21 research outputs found

    Multi-Adversarial Domain Adaptation

    Full text link
    Recent advances in deep domain adaptation reveal that adversarial learning can be embedded into deep networks to learn transferable features that reduce distribution discrepancy between the source and target domains. Existing domain adversarial adaptation methods based on single domain discriminator only align the source and target data distributions without exploiting the complex multimode structures. In this paper, we present a multi-adversarial domain adaptation (MADA) approach, which captures multimode structures to enable fine-grained alignment of different data distributions based on multiple domain discriminators. The adaptation can be achieved by stochastic gradient descent with the gradients computed by back-propagation in linear-time. Empirical evidence demonstrates that the proposed model outperforms state of the art methods on standard domain adaptation datasets.Comment: AAAI 2018 Oral. arXiv admin note: substantial text overlap with arXiv:1705.10667, arXiv:1707.0790

    Theoretic Analysis and Extremely Easy Algorithms for Domain Adaptive Feature Learning

    Full text link
    Domain adaptation problems arise in a variety of applications, where a training dataset from the \textit{source} domain and a test dataset from the \textit{target} domain typically follow different distributions. The primary difficulty in designing effective learning models to solve such problems lies in how to bridge the gap between the source and target distributions. In this paper, we provide comprehensive analysis of feature learning algorithms used in conjunction with linear classifiers for domain adaptation. Our analysis shows that in order to achieve good adaptation performance, the second moments of the source domain distribution and target domain distribution should be similar. Based on our new analysis, a novel extremely easy feature learning algorithm for domain adaptation is proposed. Furthermore, our algorithm is extended by leveraging multiple layers, leading to a deep linear model. We evaluate the effectiveness of the proposed algorithms in terms of domain adaptation tasks on the Amazon review dataset and the spam dataset from the ECML/PKDD 2006 discovery challenge.Comment: ijca

    Domain adaptation of weighted majority votes via perturbed variation-based self-labeling

    Full text link
    In machine learning, the domain adaptation problem arrives when the test (target) and the train (source) data are generated from different distributions. A key applied issue is thus the design of algorithms able to generalize on a new distribution, for which we have no label information. We focus on learning classification models defined as a weighted majority vote over a set of real-val ued functions. In this context, Germain et al. (2013) have shown that a measure of disagreement between these functions is crucial to control. The core of this measure is a theoretical bound--the C-bound (Lacasse et al., 2007)--which involves the disagreement and leads to a well performing majority vote learning algorithm in usual non-adaptative supervised setting: MinCq. In this work, we propose a framework to extend MinCq to a domain adaptation scenario. This procedure takes advantage of the recent perturbed variation divergence between distributions proposed by Harel and Mannor (2012). Justified by a theoretical bound on the target risk of the vote, we provide to MinCq a target sample labeled thanks to a perturbed variation-based self-labeling focused on the regions where the source and target marginals appear similar. We also study the influence of our self-labeling, from which we deduce an original process for tuning the hyperparameters. Finally, our framework called PV-MinCq shows very promising results on a rotation and translation synthetic problem

    Unsupervised Domain Adaptation with Similarity Learning

    Full text link
    The objective of unsupervised domain adaptation is to leverage features from a labeled source domain and learn a classifier for an unlabeled target domain, with a similar but different data distribution. Most deep learning approaches to domain adaptation consist of two steps: (i) learn features that preserve a low risk on labeled samples (source domain) and (ii) make the features from both domains to be as indistinguishable as possible, so that a classifier trained on the source can also be applied on the target domain. In general, the classifiers in step (i) consist of fully-connected layers applied directly on the indistinguishable features learned in (ii). In this paper, we propose a different way to do the classification, using similarity learning. The proposed method learns a pairwise similarity function in which classification can be performed by computing similarity between prototype representations of each category. The domain-invariant features and the categorical prototype representations are learned jointly and in an end-to-end fashion. At inference time, images from the target domain are compared to the prototypes and the label associated with the one that best matches the image is outputed. The approach is simple, scalable and effective. We show that our model achieves state-of-the-art performance in different unsupervised domain adaptation scenarios

    A Fine-Grain Error Map Prediction and Segmentation Quality Assessment Framework for Whole-Heart Segmentation

    Full text link
    When introducing advanced image computing algorithms, e.g., whole-heart segmentation, into clinical practice, a common suspicion is how reliable the automatically computed results are. In fact, it is important to find out the failure cases and identify the misclassified pixels so that they can be excluded or corrected for the subsequent analysis or diagnosis. However, it is not a trivial problem to predict the errors in a segmentation mask when ground truth (usually annotated by experts) is absent. In this work, we attempt to address the pixel-wise error map prediction problem and the per-case mask quality assessment problem using a unified deep learning (DL) framework. Specifically, we first formalize an error map prediction problem, then we convert it to a segmentation problem and build a DL network to tackle it. We also derive a quality indicator (QI) from a predicted error map to measure the overall quality of a segmentation mask. To evaluate the proposed framework, we perform extensive experiments on a public whole-heart segmentation dataset, i.e., MICCAI 2017 MMWHS. By 5-fold cross validation, we obtain an overall Dice score of 0.626 for the error map prediction task, and observe a high Pearson correlation coefficient (PCC) of 0.972 between QI and the actual segmentation accuracy (Acc), as well as a low mean absolute error (MAE) of 0.0048 between them, which evidences the efficacy of our method in both error map prediction and quality assessment.Comment: 9 pages, accepted by MICCAI'1

    Joint Distribution Optimal Transportation for Domain Adaptation

    Full text link
    This paper deals with the unsupervised domain adaptation problem, where one wants to estimate a prediction function ff in a given target domain without any labeled sample by exploiting the knowledge available from a source domain where labels are known. Our work makes the following assumption: there exists a non-linear transformation between the joint feature/label space distributions of the two domain Ps\mathcal{P}_s and Pt\mathcal{P}_t. We propose a solution of this problem with optimal transport, that allows to recover an estimated target Ptf=(X,f(X))\mathcal{P}^f_t=(X,f(X)) by optimizing simultaneously the optimal coupling and ff. We show that our method corresponds to the minimization of a bound on the target error, and provide an efficient algorithmic solution, for which convergence is proved. The versatility of our approach, both in terms of class of hypothesis or loss functions is demonstrated with real world classification and regression problems, for which we reach or surpass state-of-the-art results.Comment: Accepted for publication at NIPS 201

    A New PAC-Bayesian Perspective on Domain Adaptation

    Get PDF
    We study the issue of PAC-Bayesian domain adaptation: We want to learn, from a source domain, a majority vote model dedicated to a target one. Our theoretical contribution brings a new perspective by deriving an upper-bound on the target risk where the distributions' divergence---expressed as a ratio---controls the trade-off between a source error measure and the target voters' disagreement. Our bound suggests that one has to focus on regions where the source data is informative.From this result, we derive a PAC-Bayesian generalization bound, and specialize it to linear classifiers. Then, we infer a learning algorithmand perform experiments on real data.Comment: Published at ICML 201
    corecore