no accessible representation, which pre-
vents one to establish their identity with traditional EL. There is,
however, information about these entities in textual documents,
which can be used as basis to perform clustering or generate a
new representation. Moreover, this knowledge found in text can
be enhanced with various background knowledge found in the
metadata of the document, other documents, or knowledge bases.

MacLachlan and Reid [45] define four types of contextual
knowledge that are essential for humans to interpret text. These
are: intratextual, intertextual, extratextual, and circumtextual
knowledge. In [19], we adapted these four categories to the task
of establishing identity of entities in text:

1. Intratextual knowledge is any knowledge extracted from
the text of a document, concerning entity mentions, other
word types (e.g., nouns, verbs), and their order and struc-
ture in the document. It relates to framing new and given
information and notions such as topic and focus. Central
entities in the discourse are referred to differently than
peripheral ones.

2. Extratextual knowledge concerns any entity-oriented knowl-
edge, found outside the document in (un)structured knowl-
edge bases. It can be episodic (instantial) or conceptual.
The former is the knowledge about a concrete entity: its
labels, relation to other entities, and other facts or expe-
riences. Conceptual knowledge refers to the expectations
and knowledge gaps that are filled by an abstract model
(i.e., ontology), representing relations between types of
entities.

3. Circumtextual knowledge refers to the circumstances through
which text as an artifact has come into existence. Docu-
ments are published at a specific time and location, written
by a specific author, released by a certain publisher, and
potentially belong to some series. These circumstances
frame the written text and aid the interpretation of the
mentioned entities.

4. Documents are not self-contained and rely on intertextual
(cross-document) knowledge distilled by the reader from
related documents. They are published in a stream of in-
formation and news, assuming knowledge about preceding
related documents, which typically share the same topic
and community, and may be published around the same
time and location. Early documents that introduce a topic
typically make more explicit reference than those pub-
lished later on when both the event and the topic have
evolved.3

In our line of work, the term background knowledge refers
to the union of the intertextual, circumtextual, and extratextual
knowledge. Background knowledge has been shown to be largely
excluded by current systems that establish identity of entities in
text, which has grave consequences for the long-tail cases [19].

3.3. Research goals and hypotheses

In this paper, we seek to understand the role of various knowl-
edge that is potentially needed in order to establish identity
of a NIL entity. It is unclear to which extent the intratextual
knowledge, distilled from text, is sufficient to establish identity
of long-tail entities. It is also unclear what is the potential of
implicit, background knowledge to improve the performance on

3 Compare the use of hashtags in Twitter streams once an event becomes
trending.
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Table 1
Hypotheses on the role of profiling for establishing identity of long-tail entities.
ID Hypothesis Sec

C1 Assuming that the available information in documents is sufficient, perfect attribute extraction would
perform NIL clustering reliably.

6.1

C2 Automatic attribute extraction leads to a decline in the clustering performance compared to perfect extraction. 6.1
C3 Assuming sufficient information and perfect attribute extraction, the role of profiling is minor. 6.2
C4 Profiling can improve clustering performance when attribute extraction is less accurate. 6.2
C5 The overall clustering performance is inversely proportional with ambiguity. 6.3
C6 The effect of profiling is larger when the ambiguity is higher. 6.3

Table 2
Hypotheses on the behavior of profiling.
ID Hypothesis Sec

P1 Profiling corresponds to the factual instance data. 7.1
P2 Profiling corresponds to human expectations. 7.2
P3 Profiling is more helpful when the entropy is higher. 7.1, 7.2
P4 Profiling is more helpful for larger value spaces. 7.1
P5 Profiling performs better with more known facets. 7.1

this task, and what is the sensitivity of the performance to varying
degrees of data ambiguity.

Even though background knowledge is intuitively essential
for better information extraction on long-tail cases and further
inclusion has been argued for (cf. [19]), to the best of our knowl-
edge, no previous work has investigated this quantitatively in a
systematic manner. In order to gain insight into our questions,
we put forward six hypotheses about the role of various kinds
of knowledge in the task of NIL clustering. These hypotheses are
listed in Table 1. On the one hand, we investigate the impact
of intratextual knowledge, distilled from information that is ex-
plicitly stated in text. On the other hand, we capture implicit
expectations by people when processing such a document by in-
cluding profiling models that generalize over existing background
knowledge.4 Our current profiling machines are based on extra-
textual knowledge; integrating and investigating circumtextual
and intertextual knowledge is planned for future work. Profiling
as a cognitive task and our computational variant inspired by it,
are introduced in detail in the next section of this paper.

Since the profiling components are central to our work, we
perform intrinsic analysis of their behavior, by comparing them
to human judgments and existing instances in Wikidata. Our
expectations for the intrinsic evaluations are summarized in Ta-
ble 2. These resemble studies on stereotyping accuracy in social
psychology (cf. [46]), as well as to previous analyses that mea-
sure the sensitivity of knowledge graph representation systems
with respect to sparsity, reliability, and diversity of knowledge
(cf. [47]). Nevertheless, we expect that these hypotheses reveal
new insights, considering that profiling is a novel variant of KBC
designed to fill knowledge gaps in text.

4. Profiling

4.1. Aspects of profiles

Following [48] we define a profile as a set of beliefs about
the attributes of members of some group. A stereotypical profile
is a type of schema, an organized knowledge structure that is
built from experience and carries predictive relations, thus pro-
viding a theory about how the social world operates [49]. As
a fast cognitive process, profiling gives basis for acting in un-
certain/unforeseen circumstances [50]. Profiles are ‘‘shortcuts to

4 By ‘implicit expectations’, we mean probabilistic background knowledge
that is not explicitly stated in text, yet it is commonly used by people to
interpret text.

thinking’’, that provide people with rich and distinctive informa-
tion about unseen individuals. Moreover, they are efficient, thus
preserving our cognitive resources for more pressing concerns.

Profile accuracy reflects the extent to which beliefs about
groups correspond to the actual characteristics of those groups
[46]. Consensual ones have been empirically shown to be highly
accurate, especially the demographic (race, gender, ethnicity, etc.)
and other societal profiles (like occupations or education), and
somewhat less the political ones [46]. This high accuracy does not
mean that profiles will correctly describe any group individual;
they are a statistical phenomenon. Thus, the findings in [46] that
most profiles are justified empirically are of great importance for
AI machines: it means that they can be reliably inferred from
individual facts, which (unlike many profiles themselves) are
readily available.

Profiles exist at various levels of specificity for facets and their
combinations. A profile of 20th century French people differs
from a profile of 20th century people in general, with more
specificity in what kind of food they eat and what movies they
watch, or from the profile of French people across all ages. Added
information usually causes the initial expectations to change
(‘‘shift’’), gradually narrowing the denotation group in a transition
toward ultimately an individual. The shift may be to a more
accurate profile (what in [51] is called an ‘‘accurately shifted
item’’), or the opposite (‘‘inaccurately shifted item’’).

4.2. Examples

People have no trouble making and using profiles/defaults:
P1 is male and his native language is Inuktitut. What are his

citizenship, political party, and religion? Would knowing that he was
born in the 19th century change one’s guesses?

P2 is a member of the American Senate. Where did he get his
degree, and what is his native language?

P3 is an army general based in London. What is P3’s stereotypical
gender and nationality? If P3 gets an award ‘‘Dame Commander of
the Order of the British Empire’’, which expectations would change?

Presumable answers to these questions are as follows. P1 is a
citizen of Canada, votes for the Conservative Party of Canada, and
is Catholic. However, P1’s 19th century equivalent belongs to a
different party. P2 speaks English as main language and graduated
at Harvard or Yale University. Finally, the initial expectation on
P3 of a male Englishman switches to a female after the award
evidence is revealed.

Most of us would agree with the suggested answers. Why!?
What is it about the Inuktitut language that associates it to
the Conservative Party? Why is the expectation about the same
person in different time periods different? Why does the sole
change of political party change the expectation of one’s work
position or cause of death? Despite the vast set of possibilities,
these kinds of knowledge gaps are easily filled by people based on
knowledge about associations among facet values, and give rise
to a continuously evolving and changing collection of cognitive
expectations and stereotypical profiles.

IE systems require such human-like expectations in order to
deal with knowledge sparsity and the ambiguity of language. In
this paper, we illustrate this on a task of establishing identity of
long-tail entities.
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4.3. Definition of a profile

An ideal representation of a long-tail entity would entail com-
bining explicitly stated information in text with implicit expec-
tations based on background knowledge. To illustrate this, let us
consider our John Smith from D1 (Section 1): a Texas-based truck
driver. Our implicit knowledge would enhance this information
with expectations about his native language (almost certainly
English), religion (e.g., 98% chance of being Christian, 2% others),
and gender (e.g., 85% male, 15% female). Here knowledge plays a
role both in the local, textual context, as well as in the enrichment
of this local context with expectations stemming from a profile.
The hunger for knowledge on the long-tail entities can best be
bridged by rich knowledge on both sides of the puzzle.

We use property-value pairs to represent the set of facts in
the local context, which are based on intratextual knowledge
found in text. The profiles are formalized as learned probability
distributions over the properties with no known value, and rely
exclusively on extratextual knowledge.5

For a set of identical surface forms f mentioned in text, we
define its locally learned description, i.e., local context lc(f), as a
set of property-value pairs extracted from text:

lc(f ) = {(pi, vij)|pi ∈ P ∧ vij ∈ Vi}

Here P is the set of the considered properties, and Vi is the
domain of values for a property pi.

Local contexts may not be sufficient to establish identity of
entity mentions because: 1. The same form can refer to different
local contexts, which might or might not be identical (ambiguity)
2. Different forms sometimes refer to the same local context
(variance). Then our task is to establish identity between some,
but not all, local contexts. This is non-trivial, since the local
concepts are often not directly comparable. For example, while
lc1 = {(‘Birthplace’, ‘Mexico’)} and lc2 = {(‘Birthplace’, ‘NewYork’)}
are certain to be non-identical, none of them can be directly
compared to lc3 = (‘Ethnicity’, ‘Hispanic/Latin’).

For this purpose, we introduce the notion of profiles: globally
learned descriptions that help to distinguish local contexts. Given
a set P of properties p1, . . . , pN and a local context lc(f ) =
(p1, v1k), . . . , (pi, vik), we define its profile as a distribution of
expected values for the remaining (N − i) properties, namely:

profile(f , P, V , T , K ) = lc(f ) ∪ {(pi+1, di+1), . . . , (pN , dN )}

where di+1, . . . , dN are distributions of expected values for the
properties pi+1, . . . , pN given the known property-value pairs in
the local concept lc(f ). Besides the form and its local context, the
profile of a form depends on: a set of properties P , their corre-
sponding domain of values V , the set of textual documents T , and
the background knowledge K . For a local entity context extracted
from text, the goal of profiling is to produce an optimal profile. A
profile is considered optimal when its property-value pairs have
the highest probability given the background knowledge used for
training.

Such global profiles would provide us with a global network
to compare and disambiguate local contexts that are not directly
comparable. By doing so, we expect that we can cluster identical
local contexts and pull apart non-identical local contexts with
a higher accuracy. We consider all local contexts that share the
same profile to be identical, constituting an equivalence class.

In order to fulfill their function of successfully disambiguating
two locally derived contexts from text, the set of properties and
values constituting a profile needs to fulfill several criteria:

5 Generally speaking, the local context and the profiles could be represented
in a variety of ways, and could be based on different kinds of knowledge.
Alternative representations (e.g., word embeddings) and an integration of addi-
tional knowledge (e.g., circumtextual) would be relevant to investigate in future
research.

1. to be generic enough6
2. to be restricted by what can be learned from background

knowledge
3. to be based on what can be found in text
4. to be the minimal set of such properties

These criteria are application-dependent: while in IE tasks
they are driven by the information found in text, an IR application
could employ criteria like demand/usage [52].

4.4. Neural methods for profiling

Next, we describe neural methods for profiling at scale, and
baselines for comparison. The implementation code of these ar-
chitectures and the code to prepare data to train them are avail-
able on GitHub: https://github.com/cltl/Profiling.

4.4.1. Autoencoder (AE)
An autoencoder is a neural network that is trained to copy

its input to its output [53]. Our AE contains a single densely
connected hidden layer.

Input The input x of the AE is a concatenation of n dis-
crete facet representations x = x1, . . . , xn. Each of the facets xi
(e.g., political party) has a vocabulary vi of possible values which
is determined by the training data. We encode an attribute value
with an embedding of size Ne, resulting in a size of the embedding
input layer of |x| = n ∗Ne. These facet embeddings are initialized
randomly and are trained as part of the network.

For example, if the input x represents the entity Angela Merkel
(Wikidata ID: Q567), it would consist of n embeddings for its n
individual attribute values (nationality: German, political party:
Christian Democratic Union, etc.).

Output We denote the corresponding output for an input
sequence x with z = g(f (x)), where f is the encoding and g is the
decoding function. The output layer of the AE assigns probabilities
to the entire vocabulary for each of the n features. The size of the
output layer is a sum over the variable vocabulary sizes of the
individual inputs vi: |z| =

∑n
i=1 vi.

For instance, if our data consists of three attributes with vo-
cabulary sizes: v1 = 300, v2 = 400, and v3 = 500, then the
output layer would concatenate the probabilities for all attribute
values, leading to an output layer size |z| of 1,200.

Loss function The AE aims to maximize the probability of the
correct class for each feature given inputs x, i.e., it is trained to
minimize the cross-entropy loss L that measures the discrepancy
between the output and the input sequence:

L(x, z) = −
n∑

i=1

[xilogzi + (1− xi)log(1− zi)]

We note that we evaluate the correctness of the predicted class
against the ‘true’ one for each attribute separately, while masking
the corresponding value in the input. The informativeness of the
learning task is further enhanced by a probabilistic dropout that
masks part on the input, as well as the fact that the hidden layer
in an autoencoder acts as a form of compression.

Sparsity Due to the sparse input, it is crucial that AE can
handle missing values. We aid this in two ways: 1. we deter-
ministically mask all non-existing input values; 2. we apply a
probabilistic dropout on the input layer, i.e., in each iteration we
randomly remove a subset of the inputs (any existing input is
dropped with a probability p) and train the model to still predict

6 By ‘generic’, we mean that the properties and their values should be
easily applicable to unseen instances, but also to be meaningful to define their
identity. The values for each property, moreover, should be disjoint and easily
distinguishable.

https://github.com/cltl/Profiling
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these correctly. Although we apply the dropout method to the
input layer rather than the hidden layer, we share the motivation
with [54] to make the model robust and able to capture subtle
dependencies between the inputs. Such dropout helps the AE
reconstruct missing data.

4.4.2. Embedding-based neural predictor (EMB)
In our second architecture each input is a single embedding

vector e rather than a concatenation of n facet embeddings. For
example, the input for the entity Angela Merkel is its fully-
trained entity embedding. The size of the input x is the size of
that entity embedding: |e| = Ne. In the current version of EMB
we use pre-trained embeddings as inputs, and we do not tune
their values further. Future work can investigate the benefits of
further training/tuning.7. We refer the reader to Section 4.4.4 for
details on the pre-trained embeddings we use and their training
procedure.

We expect that the entity embedding encodes rich information
associated with an entity; the task of the neural network EMB is
to extract/predict attribute values from it.

Like the AE, EMB has one densely connected hidden layer. For
an input x and its embedding representation e, the corresponding
output is z = g(h(e)). The output layer of the embedding-based
predictor has the same format as the one of the AE, and the same
cross-entropy loss function L(x, z). In this architecture, we do not
perform masking of the input, as it is not obvious which parts of
the input embedding correspond to which attributes.

4.4.3. Baselines
We evaluate the methods against two baselines: a most fre-

quent value (MFV) and a Naive Bayes (NB) baseline.
Most frequent value baseline (MFV) chooses the most fre-

quent value in the training data for each attribute. For instance,
since 14.26% of all politicians are based in the USA, MFV’s accu-
racy for profiling politicians’ citizenship is 14.26%.

Its motivation is shared with previous frequency-based base-
lines, such as the most frequent sense (MFS) baseline discussed
in [55]. The MFV baseline indicates for which facets and to which
extent our methods can learn dependencies that transcend fre-
quency statistics. Given its simplicity, we implement MFV from
scratch.

Naive Bayes classifier (NB) [56] applies Bayes’ theorem with
strong independence assumptions between the features. We rep-
resent the inputs for this classifier as one-hot vectors. Naive Bayes
classifiers consider the individual contribution of each input to
an output class probability. However, the independence assump-
tion prevents it from adequately handling complex inter-feature
correlations.

Our NB baseline is based on the scikit-learn implementa-
tion of the Naive Bayes algorithm.8

We deliberately opted for simple baselines with gradually
increasing complexity, as these reveal insights into the various
complexity levels of the underlying data. Namely, the first base-
line would perform well on facets that can be largely predicted
based on simple frequency counts. The second baseline goes a
step further, as it allows us to model input–output dependencies,
but is unable to model inter-feature correlations. We expect that
a subset of the predictions can be correctly performed by our
simple baselines, whereas many others would require more so-
phisticated neural techniques such as those described in Sections
4.4.1 and 4.4.2. We study the behavior of our baselines and neural
methods in relation to the data properties in Section 7.

7 As pre-trained embeddings are often not available or easy/quick to create,
sometimes such training is unavoidable.
8 https://scikit-learn.org/stable/modules/naive_bayes.html.

Finally, we note that the list of baselines is far from complete
and it should be extended with other approaches, including ma-
chine learning algorithms like Support Vector Machines (SVM),
case-based reasoning algorithms, and state-of-the-art knowledge
base completion systems such as the ones reviewed in Section 2.

4.4.4. Model implementation details
We experimented with various parameter values suggested in

the literature and opted for the following settings. Both neural
models use a single dense hidden layer with 128 neurons. For
the AE model, we pick an attribute embedding size of Ne = 30.
These vectors are initialized randomly and trained as part of the
network. We set the dropout probability to p = 0.5.

The inputs of EMB are 1000-dimensional vectors representing
Freebase entities. These Freebase vectors were trained on a news
corpus using the ‘word2vec‘ method, and are publicly available at
. In total, this dataset provides us with 1.4 million entity embed-
dings. They correspond and can be mapped to only a subset of all
million Wikidata entities.

Both models were implemented in Theano [57]. We used
the ADAM [58] optimization algorithm. We train for a maxi-
mum of 100 epochs with early stopping after 10 consecutive
no-improvement iterations, to select the best model on a held-
out validation data. We fix the batch size to 64. When an attribute
has no value in an entire minibatch, we apply oversampling: we
randomly pick an exemplar that has a value for that attribute
from another minibatch and append it to the current one.

5. Experimental setup

Next, we introduce our experimental setup. We start by dis-
cussing a modular end-to-end pipeline for NIL clustering, which
will allow us to systematically investigate our research question
and hypotheses. Then, we present the data we evaluate on, the
evaluation metrics we employ to measure the performance of
individual components in the pipeline, and the functionality of
these components in detail. The code of all experiments can be
found on GitHub: https://github.com/cltl/LongTailIdentity.

5.1. End-to-end pipeline

The testing of our hypotheses C1–C6 is enabled by following
different paths in a modular end-to-end architecture for NIL clus-
tering. Fig. 1 presents a schematic overview of the components
that constitute our end-to-end NIL clustering architecture. The
input to the pipeline consists of a set of documents with known
entity names (see Section 5.2 for details on the data). The goal of
the pipeline is to create clusters of NIL entities. The evaluation of
these clusters against the gold clustering output is described in
Section 5.3.

The pipeline consists of three main processes: attribute ex-
traction, profiler, and reasoner. The attribute extraction process
aims to extract explicitly given information about an entity in a
document (we refer the reader to Section 5.4 for more details on
our attribute extractors). We experiment with both gold (perfect)
attribute extraction, as well as automatic (imperfect) extractors.
Once the explicitly mentioned attributes have been extracted, we
run profiling models (described in 4.4) to obtain default expec-
tations for the attributes which are not explicitly given. Details
on the profiling data and architecture are given in Section 5.5.
In the final third step, we perform reasoning in order to cluster
the entity mentions in different documents based on the locally
extracted information, potentially enriched by the profiling. The
reasoners that we used for this step are described in Section 5.6.

https://scikit-learn.org/stable/modules/naive_bayes.html
https://github.com/cltl/LongTailIdentity
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Fig. 1. End-to-end architecture for NIL clustering.

5.2. Data

SemEval-2018 task 5 We test our methods on the Gun Vio-
lence domain data from the SemEval-2018 task 5 on ‘Counting
events and participants in the long tail’ [59]. Its data consists of
documents which potentially describe the same incident; the goal
is then to find the number of incidents that satisfy the question
constraints, to decide on the documents that report on these
incidents, and count the participants in their corresponding roles.
Given that this task evaluates the identity of events, we first need
to prepare the data to be suitable for evaluation of the identity of
entities.

The SemEval-2018 task 5 data is exceptional in that it de-
scribes unknown people participating in local incidents, described
in local news documents. As such, these people can safely be
assumed to have no representation in the customary knowledge
bases, such as DBpedia, but neither in the Linked Open Data cloud.
The only way in which we can model the identity of these people
is through extensive usage of knowledge, found in the current
or other documents, as well as reasoning over conceptual world
knowledge.

Each incident comes with structured data describing its loca-
tion, time, and the age, gender, and name for all participants.
From this information, we gather the following properties for
each participant: name, gender, age, death year, and death place
(the last two attributes apply only if the person was killed).

Data partitions We define two data partitions over this data:
1. FULL The entire set of 2,261 incidents used in this task com-
prises our ‘full’ data partition. This partition contains consistent
annotations on an incident level for the attributes: name, age,
gender, death year, and death place, for all participants. We do
not know whether these attributes are reported in each of the
supporting documents — for the purpose of our experiments we
assume this is the case, as the structured data was constructed
from the news. 2. PARTIAL The partial data consists of 260 in-
cidents described in 457 documents, capturing 472 participants
with 456 distinct names.9 For this subset of incidents, we addi-
tionally annotated evidence per document and extracted values

9 We start with the documents from the 241 Gun Violence Corpus [60]
incidents that were annotated with event mentions and we enrich them with

Table 3
Number of incidents, documents, and participants in each of the two partitions.
Partition # inc # docs # participants

Full 2,261 4,479 5,408
Partial 260 457 472

for 9 additional attributes. This annotation is described in detail
next.

Table 3 presents the number of incidents, documents, and
participants in each of the two datasets.

Annotation of explicit values For the partial dataset, we
present guidelines.10 to enrich the properties for each entity with
9 additional properties occasionally mentioned in text, namely:
residence, cause of death, past convictions/charges, ethnic group
(ethnicity), education level, birth place, native language, political
party, and religion. These properties were manually chosen to
conform to the requirements listed in Section 4.3 For each prop-
erty and each person described in the article, we perform two
types of annotation based on the information given in text:

1. Structured (incident-level) annotation we fill the profile
of each entity as much as we can based on the infor-
mation found in text. For instance, the text: ‘Gaby, who
only finished high school this summer, is of Chinese ori-
gin. ...’ provides evidence that the ethnic group of Gaby
is ‘Chinese/Asian’ and her education level is ‘high school
graduate’.

2. Mention annotation we mark the evidence for the profile
properties as found in text. In the example given here, we
would annotate ‘finished high school’ as an evidence for
Gaby’s education level and we would mark ‘Chinese’ to
support the profile trait of Gaby being of Asian descent.

additional 50 incidents whose participant shares a name with a participant in
the original collection. This results in an initial pool of 291 incidents, which is
later filtered as described below, leading to 260 incidents in total.
10 https://docs.google.com/document/d/1rgTdrn-tPoJfPI25-5qOioznmj7un9pi-
dO1FyV7pCk/edit#.

https://docs.google.com/document/d/1rgTdrn-tPoJfPI25-5qOioznmj7un9pi-dO1FyV7pCk/edit#
https://docs.google.com/document/d/1rgTdrn-tPoJfPI25-5qOioznmj7un9pi-dO1FyV7pCk/edit#
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Table 4
Ambiguity statistics. Total number of unique instances in the partial
data: 472, total instances in the full data: 5,408. Meanambiguity =

#uniqueInstances/#uniqueSFs.
Partition Modification Unique

SFs
Mean
ambiguity

Original data 456 1.035
Partial Same first name ‘John’ 325 1.452

Same last name ‘Smith’ 377 1.252
Same name ‘John Smith’ 1 472

Original data 5,329 1.015
Full Same first name ‘John’ 3,547 1.525

Same last name ‘Smith’ 3,557 1.520
Same name ‘John Smith’ 1 5,408

A dedicated web-based tool was created to support this an-
notation.11 Two linguistics Master students were hired as an-
notators for a day per week over a period of three months.
The inter-annotator agreement for the structured annotation is
0.852, whereas the agreement on document- and sentence-level
marking of evidence is 0.849 and 0.648, correspondingly. The
remaining disagreement was resolved by using the annotation of
the first annotator, as we observed that she was following the
guidelines more consistently.

The additional annotation performed by our students was only
performed on the documents and incidents that belong to the
‘partial’ dataset. For the full dataset, we only use the properties
provided by the original data source.

Postprocessing In a postprocessing step, we remove: 1. doc-
uments and incidents that were disqualified by our annotators12

2. incidents without new annotation of structured data 3. docu-
ments without any annotation 4. participants with no name. In
addition, we merged the incidents with different IDs which were
identical, as well as the participants that appeared in multiple
incidents.

Increase of ambiguity Besides including incidents with partic-
ipants with the same name, within our experiments we systemat-
ically and artificially increase the ambiguity, simply by changing
names of people in the structured data. We define four ambiguity
levels:

1. Original data (no changes), containing 456 and 5,329 sur-
face forms in the partial and the full dataset, respectively.

2. Same first name ‘John’ — the first name of all participants
is changed to ‘John’, e.g., ‘Paul McCartney’ becomes ‘John
McCartney’. Note that after this change, the original names
‘Mia McCartney’ and ‘Paul McCartney’ both get changed to
‘John McCartney’, thus directly increasing the mean dataset
ambiguity to nearly 1.5.

3. Same last name ‘Smith’ — the last name of all participants is
changed to ‘Smith’. For instance, ‘Paul McCartney’ becomes
‘Paul Smith’. With this change, ‘Paul McCartney’ and ‘Paul
Lennon’ both become ‘Paul Smith’, which increases the data
ambiguity.

4. Same name ‘John Smith’ — all participants in the dataset
share the same name, ‘John Smith’.

Combining the four ambiguity levels and two data partitions
leads to eight datasets in total. The ambiguity statistics for all
eight datasets are presented in Table 4.

11 Source code: https://github.com/cltl/AnnotatingEntityProfiles.
12 Documents were disqualified if they were: too short, duplicates, or if they
described a different incident. Incidents were disqualified if all their documents
were disqualified.

Table 5
Comparison of our attribute extractors against gold data for 1,000 GVDB articles.

Precision Recall F1-score

Age 97.81 85.44 91.21
Ethnicity/race 40.00 8.70 14.29
Gender 81.78 57.14 67.28

5.3. Evaluation

We evaluate the accuracy of different methods for establishing
identity of entities with the clustering metric Adjusted Rand
Index (ARI). The ARI score between a system output and the gold
clustering ranges between 0 and 1, where larger values stand for
better clustering.

In addition, we perform intrinsic evaluation of the individual
components in our end-to-end pipeline. Namely, we benchmark
the property extractors by using the customary metrics of preci-
sion, recall, and F1-score. These evaluation results are provided
in Section 5.4.

Regarding the profiling machines, we measure their intrinsic
accuracy by evaluating them against ‘correct’ values in Wikidata.
We also measure their correspondence to human expectations
through a Jansen–Shannon divergence against the distribution of
crowd judgments. We refer the reader to Section 7 for the results
of these analyses.

5.4. Automatic attribute extraction

The local context of an entity consists of all property values
that describe that entity in a document. We seek to understand
the usefulness of profiling on top of this local context, generated
with either perfect or imperfect attribute extraction. We have
thus built the following automatic extraction strategies from text:

1. Proximity algorithm (Algorithm 1) which assigns spotted
phrases in text to their closest mention of person, as long as
this occurs in the same sentence. This strategy was applied
to all properties, except for the gender.

2. Coreference algorithm (see Algorithm 2) looks for gender
keywords in the coreferential phrases for a person.

Note that the property values are mapped to Wikidata Q-
nodes to enable the use of profiling in a subsequent step.

We have benchmarked the automatic attribute extraction with
both strategies against the gold extraction data we possess: see
Table 5 for a comparison against known values in the Gun Vio-
lence Database (GVDB) [61] and Table 6 for a comparison against
a subset of the SemEval-2018 task 5 data (see Section 5.2 for more
details on this data).

As we discussed in Section 5.4, it is not trivial to compare the
performance of our extractors directly to previous research on
attribute extraction or slot filling. Fair comparison is prevented
by differences in the test data (domain) and the considered prop-
erties. Given that the performance per property varies greatly
and covers almost the entire spectrum of possible scores, it is
particularly nonsensical to compare the average F1-scores over
all properties, as this would directly be determined by the choice
of properties.

Keeping in mind that the data differences persist, we make
an attempt to compare individual overlapping properties in order
to gain insight into the magnitude of our scores. For this pur-
pose, let us consider them in relation to two previous slot filling
systems: [26] and [27]. Although the majority of the properties
we consider have no counterpart in these papers, we report

https://github.com/cltl/AnnotatingEntityProfiles
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Table 6
Benchmarking the attribute extractors on the gold data from the 456 docu-
ments of the SemEval dataset. For the attributes marked with ‘*’, we do not
have mention- or document-level annotation, hence the reported recall (and
consequently F1-score) should be considered a lower bound for the ‘real’ score.

Method Precision Recall F1-score #gold #sys

Cause of death Pattern 39.01 17.83 24.47 488 223
Past conviction Pattern 9.52 25.00 13.79 32 84
Education level Pattern 62.16 19.66 29.87 117 37
Ethnicity/race Pattern 0.00 0.00 0.00 10 16
Religion Pattern 50.00 11.76 19.05 17 4
Age group* Pattern 93.20 25.98 40.63 739 206
Gender* Coref 88.03 13.62 23.60 756 117
Gender* Pattern 71.85 12.83 21.77 756 135
Birthplace Pattern 0.00 0.00 0.00 6 1
Residence Pattern 38.40 23.82 29.40 403 250

Algorithm 1: Attribute extraction: Proximity strategy.
Require: attr, text, person_names
1: regexes← set_regexes(attr)
2: for all person_name ∈ person_names do
3: spans[person_name] ← findall(person_name, text)
4: coref _spans[person_name] ← coreference(spans, text)
5: end for
6: for all regex ∈ regexes do
7: matches← findall(regex, text)
8: for all match ∈ matches do
9: the_person← find_closest_person(match,

spans, coref _spans, sentence_boundaries)
10: the_person[attr]+ = match
11: end for
12: end for
13: for all person_name ∈ person_names do
14: person_name[attr] ← find_closest(person_name[attr])
15: end for
16: return person_names

Algorithm 2: Attribute extraction: Coreference strategy.
Require: attr, text, person_names
1: regexes← set_regexes(attr)
2: for all person_name ∈ person_names do
3: spans[person_name] ← findall(person_name, text)
4: coref _spans[person_name] ← coreference(spans, text)
5: end for
6: for all person_name ∈ person_names do
7: genders[person_name] ← cooccurring(keywords,

person_name, spans, coref _spans)
8: end for
9: for all person_name ∈ person_names do
10: gender[person_name] ← most_common(genders[person_name])
11: end for
12: return gender

comparisons of the properties that can be matched. The F1-score
of extracting state(s) of residence by [26] and [27] is 12 and 31,
respectively — whereas our performance on the SemEval-2018
task 5 dataset is 29.40; [26] and [27] extract age with F1-scores
of 93 and 77 compared to our performance of 91.21 (GVDB) and
40.63 (SemEval)13; the cause of death F1-scores of these systems
are 55 and 31, whereas ours is 24.47. This limited evidence tells

13 This F1-score is a lower bound given that the measured recall is lower
than the real one, see Table 6. Considering the unreliability of this particular
F1-score, it is more accurate to compare the gender attribute on the SemEval
dataset against past work in terms of precision.

us that our attribute extractors perform comparably to existing
ones.

Algorithm 3: Probabilistic reasoner based on Jansen–Shannon
entropy and Density-Based Spatial Clustering.
Require: known_attrs, profiles, person_names, EPS
1: distances← ∅
2: for all name1, name2 ∈ person_names do
3: attrs[name1] ← known_attrs(name1) ∪ profiles(name1)
4: attrs[name2] ← known_attrs(name2) ∪ profiles(name2)
5: distances(name1, name2)← avg_js_entropy(attrs[name1],

attrs[name2])
6: end for
7: clusters← DBSCAN_clustering(distances, EPS)

return clusters

5.5. Profiler

In our extrinsic evaluation, we test the behavior of our AE
method. The EMB method could not be applied to this task in
its current state, because we have no ready embeddings for the
long-tail entities found in text. An adapted version of this method
that is able to compute an entity embeddings from text as a first
step is needed in order to make this method applicable to NIL
clustering too.

The AE profiler has been trained on Wikidata data about the
13 properties described in Section 5.2 (excluding the name at-
tribute). To allow integration of the profiler with the information
found in text, these properties and their corresponding values
extracted from text were mapped manually to Wikidata URIs.

5.6. Reasoners

Once the attributes have been extracted, we use the following
three strategies that compute clusters over the entities with
extracted attributes:

1. Exact match (EX) — this reasoner clusters two entities only
when all their attribute values are identical. Formally, EX :
(I1 = I2)⇐⇒ I1(p) = I2(p),∀p ∈ P .

2. No-clash (NC) — this reasoner establishes identity when-
ever two local representations have no conflicting proper-
ties, NC : (I1 = I2)⇐⇏ ∃p ∈ P, I1(p) ̸= I2(p).
We apply these two reasoners (EX and NC) on the proper-
ties extracted from text, but also on an extension of these
properties provided by our profiler. In order to achieve
the latter, we discretize the probabilities provided by the
profiler based on a threshold parameter, τ . Namely, we
keep the property values with a probability larger than τ ,
and discard the others.

3. Probabilistic reasoner (PR) — Since the profiler computes
probabilistic distributions over values, we implemented a
probabilistic reasoner that clusters entities based on the
similarity of their attribute distributions. This reasoner first
computes the average pairwise divergence (based on the
Jansen–Shannon entropy) between the attribute distribu-
tions of all entities that share a name, resulting in a dis-
tance matrix.14 Subsequently, a Density-Based Spatial Clus-
tering of Applications with Noise (DBSCAN) [62] is run over
this matrix to obtain clusters. The resulting clusters depend
on a threshold called EPS, which determines the maxi-
mum distance allowed within a cluster. The PR reasoner
is described in Algorithm 3.

14 We report results based on the mean divergence over all properties; using
maximum instead of mean distance yielded comparable results.
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Table 7
Clustering accuracy with various combinations of gold properties, using
the ‘exact’ match clustering. Combinations of properties: p0=name base-
line, p1=(name, educationlevel, causeofdeath), p2=(name,educationlevel, cause-
ofdeath, residence), p3=(name, educationlevel, causeofdeath, residence, religion,
ethnicity, pastconviction), p4=(name, educationlevel, causeofdeath, residence,
religion, ethnicity, pastconviction, birthplace), p5=(name, age), p6=(name,
age, gender), p7=(name, age, gender, death date), p8=(name, age, gender,
death place), p9=(name, age, gender, death place, death date), p10=(name,
causeofdeath, religion, ethnicity, pastconviction, age, gender, occupation, native-
language, politicalparty), all. Datasets: PD1=original partial data, PD2=partial
data with same first name, PD3=partial data with same last name, PD4=partial
data with all same names, FD1=original full data, FD2=full data with same first
name, FD3=full data with same last name, FD4=full data with all same names.
Some cells in the full datasets are empty due to unavailability of information.

PARTIAL FULL

PD1 PD2 PD3 PD4 FD1 FD2 FD3 FD4

p0 0.988 0.413 0.654 / 0.933 0.197 0.236 /

p1 0.846 0.598 0.767 0.006 / / / /
p2 0.698 0.535 0.685 0.018 / / / /
p3 0.679 0.522 0.666 0.018 / / / /
p4 0.679 0.522 0.666 0.018 / / / /

p5 0.993 0.701 0.818 0.005 0.951 0.354 0.358 0.012
p6 0.993 0.821 0.821 0.010 0.975 0.466 0.467 0.021
p7 0.997 0.904 0.932 0.037 0.976 0.472 0.473 0.037
p8 0.993 0.909 0.974 0.086 0.976 0.473 0.473 0.040
p9 0.997 0.916 0.983 0.093 0.976 0.473 0.473 0.040

p10 0.905 0.807 0.873 0.030 0.975 0.466 0.467 0.021

All 0.681 0.636 0.681 0.384 / / / /

6. Extrinsic, end-to-end, evaluation

In this section we present the results of our experiments on
using the profiler within an end-to-end pipeline to tackle the
task of NIL clustering, thus addressing the hypotheses C1 through
C6. Namely, Section 6.1 shows the performance of our pipeline
with perfect and imperfect attribute extraction, thus addressing
C1 and C2. In Section 6.2, we provide the results of running the
profiler on top of these attribute extractors (C3 and C4). Finally,
we analyze the impact of the task ambiguity on the clustering
performance (C5) and its relation to the effectiveness of our
profiler (C6).

6.1. Using explicit information to establish identity

We hypothesized that the performance of clustering by at-
tribute reasoning depends on two factors (C1): availability of
information and quality of extraction. An ideal availability of in-
formation and perfect extraction would lead to a perfect accuracy
on the task of establishing identity of entities.

We first present the clustering performance of various com-
binations of perfectly extracted attributes in Tables 7 and 8.
Namely, besides the name baseline (p0) and the union of all
properties, we consider additional ten combinations of proper-
ties. We note that the sets p1 through p4 rely on properties
annotated in documents by our students; for these attributes,
we know whether they are covered in the annotated documents.
The combinations p5 through p9 rely on the structured incident
data as found on the GVA website. For these sets of properties,
we make an assumption that they are consistently mentioned
in all reporting documents. As we do not know how often this
assumption holds, the obtained scores for p5–p9 should thus be
seen as upper bound results for the real scores. Finally, we report
performance of p10, which represents the set of properties that
were successfully mapped to background knowledge, and will be
used for a comparison to the profiler later in this paper.

This analysis provides an insight into the availability and the
diversity of information about an entity across documents, as well

Table 8
Clustering accuracy with various combinations of gold properties, using the
‘no-clash’ match clustering. Combinations of properties: p0=name baseline,
p1=(name, educationlevel, causeofdeath), p2=(name,educationlevel, cause-
ofdeath, residence), p3=(name, educationlevel, causeofdeath, residence, religion,
ethnicity, pastconviction), p4=(name, educationlevel, causeofdeath, residence,
religion, ethnicity, pastconviction, birthplace), p5=(name, age), p6=(name,
age, gender), p7=(name, age, gender, death date), p8=(name, age, gender,
death place), p9=(name, age, gender, death place, death date), p10=(name,
causeofdeath, religion, ethnicity, pastconviction, age, gender, occupation, native-
language, politicalparty), all. Datasets: PD1=original partial data, PD2=partial
data with same first name, PD3=partial data with same last name, PD4=partial
data with all same names, FD1=original full data, FD2=full data with same first
name, FD3=full data with same last name, FD4=full data with all same names.
Some cells in the full datasets are empty due to unavailability of information.

PARTIAL FULL

PD1 PD2 PD3 PD4 FD1 FD2 FD3 FD4

p0 0.988 0.413 0.654 / 0.933 0.197 0.236 /

p1 0.987 0.611 0.783 0.002 / / / /
p2 0.976 0.634 0.861 0.012 / / / /
p3 0.976 0.632 0.865 0.013 / / / /
p4 0.976 0.632 0.865 0.013 / / / /

p5 0.991 0.687 0.802 0.005 0.936 0.348 0.352 0.012
p6 0.991 0.807 0.804 0.010 0.965 0.459 0.459 0.019
p7 0.995 0.852 0.861 0.034 0.965 0.462 0.462 0.030
p8 0.991 0.863 0.903 0.078 0.965 0.463 0.463 0.034
p9 0.995 0.869 0.913 0.088 0.965 0.463 0.463 0.035

p10 0.991 0.840 0.886 0.025 0.965 0.459 0.459 0.019

All 0.980 0.895 0.932 0.366 / / / /

as into the discriminative power of this information. We observe
that correct extraction of the properties leads to almost perfect
accuracy on the original data, but notably lower accuracy on
the more ambiguous subsets. Hence, assuming perfect attribute
extraction, the properties found in text would be mostly sufficient
to establish the identity of entities in the original dataset, but this
information becomes increasingly insufficient as the ambiguity
grows.15 The results also show that certain attributes, such as age
and gender, have very large discriminative power, as long as they
are consistently reported across documents.

Comparing the two tables reveals crucial differences in the
behavior of our reasoners. We see that including more attributes
is not necessarily beneficial for the exact reasoner (Table 7, at-
tribute sets p1–p4). For example, including the person’s state of
residence (p2) causes a decline in performance on PD1, PD2, and
PD3. This decline is to be expected given that the exact reasoner
regards two local representations to be identical only when all
their property values are identical. Since properties like residence
are not consistently mentioned across documents, the exact rea-
soner switches its judgment to non-identity when one’s residence
is mentioned in one document and not in another. However,
adding properties is beneficial for the no-clash reasoner, because
it is more robust with respect to missing information and decides
that two representations are identical as long as no property
value is contradictory between them.

Next, in Table 10, we show the clustering accuracy when
automatic attribute extraction is employed. While the no-clash
reasoner comes closer to the perfect extraction performance than
the exact reasoner, the clustering performance of the automatic
attribute extractors is consistently lower than that of the per-
fect attribute extractors, as expected in our hypothesis C2. This
difference in clustering performance grows together with the
ambiguity of data. These findings are not surprising given the

15 We unfortunately do not know if some of the attributes (e.g., gender and
age) presented in the gold data occur in each document, hence the scores
presented here might be higher than the real ones.
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Table 9
Inspection of the effect of profiling on the clustering performance, on top of gold attribute extraction. Datasets: PD1=original
partial data, PD2=partial data with same first name, PD3=partial data with same last name, PD4=partial data with all
same names, FD1=original full data, FD2=full data with same first name, FD3=full data with same last name, FD4=full
data with all same names. The set of properties used by the baselines and by the profiler corresponds to p10 in Table 7
and Table 8. We report results of applying the profiler in combination with each of the baselines, by first discretizing its
probability distribution with a threshold, τ . In addition, we report results of using the probability distributions as provided
by the profiler, in combination with Jansen–Shannon entropy and DBSCAN clustering, which corresponds to the probabilistic
reasoner (PR) described in section 5.6. We vary the clustering coefficient, EPS, between 0.01 and 0.5.

PARTIAL FULL

PD1 PD2 PD3 PD4 FD1 FD2 FD3

Name baseline (p0) 0.988 0.413 0.654 / 0.933 0.197 0.236

Exact (EX) reasoner 0.905 0.807 0.873 0.030 0.975 0.466 0.467
+ profiler (τ = 0.99) 0.905 0.807 0.873 0.030 0.973 0.384 0.378
+ profiler (τ = 0.90) 0.911 0.810 0.870 0.029 0.973 0.384 0.378
+ profiler (τ = 0.75) 0.911 0.810 0.870 0.029 0.949 0.313 0.309
+ profiler (τ = 0.51) 0.910 0.810 0.869 0.029 0.965 0.367 0.360

No-clash (NC) reasoner 0.991 0.840 0.886 0.025 0.965 0.459 0.459
+ profiler (τ = 0.99) 0.989 0.839 0.885 0.022 0.963 0.369 0.358
+ profiler (τ = 0.90) 0.977 0.843 0.857 0.019 0.963 0.371 0.360
+ profiler (τ = 0.75) 0.960 0.836 0.848 0.023 0.934 0.298 0.294
+ profiler (τ = 0.51) 0.925 0.811 0.857 0.020 0.934 0.354 0.347

PR reasoner, EPS = 0.01 0.906 0.808 0.871 0.030 0.973 0.384 0.378
PR reasoner, EPS = 0.05 0.914 0.808 0.871 0.026 0.934 0.290 0.285
PR reasoner, EPS = 0.1 0.950 0.811 0.839 0.002 0.934 0.273 0.276
PR reasoner, EPS = 0.2 0.987 0.476 0.673 0.000 0.933 0.198 0.236
PR reasoner, EPS = 0.5 0.988 0.413 0.654 0.000 0.933 0.197 0.236

Table 10
Inspection of the effect of profiling on the clustering performance, on top of automatic attribute extraction. Datasets:
PD1=original partial data, PD2=partial data with same first name, PD3=partial data with same last name, PD4=partial
data with all same names, FD1=original full data, FD2=full data with same first name, FD3=full data with same last name,
FD4=full data with all same names. The set of properties used by the baselines and by the profiler corresponds to p10 in
Table 7 and Table 8. We report results of applying the profiler in combination with each of the baselines, by first discretizing
its probability distribution with a threshold, τ . In addition, we report results of using the probability distributions as provided
by the profiler, in combination with Jansen–Shannon entropy and DBSCAN clustering, which corresponds to the probabilistic
reasoner (PR) described in section 5.6. We vary the clustering coefficient, EPS, between 0.01 and 0.5.

PARTIAL FULL

PD1 PD2 PD3 PD4 FD1 FD2 FD3

Name baseline (p0) 0.988 0.413 0.654 / 0.933 0.197 0.236

Exact (EX) reasoner 0.609 0.385 0.534 0.002 0.780 0.212 0.237
+ profiler (τ = 0.99) 0.622 0.390 0.545 0.001 0.784 0.211 0.237
+ profiler (τ = 0.90) 0.637 0.398 0.555 0.001 0.787 0.211 0.238
+ profiler (τ = 0.75) 0.666 0.397 0.576 0.001 0.787 0.206 0.231
+ profiler (τ = 0.51) 0.693 0.401 0.576 0.001 0.848 0.215 0.250

No-clash (NC) reasoner 0.944 0.506 0.768 0.002 0.910 0.229 0.258
+ profiler (τ = 0.99) 0.943 0.502 0.745 0.001 0.916 0.235 0.274
+ profiler (τ = 0.90) 0.932 0.485 0.713 0.001 0.920 0.229 0.271
+ profiler (τ = 0.75) 0.898 0.459 0.657 0.001 0.910 0.225 0.260
+ profiler (τ = 0.51) 0.825 0.410 0.620 0.000 0.897 0.210 0.245

PR reasoner, EPS = 0.01 0.645 0.398 0.555 0.001 0.786 0.211 0.238
PR reasoner, EPS = 0.05 0.726 0.396 0.595 0.001 0.849 0.210 0.244
PR reasoner, EPS = 0.1 0.858 0.384 0.631 0.000 0.901 0.201 0.236
PR reasoner, EPS = 0.2 0.974 0.413 0.654 0.000 0931 0.197 0.236
PR reasoner, EPS = 0.5 0.988 0.413 0.654 0.000 0.933 0.197 0.236

benchmark results of these automatic extractors presented in
Section 5.4.

In addition, we observe that both for gold and for automati-
cally extracted information, the improvement in terms of cluster-
ing compared to the name baseline is larger when the ambiguity
of data is larger.

6.2. Profiling implicit information

The profiler can be seen as a ‘soft’ middle ground between
the exact reasoner and the no-clash reasoner. The former es-
tablishes identity only when all known attributes between two
local representations are identical, and the latter — whenever two
local representations have no conflicting properties. The profiler
relies on background knowledge in order to fill the gaps for the

unknown properties instead of making a hard decision. We hence
expect the profiler to be superior over the above two baselines,
as it employs external knowledge to bring closer or further two
ambiguous representations. We hypothesized that the role of the
profiler is much more important when the attribute extraction is
imperfect (hypotheses C3 and C4).

Tables 9 and 10 show the impact of the profiler when ap-
plied on top of either perfect or imperfect attribute extraction.16
We note that the results reported here use the following set of
attributes: name, religion, ethnic group, cause of death, gender,
occupation, age group, native language, and political party. These
properties correspond to the property set p10 in Tables 7 and

16 We leave out the results on the full dataset with maximum ambiguity as
these are consistently very low.
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Table 11
Number of clusters for different values of the EPS parameter. Datasets:
PD1=original partial data, PD2=partial data with same first name, PD3=partial
data with same last name, PD4=partial data with all same names, FD1=original
full data, FD2=full data with same first name, FD3=full data with same last
name, FD4=full data with all same names.
EPS PD1 PD2 PD3 PD4 FD1 FD2 FD3

0.01 503 475 489 46 5,344 4,354 4,113
0.05 498 467 480 30 5,335 4,238 3,932

Gold 0.1 480 439 446 4 5,335 4,220 3,926
0.2 459 360 390 1 5,329 3,610 3,563
0.5 456 325 377 1 5,328 3,547 3,557

0.01 608 526 566 31 7,597 5,865 5,954
0.05 578 475 525 19 6,768 5,027 5,091

Auto 0.1 521 399 451 5 5,967 4,214 4,280
0.2 464 332 384 1 5,376 3,574 3,600
0.5 456 325 377 1 5,328 3,547 3,557

8. Notably, as the properties: native language, occupation, and
political party do not occur in text, their values are always filled
implicitly by the profiler. The expectations for the other proper-
ties are filled by the profiler only when they are not extracted
from text.

As discussed previously, in order to experiment with the pro-
filer in combination with the EX and NC reasoners, the proba-
bilities produced by the profiler are first discretized by using a
cut-off threshold, τ . Larger values of this threshold mean stricter
criteria for inclusion of a certain attribute value; hence, a τ value
of 1.0 excludes all output from the profiler, whereas lower τ
values allow for more profiler expectations to be included. We
also test the usefulness of the profiler in combination with the
probabilistic reasoner, PR; in this case, we use the probability
distribution as produced by the profiler, in combination with the
extracted property values from text. Here, to acknowledge the
effect of the clustering parameter of maximum distance (EPS)
in the DBSCAN algorithm, we report results with five different
EPS values, ranging between 0.05 and 0.5 (higher EPS values lead
to less clusters with larger sizes). The number of clusters for
different values of the EPS parameter are given in Table 11.

Table 9 shows that enhancing the gold properties by profiling
yields comparable results to the ones obtained by the baselines,
which corresponds to our hypothesis C3. This observation holds
for all three reasoners: exact, no-clash, and probabilistic reasoner.
Given that the results of clustering by reasoning over the per-
fectly extracted properties are relatively high (Tables 7 and 8),
there is little room to improve them by profiling. Still, enhancing
these gold properties by profiling yields slight improvement over
the results of the extractors in several occasions. For instance,
combining the no-clash reasoner with profiling at τ = 0.90
(i.e., keeping the profiling values with a probability of 0.90 or
higher), leads to the best score on the PD2 dataset. Similarly, the
profiler increases the performance on top of the exact baseline
for the datasets PD1 and PD2. While for the other datasets the
profiler does not improve the baseline performance, we note that
its output is fairly robust — even when much of the profiler
output is included (e.g., with τ = 0.51), the results do not decline
to a large extent.

We expect that the profiler has a larger effect when com-
bined with automatic attribute extraction (C4). While we do not
observe significant improvement over the baselines, the results
in Table 10 demonstrate that the profiler has certain impact
when applied in combination with imperfect attribute extraction.
Especially, we observe that the profiler consistently improves the
performance on top of the exact reasoner. Furthermore, this im-
provement becomes larger when more of the profiling values are
included, i.e., the improvement on the exact reasoner is inversely
proportional with the probability threshold τ . This observation

means that the profiler is able to fulfill its role of normalizing the
attribute values found in different documents. Namely, as these
documents are written independently from each other, certain
attribute values are reported only in a subset of them. In addition,
the low recall of our automatic extraction tools might increase
this inconsistency of information between documents. The results
show that the profiler is able to make this reasoner more robust
and normalize certain knowledge gaps.

Profiling in combination with the no-clash reasoner yields
comparable results to those of only using the automatic extrac-
tion. Concretely, profiling improves the performance of the no-
clash reasoner for all full datasets (FD1, FD2, and FD3), whereas
it decreases the baseline performance on all partial datasets.
In general, the profiling results seem to be fairly robust when
combined with this reasoner as well.

The probabilistic reasoner also yields certain promising results
on the full datasets, whereas its best scores on the partial datasets
are obtained for the highest value of the EPS distance parameter
(0.5), and correspond to the results of the name baseline.

What limits the performance of our profiler on the NC rea-
soner? In Section 5.4, we observed that the performance of our
extractors, especially in terms of recall, is relatively low. Con-
sequently, the extracted local contexts from text are largely in-
complete, and in some cases contain incorrect values. As the
output of the profiler is dependent on the input it receives,
this imperfection of the extracted information would directly
influence the usefulness of the generated profiles. Namely, a very
sparse/incomplete input (caused by low extraction recall) could
lead to a profile that represents a more generic group, whereas
incorrect input (caused by low precision) might generate a profile
that represents an entirely different group of entities. Future work
should investigate whether an extended set of attributes and a
different kind of attribute extractor yield similar results for the
hypotheses C3 and C4.

6.3. Analysis of ambiguity

We expect that the clustering performance is counter-propor-
tional to the ambiguity of a dataset (C5), i.e., higher ambiguity
leads to lower clustering performance. This is a clear trend that
is visible in all result tables. The clustering on the original dataset
with minimal ambiguity is close to perfect, whereas the perfor-
mance of clustering for the datasets with maximum ambiguity is
close to zero.

We also hypothesized that the impact of the profiler is higher
when there is more ambiguity (C6). Tables 9 and 10 show no clear
relation between the usefulness of the profiler and the data am-
biguity. Future work should investigate whether this conclusion
is confirmed for a larger set of properties.

7. Intrinsic analysis of the profilers

In this section, we investigate the intrinsic behavior of the pro-
filers, by comparing them against factual data from Wikidata, as
well as against human judgments collected with a crowdsourcing
task. We also investigate the relation of the profiling performance
to various properties of the data, such as its entropy and value
size. These investigations provide evidence for the hypotheses
P1–P5.

7.1. Comparison against factual data

7.1.1. Data
No existing dataset is directly suitable to evaluate profiling.

We therefore chose People, since data is plentiful, people are
multifaceted, and it is easy to spot problematic generalizations.
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Table 12
Numbers of examples (nex), categories (vi), and entropy (Hi and Hi′) per facet of People in our training data. We limit vi to 3,000 to restrict the complexity of the
value space, but also to mimic the simplification aspect of cognitive profiling.
Attribute PERSON POLITICIAN ACTOR

nex vi Hi Hi′ nex vi Hi Hi′ nex vi Hi Hi′

Educated at 273,096 3,000 9.28 0.80 22,461 3,000 9.73 0.84 5,047 883 7.56 0.77
Sex or gender 2,403,980 11 0.64 0.18 168,758 5 0.50 0.25 75,980 5 1.00 0.50
Citizenship 1,546,757 995 5.28 0.53 152,131 335 5.07 0.61 57,570 187 5.12 0.68
Native language 41,760 141 1.70 0.24 16,818 33 1.08 0.21 4,273 29 0.41 0.08
Position held 177,302 3,000 7.44 0.64 101,766 1,701 7.08 0.66 244 25 0.96 0.21
Award received 154,275 3,000 7.97 0.69 10,588 546 6.82 0.75 2,880 297 6.60 0.80
Religion 32,311 341 3.24 0.38 2,414 127 3.99 0.58 164 24 2.47 0.56
Political party 158,105 3,000 7.28 0.63 82,617 2,456 7.26 0.64 232 53 3.23 0.58
Work location 68,602 1,989 6.25 0.57 30,320 272 5.07 0.63 116 41 3.99 0.74
Place of death 350,720 3,000 7.93 0.68 29,071 3,000 8.39 0.73 9,377 2,169 8.33 0.75
Place of birth 927,089 3,000 7.64 0.66 59,627 3,000 7.27 0.63 39,694 3,000 8.55 0.74
Cause of death 21,926 499 5.35 0.60 1,408 115 4.75 0.69 1,039 82 4.22 0.66
Lifespan range 922,634 55 1.89 0.33 79,346 39 1.68 0.32 19,055 11 1.77 0.49
Century of birth 1,975,197 43 1.36 0.25 140,087 22 1.48 0.33 61,506 11 0.56 0.16

We defined three typed datasets: people, politicians, and actors,
each with the same stereotypical facets, such as nationality, reli-
gion, and political party, that largely correspond to some facets
central in social psychology research. We created data tables
by extracting facets of people from Wikidata. Table 12 lists all
attributes, each with its number of distinct categories vi, total
non-empty values (nex), and entropy values (Hi and Hi′) on the
training data.

The goal is to dynamically generate expectations for the same
set of 14 facets in each dataset. We evaluate on multiple datasets
to test the sensitivity of our models to the number of examples
and categories. The largest dataset describes 3.2 million people,
followed by the data on politicians and actors, smaller by an
order of magnitude. As pre-trained embeddings are only available
for a subset of all people in Wikidata (see Section 4.4.4), we
cannot evaluate EMB directly on these sets. Hence, to facilitate
a fair comparison of both our models on the same data, we
also define smaller data portions for which we have pre-trained
embeddings. We randomly split each of the datasets into training,
development, and test sets at 80-10-10 ratio.

7.1.2. Quantification of the data space
We quantify aspects of profiling through the set of possible

outcomes and its relation to the distribution of values.
The total size of the data value space is dsize =

∏n
i=1 vi, where

n is the number of attributes and vi is the size of the category
vocabulary for an attribute xi (e.g. vi = |{Swiss, Dutch. . . }| for
xi = nationality). We define the average training density as the
ratio of the total data value size to the overall number of training
examples nex: davg−d = dsize/nex. As an illustration, we note that
the full dataset on People has dsize = 1039 and davg−d = 1032.

For the ith attribute xi, the entropy Hi of its values is their
‘dispersion’ across its vi different categories. The entropy for
each category j of xi is computed as −pi,jlogpi,j, where pi,j =
nex(i, j)/nex(i). The entropy of xi is then a sum of the individual
category entropies: Hi = −

∑vi
j=1 pi,jlogpi,j, whereas its normal-

ized entropy is limited to [0, 1]: Hi′ = Hi/log2(nex(i)). Entropy is
a measure of informativeness: when Hi′ = 0 there is only one
value for xi; when all values are equally spread the entropy is
maximal, Hi′ = 1 (with no MFV).

Of course, we do not know the true distribution but only
that of the sparse input data. Here we assume our sample is
unbiased. Table 12 shows that, e.g., educated at consistently has
less instance values and a ‘flatter’ value distribution (= higher Hi′)
than sex or gender, where the category male is dominant on any
dataset, except for actors. The entropy and the categories size
together can be seen as an indicator for the relevance of a facet
for a dataset, e.g., Hi′ and vi of position held are notably the lowest

for actors. We expect MFV to already perform well on facets with
low entropy, whereas higher entropy to require more complex
dependencies.

7.1.3. Results
We evaluate by measuring the correctness of predicted (i.e.,

top-scoring) attribute values against their (not provided) true
values, evaluated only on exemplars that were not included in
the training data.

Table 13 provides the results of our methods and baselines
on the three smaller datasets that contain embeddings (the full
datasets yielded similar results for MFV, NB, and AE). We observe
that AE and EMB outperform the baselines on almost all cases, as
hypothesized in P1. As expected (hypothesis P3), we see lower (or
no) improvement over the baselines for cases with low entropy
(e.g., sex or gender and lifespan range) compared to attributes with
high entropy (e.g., award received). We also note that the accuracy
of profiling per facet correlates inversely with its vocabulary size
vi (hypothesis P4).

The superiority of the neural models over the baselines means
that capturing complex inter-facet dependencies improves the
profiling ability of machines. Moreover, while the two neural
methods perform comparably on average, there are differences
between their accuracy on individual facets (e.g., compare award
received and native language on any dataset). To gain further
insight, we analyze the predictions of our models on an arbitrarily
chosen instance from our dataset, namely, the Ohio politician
Brad Wenstrup.17 Brad is a male American citizen, member of
the republican party, born in Cincinnati, Ohio in the 20th century,
educated at the University of Cincinnati, and has held the position
of a United States representative. Both neural systems correctly
predict (as a first choice) Brad’s country of citizenship, position
held, work location, and century. The AE system is able to predict
the political party and his education better than the EMB one;
whereas the EMB model is superior over AE when it comes to
Brad’s gender. In addition, EMB ranks the correct place of birth
third in terms of probability, while AE’s top 3 predictions for this
attribute are incorrect, i.e., these are places in the neighboring
state of Michigan. These differences might be due to the main
architectural difference between these two methods: EMB’s input
embedding contains much more information (both signal and
noise) than what is captured by the 14 facets in the AE.

How does a profile improve (or not) with increasing input?
To investigate our hypothesis P5, we analyze both top-1 and
top-3 accuracies of AE for predicting a facet value against the
number of other known facets provided at test time. Fig. 2 shows

17 https://www.wikidata.org/wiki/Q892413.

https://www.wikidata.org/wiki/Q892413
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Table 13
Top-1 accuracies for the both neural methods and the two baselines on the smaller datasets. For each dataset-facet pair, we emphasize the best result. Our neural
methods, especially EMB, outperform the baselines. Entropy and vocabulary sizes can partially explain deltas in accuracies on individual facets.
Attribute PERSON POLITICIAN ACTOR

MFV NB AE EMB MFV NB AE EMB MFV NB AE EMB

Educated at 4.41 9.22 13.20 22.45 2.57 6.88 13.14 9.47 11.32 15.09 3.77 46.43
Sex or gender 82.61 81.76 82.37 95.83 85.15 84.10 83.23 94.79 49.71 57.97 55.20 89.06
Citizenship 29.10 57.36 66.49 78.49 18.27 46.75 72.94 77.96 17.99 39.94 60.77 65.05
Native language 44.70 69.44 87.63 33.33 46.67 88.89 93.33 83.33 95.00 95.00 95.00 91.67
Position held 8.44 32.92 45.66 21.43 15.47 28.93 45.03 41.18 50.00 50.00 50.00 100.0
Award received 4.98 15.95 21.56 37.50 3.85 10.58 18.27 26.09 14.29 14.29 23.81 42.86
Religion 27.52 40.83 45.48 71.43 27.08 42.71 52.08 56.52 40.00 40.00 60.00 66.67
Political party 13.18 29.67 42.08 47.06 9.41 22.78 34.28 37.59 50.00 50.00 50.00 0.0
Work location 22.47 57.18 64.49 60.00 22.22 69.90 83.09 75.00 0.00 0.00 0.00 0.00
Place of death 4.09 25.09 28.20 36.84 2.81 8.03 17.27 25.81 9.78 17.58 18.48 33.93
Place of birth 2.85 33.01 32.07 49.04 1.88 54.62 23.59 52.21 5.31 11.28 16.87 36.21
Cause of death 23.80 24.13 24.24 15.38 32.76 37.93 24.14 71.43 33.33 33.33 20.00 45.00
Lifespan range 41.76 43.56 41.69 42.03 41.30 40.68 38.51 48.75 36.73 39.17 45.92 43.33
Century of birth 82.04 85.45 84.94 89.53 76.13 80.13 83.14 85.79 93.62 93.60 89.56 92.67

Table 14
Human evaluation results per attribute: number of values (vi), entropy (Hi), normalized entropy (Hi′), mean judgments
entropy (Ji), divergences of: MFV, NB, and AE.
Attribute vi Hi Hi′ Ji MFV NB AE

Century of birth 5 0.40 0.92 10−8 0.13 0.12 0.12
Religion 4 0.63 1.26 10−10 0.05 0.09 0.06
Sex or gender 2 0.70 0.70 10−14 0.04 0.02 0.02
Place of death 8 0.80 2.40 0.05 0.51 0.20 0.16
Lifespan range 10 0.81 2.68 0.02 0.29 0.09 0.09
Place of birth 8 0.83 2.48 0.01 0.39 0.26 0.24
Work location 10 0.84 2.80 0.03 0.49 0.28 0.30
Occupation 9 0.92 2.90 0.06 0.37 0.36 0.32
Educated at 9 0.92 2.91 0.06 0.39 0.25 0.23
Political party 2 1.00 1.00 0.02 0.17 0.06 0.06

Fig. 2. Dependency of the accuracy of profiling politicians on the number of known facets: a positive correlation for country of citizenship (left Figure), no correlation
for sex or gender (center), and a slightly negative one for place of birth (right).

examples of all three possible correlations (positive, negative, and
none) for politicians. These findings are in line with conclusions
from social psychology (cf. Profiles): knowing more facets of an
instance might trigger a shift of the original profile, and it might
be correct or incorrect, as defined in [51]. Generally, we expect
that attributes with large vi, like place of birth, will suffer as
input exemplars become more specified and granularity becomes
tighter, while facets with small vi would benefit from additional
input. Fig. 2 follows that reasoning, except for sex or gender,
whose behavior is additionally influenced by low entropy (0.25)
and strong frequency bias to the male class. Further research
should study the correlation between different attributes, and
seek ways to describe their dependencies in relation to properties
of the underlying instance data, like entropy or value size.

7.2. Comparison against human expectations

Given that in most AI applications information is created for
humans, a profiler has to be able to mimic human expectations.
We thus compare our neural profiles to profiles generated by
crowd workers.

7.2.1. Data
We evaluate on 10 well-understood facets describing Amer-

ican citizens. For each facet, we generated a list of 10 most
frequent values among American citizens in Wikidata, and post-
processed them to improve their comprehensibility. We collected
15 judgments for 305 incomplete profiles with the Figure Eight
crowdsourcing platform. The workers were instructed to choose
‘None of the above’ when no choice seemed appropriate, and
‘I cannot decide’ when all values seemed equally intuitive. We
picked reliable, US-based workers, and ensured US minimum
wage ($7.25) payment.

Given that there is no ‘correct’ answer for a profile and our
annotators’ guesses are influenced by their subjective experi-
ences, it is reasonable that they have a different intuition in
some cases. Hence, the relatively low mean Krippendorff (1980)
alpha agreement per property (0.203) is not entirely surprising.
We note that the agreement on the high-entropy attributes is
typically lower, but tends to increase as more facets were pro-
vided. Overall, the annotators chose a concrete value rather than
being indecisive (‘I cannot decide’) for the low-entropy more
often than the high-entropy facets. When more properties were
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provided, the frequency of indecisiveness on the high-entropy
facets declined.

7.2.2. Results
When evaluating, ‘None of the above’ was equalized to any

value outside of the most frequent 10, and ‘I cannot decide’ to
a (1/N)-th vote for each of the values. The human judgments
per profile were combined in a single distribution, and compared
to the system distribution by using Jansen–Shannon divergence
(JS-divergence).18 We evaluate the profiles generated by our AE
and the baselines; EMB could not be tested on this data since
most inputs do not have a corresponding Wikipedia page and
pre-trained embeddings.

The divergence between our AE system and the human judg-
ments was mostly lower than that of the baselines (Table 14),
which supports our hypothesis P2. The divergences for any sys-
tem have a strong correlation with (normalized) entropy, con-
firming our previous observation that high-entropy attributes
pose a greater challenge (hypothesis P3). We also computed
precision, recall, and F1-score between the classes suggested by
our system and by the annotators, and observed that it correlates
inversely with the entropy in the data (Hi), as well as the entropy
of the human judgments (Ji).

The results show that our AE can capture human-like expec-
tations better than the two baselines, and that mimicking human
profiling is more difficult when the entropy is higher. While
parameter tuning and algorithmic inventions might improve the
profiling accuracy further, it is improbable that profiles learned
on factual data would ever equal human performance. Some hu-
man expectations are culturally projected and do not correspond
to episodic facts. Future work should seek novel solutions for this
challenge.

8. Discussion and limitations

8.1. Summary of the results

Identity clustering is nearly ideal assuming perfect attribute
extraction, indicating that the information available in text often
suffices to establish identity, as long as the ambiguity is low
(hypothesis C1). As expected, the clustering performance declines
when the extraction is imperfect (C2).

Given that the clustering based on the gold properties is rel-
atively high, there is little room for improvement by profiling in
this case. It is thus no surprise that the profiler has no visible
effect when combined with gold properties (C3). Profiling is able
to fill certain knowledge gaps when combined with automatic
extraction of properties (C4). Concretely, profiling consistently
has a positive impact when using exact reasoning over property
values. Profiling is also beneficial when applied together with
the no-clash reasoner on the full datasets (FD1–FD3), whereas
it performs slightly worse than the no-clash reasoner on the
partial datasets (PD1–PD4). Overall, the profiler is fairly robust to
different hyperparameter values and degrees of data ambiguity.

The low performance of our automatic attribute extractors,
especially in terms of recall, affects our results, considering that
the effectiveness of our profiler is directly conditioned on the
completeness and accuracy of its input. Incorrect or incomplete
inputs lead to more generic or even wrong profiles, and the
decisions on identity based on these profiles are likely to be
consequently wrong as well.

18 We considered the following metrics: JS-divergence, JS-distance, KL-
divergence, KL-divergence-avg, KL-divergence-max, and cosine distance [64]. The
agreement was very high, the lowest Spearman correlation being 0.894.

The datasets with larger ambiguity pose a greater challenge
for all approaches (C5). However, we did not see a clear relation
between the usefulness of our profiler and the data ambiguity
(C6). A possible explanation for this finding lies in the low number
of properties considered, as well as in their usefulness to discrim-
inate long-tail entities in the test domain. Future work should
investigate whether these findings generalize for an extended set
of properties.

The intrinsic evaluation of our profiling methods demon-
strated their ability to largely mimic the instantial data in Wiki-
data (P1), as well as human judgments (P2). Notably, their perfor-
mance per attribute fluctuates dramatically, but this variance can
be easily predicted by the factors of entropy, value size, and other
known attributes (hypotheses P3, P4, and P5). It remains a future
task to relate this accuracy variance to the clustering performance
of the profiler.

8.2. Bridging knowledge between text and KBs

A large challenge during these experiments lay in harmonizing
the knowledge found in the text documents with the one found
in the chosen knowledge base, Wikidata:

(1) Discrepancy of properties There is little overlap between
the attributes that are found in background knowledge and those
found in text. For example, descriptions of the kind of area in
which an entity lives (e.g., is a city part dangerous or safe), are
prominent in text and useful for identity reasoning; unfortu-
nately, this kind of information is not present in Wikidata. On
the other hand, one’s height or political affiliation is found in
Wikidata, but seldom mentioned in text.

(2) Discrepancy of property values To illustrate this gap,
consider that most causes of death in Wikidata are natural and
do not correspond to those in the gun violence domain, where
most people died of a gunshot wound. In addition, the number
of values for certain properties, such as birthplace, in Wikidata is
quite large: it is non-trivial to map these values to those extracted
from text.19

(3) Discrepancy of world expectations Expectations learned
from a knowledge base do not always fit those within a local
crime domain. As an example, people in Wikidata are typically
highly educated, which is probably not representative for the
typical education level of the participants in the gun violence in-
cidents. Similarly for occupations: typical professions in Wikidata,
such as politicians or actors, are unlikely to be found in gun
violence incident descriptions.

These discrepancies are largely due to the different world cap-
tured by the two proxies: our documents describe local crimes,
whereas Wikidata stores global events and well-known people.
Learning models about the ‘head’ entities in Wikidata and apply-
ing these to the ‘long-tail’ entities in the gun violence domain
required manual engineering and has been achieved at the ex-
pense of information loss, which decreased the discriminating
power of our profiling machines. Future work should consider
learning expectations that resemble the target domain closer,
e.g., using gun violence domain data to both train the profiles and
apply them.

19 In our experiments, we opted for several (typically between two and ten)
attribute values on a coarser granularity level. Mapping these to Wikidata
values required a substantial manual effort, as the connection in the structured
knowledge was not consistently stored.
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8.3. Limitations of profiling by NNs

Our experiments show the natural power of neural networks
to generalize over knowledge and generate profiles from data
independent of schema availability. Techniques like dropout and
oversampling further boost their ability to deal with missing or
underrepresented values. Ideally these profiling machines can
be included in an online active representation system to create
profiles on the fly, while their modularity allows easy retraining
in the background when needed.

Still, it is essential to look critically beyond the accuracy num-
bers, and identify the strengths and weaknesses of the proposed
profiling methods. Limitations include: 1. continuous values,
such as numbers (e.g., age) or dates (e.g., birth date), need to be
categorized before being used in an AE20; 2. AE cannot natively
handle multiple values (e.g., people with dual nationality). We
currently pick a single value from a set based on frequency; 3.
as noted, we applied dropout and oversampling mechanisms to
reinforce sparse attributes, but these remain problematic; 4. it
remains unclear which aspects of the knowledge are captured
by our neural methods, especially by the EMB model whose
embeddings abstract over the bits of knowledge. More insight is
required to explain some differences we observed on individual
facets.

Some of these limitations could possibly be alleviated by re-
cent systems that aim to combine language models with back-
ground knowledge, such as K-BERT [65]. Applying such systems
on our task is a viable future work direction.

9. Conclusions and future work

Despite their unique scarcity and non-redundancy of knowl-
edge, lack of frequency/popularity priors, and potentially ex-
treme ambiguity, the NIL entities have received surprisingly little
attention in existing information extraction research.

This paper systematically investigated the role of explicit and
implicit knowledge when determining identity of NIL entities
mentioned in text. Given that the available information in text
could be insufficient to establish identity, we enhanced it with
profiles: background knowledge models that aim to capture im-
plicit expectations left out in text, thus normalizing the compari-
son and accounting for the knowledge sparsity of most attributes.
We tested 6 hypotheses about the role of different extent and
quality of explicit knowledge, profiling enhancements, and rea-
soning methods. Imperfect attribute extraction led to lower per-
formance in comparison to gold extraction, and profiling was able
to fill certain gaps of the automatic extractors. As expected, higher
ambiguity made the task much harder. However, the usefulness
of profiling had no clear relation to the degree of data ambiguity.

The profiles are explicit representations, thus providing us
with transparency and explanation on the identity decisions.
We analyzed their behavior on two intrinsic experiments, thus
testing another 5 hypotheses. Namely, we evaluated the profiling
machines against instantial data in Wikidata, as well as against
human judgments collected in a crowdsourcing task. Both ex-
periments showed that the profiling methods get much closer
to the typical or the correct value than the underlying baselines
based on frequency or the Naive Bayes method. The prediction
accuracy per attribute varies greatly, which can be largely ex-
plained through the notions of entropy, value size, and (number
of) known attributes.

Further research should continue investigating how to best
incorporate profiling components to fill the gaps in human com-
munication. Our experiments revealed two key potential pitfalls,

20 We obtained lifespan and century of birth from birth and death dates.

namely: 1. profiles built on top of incomplete or wrong informa-
tion extracted from text can be misleading and counterproductive
for the task of establishing long-tail identity 2. there is a notable
discrepancy between the properties and their values found in text
in comparison to those that can be learned from Wikidata. The
role of other types of knowledge, i.e., intertextual and circumtex-
tual, for determining identity of NILs should also be tested.

Future work needs to investigate how to apply EMB (the
embeddings-based predictor) to the task of NIL clustering. In
addition, the generalizability of our approaches to other entity
types, e.g., organizations or locations, should be tested. This
would entail automating of the property set selection for the AE
system. Intuitively, an updated version of the EMB system that
is able to compute entity embeddings on the fly would be na-
tively applicable to any kind of entity without excessive manual
engineering. Hence, we expect that an adapted EMB model will
be able to generalize easier to different entity types. To better
understand the strengths and weaknesses of our methods, it is
also important to compare our methods to existing NIL clustering
systems empirically.

With further understanding and engineering of these phenom-
ena, we expect that such profiling machines would be able to
natively address (at least) three standing challenges of modern-
day IE: 1. scarcity of episodic knowledge, prominent both in
knowledge bases and in communication; 2. unresolved ambiguity
in communication, when the available knowledge is not neces-
sarily scarce, yet prior expectations could lead to more reliable
disambiguation; 3. anomaly detection, when a seemingly reliable
machine interpretation is counter-intuitive and anomalous with
respect to our expectations.
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