2,139 research outputs found

    Securing the software-defined networking control plane by using control and data dependency techniques

    Get PDF
    Software-defined networking (SDN) fundamentally changes how network and security practitioners design, implement, and manage their networks. SDN decouples the decision-making about traffic forwarding (i.e., the control plane) from the traffic being forwarded (i.e., the data plane). SDN also allows for network applications, or apps, to programmatically control network forwarding behavior and policy through a logically centralized control plane orchestrated by a set of SDN controllers. As a result of logical centralization, SDN controllers act as network operating systems in the coordination of shared data plane resources and comprehensive security policy implementation. SDN can support network security through the provision of security services and the assurances of policy enforcement. However, SDNā€™s programmability means that a networkā€™s security considerations are different from those of traditional networks. For instance, an adversary who manipulates the programmable control plane can leverage significant control over the data planeā€™s behavior. In this dissertation, we demonstrate that the security posture of SDN can be enhanced using control and data dependency techniques that track information flow and enable understanding of application composability, control and data plane decoupling, and control plane insight. We support that statement through investigation of the various ways in which an attacker can use control flow and data flow dependencies to influence the SDN control plane under different threat models. We systematically explore and evaluate the SDN security posture through a combination of runtime, pre-runtime, and post-runtime contributions in both attack development and defense designs. We begin with the development a conceptual accountability framework for SDN. We analyze the extent to which various entities within SDN are accountable to each other, what they are accountable for, mechanisms for assurance about accountability, standards by which accountability is judged, and the consequences of breaching accountability. We discover significant research gaps in SDNā€™s accountability that impact SDNā€™s security posture. In particular, the results of applying the accountability framework showed that more control plane attribution is necessary at different layers of abstraction, and that insight motivated the remaining work in this dissertation. Next, we explore the influence of apps in the SDN control planeā€™s secure operation. We find that existing access control protections that limit what apps can do, such as role-based access controls, prove to be insufficient for preventing malicious apps from damaging control plane operations. The reason is SDNā€™s reliance on shared network state. We analyze SDNā€™s shared state model to discover that benign apps can be tricked into acting as ā€œconfused deputiesā€; malicious apps can poison the state used by benign apps, and that leads the benign apps to make decisions that negatively affect the network. That violates an implicit (but unenforced) integrity policy that governs the networkā€™s security. Because of the strong interdependencies among apps that result from SDNā€™s shared state model, we show that apps can be easily co-opted as ā€œgadgets,ā€ and that allows an attacker who minimally controls one app to make changes to the network state beyond his or her originally granted permissions. We use a data provenance approach to track the lineage of the network state objects by assigning attribution to the set of processes and agents responsible for each control plane object. We design the ProvSDN tool to track API requests from apps as they access the shared network stateā€™s objects, and to check requests against a predefined integrity policy to ensure that low-integrity apps cannot poison high-integrity apps. ProvSDN acts as both a reference monitor and an information flow control enforcement mechanism. Motivated by the strong inter-app dependencies, we investigate whether implicit data plane dependencies affect the control planeā€™s secure operation too. We find that data plane hosts typically have an outsized effect on the generation of the network state in reactive-based control plane designs. We also find that SDNā€™s event-based design, and the apps that subscribe to events, can induce dependencies that originate in the data plane and that eventually change forwarding behaviors. That combination gives attackers that are residing on data plane hosts significant opportunities to influence control plane decisions without having to compromise the SDN controller or apps. We design the EventScope tool to automatically identify where such vulnerabilities occur. EventScope clusters appsā€™ event usage to decide in which cases unhandled events should be handled, statically analyzes controller and app code to understand how events affect control plane execution, and identifies valid control flow paths in which a data plane attacker can reach vulnerable code to cause unintended data plane changes. We use EventScope to discover 14 new vulnerabilities, and we develop exploits that show how such vulnerabilities could allow an attacker to bypass an intended network (i.e., data plane) access control policy. This research direction is critical for SDN security evaluation because such vulnerabilities could be induced by host-based malware campaigns. Finally, although there are classes of vulnerabilities that can be removed prior to deployment, it is inevitable that other classes of attacks will occur that cannot be accounted for ahead of time. In those cases, a network or security practitioner would need to have the right amount of after-the-fact insight to diagnose the root causes of such attacks without being inundated with too much informa- tion. Challenges remain in 1) the modeling of apps and objects, which can lead to overestimation or underestimation of causal dependencies; and 2) the omission of a data plane model that causally links control and data plane activities. We design the PicoSDN tool to mitigate causal dependency modeling challenges, to account for a data plane model through the use of the data plane topology to link activities in the provenance graph, and to account for network semantics to appropriately query and summarize the control planeā€™s history. We show how prior work can hinder investigations and analysis in SDN-based attacks and demonstrate how PicoSDN can track SDN control plane attacks.Ope

    Cross-VM network attacks & their countermeasures within cloud computing environments

    Get PDF
    Cloud computing is a contemporary model in which the computing resources are dynamically scaled-up and scaled-down to customers, hosted within large-scale multi-tenant systems. These resources are delivered as improved, cost-effective and available upon request to customers. As one of the main trends of IT industry in modern ages, cloud computing has extended momentum and started to transform the mode enterprises build and offer IT solutions. The primary motivation in using cloud computing model is cost-effectiveness. These motivations can compel Information and Communication Technologies (ICT) organizations to shift their sensitive data and critical infrastructure on cloud environments. Because of the complex nature of underlying cloud infrastructure, the cloud environments are facing a large number of challenges of misconfigurations, cyber-attacks, root-kits, malware instances etc which manifest themselves as a serious threat to cloud environments. These threats noticeably decline the general trustworthiness, reliability and accessibility of the cloud. Security is the primary concern of a cloud service model. However, a number of significant challenges revealed that cloud environments are not as much secure as one would expect. There is also a limited understanding regarding the offering of secure services in a cloud model that can counter such challenges. This indicates the significance of the fact that what establishes the threat in cloud model. One of the main threats in a cloud model is of cost-effectiveness, normally cloud providers reduce cost by sharing infrastructure between multiple un-trusted VMs. This sharing has also led to several problems including co-location attacks. Cloud providers mitigate co-location attacks by introducing the concept of isolation. Due to this, a guest VM cannot interfere with its host machine, and with other guest VMs running on the same system. Such isolation is one of the prime foundations of cloud security for major public providers. However, such logical boundaries are not impenetrable. A myriad of previous studies have demonstrated how co-resident VMs could be vulnerable to attacks through shared file systems, cache side-channels, or through compromising of hypervisor layer using rootkits. Thus, the threat of cross-VM attacks is still possible because an attacker uses one VM to control or access other VMs on the same hypervisor. Hence, multiple methods are devised for strategic VM placement in order to exploit co-residency. Despite the clear potential for co-location attacks for abusing shared memory and disk, fine grained cross-VM network-channel attacks have not yet been demonstrated. Current network based attacks exploit existing vulnerabilities in networking technologies, such as ARP spoofing and DNS poisoning, which are difficult to use for VM-targeted attacks. The most commonly discussed network-based challenges focus on the fact that cloud providers place more layers of isolation between co-resided VMs than in non-virtualized settings because the attacker and victim are often assigned to separate segmentation of virtual networks. However, it has been demonstrated that this is not necessarily sufficient to prevent manipulation of a victim VMā€™s traffic. This thesis presents a comprehensive method and empirical analysis on the advancement of co-location attacks in which a malicious VM can negatively affect the security and privacy of other co-located VMs as it breaches the security perimeter of the cloud model. In such a scenario, it is imperative for a cloud provider to be able to appropriately secure access to the data such that it reaches to the appropriate destination. The primary contribution of the work presented in this thesis is to introduce two innovative attack models in leading cloud models, impersonation and privilege escalation, that successfully breach the security perimeter of cloud models and also propose countermeasures that block such types of attacks. The attack model revealed in this thesis, is a combination of impersonation and mirroring. This experimental setting can exploit the network channel of cloud model and successfully redirects the network traffic of other co-located VMs. The main contribution of this attack model is to find a gap in the contemporary network cloud architecture that an attacker can exploit. Prior research has also exploited the network channel using ARP poisoning, spoofing but all such attack schemes have been countered as modern cloud providers place more layers of security features than in preceding settings. Impersonation relies on the already existing regular network devices in order to mislead the security perimeter of the cloud model. The other contribution presented of this thesis is ā€˜privilege escalationā€™ attack in which a non-root user can escalate a privilege level by using RoP technique on the network channel and control the management domain through which attacker can manage to control the other co-located VMs which they are not authorized to do so. Finally, a countermeasure solution has been proposed by directly modifying the open source code of cloud model that can inhibit all such attacks

    A policy compliance detection architecture for data exchange infrastructures

    Get PDF
    Data sharing and federation can significantly increase efficiency and lower the cost of digital collaborations. It is important to convince the data owners that their outsourced data will be used in a secure and controlled manner. To achieve this goal, constructing a policy governing concrete data usage rule among all parties is essential. More importantly, we need to establish digital infrastructures that can enforce the policy. In this thesis, we investigate how to select optimal application-tailored infrastructures and enhance policy compliance capabilities. First, we introduce a component linking the policy to the infrastructure patterns. The mechanism selects digital infrastructure patterns that satisfy the collaboration request to a maximal degree by modelling and closeness identification. Second, we present a threat-analysis driven risk assessment framework. The framework quantitatively assesses the remaining risk of an application delegated to digital infrastructure. The optimal digital infrastructure for a specific data federation application is the one which can support the requested collaboration model and provides the best security guarantee. Finally, we present a distributed architecture that detects policy compliance when an algorithm executes on the data. A profile and an IDS model are built for each containerized algorithm and are distributed to endpoint execution platforms via a secure channel. Syscall traces are monitored and analysed in endpoint points platforms. The machine learning based IDS is retrained periodically to increase generalization. A sanitization algorithm is implemented to filter out malicious samples to further defend the architecture against adversarial machine learning attacks

    StoryDroid: Automated Generation of Storyboard for Android Apps

    Full text link
    Mobile apps are now ubiquitous. Before developing a new app, the development team usually endeavors painstaking efforts to review many existing apps with similar purposes. The review process is crucial in the sense that it reduces market risks and provides inspiration for app development. However, manual exploration of hundreds of existing apps by different roles (e.g., product manager, UI/UX designer, developer) in a development team can be ineffective. For example, it is difficult to completely explore all the functionalities of the app in a short period of time. Inspired by the conception of storyboard in movie production, we propose a system, StoryDroid, to automatically generate the storyboard for Android apps, and assist different roles to review apps efficiently. Specifically, StoryDroid extracts the activity transition graph and leverages static analysis techniques to render UI pages to visualize the storyboard with the rendered pages. The mapping relations between UI pages and the corresponding implementation code (e.g., layout code, activity code, and method hierarchy) are also provided to users. Our comprehensive experiments unveil that StoryDroid is effective and indeed useful to assist app development. The outputs of StoryDroid enable several potential applications, such as the recommendation of UI design and layout code

    Security Engineering of Patient-Centered Health Care Information Systems in Peer-to-Peer Environments: Systematic Review

    Get PDF
    Background: Patient-centered health care information systems (PHSs) enable patients to take control and become knowledgeable about their own health, preferably in a secure environment. Current and emerging PHSs use either a centralized database, peer-to-peer (P2P) technology, or distributed ledger technology for PHS deployment. The evolving COVID-19 decentralized Bluetooth-based tracing systems are examples of disease-centric P2P PHSs. Although using P2P technology for the provision of PHSs can be flexible, scalable, resilient to a single point of failure, and inexpensive for patients, the use of health information on P2P networks poses major security issues as users must manage information security largely by themselves. Objective: This study aims to identify the inherent security issues for PHS deployment in P2P networks and how they can be overcome. In addition, this study reviews different P2P architectures and proposes a suitable architecture for P2P PHS deployment. Methods: A systematic literature review was conducted following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) reporting guidelines. Thematic analysis was used for data analysis. We searched the following databases: IEEE Digital Library, PubMed, Science Direct, ACM Digital Library, Scopus, and Semantic Scholar. The search was conducted on articles published between 2008 and 2020. The Common Vulnerability Scoring System was used as a guide for rating security issues. Results: Our findings are consolidated into 8 key security issues associated with PHS implementation and deployment on P2P networks and 7 factors promoting them. Moreover, we propose a suitable architecture for P2P PHSs and guidelines for the provision of PHSs while maintaining information security. Conclusions: Despite the clear advantages of P2P PHSs, the absence of centralized controls and inconsistent views of the network on some P2P systems have profound adverse impacts in terms of security. The security issues identified in this study need to be addressed to increase patients\u27 intention to use PHSs on P2P networks by making them safe to use
    • ā€¦
    corecore