63,337 research outputs found

    Gene Aging Nexus: a web database and data mining platform for microarray data on aging

    Get PDF
    The recent development of microarray technology provided unprecedented opportunities to understand the genetic basis of aging. So far, many microarray studies have addressed aging-related expression patterns in multiple organisms and under different conditions. The number of relevant studies continues to increase rapidly. However, efficient exploitation of these vast data is frustrated by the lack of an integrated data mining platform or other unifying bioinformatic resource to enable convenient cross-laboratory searches of array signals. To facilitate the integrative analysis of microarray data on aging, we developed a web database and analysis platform ‘Gene Aging Nexus’ (GAN) that is freely accessible to the research community to query/analyze/visualize cross-platform and cross-species microarray data on aging. By providing the possibility of integrative microarray analysis, GAN should be useful in building the systems-biology understanding of aging. GAN is accessible at

    Cross-species hybridisation of pig RNA to human nylon microarrays

    Get PDF
    BACKGROUND: The objective of this research was to investigate the reproducibility of cross-species microarray hybridisation. Comparisons between same- and cross-species hybridisations were also made. Nine hybridisations between a single pig skeletal muscle RNA sample and three human cDNA nylon microarrays were completed. Three replicate hybridisations of two different amounts of pig RNA, and of human skeletal muscle RNA were completed on three additional microarrays. RESULTS: Reproducibility of microarray hybridisations of pig cDNA to human microarrays was high, as determined by Spearman and Pearson correlation coefficients and a Kappa statistic. Variability among replicate hybridisations was similar for human and pig data, indicating the reproducibility of results were not compromised in cross-species hybridisations. The concordance between data generated from hybridisations using pig and human skeletal muscle RNA was high, further supporting the use of human microarrays for the analysis of gene expression in the pig. No systematic effect of stripping and re-using nylon microarrays was found, and variability across microarrays was minimal. CONCLUSION: The majority of genes generated highly reproducible data in cross-species microarray hybridisations, although approximately 6% were identified as highly variable. Experimental designs that include at least three replicate hybridisations for each experimental treatment will enable the variability of individual genes to be considered appropriately. The use of cross-species microarray analysis looks promising. However, additional validation is needed to determine the specificity of cross-species hybridisations, and the validity of results

    Marine Genomics: A clearing-house for genomic and transcriptomic data of marine organisms

    Get PDF
    BACKGROUND: The Marine Genomics project is a functional genomics initiative developed to provide a pipeline for the curation of Expressed Sequence Tags (ESTs) and gene expression microarray data for marine organisms. It provides a unique clearing-house for marine specific EST and microarray data and is currently available at . DESCRIPTION: The Marine Genomics pipeline automates the processing, maintenance, storage and analysis of EST and microarray data for an increasing number of marine species. It currently contains 19 species databases (over 46,000 EST sequences) that are maintained by registered users from local and remote locations in Europe and South America in addition to the USA. A collection of analysis tools are implemented. These include a pipeline upload tool for EST FASTA file, sequence trace file and microarray data, an annotative text search, automated sequence trimming, sequence quality control (QA/QC) editing, sequence BLAST capabilities and a tool for interactive submission to GenBank. Another feature of this resource is the integration with a scientific computing analysis environment implemented by MATLAB. CONCLUSION: The conglomeration of multiple marine organisms with integrated analysis tools enables users to focus on the comprehensive descriptions of transcriptomic responses to typical marine stresses. This cross species data comparison and integration enables users to contain their research within a marine-oriented data management and analysis environment

    Cross-species hybridisation of human and bovine orthologous genes on high density cDNA microarrays

    Get PDF
    BACKGROUND: Cross-species gene-expression comparison is a powerful tool for the discovery of evolutionarily conserved mechanisms and pathways of expression control. The usefulness of cDNA microarrays in this context is that broad areas of homology are compared and hybridization probes are sufficiently large that small inter-species differences in nucleotide sequence would not affect the analytical results. This comparative genomics approach would allow a common set of genes within a specific developmental, metabolic, or disease-related gene pathway to be evaluated in experimental models of human diseases. The objective of this study was to investigate the feasibility and reproducibility of cross-species analysis employing a human cDNA microarray as probe. RESULTS: As a proof of principle, total RNA derived from human and bovine fetal brains was used as a source of labelled targets for hybridisation onto a human cDNA microarray composed of 349 characterised genes. Each gene was spotted 20 times representing 6,980 data points thus enabling highly reproducible spot quantification. Employing high stringency hybridisation and washing conditions, followed by data analysis, revealed slight differences in the expression levels and reproducibility of the signals between the two species. We also assigned each of the genes into three expression level categories- i.e. high, medium and low. The correlation co-efficient of cross hybridisation between the orthologous genes was 0.94. Verification of the array data by semi-quantitative RT-PCR using common primer sequences enabled co-amplification of both human and bovine transcripts. Finally, we were able to assign gene names to previously uncharacterised bovine ESTs. CONCLUSIONS: Results of our study demonstrate the harnessing and utilisation power of comparative genomics and prove the feasibility of using human microarrays to facilitate the identification of co-expressed orthologous genes in common tissues derived from different species

    Bioinformatics approaches for cross-species liver cancer analysis based on microarray gene expression profiling

    Get PDF
    BACKGROUND: The completion of the sequencing of human, mouse and rat genomes and knowledge of cross-species gene homologies enables studies of differential gene expression in animal models. These types of studies have the potential to greatly enhance our understanding of diseases such as liver cancer in humans. Genes co-expressed across multiple species are most likely to have conserved functions. We have used various bioinformatics approaches to examine microarray expression profiles from liver neoplasms that arise in albumin-SV40 transgenic rats to elucidate genes, chromosome aberrations and pathways that might be associated with human liver cancer. RESULTS: In this study, we first identified 2223 differentially expressed genes by comparing gene expression profiles for two control, two adenoma and two carcinoma samples using an F-test. These genes were subsequently mapped to the rat chromosomes using a novel visualization tool, the Chromosome Plot. Using the same plot, we further mapped the significant genes to orthologous chromosomal locations in human and mouse. Many genes expressed in rat 1q that are amplified in rat liver cancer map to the human chromosomes 10, 11 and 19 and to the mouse chromosomes 7, 17 and 19, which have been implicated in studies of human and mouse liver cancer. Using Comparative Genomics Microarray Analysis (CGMA), we identified regions of potential aberrations in human. Lastly, a pathway analysis was conducted to predict altered human pathways based on statistical analysis and extrapolation from the rat data. All of the identified pathways have been known to be important in the etiology of human liver cancer, including cell cycle control, cell growth and differentiation, apoptosis, transcriptional regulation, and protein metabolism. CONCLUSION: The study demonstrates that the hepatic gene expression profiles from the albumin-SV40 transgenic rat model revealed genes, pathways and chromosome alterations consistent with experimental and clinical research in human liver cancer. The bioinformatics tools presented in this paper are essential for cross species extrapolation and mapping of microarray data, its analysis and interpretation

    Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray

    Get PDF
    Background Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. Results Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. Conclusion The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process

    Global Expression Patterns of Three Festuca Species Exposed to Different Doses of Glyphosate Using the Affymetrix GeneChip Wheat Genome Array

    Get PDF
    Glyphosate has been shown to act as an inhibitor of an aromatic amino acid biosynthetic pathway, while other pathways that may be affected by glyphosate are not known. Cross species hybridizations can provide a tool for elucidating biological pathways conserved among organisms. Comparative genome analyses have indicated a high level of colinearity among grass species and Festuca, on which we focus here, and showed rearrangements common to the Pooideae family. Based on sequence conservation among grass species, we selected the Affymetrix GeneChip Wheat Genome Array as a tool for the analysis of expression profiles of three Festuca (fescue) species with distinctly different tolerances to varying levels of glyphosate. Differences in transcript expression were recorded upon foliar glyphosate application at 1.58 mM and 6.32 mM, representing 5% and 20%, respectively, of the recommended rate. Differences highlighted categories of general metabolic processes, such as photosynthesis, protein synthesis, stress responses, and a larger number of transcripts responded to 20% glyphosate application. Differential expression of genes encoding proteins involved in the shikimic acid pathway could not be identified by cross hybridization. Microarray data were confirmed by RT-PCR and qRT-PCR analyses. This is the first report to analyze the potential of cross species hybridization in Fescue species and the data and analyses will help extend our knowledge on the cellular processes affected by glyphosate

    Development and evaluation of new mask protocols for gene expression profiling in humans and chimpanzees

    Get PDF
    Abstract Background Cross-species gene expression analyses using oligonucleotide microarrays designed to evaluate a single species can provide spurious results due to mismatches between the interrogated transcriptome and arrayed probes. Based on the most recent human and chimpanzee genome assemblies, we developed updated and accessible probe masking methods that allow human Affymetrix oligonucleotide microarrays to be used for robust genome-wide expression analyses in both species. In this process, only data from oligonucleotide probes predicted to have robust hybridization sensitivity and specificity for both transcriptomes are retained for analysis. Results To characterize the utility of this resource, we applied our mask protocols to existing expression data from brains, livers, hearts, testes, and kidneys derived from both species and determined the effects probe numbers have on expression scores of specific transcripts. In all five tissues, probe sets with decreasing numbers of probes showed non-linear trends towards increased variation in expression scores. The relationships between expression variation and probe number in brain data closely matched those observed in simulated expression data sets subjected to random probe masking. However, there is evidence that additional factors affect the observed relationships between gene expression scores and probe number in tissues such as liver and kidney. In parallel, we observed that decreasing the number of probes within probe sets lead to linear increases in both gained and lost inferences of differential cross-species expression in all five tissues, which will affect the interpretation of expression data subject to masking. Conclusion We introduce a readily implemented and updated resource for human and chimpanzee transcriptome analysis through a commonly used microarray platform. Based on empirical observations derived from the analysis of five distinct data sets, we provide novel guidelines for the interpretation of masked data that take the number of probes present in a given probe set into consideration. These guidelines are applicable to other customized applications that involve masking data from specific subsets of probes

    Comparison of Computational Models for Assessing Conservation of Gene Expression across Species

    Get PDF
    Assessing conservation/divergence of gene expression across species is important for the understanding of gene regulation evolution. Although advances in microarray technology have provided massive high-dimensional gene expression data, the analysis of such data is still challenging. To date, assessing cross-species conservation of gene expression using microarray data has been mainly based on comparison of expression patterns across corresponding tissues, or comparison of co-expression of a gene with a reference set of genes. Because direct and reliable high-throughput experimental data on conservation of gene expression are often unavailable, the assessment of these two computational models is very challenging and has not been reported yet. In this study, we compared one corresponding tissue based method and three co-expression based methods for assessing conservation of gene expression, in terms of their pair-wise agreements, using a frequently used human-mouse tissue expression dataset. We find that 1) the co-expression based methods are only moderately correlated with the corresponding tissue based methods, 2) the reliability of co-expression based methods is affected by the size of the reference ortholog set, and 3) the corresponding tissue based methods may lose some information for assessing conservation of gene expression. We suggest that the use of either of these two computational models to study the evolution of a gene's expression may be subject to great uncertainty, and the investigation of changes in both gene expression patterns over corresponding tissues and co-expression of the gene with other genes is necessary
    corecore