34 research outputs found

    Efficient Implementation of Mesh Generation and FDTD Simulation of Electromagnetic Fields

    Get PDF
    This thesis presents an implementation of the Finite Difference Time Domain (FDTD) method on a massively parallel computer system, for the analysis of electromagnetic phenomenon. In addition, the implementation of an efficient mesh generator is also presented. For this research we selected the MasPar system, as it is a relatively low cost, reliable, high performance computer system. In this thesis we are primarily concerned with the selection of an efficient algorithm for each of the programs written for our selected application, and devising clever ways to make the best use of the MasPar system. This thesis has a large emphasis on examining the application performance

    Three-Dimensional Radiative Transfer on a Massively Parallel Computer.

    Get PDF
    We perform three-dimensional radiative transfer calculations on the MasPar MP-1, which contains 8192 processors and is a single instruction multiple data (SIMD) machine, an example of the new generation of massively parallel computers. To make radiative transfer calculations efficient, we must re-consider the numerical methods and methods of storage of data that have been used with serial machines. We developed a numerical code which efficiently calculates images and spectra of astrophysical systems as seen from different viewing directions and at different wavelengths. We use this code to examine a number of different astrophysical systems. First we image the HI distribution of model galaxies. Then we investigate the galaxy NGC 5055, which displays a radial asymmetry in its optical appearance. This can be explained by the presence of dust in the outer HI disk far beyond the optical disk. As the formation of dust is connected to the presence of stars, the existence of dust in outer regions of this galaxy could have consequences for star formation at a time when this galaxy was just forming. Next we use the code for polarized radiative transfer. We first discuss the numerical computation of the required cyclotron opacities and use them to calculate spectra of AM Her systems, binaries containing accreting magnetic white dwarfs. Then we obtain spectra of an extended polar cap. Previous calculations did not consider the three-dimensional extension of the shock. We find that this results in a significant underestimate of the radiation emitted in the shock. Next we calculate the spectrum of the intermediate polar RE 0751+14. For this system we obtain a magnetic field of ∼\sim10 MG, which has consequences for the evolution of intermediate polars. Finally we perform 3D radiative transfer in NLTE in the two-level atom approximation. To solve the transfer equation in this case, we adapt the short characteristic method and examine different acceleration methods to obtain the source function. These include the ALI method with local and non-local operators, the Ng and the orthomin methods and multi-grid methods. We apply these numerical methods to two problems with and without periodic boundary conditions

    A library for parallel arithmetic using a modular representation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN041817 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    PARSEC: A Constraint-Based Parser for Spoken Language Processing

    Get PDF
    PARSEC (1), a text-based and spoken language processing framework based on the Constraint Dependency Grammar (CDG) developed by Maruyama [26,27], is discussed. The scope of CDG is expanded to allow for the analysis of sentences containing lexically ambiguous words, to allow feature analysis in constraints, and to efficiently process multiple sentence candidates that are likely to arise in spoken language processing. The benefits of the CDG parsing approach are summarized. Additionally, the development CDG grammars using PARSEC grammar writing tools and the implementation of the PARSEC parser for word graphs is discussed. (1) Parallel ARchitecture Sentence Constraine

    An Experimental Study on Relationship between Performance and Energy Consumption of Serial and Parallel Text Searching Algorithm.

    Get PDF
    The world data is growing vigorously intersecting of large ordered sets and it is a common problem in the evaluation of data queries to a search engine. Thus, text retrieval systems have become a popular way in providing support for text databases. However this becomes a major question among us like how much energy is consumed? How to reduce execution time in searching large amount of data? In this paper, text searching algorithm is using to study the relationship between performance of computer and amount of energy produced in serial and parallel text searching algorithm. The amount of energy produced should be reduced along with the execution time to increase performance in data searching. Based on data recorded from the series of experiments, Serial Text Searching Algorithm is saving energy and reducing power usage. However, their performance is reducing as a smaller processor speed is using. In contrast to Parallel Text Searching Algorithm, there are larger amount of energy consumed from this experiment. However, it is approved that the performance of parallel experiment is far better than a single node performance

    Computer vision algorithms on reconfigurable logic arrays

    Full text link

    Optical Character Recognition Using Morphological Attributes.

    Get PDF
    This dissertation addresses a fundamental computational strategy in image processing hand written English characters using traditional parallel computers. Image acquisition and processing is becoming a thriving industry because of the frequent availability of fax machines, video digitizers, flat-bed scanners, hand scanners, color scanners, and other image input devices that are now accessible to everyone. Optical Character Recognition (OCR) research increased as the technology for a robust OCR system became realistic. There is no commercial effective recognition system that is able to translate raw digital images of hand written text into pure ASCII. The reason is that a digital image comprises of a vast number of pixels. The traditional approach of processing the huge collection of pixel information is quite slow and cumbersome. In this dissertation we developed an approach and theory for a fast robust OCR system for images of hand written characters using morphological attribute features that are expected by the alphabet character set. By extracting specific morphological attributes from the scanned image, the dynamic OCR system is able to generalize and approximate similar images. This generalization is achieved with the usage of fuzzy logic and neural network. Since the main requirement for a commercially effective OCR is a fast and a high recognition rate system, the approach taken in this research is to shift the recognition computation into the system\u27s architecture and its learning phase. The recognition process constituted mainly simple integer computation, a preferred computation on digital computers. In essence, the system maintains the attribute envelope boundary upon which each English character could fall under. This boundary is based on extreme attributes extracted from images introduced to the system beforehand. The theory was implemented both on a SIMD-MC\sp2 and a SISD machine. The resultant system proved to be a fast robust dynamic system, given that a suitable learning had taken place. The principle contributions of this dissertation are: (1) Improving existing thinning algorithms for image preprocessing. (2) Development of an on-line cluster partitioning procedure for region oriented segmentation. (3) Expansion of a fuzzy knowledge base theory to maintain morphological attributes on digital computers. (4) Dynamic Fuzzy learning/recognition technique

    The 1993 Goddard Conference on Space Applications of Artificial Intelligence

    Get PDF
    This publication comprises the papers presented at the 1993 Goddard Conference on Space Applications of Artificial Intelligence held at the NASA/Goddard Space Flight Center, Greenbelt, MD on May 10-13, 1993. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    An Experimental Study on Relationship between Performance and Energy Consumption of Serial and Parallel Text Searching Algorithm.

    Get PDF
    The world data is growing vigorously intersecting of large ordered sets and it is a common problem in the evaluation of data queries to a search engine. Thus, text retrieval systems have become a popular way in providing support for text databases. However this becomes a major question among us like how much energy is consumed? How to reduce execution time in searching large amount of data? In this paper, text searching algorithm is using to study the relationship between performance of computer and amount of energy produced in serial and parallel text searching algorithm. The amount of energy produced should be reduced along with the execution time to increase performance in data searching. Based on data recorded from the series of experiments, Serial Text Searching Algorithm is saving energy and reducing power usage. However, their performance is reducing as a smaller processor speed is using. In contrast to Parallel Text Searching Algorithm, there are larger amount of energy consumed from this experiment. However, it is approved that the performance of parallel experiment is far better than a single node performance

    The 1995 Science Information Management and Data Compression Workshop

    Get PDF
    This document is the proceedings from the 'Science Information Management and Data Compression Workshop,' which was held on October 26-27, 1995, at the NASA Goddard Space Flight Center, Greenbelt, Maryland. The Workshop explored promising computational approaches for handling the collection, ingestion, archival, and retrieval of large quantities of data in future Earth and space science missions. It consisted of fourteen presentations covering a range of information management and data compression approaches that are being or have been integrated into actual or prototypical Earth or space science data information systems, or that hold promise for such an application. The Workshop was organized by James C. Tilton and Robert F. Cromp of the NASA Goddard Space Flight Center
    corecore