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Abstract

This thesis presents an implementation of the Finite Difference Time Domain
(FDTD) method on a massively parallel computer system, for the analysis of elec-
tromagnetic phenomenon. In addition, the implementation of an efficient mesh
generator is also presented. For this research we selected the MasPar system, as
it is a relatively low cost, reliable, high performance computer system. In this
thesis we are primarily concerned with the selection of an efficient algorithm for
each of the programs written for our selected application, and devising clever ways
to make the best use of the MasPar system. This thesis has a large emphasis on
examining the application performance.
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Revision Notice

Before making this thesis available for republication, a handful of typographical
errors were corrected. Corrections were made for extraneous words as well as for
spelling errors that surprisingly, were not found by the ispell program. Besides
these, the most significant changes include the following;

• Page 195, Table 4.3 - In Entry 2, ABC was replaced by PMC

• Page 227, Figure 5.12 - The comment was corrected to match caption

• Page 214, Equation (5.4) - Corrected to include extra layer

These corrections were made in good faith by the Author, Jonathan Hill on
October 4, 1999.



iii

Acknowledgements

First, I must give my sincerest thanks to my advisor, Professor William Michal-
son. You have been my supporter, champion, and motivator for this effort. Because
of your guidance, I was able to persevere, complete the research and deliver this
document. Prof. Michalson, you are an example of professorship that I admire
and respect. I appreciate your faith in me.

I must thank Prof. Jin-Fa Lee. You have helped by offerring advice during the
research phase of this project. The commercial software that you made available
was instrumental in the development of this project. Even long after the research
was complete, I still had an account on your computer system.

Thanks go to the rest of my thesis committee, Prof. Reinhold Ludwig who
helped review the electromagnetic theory presented here, as well as Prof. James
Duckworth who help review the thesis as well.

In no special order, thanks go to a few of my friends. Thanks go to George
Gubrell, Hua Hua, Jennifer Stander, Mirko Spasojevic, Witold Jachimczyk, Gary
Adamowicz, Lee Evans, Ramesh Sharma, Jacques Beneat, Guanghua Peng, Doris
Boronowski, Surrender Mohan, Christine Easton, Imad Nejdawi, and Mustapha
Fofana. Your advice and good humor has been a great help.

Thanks go to our system administrator, Babak Najafi. You have been able to
keep our computer network up, despite the law of entropy. Thanks are extended
to the support staff at MasPar corporation. Their assistance and effort in making
the MP 1208 available was beyond the call of duty. Thanks are also extended to
Prof. John Conery, for making the MP 1104 owned by the University of Oregon
available.

Next, I must thank my family, especially my Mother, Marilyn and my new
father, Louis. Thanks also go to my brothers Peter, Timothy, and new brothers
John and Paul. Thanks as well go to my new sisters Heidi and Terry. Thank you
for the fun times we had. I especially enjoyed our visits and vacations. I am also
thankful for your patience and prodding, your effort has in fact helped to make
this thesis possible.

At last, my warmest thanks go to my late father, Dr. David Hill who still lives
in my memory. I have made a home for you in my heart. Perhaps some of your
scholarly genius found its way to me. It is for my father that I dedicate this thesis.



Contents

1 Introduction 1

1.1 The Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Application Outline . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Application Summary . . . . . . . . . . . . . . . . . . . . . 4

1.2 FDTD Algorithm and Mesh Generation . . . . . . . . . . . . . . . . 5

1.3 The Array Processor . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1 The Illiac IV . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 The MasPar System . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 MasPar DPU Architecture . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.1 The Array Control Unit (ACU) . . . . . . . . . . . . . . . . 13

1.5.2 The PE Array . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5.3 PE Coordination . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.4 Communications Between PEs . . . . . . . . . . . . . . . . . 16

1.5.5 MasPar Architecture Summary . . . . . . . . . . . . . . . . 18

1.6 The Continuum Model . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6.1 An Example of a Continuum Model . . . . . . . . . . . . . . 21

iv



CONTENTS v

1.6.2 A MasPar Program Example . . . . . . . . . . . . . . . . . 23

1.6.3 Results from a Continuum Model . . . . . . . . . . . . . . . 28

1.6.4 Program Performance . . . . . . . . . . . . . . . . . . . . . 28

1.6.5 Continuum Model Summary . . . . . . . . . . . . . . . . . . 32

1.7 Introduction to Performance . . . . . . . . . . . . . . . . . . . . . . 34

1.7.1 Time as a Performance Metric . . . . . . . . . . . . . . . . . 34

1.7.2 Time Complexity as a Performance Metric . . . . . . . . . . 37

1.7.3 PE Use as a Performance Metric . . . . . . . . . . . . . . . 37

1.7.4 Speed-Up as a Performance Metric . . . . . . . . . . . . . . 39

1.7.5 MFLOPS as a Performance Metric . . . . . . . . . . . . . . 40

1.7.6 Alternative Metrics . . . . . . . . . . . . . . . . . . . . . . . 43

1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 Parallel Mesh Algorithm 46

2.1 High Level Introduction . . . . . . . . . . . . . . . . . . . . . . . . 47

2.2 High Level Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.2.1 Definitions of Geometry . . . . . . . . . . . . . . . . . . . . 53

2.2.2 Clarifying Closedness . . . . . . . . . . . . . . . . . . . . . . 55

2.2.3 Analyzing Multiple Shapes . . . . . . . . . . . . . . . . . . . 56

2.2.4 A Word on Notation . . . . . . . . . . . . . . . . . . . . . . 59

2.2.5 The Orthogonal Mesh . . . . . . . . . . . . . . . . . . . . . 59

2.2.6 The Search Origin . . . . . . . . . . . . . . . . . . . . . . . 61

2.2.7 Describing Surfaces . . . . . . . . . . . . . . . . . . . . . . . 62



CONTENTS vi

2.3 Mesh Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . 64

2.4 The Mesh Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 66

2.4.1 Initialization Tasks . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.2 Facet Server Task . . . . . . . . . . . . . . . . . . . . . . . . 68

2.4.3 Pick Next Grid Point Task . . . . . . . . . . . . . . . . . . . 73

2.4.4 Intersection Finder Task . . . . . . . . . . . . . . . . . . . . 74

2.4.5 Facet Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.4.6 Insideness and Resolver Tasks . . . . . . . . . . . . . . . . . 89

2.4.7 Copy Out Mesh Task . . . . . . . . . . . . . . . . . . . . . . 93

2.4.8 Store Results In Files Task . . . . . . . . . . . . . . . . . . . 93

2.4.9 The Mesh Algorithm Summary . . . . . . . . . . . . . . . . 94

2.5 The Detection of Singularities . . . . . . . . . . . . . . . . . . . . . 94

2.6 Introducing Complexity Analysis . . . . . . . . . . . . . . . . . . . 97

2.7 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.7.1 Problem Size . . . . . . . . . . . . . . . . . . . . . . . . . . 99

2.7.2 Time Complexity by Task . . . . . . . . . . . . . . . . . . . 101

2.7.3 Overall Time Complexity . . . . . . . . . . . . . . . . . . . 105

2.8 Presenting the Parallel Algorithm . . . . . . . . . . . . . . . . . . . 108

2.9 Anticipating Speed-Up . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.10 An Alternate Facet Solver . . . . . . . . . . . . . . . . . . . . . . . 111

2.10.1 The Determinant Method . . . . . . . . . . . . . . . . . . . 111

2.10.2 Close Examination . . . . . . . . . . . . . . . . . . . . . . . 112

2.10.3 Comparing Performance . . . . . . . . . . . . . . . . . . . . 113



CONTENTS vii

2.10.4 So What is Possible? . . . . . . . . . . . . . . . . . . . . . . 114

2.11 Parallel Mesh Algorithm Summary . . . . . . . . . . . . . . . . . . 114

3 Mesh Generator Implementation 116

3.1 Transferring Data with the DPU . . . . . . . . . . . . . . . . . . . 116

3.2 Presenting the Mapping . . . . . . . . . . . . . . . . . . . . . . . . 117

3.2.1 The Overall Mesh . . . . . . . . . . . . . . . . . . . . . . . . 118

3.2.2 The Analysis Subregion . . . . . . . . . . . . . . . . . . . . 118

3.2.3 A Linear Array of Counters . . . . . . . . . . . . . . . . . . 124

3.2.4 One Dimensional Cut and Stack . . . . . . . . . . . . . . . . 125

3.2.5 Mapping Summary . . . . . . . . . . . . . . . . . . . . . . . 127

3.3 Allocating Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.4 Implementation Outline . . . . . . . . . . . . . . . . . . . . . . . . 132

3.4.1 Organization of Software Modules . . . . . . . . . . . . . . . 132

3.4.2 Mesh Initialization . . . . . . . . . . . . . . . . . . . . . . . 133

3.5 Characterizing Performance . . . . . . . . . . . . . . . . . . . . . . 137

3.6 Parallel Time Complexity Analysis . . . . . . . . . . . . . . . . . . 139

3.7 Timing Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

3.7.1 Speed Up Characteristics . . . . . . . . . . . . . . . . . . . . 146

3.7.2 PE Use Figure . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.7.3 MFLOPS Performance . . . . . . . . . . . . . . . . . . . . . 157

3.8 Performance Summary . . . . . . . . . . . . . . . . . . . . . . . . . 168

3.8.1 An Alternative Metric . . . . . . . . . . . . . . . . . . . . . 169



CONTENTS viii

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4 FDTD Algorithm 172

4.1 FDTD Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.1.1 Mesh Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.1.2 The Yee Cell . . . . . . . . . . . . . . . . . . . . . . . . . . 175

4.1.3 Time Stepping . . . . . . . . . . . . . . . . . . . . . . . . . 179

4.1.4 Stability and Accuracy . . . . . . . . . . . . . . . . . . . . . 180

4.2 Frequency Domain Analysis . . . . . . . . . . . . . . . . . . . . . . 181

4.3 Finite Difference Equations . . . . . . . . . . . . . . . . . . . . . . 182

4.4 Mesh Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.4.1 Practical Mesh Boundaries . . . . . . . . . . . . . . . . . . . 184

4.4.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 187

4.4.3 Implementing Boundary Conditions . . . . . . . . . . . . . . 191

4.4.4 Assigning Boundary Conditions . . . . . . . . . . . . . . . . 193

4.5 Conductive Materials . . . . . . . . . . . . . . . . . . . . . . . . . . 195

4.5.1 Electric Conductivity . . . . . . . . . . . . . . . . . . . . . . 195

4.5.2 Magnetic Conductivity . . . . . . . . . . . . . . . . . . . . . 196

4.5.3 A Special Case . . . . . . . . . . . . . . . . . . . . . . . . . 197

4.6 The FDTD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 198

5 FDTD Implementation 201

5.1 The FDTD Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.1.1 Directional Terms . . . . . . . . . . . . . . . . . . . . . . . . 201



CONTENTS ix

5.1.2 Introduction to the Mapping . . . . . . . . . . . . . . . . . . 202

5.1.3 Mapping Data Structures . . . . . . . . . . . . . . . . . . . 204

5.2 Implementation Outline . . . . . . . . . . . . . . . . . . . . . . . . 205

5.2.1 FDTD Initialization . . . . . . . . . . . . . . . . . . . . . . 206

5.2.2 Simulation Run Time . . . . . . . . . . . . . . . . . . . . . . 212

5.2.3 Producing Output Data . . . . . . . . . . . . . . . . . . . . 212

5.2.4 Closing the Simulation . . . . . . . . . . . . . . . . . . . . . 213

5.3 Parallel Memory Use . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.3.1 PE Memory Allocation . . . . . . . . . . . . . . . . . . . . . 214

5.3.2 Processor Use Figure Due to Mapping . . . . . . . . . . . . 215

5.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

5.4.1 A Model for Performance . . . . . . . . . . . . . . . . . . . . 216

5.4.2 Target Machines . . . . . . . . . . . . . . . . . . . . . . . . 218

5.5 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

5.5.1 Mesh Sizes and PUFM . . . . . . . . . . . . . . . . . . . . . 220

5.5.2 Execution Time on a MP 1101 . . . . . . . . . . . . . . . . . 222

5.5.3 Speed-Up Examined . . . . . . . . . . . . . . . . . . . . . . 225

5.6 MFLOPS Performance . . . . . . . . . . . . . . . . . . . . . . . . . 227

5.6.1 Finite Difference Equations . . . . . . . . . . . . . . . . . . 228

5.6.2 Field Excitation Equations . . . . . . . . . . . . . . . . . . . 230

5.6.3 Actual FLOPS Rate . . . . . . . . . . . . . . . . . . . . . . 232

5.7 PMC Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 236

5.8 Data Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237



CONTENTS x

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

6 Thesis Conclusion 239

6.1 Thesis Highlights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

6.2 Lessons Learned While Programming . . . . . . . . . . . . . . . . . 241

6.3 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . 243

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

A MasPar System Configuration 246

B A Complete Example 249

C Using the MasPar System 256

C.1 MasPar Memory Topics . . . . . . . . . . . . . . . . . . . . . . . . 256

C.1.1 Front End Memory Configuration . . . . . . . . . . . . . . . 257

C.1.2 Plural Declarations . . . . . . . . . . . . . . . . . . . . . . . 257

C.1.3 Available PE Memory . . . . . . . . . . . . . . . . . . . . . 258

C.1.4 Demand Paging and Other Techniques . . . . . . . . . . . . 260

C.2 Process Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

C.3 The Mapping Topic . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

C.3.1 Mapping Data Structures to Hardware . . . . . . . . . . . . 263

C.3.2 Assigning Processes to the FE and DPU . . . . . . . . . . . 266

C.3.3 Making a Decision Regarding Mapping . . . . . . . . . . . . 268

C.3.4 FE and DPU Data Transfers . . . . . . . . . . . . . . . . . . 268

C.3.5 Mapping Overview . . . . . . . . . . . . . . . . . . . . . . . 269



CONTENTS xi

D Triangular Area 271

D.1 A Special Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

D.2 Hansen and Levin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

E Derivation of FDTD Equations 276

E.1 Special Case of Free Space . . . . . . . . . . . . . . . . . . . . . . . 283

E.2 Appendix Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

F Users Manual 284

F.1 Managing Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

F.2 Conversion to Solid Format . . . . . . . . . . . . . . . . . . . . . . 286

F.3 Mesh Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

F.4 Assigning Boundary Conditions . . . . . . . . . . . . . . . . . . . . 290

F.5 Simulation Directives . . . . . . . . . . . . . . . . . . . . . . . . . . 292

F.6 Parallel FDTD Solver . . . . . . . . . . . . . . . . . . . . . . . . . . 293

F.7 Results for Patran . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

F.8 Examining Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 294

F.9 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

F.9.1 The Test Chamber . . . . . . . . . . . . . . . . . . . . . . . 295

F.9.2 Mesh and Boundaries . . . . . . . . . . . . . . . . . . . . . . 296

F.9.3 Analysis Parameters . . . . . . . . . . . . . . . . . . . . . . 297

F.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

G References 299



List of Figures

1.1 Steps in Using Software Tools . . . . . . . . . . . . . . . . . . . . . 3

1.2 Flynn’s 1966 Illustration of a SIMD Architecture . . . . . . . . . . 8

1.3 Visual of a Standard MasPar Configuration . . . . . . . . . . . . . 12

1.4 PE Array Configuration in 2K System . . . . . . . . . . . . . . . . 14

1.5 PE Memory Layers Allocated . . . . . . . . . . . . . . . . . . . . . 15

1.6 Example of Processor Coordination . . . . . . . . . . . . . . . . . . 16

1.7 Communications Directions for X-Net . . . . . . . . . . . . . . . . . 17

1.8 Visual of MasPar DPU Architecture . . . . . . . . . . . . . . . . . . 19

1.9 A Mesh Representation of a Continuous Space . . . . . . . . . . . . 21

1.10 An Array of Processors for Continuum Model Calculations . . . . . 23

1.11 Boundary Conditions assigned to Example . . . . . . . . . . . . . . 24

1.12 Source Listing of Poisson Solver . . . . . . . . . . . . . . . . . . . . 25

1.13 Solver Results After 10 Iterations . . . . . . . . . . . . . . . . . . . 29

1.14 Solver Results After 471 Iterations . . . . . . . . . . . . . . . . . . 30

2.1 Representation of a Simple Four Sided Solid Object . . . . . . . . . 47

2.2 A Three Dimensional Bounding Box . . . . . . . . . . . . . . . . . 48

xii



LIST OF FIGURES xiii

2.3 Visualization of a (4x4x4) Mesh Model . . . . . . . . . . . . . . . . 48

2.4 Search Lines Examining a Solid Object . . . . . . . . . . . . . . . . 49

2.5 Possible Cases for Singularities . . . . . . . . . . . . . . . . . . . . . 51

2.6 A General Polygon . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7 Simple Polygons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.8 Globality of the Self-Intersection Condition . . . . . . . . . . . . . . 55

2.9 Construction of Bomb by Overlapped Shapes . . . . . . . . . . . . . 57

2.10 Example of Orthogonal Mesh . . . . . . . . . . . . . . . . . . . . . 60

2.11 Facet Plane Regions . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.12 Search Line Intrersecting a Facet . . . . . . . . . . . . . . . . . . . 64

2.13 Counting Intersections for Parity Count Method . . . . . . . . . . . 66

2.14 Flowchart of Mesh Generation Algorithm Tasks . . . . . . . . . . . 67

2.15 Facet Related Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.16 Flowchart of Facet Server . . . . . . . . . . . . . . . . . . . . . . . 73

2.17 Diagram of Associated Angles . . . . . . . . . . . . . . . . . . . . . 77

2.18 Flowchart of Intersection Finder . . . . . . . . . . . . . . . . . . . . 79

2.19 Vectors and Triangular Area . . . . . . . . . . . . . . . . . . . . . . 84

2.20 Collinear Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.21 Cases of Singularities for 2D Analysis . . . . . . . . . . . . . . . . . 87

2.22 Facet Solver Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . 88

2.23 Two Point Resolver Neighbors . . . . . . . . . . . . . . . . . . . . . 90

2.24 Detection Data for Three Mesh Sizes . . . . . . . . . . . . . . . . . 95

2.25 Estimate of Detection Threshold . . . . . . . . . . . . . . . . . . . . 96



LIST OF FIGURES xiv

2.26 Division of Mesh Generation Algorithm Tasks . . . . . . . . . . . . 108

2.27 Flowchart of Determinant Method Facet Solver . . . . . . . . . . . 113

3.1 Visualization of an Overall Mesh and Subregion . . . . . . . . . . . 119

3.2 Determining Range of Index Values . . . . . . . . . . . . . . . . . . 120

3.3 Hypothetical Example of Virtualization . . . . . . . . . . . . . . . . 126

3.4 Virtualization Presented as Linear Array . . . . . . . . . . . . . . . 127

3.5 Summary of Mapping for Mesh Generator . . . . . . . . . . . . . . 129

3.6 Memory Allocation in Serial Version . . . . . . . . . . . . . . . . . 130

3.7 Memory Allocation in Parallel Version . . . . . . . . . . . . . . . . 131

3.8 Software Modules in Generator Versions . . . . . . . . . . . . . . . 133

3.9 30x30x30 Mesh of the Small Sphere . . . . . . . . . . . . . . . . . . 138

3.10 Division of Mesh Generation Algorithm Tasks . . . . . . . . . . . . 140

3.11 CPU and DPU Times for Small Sphere . . . . . . . . . . . . . . . . 145

3.12 Comparing Serial Execution Times for Small Sphere . . . . . . . . . 147

3.13 Speed-Up, MP 1101 vs. Serial . . . . . . . . . . . . . . . . . . . . . 148

3.14 Speed-Up, MP 1208 vs. Serial . . . . . . . . . . . . . . . . . . . . . 149

3.15 Speed-Up, MP 1208 vs. MP 1101 . . . . . . . . . . . . . . . . . . . 150

3.16 Serial Component of Mesh Generation . . . . . . . . . . . . . . . . 152

3.17 Overall PE Use Figure . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.18 PE Use due to Mapping . . . . . . . . . . . . . . . . . . . . . . . . 155

3.19 PE Use due to Branching . . . . . . . . . . . . . . . . . . . . . . . 156

3.20 Scaled ratio of PUFB values . . . . . . . . . . . . . . . . . . . . . . 157



LIST OF FIGURES xv

3.21 Source Listing of Square Root Test . . . . . . . . . . . . . . . . . . 159

3.22 Software Modules in Generator Versions . . . . . . . . . . . . . . . 161

3.23 Floating Point Rate for Small Sphere . . . . . . . . . . . . . . . . . 166

3.24 Absolute Performance Metric . . . . . . . . . . . . . . . . . . . . . 170

4.1 Three Dimensional Mesh Bounding Box . . . . . . . . . . . . . . . 173

4.2 Three Dimensional Yee Cell . . . . . . . . . . . . . . . . . . . . . . 175

4.3 Interface Between Materials . . . . . . . . . . . . . . . . . . . . . . 176

4.4 Estimating E Field Components . . . . . . . . . . . . . . . . . . . . 178

4.5 Estimating Hx Field Component . . . . . . . . . . . . . . . . . . . 179

4.6 Time Step Leap-Frogging . . . . . . . . . . . . . . . . . . . . . . . . 180

4.7 Construction of Augmented Mesh . . . . . . . . . . . . . . . . . . . 185

4.8 Augmented Mesh with Standard Mesh Shaded . . . . . . . . . . . . 186

4.9 PMC Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . 188

4.10 Matched Absorbing Boundary Conditions (MABC) . . . . . . . . . 190

4.11 Adjacent Boundary Conditions . . . . . . . . . . . . . . . . . . . . 193

4.12 PEC abutting PMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

4.13 Flowchart of FDTD Algorithm . . . . . . . . . . . . . . . . . . . . . 199

5.1 The Six Basic Directional Terms and Coordinate Axes . . . . . . . 202

5.2 Introduction to Layered 2D Hierarchical Mapping . . . . . . . . . . 203

5.3 Asynchronous Processing Model . . . . . . . . . . . . . . . . . . . . 213

5.4 Excite Ex, Sample Ex . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.5 Excite Ey, Sample Ey . . . . . . . . . . . . . . . . . . . . . . . . . . 219



LIST OF FIGURES xvi

5.6 Excite Ez, Sample Ez . . . . . . . . . . . . . . . . . . . . . . . . . . 219

5.7 PUFM for MP 1101 and MP 1104 . . . . . . . . . . . . . . . . . . . 221

5.8 DPU Initialization Time for MP 1101 . . . . . . . . . . . . . . . . . 223

5.9 DPU Simulation Time for MP 1101 . . . . . . . . . . . . . . . . . . 224

5.10 Report of Curve Fit for DPU Simulation Time . . . . . . . . . . . . 225

5.11 DPU Simulation Times MP 1101 and MP 1104 . . . . . . . . . . . 226

5.12 FDTD Speed-Up Comparison for MP 1101 and MP 1104 . . . . . . 227

5.13 Program exptime.m . . . . . . . . . . . . . . . . . . . . . . . . . . 231

5.14 Results from exptime.m . . . . . . . . . . . . . . . . . . . . . . . . 232

5.15 FDTD FLOPS Rate for MP 1101 . . . . . . . . . . . . . . . . . . . 234

5.16 Percent of Maximum Theoretical FLOPS Rate . . . . . . . . . . . . 235

5.17 Time vs. Output Data Size . . . . . . . . . . . . . . . . . . . . . . 237

B.1 Microwave Band Eliminator Structure . . . . . . . . . . . . . . . . 250

B.2 Incident Wave Test Model . . . . . . . . . . . . . . . . . . . . . . . 251

B.3 Band Eliminator Test Model . . . . . . . . . . . . . . . . . . . . . . 252

B.4 Simulation After 100 Time Steps . . . . . . . . . . . . . . . . . . . 252

B.5 Simulation After 150 Time Steps . . . . . . . . . . . . . . . . . . . 253

B.6 Simulation After 200 Time Steps . . . . . . . . . . . . . . . . . . . 253

B.7 Simulation After 250 Time Steps . . . . . . . . . . . . . . . . . . . 254

B.8 Band Eliminator Transfer Characteristic . . . . . . . . . . . . . . . 255

C.1 PE Memory Size Test Program . . . . . . . . . . . . . . . . . . . . 259

C.2 Two Dimensional Cut and Stack Virtualization . . . . . . . . . . . 265



LIST OF FIGURES xvii

C.3 Illustration of Data Structure Mapping . . . . . . . . . . . . . . . . 267

D.1 Vectors and Triangular Area . . . . . . . . . . . . . . . . . . . . . . 272

D.2 Points on Circular Path . . . . . . . . . . . . . . . . . . . . . . . . 275

F.1 Diagram of Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

F.2 Diagram of Test Chamber . . . . . . . . . . . . . . . . . . . . . . . 296



List of Tables

1.1 Floating Point Operations Summary . . . . . . . . . . . . . . . . . 32

2.1 List of Algorithm Tasks . . . . . . . . . . . . . . . . . . . . . . . . 66

2.2 Intersection Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.3 Two Point Resolver Cases . . . . . . . . . . . . . . . . . . . . . . . 91

2.4 Solid File Size Parameters . . . . . . . . . . . . . . . . . . . . . . . 100

2.5 Mesh Size Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.6 Time Complexity by Task . . . . . . . . . . . . . . . . . . . . . . . 105

2.7 A Small Example Case . . . . . . . . . . . . . . . . . . . . . . . . . 106

2.8 Profile Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

2.9 Point Sequence Direction . . . . . . . . . . . . . . . . . . . . . . . . 112

2.10 Comparing Serial Mesh Generator Versions . . . . . . . . . . . . . . 114

3.1 Data Transfer Opportunities . . . . . . . . . . . . . . . . . . . . . . 117

3.2 Revised Time Complexity by Task . . . . . . . . . . . . . . . . . . 142

3.3 Execution Time(mSec) by Task . . . . . . . . . . . . . . . . . . . . 143

3.4 Results Fitted for Small Sphere . . . . . . . . . . . . . . . . . . . . 146

3.5 Overall PE Use Data . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xviii



LIST OF TABLES xix

3.6 Some Variables used in Determining MFLOPS . . . . . . . . . . . . 161

3.7 Variables Associated with Serial Version . . . . . . . . . . . . . . . 163

3.8 Floating Point Rate – Serial Version . . . . . . . . . . . . . . . . . . 164

3.9 Variables Associated with MP 1101 . . . . . . . . . . . . . . . . . . 165

3.10 Variables Associated with MP 1208 . . . . . . . . . . . . . . . . . . 165

3.11 Floating Point Rate – Parallel Versions . . . . . . . . . . . . . . . . 166

4.1 Terms in Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . 183

4.2 Comparing ABCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

4.3 Precedence of Surface Types . . . . . . . . . . . . . . . . . . . . . . 195

5.1 Mapping Reference Elements . . . . . . . . . . . . . . . . . . . . . . 205

5.2 First Allocation in PE Array . . . . . . . . . . . . . . . . . . . . . . 208

5.3 Final Allocation in PE Array . . . . . . . . . . . . . . . . . . . . . 211

5.4 Parallel Memory Allocation . . . . . . . . . . . . . . . . . . . . . . 214

5.5 Resonant Modes for Test Cavity . . . . . . . . . . . . . . . . . . . . 217

5.6 FDTD Mesh Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

5.7 Finite Difference Equations . . . . . . . . . . . . . . . . . . . . . . 229

5.8 Operations for Single Field Component Update . . . . . . . . . . . 229

5.9 Time Step – Field Update Totals . . . . . . . . . . . . . . . . . . . 233

5.10 PMC Test Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 236

A.1 Machines Used in Performance Analysis . . . . . . . . . . . . . . . 248

C.1 pmemtest Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260



Chapter 1

Introduction

This thesis presents an application of the Finite Difference Time Domain (FDTD)
method on a massively parallel computer system, for the analysis of electromag-
netic phenomenon. For this application we have selected the MasPar system, as
it is a relatively low cost, reliable, high performance computer system. In general,
writing efficient programs for high performance computers represents a real chal-
lenge. This difficulty arises in two forms; The need to process large problems, and
the presence of computer hardware features. The need to process large problems
translates into the need for better algorithms. The use of hardware features calls
for better algorithms and better coding. We consider these issues next.

High performance computers are generally used to process large problems. To
efficiently process large problems, the time complexity of algorithms becomes a
very important issue. Consider the following example; For large problems the fast
Fourier transform is preferred to the basic definition of the discrete Fourier trans-
form. The reason for this is that while the basic definition of the discrete Fourier
transform is simple to program, it has a quadratic relationship between execution
time and problem size. While the fast Fourier transform is more complicated, it
has an n log(n) time complexity. For applications that need to transform large
data sets, the fast Fourier transform provides much better performance than the
basic definition of the transform. The point being made here is that high per-
formance computers demand that programmers devise better, more sophisticated
algorithms.

A second issue that makes it difficult to write programs for high performance
computers is that these computers generally have hardware features that are simply
not found on simpler computers. While such features are supposed to be helpful in

1
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enhancing performance, they complicate the task of programming the machine. To
write an efficient program for such a machine, a programmer must be able to devise
algorithms that can take advantage of these hardware features. In particular, in
the MasPar system, processing speed is achieved by use of a multitude of simple
processors that we refer to as processing elements (PEs). In such a machine, an
efficient program must be able to coordinate all these processing elements.

In this thesis we are concerned with the selection of an efficient algorithm for
each of the programs written for our selected application, and devising clever ways
to make the best use of the MasPar system. This thesis has a large emphasis
on examining the application performance. The issues of characterizing algorithm
time complexity and describing hardware use come up again and again throughout
this document.

1.1 The Application

Traditionally, RF and microwave design follows an iterative procedure, requiring
the construction and evaluation of many prototype models. Unfortunately, the
construction and evaluation of prototypes can be labor intensive, time consuming,
and expensive. At this juncture, the electronics industry has been under pressure
from the marketplace to design better, less expensive products, in less time. Seg-
ments of the electronics industry have responded with some success, by developing
software tools and techniques that assist designers in their work. It appears that
for RF designers to be able to keep pace with the rest of industry, such tools and
techniques will need to be developed to assist in the task of RF design.

As an alternative to the construction of real prototype models, this research
considers the development of specific tools that will build and evaluate mathemat-
ical models of prototypes on a given computer system. Naturally, in performing
an evaluation, such a tool should yield data that an RF communications designer
would have interest in. Such data might include the estimation of scattering pa-
rameters and feed-point impedance. Such topics are discussed in section 4.2.

For this research, a simple, well known technique called the Finite Difference
Time Domain (FDTD) Method was selected to perform the required electromag-
netic evaluation. Since both the construction of a model for the FDTD method as
well as the FDTD method itself are both extremely computationally intensive, it
was decided to use a high performance, massively parallel computer architecture
as a platform for the software tools. It is hoped that such an implementation will
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provide a performance level suitable for everyday use by RF design engineers.

1.1.1 Application Outline

Figure 1.1 provides an outline of the steps followed by a designer, to construct
and evaluate a single mathematical model of a prototype. For exact details on
this process, the reader is referred to the user manual in appendix F. The first
step is to enter a description of the structure to be modeled by using commercially
available 3D CAD software. For this research we used a program called I-DEAS1.
In figure 1.1, step 1 shows that the user has entered the solid model of a sphere.

Response
System

STEP 5

MasPar

MasPar

Designers  enter  structure
using commercially  available

3D  CAD  Software

Designers  assign  boundary
conditions  and  set  FDTD

program  parameters

generates  orthogonal
Parallel  program

mesh  model

solver  performs
Parallel  FDTD

EM  simulation

Designers  use  tools  to
post-process  data  and

produce  results

STEP 1

STEP 3

STEP 2

STEP 4

Figure 1.1: Steps in Using Software Tools

We used I-DEAS to produce what is called a Universal File. The Universal
File Format was selected for our use, because it is an easy to manipulate ASCII
type file format. Despite the name, it turns out that the Universal File Format is
proprietary and is primarily a convenience for developers who wish to support the
I-DEAS product. We use a conversion program to convert Universal Files to our
own Solid File Format. Note that since Universal Files are not widely supported,
if a user wished to use some other solid modeling program, it would be necessary
to write a new conversion program.

1I-DEAS is the name of a software product from Structural Dynamics Research Corporation
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The second step is to generate a mesh model from the structural description.
The mesh generator reads the solid file and produces two files, the first is referred
to as the mesh file and is used to store the entire FDTD mesh. The second file is
referred to as the hollow file which is used to assign boundary conditions.

In step 3 the user assigns boundary conditions. In figure 1.1, the third step
shows the boxes associated with the surface of the FDTD mesh of the sphere
that was just modeled. Boundary conditions are assigned by giving properties to
surfaces like those illustrated in figure 1.1. Currently, PATRAN2 is used to assign
boundary conditions. The hollow file follows PATRAN’s Neutral File Format,
which is another proprietary file format. After boundary conditions have been
assigned, PATRAN is used to write a neutral file that contains the assigned surface
properties. The assigned boundary conditions are written to the mesh file by a
program called fconv2 that read the neutral file.

To prepare the mesh file for FDTD simulation in the MasPar, a program called
ComEdit is called to insert simulation parameters into the mesh file. After this is
done, the mesh file contains all the data that the FDTD solver will need. In step
4, the completed mesh file is submitted to the FDTD solver which performs an
electromagnetic simulation.

In step 5, tools are used to post process data from the FDTD simulation. While
the FDTD solver produces some data that can immediately be examined, in gen-
eral a designer will use software tools like PATRAN and fast Fourier transform
related tools. These tools process the raw data that the FDTD solver produces.
In figure 1.1, the computer display shows results from some unnamed software tool.

1.1.2 Application Summary

These software tools have successfully been used to perform several simulations.
Of the simulations performed, this document presents three such examples. In
section 5.4.1 a simple model is presented that we use to examine the performance of
the FDTD solver. In appendix B an example of a microstrip structure is presented,
and the user manual in appendix F the example of a waveguide is given. Again,
the user is referred to the user manual for in depth details regarding the use of
these software tools.

The development of any high performance implementation is not a trivial task.
Sometimes special algorithms or special computer hardware is required to provide

2P3/PATRAN is the name of a software product from PDA Engineering’s PATRAN Division
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a level of performance that is adequate for the given application. Of the programs
written, the two that were considered the most significant were the orthogonal
mesh generator and the FDTD solver. These two programs were each implemented
specially on a massively parallel computer system. This document presents an
emphasis on these two parallel implementations.

1.2 FDTD Algorithm and Mesh Generation

In 1966 Kane Yee[67] presented what we now refer to as the finite difference time
domain (FDTD) method for modeling electromagnetic phenomenon. The FDTD
method is just one tool available in the field of computational electromagnetics
(CEM). Many introductory papers to the FDTD technique have been published
since Yee presented his seminal paper. Taflove and Brodwin[62] wrote a paper
that was one of the first widely recognized overviews of Yee’s method. Taflove
and Umashankar[63, 64] have also written several overviews, of which two are
referenced. Mittra and Lee[40] wrote a paper that discusses the FDTD method
in general terms along with the finite element method. Li, Tassoudji, Shin and
Kong[29] also present a general overview. In addition to this short list, many more
such papers have been published.

The FDTD method directly solves a discrete difference form of Maxwell’s equa-
tions for closely spaced points on an orthogonal mesh. Since the FDTD method is
performed by repeatedly applying the same equations over a mesh in such a way
that information is only exchanged between nearest neighbors, the use of an ar-
ray processor such as the MasPar series is appealing. Unfortunately two potential
pitfalls exist between the FDTD method and parallel computation. In chapters 4
and 5, we shall see why boundary conditions as well as effective mapping and
memory allocation are critical issues that determine the effectiveness of FDTD
implementations on a massively parallel computer architecture.

Chapter 4 introduces many topics related to FDTD analysis and introduces
the FDTD method as an algorithm. While the FDTD algorithm could be imple-
mented on any computer system, special emphasis is made to suggest a parallel
implementation. Chapter 5 continues where chapter 4 left off by first present-
ing the implementation of the FDTD algorithm on the MasPar computer system.
Chapter 5 also presents results and a characterization of the performance of the
implementation.

In reading the derivation of the FDTD equations in appendix E, the reader will
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note that because of the way that the FDTD method solves Maxwell’s equations,
the space being modeled must be represented as an orthogonal mesh. Because of
this fact, all objects to be included in that space must be represented in terms
of an orthogonal mesh as well. Thus in developing an FDTD implementation,
a secondary application must also be solved, that is the spatial decomposition of
solid objects into an orthogonal mesh. A program written to produce an orthogonal
mesh is appropriately called a mesh generation program.

Chapter 2 describes the mesh generation algorithm that was developed specifi-
cally for the parallel MasPar computer system. The whole point behind developing
the algorithm was to match available resources in the hardware platform to the
task at hand. Because of this fact, the wisdom of many of the decisions made in de-
veloping the algorithm may not be immediately self evident. In reading chapter 2
the reader should gain a great understanding of the mesh generation algorithm
and will be prepared to examine the implementation presented in chapter 3. After
reading these two chapters, a reader should understand why the mesh generation
algorithm is particularly well suited for an array processor environment such as
the MasPar.

In requiring that all objects be represented in an orthogonal mesh, all contours
will be modeled as stepped curves. What this means is that the contours associated
with objects are not preserved. This situation introduces a problem that is not
immediately obvious. The problem is how to provide the user a means of assigning
boundary conditions. Since an orthogonal mesh generator does not preserve con-
tours, it is pointless to assign boundary conditions to surfaces of the original solid
object descriptions. To assign boundary conditions, it was found to be possible to
treat a resultant orthogonal mesh as a solid object and assign boundary conditions
directly to the mesh. Appendix F contains the user manual, where you will find
a description of the procedure that a user follows to assign boundary conditions.
Chapters 4 and 5 introduce concepts associated with boundary conditions and
describe how the FDTD solver itself actually handles boundary conditions.

1.3 The Array Processor

Before presenting the MasPar system architecture, it is necessary to review some
history and introduce some related topics. In 1966, Flynn[16] gave the name
SIMD to a group of proposed computers. The term SIMD is an an acronym for
“Single Instruction path, Multiple Data path,” which according to Hockey and
Jesshope[21] is simply a phrase that describes how one category of computers
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relates its instructions to the data being processed. The term SIMD refers to any
computer in which there is a single program instruction stream associated with
directing the actions of processors so that they perform operations on multiple
data streams.

The phrase “Single Instruction path, Multiple Data path,” while descriptive,
falls short of fully characterizing any particular class of machine. The Cray line of
supercomputers and Thinking Machines Corp. line of high performance computers
are two very different examples, that both can be thought of as having a single
instruction path and multiple data paths. To get a better idea of what Flynn
had in mind when he wrote his 1966 paper, we must look closer at the details
he presented. One machine in particular that Flynn referred to was the proposed
SOLOMON project which was superseded to become the Illiac IV, according to
Flynn;

“SOLOMON is the classic SIMD. There are n universal execution
units each with its own access to operand storage. The single instruc-
tion stream acts simultaneously to the n operands without using any
confluence techniques (concurrency, esp. pipelining). Increased perfor-
mance is gained strictly by using more units. Communications between
units is restricted to a predetermined neighborhood pattern and must
also proceed in a universal, uniform fashion[Fig. 1.2].”

Flynn’s comments regarding SIMD architecture are somewhat useful to us.
Central are the notions that there is a collection of processing elements that
Flynn refers to as “universal execution units. . . ,” that are allowed to communicate
amongst themselves. Note that the overall processing power of such a system is
enhanced by simply inserting more processing elements. Flynn’s illustration of a
SIMD architecture is reproduced as figure 1.2. While Flynn indicates that each
processing element has “its own access. . . ” to data memory, Flynn’s illustration
presents only a mysterious box that all processing elements are able to somehow
share.

In his 1972 paper, Flynn[17] reviewed his computer architecture taxonomy and
divided the SIMD category into three subgroups;

1. The Array Processor: One control unit and m directly connected processing
elements. Each processing element has its own registers and storage, but
only obeys commands issued from the control unit.

2. The Pipelined Processor: This is an array processor, where each processor
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Figure 1.2: Flynn’s[16] 1966 Illustration of a SIMD Architecture

element is optimized for a single function type. One processor element might
perform floating point addition, another only integer addition, and so on.

3. The Associative Processor: This is a variation of the array processor theme,
in this case processor elements are not directly addressed by the control
unit. Processor elements are activated when a generalized match relationship
is found between the contents of a register in the control unit and data
in the processor elements. For those designated elements, the control unit
instruction is carried out. The other processor elements remain idle.

While Flynn’s 1966 paper describes communications between processor elements
in a SIMD machine as “restricted” and “predetermined,” the associative proces-
sor array category presented in Flynn’s 1972 paper provides a unique means of
coordinating processor elements. Essentially processor elements are either active
or idle. Such coordination allows the use of interprocessor communications to be
more flexible.

Note that neither of Flynn’s papers describes how processing elements are phys-
ically organized. Rather than being a “jumble of processing elements,” all array
processor machines must have their processing elements arranged in some sort of
pattern. Such an organization is crucial as it allows a programmer to plan the
use of communications between processing elements. Further, note that in both
papers, Flynn provides no clue as to how input or output would be handled in a
SIMD machine.

According to Hockney and Jesshope[21], Flynn’s initial use of the term SIMD
was inadequate as it is too broad3:

since it lumps all parallel computers except the multiprocessors into the
SIMD class and draws no distinction between the pipelined computer

3Page 57 of Hockney and Jesshope
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and the processor array which have entirely different computer archi-
tectures. This is because it is in effect, a classification by broad function
(whether or not explicit vector instructions are provided) rather than
a classification of the design (i.e. architecture).

Based on Hockney and Jesshope’s observation, it appears that the term SIMD is
too ambiguous for our needs, thus the term SIMD is rarely used in this document.
The term array processor appears to be more apt, and is used throughout this
document. While the descriptive phrase array processor is actually more general
than what we have in mind, in most cases we will assume that the machine has
properties of the associative processor.

Lewis and El-Rewini[28]4 provide a reference that serves as a good summary of
Flynn’s array processor. In such a computer a single control unit is present among
many data processors, referred to as processing elements. The control unit contains
a single copy of the program and a single program counter. The control unit
produces a single instruction stream that is broadcast to all the processing elements
simultaneously. The instruction stream directs the actions of all the processing
elements in a lock-step sequence. The data however, differs from processor to
processor, in a sense there is a multitude of data paths.

To get an even better idea of the specific class of architecture that we have in
mind for use in this document, the next section will introduce the reader to one of
the machines that Flynn directly referenced, the Illiac IV. As we will see, the Illiac
IV can certainly be described as an array processor, and in particular appears
to fit the description of an associative processor array. It should be clear later
that the Illiac IV serves as a most suitable introduction to the MasPar computer
architecture.

1.3.1 The Illiac IV

To get the clearest idea of what an array processor is, we should examine the most
famous example of them all, the Illiac IV. The Illiac IV was a one of a kind machine,
and was the fourth machine named in honor of the University of Illinois. Hord[23]
provides a comprehensive introduction to the Illiac IV, its history, construction,
programming and applications. Stevenson[59] focuses on issues of programming
the Illiac IV, but also provides a useful introduction. Two things are immediately
obvious when reading these texts, first the use of the Roman Numeral ‘IV’. It is not

4Page 18 of Lewis and El-Rewini
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clear why some modern literature, in reference uses the Arabic ‘4’. Nevertheless,
to be consistent with older literature, the Roman numeral ‘IV’ is used in this
document. Also note that since the Illiac IV was actually functional at the time,
many of the references cited here are in the present tense. According to Hord;5

“The Illiac IV was the first large scale array computer. As the
forerunner of today’s advanced computers, it has brought whole classes
of scientific computations into the realm of practicality. Conceived
initially as a grand experiment in computer science, the revolutionary
architecture incorporated a high level of parallelism. . . ”

According to Hord6, the Illiac IV became operational in November 1975. The
Illiac IV actually achieved7 200 million operations per second, impressive for that
time period. The following is a presentation of the Illiac IV architecture as pre-
sented by Hord.8 The Illiac IV had a single control processor that broadcast
instructions to a

“multitude of processing units termed elements. Each of these process-
ing elements has an individual memory unit. . . The processing elements
execute the same instructions simultaneously on data that differs in
each processing element memory.”

The Illiac IV had 64 processing elements, Hord continues to state that;

“In the particular case of the ILLIAC IV, each of the the processing
element memories has a capacity of 2,048 word of 64 bit length.”

Hord explains how processing elements were organized and how communications
between processors was performed.

“Routing paths are provided. . . One way of regarding this interconnec-
tion pattern is to consider the processing elements as a linear string
numbered from 0 to 63. Each processor is provided a direct path to
four other processors, its immediate right and left neighbors and the

5Page 1 of Hord
6Page 1 of Hord
7Page 14 of Hord
8Page 5 of Hord
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neighbors spaced eight elements away. . . This interconnection structure
is wrapped around, so processor 63 is directly connected to processor 0.
To transfer values among processors not directly connected, multiple
routing steps are required.”

Lastly, Hord explains how the mechanism for coordinating the processing elements
worked.

“The other major control feature that characterizes the Illiac IV is the
enable/disable function. While it’s true that the 64 processing elements
are under centralized control, each of the processing elements has some
degree of individual control. This individual control is provided by
a mode value. This mode value for a given processor is either 1 or
0, corresponding to the processor being enabled (“on”), or disabled
(“off”). . . mode values can be set independently under program con-
trol, depending on the different data values unique to each processing
element.”

Thus to review, the Illiac IV had a central controller that broadcast instructions
simultaneously to a collection of processing elements. The processing elements
followed instructions in a lock-step fashion. Each processing element had its own
independent memory and a means of communications between processor elements
was present that followed a definite pattern. Lastly the enable/disable function
was used as a means of coordinating processing elements. When reading about the
MasPar system, try to keep this list of properties in mind.

Lastly, note that the Illiac IV relied on a PDP-11 minicomputer from Digital
Corporation to perform key such tasks as compiling source code and providing a
connection to the outside world. Nowadays such a computer would be referred to
as the front end. The Illiac IV was actually used to solve many useful applications.
Several applications used the finite difference method, such applications included
aircraft fluid dynamics and the seismic study of earthquakes. It is interesting to
note that the Space Shuttle was modeled on the Illiac IV.

1.4 The MasPar System

Figure 1.3 presents an illustration of a standard configuration of the MasPar MP–
1 computer system. The MasPar MP–1 is a computer system comprised of two
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units, a high performance UNIX workstation termed the front end (FE) and a data
parallel unit (DPU). The front end shown on the table, is a Digital Equipment Cor-
poration workstation. While the system owned by WPI uses a DECstation 5000,
older MasPar systems have used the DECstation 3100 or even the VAXstation.
Newer MasPar systems use the Alpha workstation. Note that since the front end
runs Unix as an operating system, it is sometimes referred to as the Unix Sub-
System (USS). The DPU is the box shown to the side of the table. The DPU
contains an array of processor elements and is where parallel processing is actu-
ally performed. A VME connection to the backplane of the front end provides
relatively high speed communications with the DPU and serves as a “tight” link.
It is important to realize that the front end acts as an intermediary to the DPU,
thus normally it is not possible to directly communicate with the DPU. Since the
front end is typically networked via Ethernet or the fiber distributed data inter-
face (FDDI), users may access the MasPar system9 remotely or directly from the
attached X-window console.

Figure 1.3: Visual of a Standard MasPar Configuration— by permission[39]

For this project all programs were written in MasPar’s MPL language as well as
ANSI standard C. MPL is actually based on ANSI C, but is considered an extension
as it contains certain functions that allow for parallel processing. In addition to
MPL, versions of Fortran based on the Fortran/90 standard are available. While
it is possible to program the DPU in assembler, MasPar discourages this.

9Recall that a MasPar system is composed of the FE and the DPU.
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1.5 MasPar DPU Architecture

MasPar documentation[38, 35] provides an ample introduction to the architecture
of the DPU, based on this description we can come to the conclusion that the
MasPar is another example of an associative array processor. The following can
be considered as being paraphrased from the MasPar documentation. We start by
presenting the Array Control Unit.

1.5.1 The Array Control Unit (ACU)

The array control unit (ACU) is located in the DPU, it controls the PE array and
also performs operations on non-parallel data. The ACU itself is a custom 12 MIPS
RISC processor. The ACU was designed with a Harvard type memory configura-
tion with 128k bytes of data memory as well as 1M bytes of program memory, that
is virtually mapped as 4 gigabytes. The Array Control Unit essentially acts as the
primary control agent in the DPU.

When communications are directed from the ACU to PEs, the ACU is said to
‘broadcast instructions and data to the PEs.’ Note that regardless of the num-
ber of PEs, all PEs receive broadcasts simultaneously. When PEs simultaneously
communicate data to the ACU, the parallel values are said to be logically reduced
(global OR operation) to a singular value. It is important to remember that while
the ACU controls the PE array, the ACU itself is a uniprocessor that is not able
to directly receive parallel data, all data must first be converted to singular form.

1.5.2 The PE Array

The MasPar DPU has processor elements (PEs) that are arranged in a two dimen-
sional matrix called the PE array. A system can have 1K, 2K, 4K, 8K or 16K PEs.
Note that unless otherwise stated, ‘K’ refers to multiples of 1024. Each PE is a 1.8
MIPS, four bit, load and store type processor with an arithmetic unit, and its own
registers and local RAM. Each PE may have 16K or 64K bytes of physical memory.
Because each PE has its own independent memory, in reference to PE memory,
the DPU can be referred to as having tightly coupled distributed memory.

In MPL, the variables nproc, nxproc, and nyproc are automatically defined as
global variables and contain the number of processors, and the number of columns
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and rows of processors respectively. Figure 1.4 serves as an example. This array
has 64 columns and 32 rows, a total of 2048 PEs.

64 65 66 67 . . . 127

0 1 2 3 . . . 63

128 129 130 131 . . . 191

192 193 194 195 . . . 255

: : : : . . . :

1984 1985 1986 1987 . . . 2047

Figure 1.4: PE Array Configuration in 2K System — by permission[36]

Location in the processor array can be represented by row and column, where
the corresponding index values are assigned using conventions similar to that of
Linear Algebra. The variables iyproc and ixproc are automatically assigned to
each PE and contain the values of the associated row and column, respectively. A
PE array with nxproc columns will have the left-most column identified as column
0 and the right-most column will be identified as column (nxproc− 1). Likewise,
a PE array with nyproc rows will have its top row identified as row 0 and the
bottom row identified as row (nyproc− 1).

In addition to iyproc and ixproc, each processor element is automatically
assigned a unique identifier named iproc that can be determined by the following
equation;

iproc = iyproc · nxproc+ ixproc

Figure 1.4 shows inside each PE the associated iproc identifier. Having the
PEs organized into a simple pattern and being able to identify individual PEs is
useful, especially for the purpose of PE coordination, which we discuss in the next
section.

In the MasPar system, parallel memory must always be allocated uniformly for
all PEs. For this reason, it is useful to think of the variables defined and allocations
made in PE memory as being made up of layers. Figure 1.5 is an illustration of
memory layers in a hypothetical 3× 3 processor array.
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Figure 1.5: PE Memory Layers Allocated

While the gaps between PEs illustrate the fact that each PE has its own in-
dependent memory, the shading indicates that the memory can be regarded as
layered. The layers 0, 1, and 2 might correspond to three plural variables, or per-
haps to three entries in a plural array. Note that as more memory is allocated to
the user, the layers pile “upwards.”

1.5.3 PE Coordination

The MPL Reference Manual[35] provides an introduction to this next important
issue, how to coordinate a multitude of processors. During parallel operations, PEs
carry out the instructions broadcast from the ACU, in lock step. Note that not all
PEs are necessarily involved with parallel computation. The ACU also broadcasts
instructions that instruct certain processors to become idle, or alternatively to
become active. Such instructions may also tell PEs to evaluate a given logical
expression, using parallel data. Processors for which the expression is true become
or remain active. Conversely, processors for which the expression is false become
or remain idle. This leads to the idea of the active set. The active set is simply
the set of active processors.

In the following quote from the MPL Reference Manual, the terms plural con-
trolling expression and plural statements refer to a logical expression that is inde-
pendently evaluated by each PE.

The if, switch, while, do, and for statements of ANSI C are
extended in MPL and become plural statements when the controlling
expression is plural. You should not think of a plural controlling ex-
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pression as being true or false but rather you should think of it as
determining which PEs are in the active set.

There are two general principles in the definition of plural control
statements:

1. The plural statements control the active set by taking the current
active set and further subsetting it by the controlling expression
and then restoring the active set following completion of the plural
statement.

2. If the active set for a block is empty, then that block is not entered,
and conversely, if the active set for a block is non-empty, then that
block is entered.

Based on this simple idea of active or idle PEs, the ACU can instruct PEs to
simulate various decision patterns. Such control is particularly important for coor-
dinating such operations as communications between PEs as well as for managing
the mapping of an application. A simple example from MPL10 is presented in
figure 1.6.

if (count < limit)

{

/* statements evaluated by active PEs only */

}

/* previous active set is restored here */

Figure 1.6: Example of Processor Coordination

In figure 1.6, the logical expression associated with the if statement will be
evaluated by all PEs in the current active set. The statements in the block following
the if statement will only be performed by PEs that evaluate the given logical
expression as true. In this example, the variable count is to be regarded as plural,
meaning that it is a variable uniformly allocated to each PE. When control exits
the given block, the previous active set is restored.

1.5.4 Communications Between PEs

Communications between PEs is an important topic that must be considered. In
a MasPar MP–1, two mechanisms are provided to allow PEs to communicate with

10MPL is MasPar’s programming language. See section1.4 for an explanation.
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each other. First, X-Net communications allows processor elements to communi-
cate along straight lines of the processor array. See figure 1.7 for an illustration
of the X–Net communication directions. North-South edges are joined, as well as
East-West edges. This joining of edges forms the two dimensional mesh into a
logical toroid. The toroidal X-Net allows for communications between PEs located
along a straight line in any one of eight directions, that is north, northeast, east,
southeast, south, southwest, west, and northwest.

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

PE PE PE PE PE PE PE

N

S

W E

NW NE

SESW

Figure 1.7: Communications Directions for X-Net — by permission[39]

The global router serves as the second mechanism for communications between
PEs. The router is a three stage crossbar switch that can connect arbitrary pro-
cessor elements anywhere in the PE array. For router communications, groups of
16 PEs are organized into clusters, and only one router channel is connected to
each PE cluster. Thus only one PE per cluster is allowed to communicate to one
PE of another cluster at a time.

The central difference between X-Net and Global Router communications is
that the X-Net has “built-in directions of communications” that correspond to the
eight primary compass headings, while the Global Router must establish logical
connections before data can be communicated. In general, X-Net communications
are significantly faster than Global Router communications, but Global Router
communications are more flexible.

To fully understand the use of communications between PEs, it is important to
understand what is meant by the connected to set. X-Net communications allow
each active PE to communicate with a PE that is a uniform distance and direction
from the active PE. Likewise, the use of the global router allows PEs in the active
set to communicate with other PEs. The active set of PEs is said to initiate
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communications and access parallel data in the connected to set of PEs. Note that
PEs in the connected to set may or may not be active PEs.

1.5.5 MasPar Architecture Summary

Figure 1.8 serves as a good summary of the DPU architecture. Note that in this
figure the front end (the Unix Sub-System) is simply described as a connected box.
As stated earlier, the front end is usually networked thus allowing network access.
The Worcester Polytechnic MP–1 is networked via Ethernet and is a client in the
local NFS file system. Note the ‘ACU-PE’ interface between the ACU and the PE
array, this interface allows the ACU to broadcast instructions to the PE array, as
well as allowing the PE array to return globally reduced data.

Although not shown, the PE array also contains the X-Net PE communications
system. The three ‘router chip’ boxes serve as the global router and also provide
a communications path to the I/O subsystem. The I/O subsystem may contain
optional I/O and storage devices such as a disk array controller (shown) and a
HiPPI bus interface (not shown).

In summary this section provided an introduction to the architecture of the
MasPar DPU. For more detail regarding the configuration of MasPar computer
systems, see appendix A. Trew and Wilson[66] also provide a useful overview of
the MasPar MP–1 and provide some comparison with other modern array proces-
sors such as the DAP from AMT and the Connection Machine - 1 from Thinking
Machines. All these machines share the sense of having an organized set of pro-
cessing elements, a single processing element controller, communications between
processing elements, and a mechanism of coordination by means of enabling or
disabling processor elements.
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Figure 1.8: Visual of MasPar DPU Architecture — by permission[39]
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1.6 The Continuum Model

Stone[60] presents the continuum model as one that is particularly well suited to
array processors. Note that this type of model is important to us as it includes
the modeling of electromagnetic waves. According to Stone11;

“The continuum model accounts for calculations in which time and
space are considered to vary continuously, and typical parameters are
charge density, temperature and pressure. These are physical measures
averaged over regions.”

Stone describes the special characteristics associated with continuum problems
that allow for a direct solution of differential equations. Based on these character-
istics, we can see why processor array machines like the Illiac IV are particularly
well suited to solving continuum problems.

“The nice property of the continuummodel is that each point within
the continuum acts like an independent autonomous computer. Each
point examines its near neighbors to determine their states. Then based
on only its current state and the states of its nearest neighbors, each
point applies the equation that governs the behavior of the continuum
and updates its state.”

Stone immediately makes the assertion that if regularly spaced points are de-
fined in a space, a mesh of points is defined. For simplicity, we will assume that
each point directly corresponds to a processor in the processor array. Stone con-
tinues to clarify the point made;

“The computations made at each point are made independently and
proceed in parallel. So when you visualize convective heat flow, fluid
flow, or other physical process, view the dynamics of the process as if
each point in the continuum were performing a small computation on
local and neighboring data.”

In summary, once regularly spaced points are defined in the associated space, it
appears that the continuum model is a natural fit for an array type processor like
the Illiac IV. Stone continues to state that;

11Page 206 of Stone
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“The earliest proposals for parallel machines focused on this type of
computation, partly because of the natural parallelism inherent in this
model, and partly because several important large-scale problems can
be solved within a continuum framework.”

1.6.1 An Example of a Continuum Model

As an example of a continuum model problem, Stone12 presents Poisson’s equation
for the potential in a region as a function of charge density in that region. In two
dimensions the equation can be written as:

∂2 V (x, y)

∂x2
+

∂2 V (x, y)

∂y2
= −C(x, y) (1.1)

where V (x, y) is the voltage potential at point (x, y) and C(x, y) is the charge at
point (x, y). A solution to this equation in a region depends on the boundary
conditions which can be expressed in a variety of ways. Stone chose to assume
that we are solving Poisson’s equation only for the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
and that we are given the values of V (x, y) on the boundaries of this region.

To determine a direct solution, we must first transform the differential equation
into a discrete form that can be treated numerically. In doing so, we represent
a continuous region by discrete points as represented in figure 1.9. Each box
represents one node in the mesh. The integers in each box correspond to [i, j] and
represent its spatial coordinates.

0, 1 0, 2 0, 3

1, 2 1, 3

2, 2 2, 32, 1

0, 0

1, 11, 0

2, 0

Figure 1.9: A Mesh Representation of a Continuous Space

At the intersection [i, j] in this mesh is a point where we store the values V [i, j]
and C[i, j]. The indices on i and j can vary from 0 to N − 1, so the corresponding

12See page 212 of Stone
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values of x and y are given by13 x = i/N and y = j/N . Stone14 makes the following
point regarding numerical accuracy;

“If the points in the region are sufficiently close together, we obtain
a good approximation of the potential in a continuous region. The
fidelity of the discrete version of the problem depends entirely on the
mesh spacing. Of course, the number of points grows quadratically
with the spacing, so computation time can become very large as spacing
diminishes. The user must strike a balance between the resolution of
the model and the cost of computation.”

This point is particularly significant and will be addressed again with the FDTD
solver. Unlike this two dimensional problem, the FDTD solver models a three
dimensional space that shows a cubic relationship between the number of points
and the mesh spacing.

While the derivation of the solution to the discrete form of Poisson’s equation is
not presented here, it should be clear that equation (1.1) is converted by modeling
differential expressions as finite difference equations. For the complete derivation,
the reader is referred to Stone[60]. After some manipulations Stone arrives at a
system of linear equations that have the following form:

Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1

4
= Vi,j −

Ci,j
4N2

for 0 < i < N , 0 < j < N

Clearly, the potential at each point appears to be the average of the points of its
four neighbors, plus a term that reflects the charge located at that point. While
it is possible to solve this system of equations by using standard methods from
linear algebra, Stone proposes a different method that has great appeal for parallel
architectures. The essential idea is to use an iteration of the form:

Vi,j =
Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1

4
+Ki,j (1.2)

Where the Ki,j term is defined as follows:

Ki,j =
Ci,j
4N2

13To be able to maintain this mapping and make reasonable surface contour graphs, we define
y, x, V to be a right handed coordinate system.
14Page 212 of Stone
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By repeatedly applying equation (1.2), the values stored in the mesh will approach
the correct solution to the discrete form of Poisson’s equation.

A computer architecture for solving the equations given in the form of equa-
tion (1.2) is shown in figure 1.10. Each mesh point has an associated processor.
Note that each processor in turn has its own memory which it uses to store its own
values for the variables ‘V’ and ‘K’. As a means of communication, each processor
is somehow connected to its four immediate neighbors. Since all processors execute
the same iterative equation, we need only one instruction stream for all proces-
sors. Instructions are broadcast by a single control processor and are received and
performed by the processors.

K

V

K

V

K

V

K

V

K

V

K

V

K

V

K
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K
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K

V

K

V

K

V

Figure 1.10: An Array of Processors for Continuum Model Calculations

In his example Stone goes so far as to present source code used to perform
an iteration of the Poisson solver, as if it were implemented on the Illiac IV. In
section 1.6.2, the source code written for the MasPar to solve Poisson’s equation
is presented. Section 1.6.3 presents results from the Poisson solver.

1.6.2 A MasPar Program Example

This section presents an example of a program written in MPL to provide a direct
solution to Poisson’s equation. The program is presented along with results. Fig-
ure 1.11 illustrates how boundary conditions were assigned in the example. Three
boundary edges were assigned a potential of 10. The remaining boundary was
assigned a potential of 0. There are 32 PEs along each of the coordinate axes, for
a total of 1024 PEs.
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Figure 1.11: Boundary Conditions assigned to Example

Note that because we followed Stone’s[60] convention of having the origin in
the upper left hand corner of the two dimensional space, we use the y, x, V right
handed coordinate system whenever we generate surface contour plots. To make
things sane, the usual (x,y) ordered pair is used to refer to points on the surface.
To keep your mind clear, its best to associate x with a PE column and y with a
PE row.

Figure 1.12 is a listing of the Poisson equation solver, written in MPL. Readers
familiar with C should be able to recognize many details in the program listing.
As stated in section 1.4, MPL is an extension of ANSI standard C. The following
is a discussion of the program listing, for more detail the reader is referred to the
MPL Reference Manual[35].

The first thing that you might notice in the listing is the plural keyword that
is used with the variable declaration. The keyword plural states that a variable
is to be uniformly defined on all PEs, this implies that there are nproc instances of
the variable. If the keyword plural is not used, a defined variable is assumed to
be singular, meaning that it will be stored in ACU memory. Note that in contrast
to plural variables, there is only a single instance of a singular variable.

In this situation, the proc construct is used inside a loop to assign boundary
conditions to certain PEs. The proc construct is useful as it allows access to a
plural variable on a single PE. The syntax of this use of the proc construct is as
follows:

proc[row][col].plural_expression

The terms row and col refer to the row and column of the referenced PE. Note
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/******************************************************************************

Poisson’s Equation -- Author: Jonathan Hill

This program provides a direct solution of Poisson’s Potential Distribution

Equation. See Chapter 4 of Stone’s text for more information. This program

was written for the MasPar 1101 with 1024 PEs. This source code is in MPL.

A percent difference is used to estimate closeness of convergence.

******************************************************************************/

#include <mpl.h>

#define TRUE 1

#define FALSE 0

main (int argc, char *argv[])

{

plural float voltage = 0.0, nvoltage = 0.0;

plural float Kcharge = 0.0, temp;

plural float percentDiff, epsilon = 0.001;

plural int not_done = TRUE;

int index, cflag = TRUE, limit = 1000;

/* user enter a different iteration limit? */

if (argc > 1)

sscanf(argv[1], "%d", &limit);

/* Insert boundary conditions into array while still in active set. */

for (index = 0; index < 32; ++index ) {

proc[31][index].voltage = 10;

proc[index][0].voltage = 10;

proc[index][31].voltage = 10;

}

/* disable boundary processors */

if ((ixproc != 0) && (ixproc != 31) && (iyproc != 0) && (iyproc != 31 )) {

for (index = 0; index < limit && TRUE == cflag; ++index) {

voltage = nvoltage;

nvoltage = ( xnetN[1].voltage + xnetS[1].voltage

+ xnetE[1].voltage + xnetW[1].voltage )/4 + Kcharge;

if ( voltage != 0.0 ) {

/* Estimate closeness to convergence */

/* ABSV is a macro that returns the absolute value */

temp = (nvoltage - voltage)/voltage;

percentDiff = ABSV( temp );

if ( percentDiff > epsilon )

not_done = TRUE;

else

not_done = FALSE;

cflag = globalor(not_done);

}

}

}

make_Maple_file("test", "A", index, &voltage);

} /* end of Poisson Solver */

Figure 1.12: Source Listing of Poisson Solver
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that row and col must be singular expressions. The term plural_expression is
the plural variable that is accessed on the referenced PE.

It is important to remember that while the ACU is in control of the parallel
part of the DPU, the ACU itself is not a parallel machine. Because of this fact, the
programmer must be aware of at all times, how the ACU is relating to the PE array.
The proc construct is useful as it allows the ACU to address a single PE from a
multitude of PEs. If the proc construct were not used, as in ‘voltage = 0.0’
then all instances of voltage present in the active set would have zero assigned
as a new value. There are times when such an assignment is useful, we used this
technique to initialize our plural variables.

While the proc construct is used here to assign a value to an instance of a plural
variable, the proc construct can also be used on the right side of the equal sign
to retrieve an instance of data and assign it to a singular variable. This raises
an important point, the ACU itself cannot directly relate to plural data, plural
data must be reduced to singular form before the ACU can relate to it. The proc
construct is just one of the means of reducing plural data, we will see another way
in the listing.

After the boundary conditions are assigned, an if statement similar to figure 1.6
is used to disable the PEs containing boundary condition values. The terms iyproc
and ixproc correspond to the PE row and column values, these terms were intro-
duced in section 1.5.2. Note that only PEs related to the interior of the 2D space
are allowed to participate in the computation of the potential distribution, thus
the active set contains 900 PEs, this is approximately 87.89% of the total number
of the PEs.

A for loop repeats the equation used to solve for the distribution. The expres-
sion, voltage = nvoltage stores values from the previous iteration into voltage.
Note that the boundary condition values stored in voltage are never overwritten,
because the related PEs are not in the active set. The following statement in the
listing is simply equation (1.2), written in a unique way. note that the expression
is evaluated simultaneously by all PEs in the active set.

The xnet construct is used to access data in a neighboring PE. Although we
only use the plain access type in the listing, there are actually three different types
of xnet communications available. The plain access type was selected as it is the
simplest and most commonly used form of the xnet construct. The syntax used
is:

xnetDIR[dist].plural_expression
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Recall that PEs in the active set initiate the communications, thus the the term
DIR refers to the access direction, from the point of view of PEs in the active set.
In place of DIR, the symbols N, NE, E, SE, S, SW, W, and NW are used to represent
the eight compass directions. Since the xnet construct can be used on either the
left or right hand side of an equal sign, to understand the direction that data is
actually moving, you must be aware of whether the xnet construct is being to
make an assignment or to retrieve data. This is to say that data may be retrieved
from an access, or may be assigned in an access. Clearly in an MPL expression, an
xnet construct to the left of the equal sign is being used to to make an assignment.
Conversely an xnet construct to the right of the equal sign is used to retrieve data.

The variable expression dist determines the distance over which communica-
tions will be performed. The variable expression dist must be must be singular,
and can be a constant. As with the proc construct, plural_expression refers to
the plural variable that is accessed by xnet communications.

In the listing, xnet communications are performed with accesses made to the
North, to the South, to the East and to the West. Since these accesses are to
the right of the equal sign, the accesses are used solely to retrieve data. Since the
communications distance is specified to be one, the accesses are made only with
the nearest neighbors. The plural variable being accessed is of course voltage,
which is used to contain values from the previous iteration.

There are two ways that the program can exit from the iterative loop. First, if
the iteration count variable index equals or exceeds the set limit variable, then
the loop will exit. The value of limit is set initially to a large value, but the user
may specify a different value. Alternatively, the loop will exit if a test indicates
that the solution has settled, this test is discussed next.

After each iteration, each PE compares its previous value of voltage to its
new value stored in nvoltage by calculating the absolute value of the percent
difference, as shown by equation (1.3).

percentDiff =

∣∣∣∣∣nvoltage− voltage

voltage

∣∣∣∣∣ (1.3)

An if statement is included to ensure that no PE attempts to perform division by
zero. The result from the equation (1.3) found by each PE is next compared against
a threshold to determine on a local level if data appears to be settled. Next, each
PE assigns a binary value to an instance of the plural variable not_done to indicate
the outcome of the comparison. The function globalor performs a bitwise OR
operations on all instances of the variable not_done that are present in the current
active set. Thus, the globalor function provides another means of reducing plural
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data to singular form. Note that if even one instance of not_done is TRUE, then
cflag will be TRUE. For cflag to be FALSE, all instances of not_done in the
active set must be FALSE. When cflag is FALSE, indicating that the solution
has settled, the iterative loop will exit.

After the iterative loop exits, the last thing that the program does before exe-
cution ends is to write a Maple15 readable file. The actual function used to write
the file is not shown here.

1.6.3 Results from a Continuum Model

This section presents results from the program listing in figure 1.12. This program
uses Poisson’s equation to solve for the potential distribution in a two dimensional
space. Figure 1.11 summarizes how the boundary conditions were assigned to
the two dimensional space. As indicated in section 1.6.1, Poisson’s equation is
solved by relatedly applying equation (1.2). After each iteration, the distribution
approaches the solution of Poisson’s equation.

Recall that three boundary edges were assigned the potential of 10V, while
the remaining boundary edge was assigned the potential of 0V. There were no
charges included in this example. Figure 1.13 shows the converging distribution
after ten iterations. The program exited with a stable solution after 471 iterations,
figure 1.14 shows the resultant potential distribution. Note that the results agree
with with what we expected.

1.6.4 Program Performance

To complete the example, we make an estimate of the floating point performance.
Remember, the purpose of this simple example is to present the reader with a
brief introduction to the concept of performance analysis. Section 1.7 presents
performance analysis in a broader sense, and section 1.7.5 in particular provides a
more in depth introduction to MFLOPS as a performance metric.

To perform equation (1.2) once calls for 4 add operations and one divide opera-
tion, a total of 5 floating point operations. Since 900 PEs are used to perform the
solution and a total of 471 iterations were actually performed, equation (1.2) was
performed 423,900 times, which corresponds to 2,119,500 floating point operations.

15Maple is a software product of the University of Waterloo, Canada
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To determine the number of times that the percent difference equation was per-
formed by each PE, a plural counter was inserted into the program. The reduceAdd
function was used to reduce by addition, the total from each PE, to an overall to-
tal. It was found that the percent difference was actually performed 417,820 times.
Since a subtraction and a divide operation are needed to perform a percent dif-
ference, this corresponds to 835,640 floating point operations. Together, this is a
total of 2,955,140 floating point operations.

To determine the execution time of the Poisson solver itself, the call to the
function make_Maple_file as well as the plural counter described above were
both “commented out” and the MasPar profiler tools were used to determine the
CPU time. The Poisson solver was executed five times and the average CPU
time was found to be 207.8 milliseconds, which corresponds to a floating point
performance of 14.221 million floating point operations per second. Note that
such a performance figure by itself has little meaning. To give the performance
figure meaning we must examine the context from which the performance figure
was derived.

To get a sense of how well the hardware is actually being used, we will determine
the floating point rate of a hypothetical model based on the underlying algorithm.
We start by determining the amount of time that is required to perform the floating
point operations. Equations (1.2) and (1.3) represent the two situations in which
floating point operations are performed. Each time equation (1.2) is performed,
four additions and one division is completed. To be able to perform these floating
point operations, five values must be loaded from parallel memory and one value
must be written back to parallel memory. Similarly, each time equation (1.3) is
performed, one subtraction and one division operation are performed. Similarly,
performing equation (1.3) requires that two values be loaded from memory and
one resultant value be written back to parallel memory.

The MasPar MPL user’s guide[37] provides the average timings to perform the
types of floating point operations that we have been discussing. Based on the given
timing information, it is a simple matter to estimate the time during one iteration
that the MasPar system should be using to perform the associated floating point
operations, see table 1.1.

Note that while the MasPar MPL user’s guide gives timing figures in terms of
clock cycles, since we know the that the clock period of the MP–1 is 80 nanoseconds,
we can immediately determine that the 1944 clock cycles corresponds to 155.52
microseconds. It is important that the reader bear in mind that this timing figure
corresponds to seven floating point operations.
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Table 1.1: Floating Point Operations Summary

Floating Point MP–1 Operation Total MP–1
Operation Clocks Use Clocks

add 126 4 504
subtract 126 1 126
divide 315 2 630
load 76 7 532
store 76 2 152

Grand Total: 1944

We can easily construct a hypothetical model, just by assuming that such a
program requires no input, produces no output, and has no control structures
or need for interprocessor communications. Such a program would only contain
equations similar to (1.2) and (1.3), but repeated a large number of times. While
such a program certainly has no practical use, it does provide a theoretical limit
that can serve as a means of comparison. Equation (1.4) presents the limit for this
example.

MaxRatet =
(f.p. operations) (nproc)

f.p. time
=

7 (1024)

155.52 × 10−6sec.
= 46.091 MFLOPS

(1.4)

By dividing the observed rate by this theoretical peak figure, we get a number
that represents the percentage of the peak performance figure. The actual program
floating point performance rate was found to be 30.85% of the peak performance
rate that we specified, which is certainly respectable. Upon closer inspection of
the program it can be seen that there certainly is some room for improvement. By
being clever, this code could be significantly optimized for improved performance.
Note however, rather than doing so, this example has already served the purpose
of being a vehicle for introducing the continuum model, and the topics of program
performance and optimization. All these topics will be addressed more fully in the
remainder of this thesis.

1.6.5 Continuum Model Summary

The continuum model was discussed as such problems are readily handled by ar-
ray processors. In addition to the direct solution of Poisson’s equation that was
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presented here, the FDTD method presented in chapter 4 provides a solution to
Maxwell’s equations. Both Poisson’s equation and Maxwell’s equations fall into
the continuum category of problems.

A special comment needs to be made in regards to boundary conditions. The
handling of boundary conditions are important as they can make a large impact
on program performance. In the Poisson solver for example, because of the way
that boundary conditions were handled, over 12 percent of the PEs in the pro-
cessor array were not able to participate in providing a solution. The handling
of boundary conditions is a particular problem that shows up with the handling
of all continuum models. In reading this thesis, please make note of the special
attention given to the handling of boundary conditions.
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1.7 Introduction to Performance

Performance is an important issue as it one of the principle ways of determin-
ing how well developed a solution is. Patterson and Hennessy[44] provide a useful
introduction to the metrics of performance. While Patterson and Hennessy empha-
size hardware performance, our emphasis in this document should be to determine
how well a given implementation makes use of the given hardware. After all, it
is not the goal of this document to compare the MasPar MP-1 to other computer
systems. Unfortunately the two topics, hardware performance and hardware use
are inseparably linked. It is not really possible to gauge hardware performance
without the use of some program implementation. Likewise it is not possible to
determine how efficiently hardware is being used unless some optimal situation can
be defined, such an optimal situation might be based on the observed asymptotic
performance of a program or alternately the model of a theoretically ideal pro-
gram can developed from data associated with the hardware. Thus the concepts
of hardware performance and efficient hardware use are in a sense “married” to
each other.

1.7.1 Time as a Performance Metric

In the following discussion16, Patterson and Hennessy introduce time as the most
fundamental metric for measuring performance.

“Time is the measure of computer performance. . . Program execu-
tion time is measured in seconds per program. But time can be defined
in different ways, depending on what we count. The most straight-
forward definition of time is called wall-clock time, response time, or
elapsed time. This is the latency to complete a task, including disk
accesses, memory accesses, input/output activities, operating system
overhead—everything.”

Wall clock time is easily measured by use of the Unix time command or by use
of the gettimeofday function in ‘C’. By examining the time at the beginning and
the end of the program execution, a difference is easily found that is equal to the
elapsed time. Note that since computers are often time shared, wall clock time
may not provide an accurate description of the performance of any single program

16Page 50 of Patterson & Hennessy
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in a computer system. Patterson and Hennessy make a comment to further stress
this point; Most time shared systems may be tuned for optimizing certain types
of performance.

“the system may be optimizing throughput (amount of data processed)
rather than attempting to minimize the elapsed time for executing one
program.”

In situations where the performance of an individual program needs to be known
in the context of the system in which it is used, the use of wall clock time is
appropriate. If however the goal is to characterize the performance of the program
itself, independent of the rest of the work that the computer is performing, wall
clock time is not appropriate. To take care of this discrepancy, Patterson and
Hennessy introduce an alternative means to measure time.

“we often want to distinguish between the elapsed time and the time
that the processor is working on our behalf. CPU execution time or
simply CPU time, which recognizes this distinction, is the time the
CPU is computing for this task and does not include time spent waiting
for I/O or running other programs. . . CPU time can be further divided
into the CPU time spent in the program, called user CPU time and the
CPU time spent in the operating system performing tasks on behalf of
the program. . . ”

The concept of CPU time immediately makes sense for a single processor com-
puter system, in such a system CPU time is simply the amount of time that the
CPU is working on our behalf. For serial code there is a function called getrusage

that accesses CPU time. Unfortunately, CPU time does not immediately make
sense in concurrent computers. In an array processor system such as the MasPar
for example, because of the ability to disable PEs, the active set of PEs working
on our behalf at any moment in time, may actually be only a fraction of the total
number of PEs in the system. Thus the concept of CPU time is out of place in this
context. Because of this discrepancy, processor time can weighted by the percent
of the number of PEs actively used in the array. This introduces the concept of
PE use efficiency which is presented later in this section.

To measure the ammount of time that the DPU is working on our behalf,
MasPar suggests the use of DPU time. According to MasPar literature17, DPU
time is defined as,

17For the definition of DPU time see the man page for mpGetRUsage
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“the total time that the process has been executing in the DPU.
This includes time when the DPU is stalled waiting for the front-end
process. It does not include time when some other DPU job is running.”

For parallel code the mpGetRUsage function accesses CPU time as well as DPU
time. Note that DPU time does include time waiting for the front end to perform
services for the DPU. In addition note that there is no distinction made here for
DPU time in terms of time spent on user code versus the operating system.

To complicate things, we must consider that the DPU is not working alone. The
front end serves as host and assists in performing work. Whether a programmer
chooses the synchronous process model or the asynchronous process model, it is
not unusual for the sum of the CPU time reported by the front end and the DPU
time reported by the processor array to exceed the measured wall clock time. This
observation comes from the fact that process control is not instantaneously passed
back and forth between the front end and the DPU. There is overlap in processes
that are performed in the front end and the DPU. This overlap allows the front
end and DPU to coordinate activities in which they both must participate. Such
activities include page swapping, transferring data, and performing house cleaning
chores.

For our purposes, the MasPar profiling tools are particularly useful for providing
an overall view of where processes are spending time. The profiling tools provide a
breakdown, function by function of how much time is spent by the front end, the
DPU, or in performing coordinated activities. The profiling tools provide a useful
summary of how and where time is being spent in the MasPar system. If it can
be shown by use of the MasPar profiling tools that the time spent executing code
in the front end is insignificant compared to the time spent executing code in the
DPU, we will ignore the front end CPU time, and we will only be concerned with
DPU time.

As with Patterson and Hennessy, we will maintain a distinction between perfor-
mance based on wall clock time (elapsed time) and performance based on CPU or
DPU execution time. We will use the term system performance to refer to elapsed
time on an unloaded system, and CPU performance or alternatively DPU perfor-
mance to refer to performance based on these other measures of time.
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1.7.2 Time Complexity as a Performance Metric

The goal of time complexity analysis is to find a function that characterizes the
relationship between execution time and problem size. Intrinsic to the concept of
complexity analysis is the notion that certain properties of such a functional rela-
tionship are solely dependent on the underlying algorithm. Time complexity can
provide insight to important properties of algorithms that will play a role in deter-
mining the performance of an implementation. For this reason, time complexity
analysis has been recognized as an important tool for comparing algorithms.

Time complexity analysis can be performed in two ways. From a theoretical
viewpoint, time complexity analysis is primarily concerned with the asymptotic
relationship between some hypothetical measure of time and problem size, as prob-
lems become larger. This type of time complexity analysis is performed by simply
examining the algorithm itself. Section 2.6, presents the idea of time complexity
as a theoretical tool.

From an experimental viewpoint, time complexity can be performed by fitting
an equation to experimental data. One reason for performing this alternate type of
time complexity analysis is to support the validity of a theoretical time complexity
analysis. The goodness of such a fit provides an indicator of how reasonable our
theoretical analysis is. Naturally for such experimental data to have any meaning,
the problem size should not be too large as to require a significant amount of
page swapping. Remember, the goal of time complexity analysis is to discover
characteristics of the execution time that are independent of the hardware actually
used.

1.7.3 PE Use as a Performance Metric

The goal of processor use figures is to characterize how well a computer program
makes use of a given computer system. Here we consider only a few such processor
use figures: processor use due to mapping and processor use due to branching.
Also, the percent of the theoretical maximum sustained MFLOPS figure can be
thought of as a processor use figure that applies only to floating point intensive
programs, see section 1.7.5.

We first consider the processor element use figure due to mapping (PUFM),
which is associated with what Flynn[17] referred to as the problem of vector fitting.
The PUFM describes how well the mapping does at fitting the problem “into” the
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processor array. In most cases a problem will be unevenly divided among the PEs.
Some PEs might receive a smaller chunk of the problem than other PEs, still other
PEs may not receive any part of the problem. Naturally, PUFM is a function of
the size and geometry of the processor array, the size and geometry of the problem,
as well as the effectiveness of the processor mapping used.

A useful way to think of PUFM is that by use of a specific virtualization18, the
processor array is made to appear to the algorithm as a processor array with some
other geometry. The virtual array being represented might simply be a larger two
dimensional array. In such a virtualization, each processor element will represent
one or more virtual processors, where the relationship is defined by the specific
virtualization. In this sense, PUFM is the percentage of the total number of
available virtual processors that are actually used by the algorithm. Note that the
PUFM can always be determined theoretically from first principles, but in certain
circumstances can be determined by comparing the execution times for different
problem sizes. This is just an introduction, the concept of PUFM is discussed in
far more detail in chapters 3 and 5 of this document. In addition, Pickering and
Cook[46] present a simple example of a cut-and-stack mapping that should give
the active reader some insight into these concepts.

The second processor use figure we consider is the processor use figure due to
branching (PUFB), this is what Flynn[17] called the problem of degradation due
to branching. According to Flynn;

“When a branch point occurs, several of the executing elements
will be in one state, and the remainder will be in another. The master
controller can essentially control only one of the two states; thus the
other goes idle.

The PUFB term describes how many PEs the algorithm makes use of whenever
it encounters a branch statement. Recall from the introduction to the concept of
the active set, given in section 1.5.3. When evaluating a plural control statement,
it is only necessary for one PE to evaluate the statement as true, for the ACU to
start execution in the associated block of code. In such an undesirable situation,
the computational power of an entire PE array will be reduced to that of a single
PE. While the technique of setting PEs either active or idle is useful as a means
of coordination, the technique must be used carefully.

18A discussion of specific virtualizations and processor array mapping is presented in appendix
section C.3
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For most parallel programs, data memory is mapped during program initializa-
tion, into a specific configuration that is unchanged until the program terminates.
For such a program, once initialized, the PUFM remains constant. Thus, PUFM
can be regarded as being as static as the data mapping. In contrast to PUFM,
PUFB is dynamic in that it is related to the size of the current active set. PUFB is
usually specified as an average and can be specified either at specific control state-
ments, or in a more global manner. If a branch statement is rarely encountered
or if the the branch statement is executed very quickly, its impact on the overall
performance will be negligible. Note that both PUFM and PUFB are defined to
be ratios of numbers of PEs.

1.7.4 Speed-Up as a Performance Metric

Patterson and Hennessy[44] introduce the idea of speed-up in general terms. Speed-
up is defined as the measure of how a system performs after some enhancement is
made relative to how it performed before. Speed-up is expressed simply as a ratio;

speed-up =
Execution Time Before

Execution Time After
=

Tbefore

Tafter
(1.5)

To make use of the idea of speed-up, consider the following. Suppose that some
part of a given program can be performed in a more efficient manner and further,
suppose that part of the program accounts for ψ · 100% of the total execution
time. If the part of the program to be improved can actually be performed an
enhancement factor of Ef times faster, then the new overall execution time should
be;

Tafter =

(
ψ

Ef
+ (1− ψ)

)
Tbefore (1.6)

With the expression for the new execution time, speed-up can be found in
terms of ψ, Ef and Tbefore by simply substituting into the general case speed-
up equation. After simplifying, it is found that Tbefore cancels out to yield the
following expression;

speed-up =
Ef

Ef(1− ψ) + ψ
(1.7)

Note that the general concept of speed-up can be used to examine nearly any
type of performance enhancement. The concept of speed-up is first used in sec-
tion 2.9 when anticipating how much faster a parallel version of the mesh generator
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might be in comparison to a serial version. Other uses of speed-up considerd by this
document include changing the method used to perform a key task, and changing
the number of processors in a system.

Often what is important, is not the performance speed-up related to a single
problem size or associated system configuration, but the general relationship be-
tween performance, problem size and the number of processors. Essentially the
amount that performance scales with problem size or the number of processors is
often more important than any single value of speed-up. This idea of performance
scaling is closely linked with the idea of complexity analysis which is introduced
in section 1.7.2.

1.7.5 MFLOPS as a Performance Metric

MFLOPS is simply the floating-point processing rate that a given implementa-
tion achieves for a given problem size. A floating-point operation is an addition,
subtraction, multiplication, or division operation applied to a pair of numbers in
single or double precision floating-point representation. To determine the FLOPS
rate, simply divide the total number of floating point operations performed by a
program, by the execution time.

Basic Assumption

It is important to realize that the use of MFLOPS as an absolute performance
metric comes along with a certain necessary assumption that must be understood.
Patterson and Hennessy19 provide a clear introduction to this assumption;

“Clearly a MFLOPS rating is dependent on the program. Different
programs require the execution of different numbers of floating-point
operations. Since MFLOPS were intended to measure floating-point
performance, they are not applicable outside that range. Compilers,
as an extreme example, have a MFLOPS rating near [zero] no matter
how fast the machine is, because compilers rarely use floating-point
arithmetic.”

The reader must be aware that when examining a MFLOPS rating, an assump-
tion is being made that the only goal of the associated program is to efficiently

19page 62 of Patterson & Hennessy
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perform floating point operations. Unfortunately, since it is possible to determine
the MFLOPS rate of any program, the given assumption may not be observed by
the person. By this argument, it should be clear that the meaning and usefulness
of a given MFLOPS rating, for the purpose of characterizing the absolute perfor-
mance of a given program is only as good as the truth of the stated assumption;
The only goal of the program is to efficiently perform floating point operations.

The example presented by Patterson and Hennessy above should drive the point
home. It should be plainly clear that compilers are useful programs, and accord-
ingly compiler performance must be an important topic. As pointed out by Pat-
terson and Hennessy however, since compilers rarely use floating point operations,
the use of MFLOPS is inappropriate for use as a tool for characterizing the per-
formance of compilers. While there are programs for which the use of MFLOPS is
certainly useful, there are also cases where the use of MFLOPS is evidently point-
less. In between these two extreme cases, there is a certain “gray area” where the
use of MFLOPS is at best questionable. To attempt to avoid ambiguity with each
use of MFLOPS, this document incorporates a discussion of the validity of its use
in context.

Instruction Mix

Patterson and Hennessy provide further insight into the use of MFLOPS as a
performance metric.20 Patterson and Hennessy introduce the concept of floating
point instruction mix.

“the MFLOPS rating changes not only according to the mixture of
integer and floating-point operations but also on the mixture of fast
and slow floating-point operations. For example, a program with 100%
floating-point adds will have a higher rating than a program with 100%
floating-point divides.”

Depending on how efficiently a computer performs each floating-point operation,
a programmer can make decisions on how to perform the necessary floating-point
operations. Rather than multiplying by two, often it is more efficient to add a
number to itself, for example. Such decisions will effect the MFLOPS rating as
well as the overall execution time. Besides the instruction mix the streamlining of
a program control structure will alter the percentage of the time that is actually

20Page 62 of Patterson & Hennessy
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used to perform floating-point operations. Thus reducing the time consumed by
other operations can have an effect on the MFLOPS rating as well as the overall
execution time.

Sustained Performance Ratio

As indicated earlier, it is not really possible to determine how well hardware is
being used unless some optimal situation can be defined. One way to define such
an optimal situation is to construct a theoretical model in which the only work a
program actually performs is floating point operations. In such a model, we ignore
everything except operations directly associated with floating point math. Since
MasPar has published the amount of time on average that is required to perform
each floating point operation, based on the mixture of floating point operations that
a program actually uses, we can define a theoretical maximum floating point rate
for any given program. Besides floating point operations, the only allowance made
is the time that is required to move floating point arguments from local memory
to registers as well as the time to move results from registers to local memory.
This allowance is made so that the theoretical maximum rate will correspond to a
sustained floating point performance rate.

Clearly such a theoretical sustained maximum performance figure assumes that
the only goal of a program is to efficiently perform floating point operations. Thus
the meaning of the theoretical sustained maximum floating point performance
rate closely follows the fundamental assumption that was stated earlier. Naturally
it should be impossible for any useful implementation to actually achieve such
a theoretical maximum performance, but still the ratio of the actual sustained
MFLOPS rate to the maximum theoretical sustained MFLOPS rate tells us how
good a job the program is doing at instructing the hardware to perform floating
point operations. We refer to this ratio as the percent of the theoretical maximum
sustained MFLOPS figure. This document uses the name MFLOPS %TMS to
refer to this performance figure.

To summarize, MFLOPS characterizes the rate at which floating-point opera-
tions are performed for a program implementation. The MFLOPS %TMS figure
provides a comparison of a given MFLOPS rate with a defined maximum rate. In
comparing implementations, unless the application and selected algorithm can be
closely linked to the goal of efficiently performing floating-point operations, the
use of MFLOPS as a program performance metric will be questionable. Since the
field of computational electromagnetics and the FDTD method in particular are
well known to be floating-point computation intensive, the use of MFLOPS is a
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useful metric for the FDTD solver.

1.7.6 Alternative Metrics

In some cases performance metrics such as FLOPS rate, PUFB, and PUFM do
not provide a full characterization of the absolute performance of an application
on a specific hardware platform. For the evaluation of such programs, PUFB and
PUFM only provide a relative performance measure, and the use of the FLOPS
rate may at best be questionable. To get a meaningful measure of the absolute
performance, one can resort to an invented metric. Such a metric is referred to as
“invented” as it only has meaning for evaluating programs that do similar work.
You can think of MFLOPS as being an invented metric for example. We used an
invented metric to evaluate the absolute performance of our mesh generator, see
section 3.8.1.

Reconsider the performance evaluation of a symbolic compiler written for a
serial machine. As presented in section 1.7.5, the use of flop rate is pointless for
such an application as compilers do not use floating point math operations. As an
absolute performance metric, lines per second is often used in evaluating compilers.
Of course, lines per second is an invented metric, but its use should make sense to
anyone who has ever used a compiler. While this metric is somewhat dependent
on the size and structure of programs being compiled, many different programs
can be compiled, and an average lines per second value can be determined. Such a
measure provides an indicator that may have some meaning to someone who wants
to buy a compiler.
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1.8 Summary

This chapter presented an introduction to the central topics of this thesis, that
is the development of two programs for the MasPar computer system. The first
program is a mesh generator that provides a spatial decomposition of three dimen-
sional objects. The second program is an implementation of the Finite Difference
Time Domain Method. To make the need for these two programs plain, the appli-
cation of these two programs to antenna design was presented.

Since the array processor computer architecture may not be familiar to all read-
ers, before presenting the MasPar system, this chapter presented some history of
the array processor. The continuum type problem was introduced along with an
example that serves as a vehicle for introducing the concept of performance anal-
ysis. Following the example, specific metrics used to measure performance on an
array processor were given. This material is important as performance analysis is
an important part of the content of this thesis.

In chapter 2, the algorithm associated with the mesh generator is presented.
Section 2.1 presents a high level introduction that the reader is strongly suggested
to read. An important part of the presentation in chapter 2 is the time complex-
ity analysis presented in section 2.7.3. The parallel implementation of the mesh
generator is presented in chapter 3. The mapping required by the mesh generator
is presented in section 3.2. The performance analysis of the mesh generator starts
in section 3.5 and essentially continues to the end of the chapter.

Chapter 4 presents important topics associated with a parallel implementation
of the FDTD method. Basic topics associated with FDTD analysis such as the
Yee Cell and handling boundary conditions are presented as well. In section 4.5, a
discussion presents the theoretical basis for the material we use for a suitable ab-
sorbing material for modeling absorbing boundary conditions. Section 4.6 presents
the Finite Difference Time Domain Method as an algorithm, complete with a time
complexity analysis.

Chapter 5 present the parallel implementation of the FDTD algorithm presented
earlier. Of particular importance is the mapping which is presented in section 5.1,
and the performance analysis which starts in section 5.4 and essentially continues
to the end of the chapter.

Chapter 6 presents the conclusions of this thesis. Suggestions for future research
are made, along with general comments regarding the research and lessons that
were learned while writing this thesis.
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The appendixes contained in this thesis must not be overlooked. Appendix A
provides a summary of the MasPar systems that we ran code on for this thesis. Of
the three electromagnetic simulations presented, the one presented in Appendix B
is the most complete. See section 1.1.2 for details regarding all three of the simu-
lations presented in this thesis.

Appendix C serves as a source of useful information for those who have more
than a casual interest in developing an application for the MasPar system. Ap-
pendix D presents some formulas that are associated with cross products. These
formulas were found to be useful for the development of parallel mesh genera-
tor. Appendix E presents the derivation of the finite difference equations that are
central to the FDTD method. Appendix F contains the user manual and lastly
Appendix G contains the list of references for this thesis.

One last comment needs to be made; This thesis does not contain much source
code. Besides short examples that are scattered about, it was decided that due to
the volume of the source code associated with this research, it would be unreason-
able to include it all here. This thesis will be archived with all related source code,
on tape as well as on CD-ROM. You may also contact the author via email at
jmhill@ece.wpi.edu, or the world wide web at http://www.wpi.edu/~jmhill,
but please keep your correspondence brief.

mailto:jmhill@ece.wpi.edu
http://www.wpi.edu/~jmhill


Chapter 2

Parallel Mesh Algorithm

This chapter presents the algorithm used to produce the parallel implementation
of the orthogonal mesh generator. To aid understanding, the mesh generator is
first presented as a serial algorithm. It is important to point out however, that
even the serial mesh generation algorithm was developed with a focus on making
it suitable for a processor array type computer.

Section 2.1 provides a high level explanation of basic mesh generation concepts.
The rest of chapter 2 provides an algorithm that can be derived from the simplistic
ideas first presented in section 2.1. It is suggested that the reader quickly peruse
section 2.1 before “descending into the depths” of the program algorithm and
SIMD implementation and refer back to section 2.1 as needed. Without a mental
image of the terrain, you cannot easily “tell the forest from the trees.” Section 2.2
presents definitions and in depth details of topics that are just touched upon by
section 2.1. Sections 2.3 and 2.4 present the mesh algorithm as a collection of tasks
that are repeatedly performed. Section 2.7 presents a time complexity analysis.
Section 2.11 is a chapter summary that neatly ties up loose ends.

In developing the mesh generator it was found to be useful to first implement
the algorithm in serial form. Remember that it was our goal to produce a parallel
implementation. In general, deciding to produce a serial version first, usually
does not make much sense. This situation however represents special case as this
algorithm allows the parallel version of the mesh generator to be a natural extension
of the serial implementation. Chapter 3 is devoted to explaining how the algorithm
presented in chapter 2 was implemented in a parallel environment and will provide
a better explanation of exactly why the implementation works so well.

46
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2.1 High Level Introduction

It is the goal of this section to provide the reader with a “feeling” of the overall
algorithm. With this goal in mind, it was decided to deliberately leave out exacting
definitions from this section to help the reader gain a better sense of that “feeling.”
The rest of this chapter and the next should provide ample rigor for the active
reader.

A solid object is interpreted to be the interior of a given closed surface. Such
a closed surface is essentially the shell of an object. The method used to describe
such a closed surface is detailed in section 2.2. Files that contain such object
descriptions are of a type named solid files. A solid file usually has a .sld file name
extension. Figure 2.1 is a representation of a four sided object and is an example
of an object that can be described using a solid file.

Figure 2.1: Representation of a Simple Four Sided Solid Object

Note that object surfaces are represented by interconnected surfaces. Such
surfaces are analogous to the flat surfaces of a cut diamond. As with a diamond,
such surfaces are referred to as facets. Facets are linked by edges, which are lines
that simply represent the intersection between surfaces. Detailed definitions for
such items as facets are presented in section 2.2.

Next consider what is actually produced by the mesh generation software. The
first thing to be defined is the region that will contain the resultant mesh model,
the region is said to be contained in a bounding box. A bounding box is easily
defined by specifying two points, Pmax and Pmin in three dimensional space, as
shown in figure 2.2. This particular bounding box will be referred to as the mesh
bounding box. The interior of the mesh bounding box is divided into an array of
adjacent, solid boxes with regularly spaced edges. Each edge must be parallel to a
given coordinate axis.

The mesh model is produced by assigning an identifier corresponding to each
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Figure 2.2: A Three Dimensional Bounding Box

object being modeled, to boxes in the mesh such that the shape of the original
objects are approximated. The identifier corresponding to each object is referred
to as a material identifier and indirectly describes what the solid object is made of.
Several objects may have the same material identifier. The idea of constructing a
model with plastic toy bricks such as LEGO1 brand toy bricks is a useful analogy.

Since the shape of the mesh array is understood implicitly, a list of the mesh
boxes completely describes the resultant mesh. Boxes in the mesh that have not
been assigned material identifiers take on the default material identifier which is
zero. The figure below is a visualization of a resultant mesh made to represent
the four sided object presented earlier. Such visualization files can be generated
to help the user to “see” the resultant mesh.

Figure 2.3: Visualization of a (4x4x4) Mesh Model

Mäntylä refers to output as in figure 2.3 as a decomposition model and explicitly
refers to this type of decomposition model as an exhaustive enumeration.2 Hoffman

1A trademark of LEGO systems.
2Mäntylä[31], page 60.
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uses alternative jargon to refer to such output as spatial decomposition by uniform
subdivision of space.3 In either case it is clear that such a mesh of boxes is an
approximate representation of the shape of three dimensional solid objects and
that the “goodness” of any such model is dependent upon the mesh subdivision
size. Use of the phrase subdivision size in this sense is similar to that of grain size in
photography where reference is made to the size of small bits of silver derived from
silver halide compounds. Adams4 explains how photographic grain size is related
to image sharpness. Theoretically if the size of each mesh box were to shrink to an
almost infinitesimal size then such a decomposition model could represent a perfect
likeness. It should also be obvious that any attempt to approach such a limit would
be impractical and would require nearly an infinite amount of computer memory.

While this document does discuss memory use as well as memory allocation, it
is beyond the scope of this document to discuss in general the relationship between
mesh density and mesh “goodness.” This particular topic is left to the discretion of
the program user. Note however, it is anticipated that the primary use of the mesh
model software will be to produce models for use with the accompanying finite
difference time domain (FDTD) solver software. For this reason, section 4.1.4
provides advice to the FDTD solver user in the choice of an appropriate mesh
density.

The issue of how to assign property identifiers to mesh boxes amounts to decid-
ing which boxes in an array are owned by which object being modeled. Exactly in
the center of each box is a special point that is referred to as a grid point. A special
point must be defined outside the volume containing objects being modeled. The
special point is referred to as the, search origin. A line segment can be drawn from
the search origin to an arbitrary grid point. The line segment is referred to as the
search line.

Search
Origin

G2

G1

Figure 2.4: Search Lines Examining a Solid Object

The mesh generator algorithm is based on the following basic idea: If the number

3Hoffman[22], page 63.
4Adams[1], page 19.
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of intersections between a search line and an object surface is odd, the grid point
associated with that search line must be located inside the object. Kalay[24] refers
in general terms to this as the parity count method; This identifiable name will be
used throughout this document to refer to this basic idea. Given that the parity
count method can be used to determine if a grid point is inside a solid object, the
box in the mesh model corresponding to that grid point will be said to belong to
that object.

In figure 2.4 the search line associated with grid point G1 has one intersection
with the object surface. Since one is an odd number, G1 must be inside the object.
The box associated with G1 must belong to the object. The search line associated
with grid point G2 has two intersections with the object surface. Since two is
not an odd number, G2 must be outside the object. The box associated with G2
cannot belong to the object. With the ability to determine if an arbitrary point is
inside a solid object and the ability to define a regular grid of arbitrary points, it
is a simple matter to define a suitable mesh, as in figure 2.3

While in most cases the search line is to be interpreted as a finite length line
segment, there are cases when it is helpful to see a search line as being unbounded
in both directions, that is both ends extend to infinity. In such situations the
phrase extended search line or unbounded search line is used. The phrases actually
indicate that we are referring to an unbounded line that is coincident with the
search line. Thus every search line has an associated extended search line. Do not
be confused however, the search line itself is simply a straight line segment that
extends from the search origin to a given grid point and thus the search line has
finite length.

While the parity count method may appear “obvious,” it is deceptively simple
and far more powerful than first apparent. Unfortunately such a simple idea also
presents certain pitfalls, thus implementing such a simple idea really was not a
simple task. First off, since the parity count method only describes how to examine
one shape, provisions must be made to allow for the modeling of multiple shapes.
Issues related to handling multiple objects and shapes are discussed in section 2.2.3.

Edges also present a particular problem. As Kalay[24] points out, the problem
arises whenever a search line is coincidental with shape elements such as edges.
Such coincidence may result from one of two different cases illustrated in figure 2.5
below: (1) The case represents a transition from an internal region of the object
to an external region in 3D space (or vice versa). For the parity count method to
produce correct results, such a coincidence should be counted as a surface intersec-
tion. (2) The case may represent a tangency condition in which the object surface
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is not penetrated and no inside to outside transition occurs. Clearly this second
type of coincidence should not be counted as a surface intersection. Kalay refers to
both types of coincidence as singularities. Misinterpretation of such singularities
may result in a wrong intersection count, turning the model inside-out at such
corresponding points.

Origin
Search

(1) Transition Case

Grid
PointPoint

Grid

Search
Origin (2) Non-Transition Case

Figure 2.5: Possible Cases for Singularities

Kalay points out that avoiding singularities in a 3D analysis has “undesirable
side effects” which have to be solved somehow at a cost which is possibly higher
than of solving the singularities themselves. According to Kalay, singularities can
be avoided two ways;

1. Use another search line that does not experience the same singularities.

2. Displace the object description in some predeterminedmanner that will elim-
inate the singularities.

Kalay goes to great lengths to explain how such singularities can be handled. It
was decided that such techniques are far too computationally expensive, especially
for an array processor type environment where multitudes of processors all execute
the same instructions in lock-step. Requiring nearly all processors to be idle so
that a single processor can resolve a singularity is unreasonable. A simple method
for handling singularities was devised. The regular spacing of grid points is a
particularly useful property that is easily used to handle singularities.

According to our technique, which we refer to as the resolver method, when
a search line encounters a singularity the corresponding grid point is referred to
as an unresolved grid point and will not be processed further until all facets that
describe the object are processed. Grid points that never experience a singularity
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are referred to as immediately resolvable grid points, and are easily handled using
the parity count method. Unresolved grid points are handled next. An unresolved
grid point inside the object should notice that its neighbors are inside the object.
Conversely, an unresolved grid point outside the object should notice that neighbor
grid points are not inside the object. By making such an observation of neighbors,
a decision of insideness can easily be made for every unresolved grid point.

In a sense no technique is used at all to eliminate or even solve singularities,
the technique directly determines whether grid points that experience singulari-
ties are inside or outside the object. For the resolver method to work however,
it is necessary that the probability of encountering singularities be small so that
neighboring grid points can provide a reliable indication of insideness. A simple
technique for reducing the probability of encountering singularities was devised.
Such a technique reduces the possible number of singularities encountered but can-
not possibly eliminate all singularities and corresponding unresolved grid points.
The techniques used for reducing the probability of encountering singularities and
the technique of handling unresolved grid points are introduced in section 2.4.6.
Section 2.4.5 provides techniques for detecting singularities.

One last comment regarding singularities. Singularities are not only encoun-
tered when using the parity count method to analyze three dimensional objects,
singularities also may also be encountered when using the parity count method
to analyze two dimensional structures. The topic of handling singularities when
performing the parity count method in a two dimensional analysis will be discussed
later in this document.

After all objects have been examined and all mesh boxes appropriately assigned
material identifier numbers, the task of the entire algorithm is nearly complete.
The property identifier assignment list is saved in a specified file, visualization files
may be generated, lastly the program terminates.

2.2 High Level Details

This section expounds several of the items that were just touched upon by the
high level introduction. First a few definitions.
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2.2.1 Definitions of Geometry

Most standard geometric definitions encountered in this document are formally
defined in the field of topology. Blackett[11] wrote a popular book on topology.
In addition geometric definitions are given in many books. The following defini-
tions are paraphrased from Kalay[24]. In his presentation, Kalay refers to Behnke,
Bachmann, Fladt and Kunle[9] as well as Giblin, Chapman & Hall[19].

Definition 1: The Polygon

A polygon is the figure formed by choosing a sequence of n arbitrary points
P1, . . . , Pn, joining each point with the next by a line segment, and joining the
last point with the first one. The points P1, . . . , Pn are the vertices of the polygon,
and the segments P1P2, . . . , PnP1 are its sides. A vertex bounds exactly two sides.
Figure 2.6 is a general polygon.

P5

P4

P3

P2

P1

Figure 2.6: A General Polygon

A polygon is said to be planar if all its sides lie in one plane, otherwise it is said
to be skew. If sides intersect only at common bounding vertices, then it is said
to be simple. It is said to be straight if all its sides are segments of straight lines.
Note that the given definition of a polygon does imply an ordering of the sides,
fixed by the sequence of joining vertices in P .

Figure 2.7 illustrates examples of simple, straight, planar polygons that are
convex as well as non-convex. A polygon is said to be convex if any straight line,
coincident with a side of the polygon, does not intersect any other side of the
polygon. In the figure, associated straight lines are shown as dashed lines. In the
non-convex case, lines, each coincident with a side also intersect a different side.
The side intersections are illustrated as circled dots.
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Figure 2.7: Simple Polygons

Definition 2: The Shape

A shape is a system of simple polygons with the property that every side of each
polygon is also a side of exactly one other polygon in the system. The polygons
are called the faces of the shape, their sides are its edges, and their vertices are its
vertices. The system as a whole is called the surface of that shape.

In this document, only a special class of faces are considered. Shapes are con-
structed only with planar, simple, straight polygons. In this document such planar,
simple, straight polygons are called facets. The definition of a shape easily can ac-
commodate facets, since they are just one class of faces.

A corollary of definition 2 is that every edge is bounded by exactly two vertices
and belongs to exactly two faces. The definition implies closedness of the surface,
but does not imply connectivity or orientability. Connectivity means that there
exists a path on the surface from any vertex to any other vertex of the shape.
Not imposing this requirement means that a shape could be composed of multiple
disjoint shells, each consisting of a connected set of faces. However, to be able
to establish a containment relationship between a point in space and the shape,
it is necessary to add the orientability condition, so that each shell of the shape
will partition the 3D space into two disjoint domains, exactly one of which is
unbounded, commonly denoted outside, and the other is bounded and denoted
inside. Points which are members of the inside domain are said to be contained by
the shape.

Orientability of a surface can be defined in different ways, for example by the
Möbius Edge Rule. The orientation of each face is simply the order of the defining
vertices. Since each side of a face is bounded by two vertices, an orientation is
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easily assigned to each side, as a vector that indicates the order of the defining
vertices. Consider an edge common to two adjacent faces. If the two sides that form
the single edge are oppositely oriented, then we say that the faces are coherently
oriented. For shapes this means that the normals to all their faces point to the
same domain of the 3D space, as partitioned by their surface.

Shapes whose surfaces are made of connected and orientable shells, that have
the property that the points shared by any pair of faces are only those of their com-
mon edge or vertices (that is, they do not self intersect), are said to be well-formed.
As in Kalay’s paper, only well-formed shapes are considered by this document. It
is important to note that well-formedness is a global characteristic of the shape.
It cannot be determined with local data alone by simple data manipulation. Fig-
ure 2.8 illustrates why the non-self-intersection requirement is not easily checked.
Shapes A and B are topologically the same, but geometrically they differ in the
location of vertex V relative to the rest of the shape, making A a well-formed shape
and B an ill-formed one.

V

V

(B) Ill-formed(A) Well-formed

Figure 2.8: Globality of the Self-Intersection Condition

Clearly since a shape can only have an associated inside and outside, shapes by
themselves are not able to immediately describe all objects that might be encoun-
tered in the real world. In this document the following condition applies, shapes
can only be loosely referred as objects if it is implicitly understood that the interior
of such an object is homogeneous with uniform material properties throughout.

2.2.2 Clarifying Closedness

The importance of the requirement that a shape surface be closed in exactly the
way stated in the previous section is self evident in figure 2.4 on page 49. The
assumption that every shape to be analyzed by this algorithm, must be described
by a closed surface that contains some finite volume, is intrinsic to the task of
defining the insideness or conversely the outsideness of grid points in the model.
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If a shape does not contain some finite volume, then it is not possible to correctly
determine if a point can be contained by that shape.

2.2.3 Analyzing Multiple Shapes

The next significant topic can be considered a major pitfall. The issue was first
touched upon when considering how it might be possible to analyze an arbitrary
number of shapes. Problems arise as the parity count method really only describes
how to analyze individual shapes. These problems are complicated by the fact that
individual shapes only readily describe objects that are solid and uniform. During
the development of the algorithm it became clear that only analyzing uniformly
solid objects presents a handicap. We discovered the need to analyze more complex
objects.

Since by basic definition a closed surface can only imply the sense of exterior
and interior, a constructive method of describing more complicated objects was
proposed, that of overlapping shapes.5 The method of overlapping shapes is par-
ticularly useful for constructing descriptions of objects that are not solid or are
conglomerations of several materials. The basic idea can be described in the follow-
ing simple terms; A hollow object can be described by taking a shape representing
an empty interior and enclosing it inside a shape representing a solid object. The
resultant description can be said to have walls with certain thickness. Any object
described in this way is said to be hollow.

It is important to point out that even if it is not the user’s intention to overlap
shapes as a means to constructively describe objects a problem still exists. A
problem may arise when shapes are closely spaced, particularly when shapes are
supposed to share common faces. If special care and caution is not observed when
describing a geometry, closely spaced shapes may actually overlap. Unlike physical
reality, shapes are simply abstract descriptions and can easily occupy the same
space, thus there is no danger of breaking any natural laws. In any circumstance,
a method of handling such a situation is needed, otherwise the results of the parity
count method may be unpredictable whenever the situation arises.

5The term overlapping shapes is confusing. While it is not possible for real three dimensional
objects to occupy the same physical space, shapes can be considered as more basic abstractions of
objects. The term overlapping was first introduced to describe a condition that exists for shapes
that are closely spaced, which is explained in the next paragraph.
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Enclosed Method

The following is an introduction to a method that was considered for handling the
problem of overlapping shapes. It turns out that this method is too complicated
and an implementation was not attempted. Intrinsic to this method is the notion
of one shape enclosing another shape, for this reason the name enclosed method
was given. A shape is said to be enclosed by another if one shape contains all
the vertex points of another shape. In general any set of points can be said to
be enclosed by a shape if every point in the set is contained by that shape. The
method proceeds as follows, when analyzing intersections between search lines and
shape surfaces compare the distance from each intersection to the search origin.
Given a situation where one shape contains all the vertex points of another shape,
intersections associated with a contained shape will be further from the search
origin than other intersection points. Thus this simple observation can be used to
determine the relative enclosure of shapes.

In situations where several shapes claim containment of a given grid point, the
enclosed method provides a rule. All shapes that are enclosed have privilege over
the shapes that they are contained by. Such an enclosed shape would be assigned
all the grid points it contains, leaving the remaining grid points to other shapes.

Even though the enclosed method can be used to determine which shape is
enclosed by which shape, it does not solve the larger problem. First, the enclosed
method does not solve the problem of closely spaced shapes. Second, the enclosed
method becomes far more complicated for shapes which are only partially enclosed
by other shapes, figure 2.9 represents just one such example.

Collection of Shapes

FUSE

TOP

BOTTOM

POWDER

Overlapped Shapes

Figure 2.9: Construction of Bomb by Overlapped Shapes

Using the enclosed method, the resultant mesh model would depend on how the
search line is oriented relative to the bomb. In one particular orientation, parts
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of the fuse would be detected as being enclosed but other parts of the fuse would
not be detected as being enclosed by the bomb. In a sense only part of the fuse is
enclosed. While this simple fact makes sense to humans, it is not readily handled
by the simple enclosed method. Likewise since the bomb shell is made of a top
part and a bottom part, it is unclear if the powder would be detected as being
enclosed by the shell or if the shell would be detected as being enclosed by the
powder, a statement that may at first appear like nonsense.

While the enclosed method could be modified to handle such situations, it soon
becomes unwieldy and complex. It is important to realize that for a high perfor-
mance implementation, the required solution must be simple. The choice of the
above example was only made to graphically illustrate the severity of the over-
lapping shapes pitfall. The enclosed method was not implemented, a more simple
technique was found to be satisfactory.

Precedence Method

The first method implemented to address the issue of how to analyze multiple
shapes was exceedingly simple. Each shape was individually analyzed, one at a
time by using the parity count method. After a shape had been analyzed, all grid
points contained by that shape were assigned to that shape. In a sense, shapes
were given the opportunity to steal all grid points away from shapes that had been
previously analyzed. This method presents two problems. First, the resultant
mesh will be dependent upon the order in which shapes are analyzed. Second, the
handling of such a situation can quickly become cumbersome and complex.

An improvement was devised, making this the method of choice for handling
multiple shapes. By taking the magnitude of the material property identifier as-
signed to each shape into account, a simple order of precedence is achieved, thus
the technique is referred to as the precedence method. The idea is analogous to
the concept of layer depth that is commonly used with two dimensional mechanical
drawing software. In such software,6 drawings can be thought of as being made on
layers of mylar film. Drawings on top layers may cover up parts of drawings made
on lower layers. This method is applied in the mesh generation software as follows;
Shapes are analyzed one at a time by using the parity count method. Shapes may
take ownership of grid points that are contained, if the grid points satisfy one of
the following conditions; (1) The grid points have not yet been assigned to a shape
yet. (2) The current shape has a larger material identifier than the shape(s) that

6xfig for the Unix operating system is one such mechanical drawing package
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had previously claimed the grid points.

The precedence method provides a predictable means of handling the situation
that arises when shapes are intentionally or unintentionally made to share the same
space. The precedence method is somewhat flexible in that resultant meshes will
not be dependent upon the order in which shapes are analyzed. Implementation
of this method is discussed in section 2.4.7.

2.2.4 A Word on Notation

In this document any variable that is capped with an arrow, such as �v, is meant
to be interpreted as a vector. Variable names that are capitalized but not capped
with an arrow are almost always points in two or three dimensional space. In
all cases, variables in P imply points in three dimensional space. Similarly, all
variables in B imply points in two dimensional space. The notation of Anton and
Rorres[4] is used to express vector norms, for example ‖�v‖ = the norm of �v. Both
vectors and points refer to either ordered triples or ordered pairs of real numbers.
Variable names in lower case are most often just ordinary scalar quantities. For
example t could refer to a non-integer or an integer, which should be understood
in context.

2.2.5 The Orthogonal Mesh

In this section, we example the variables used to define an orthogonal mesh. Fig-
ure 2.10 was provided to help in visualizing such a mesh. To form a mesh, along
each edge of the mesh bounding box place equally spaced marks to form brick
shaped subdivisions. There are Nx, Ny, and Nz brick shaped subdivisions along
each edge corresponding to the x, y and z coordinate axes. The brick shaped
subdivisions are referred to as mesh boxes or simply as boxes. It will be noted that
marks placed along each respective edge of the bounding box are spaced apart a
distance ∆x, ∆y and ∆z, corresponding to;

∆x =
Pmaxx − Pminx

Nx

∆y =
Pmaxy − Pminy

Ny

∆z =
Pmaxz − Pminz

Nz
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Figure 2.10: Example of Orthogonal Mesh

Starting at Pmin, the marks made along each edge of the bounding box are each
assigned an index value such that the index values i, j, k expressed as an ordered
triple [i, j, k] can reference any box corner point in the mesh. Each index is valid
in each of the following sequences.

i = 0, 1, 2, . . . , Nx

j = 0, 1, 2, . . . , Ny

k = 0, 1, 2, . . . , Nz

The square braces associated with index terms are meant to imply that the
ordered triple is composed of integers rather than real physical dimensions. To
determine the physical location (x, y, z) corresponding to [i, j, k], use the following
formula;

x = i∆x+ Pminx
y = j ∆y + Pminy
z = k ∆z + Pminz

(2.1)

A convention is followed that each box in the overall mesh will be referenced
by the corner point that is closest to Pmin. Such a reference point is referred to as
a referenced mesh box corner. It is important to point out that while a bounding
box edge parallel to, say the x axis has Nx subdivisions, these subdivisions were
formed between Nx + 1 marks placed on that edge. Thus when referencing boxes
in the overall mesh, i, j, and k are valid on the following sequences;

i = 0, 1, 2, . . . , Nx − 1
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j = 0, 1, 2, . . . , Ny − 1

k = 0, 1, 2, . . . , Nz − 1

Thus the box that has Pmin as a corner point is referenced as [0, 0, 0], while
the box that has Pmax as a corner point is referenced as [Nx − 1, Ny − 1, Nz − 1].
Lastly, it is important that we be able to determine the actual physical coordinate
values of grid points in the mesh. Since a grid point is located at the center of the
corresponding mesh box, equation (2.1) allows us to immediately state that;

xgp = (i+ 0.5)∆x+ Pminx

ygp = (j + 0.5)∆y + Pminy

zgp = (k + 0.5)∆z + Pminz

These equations are rewritten in the following form;

xgp = i∆x+ (Pminx + 0.5 ∆x)

ygp = j ∆y +
(
Pminy + 0.5 ∆y

)
zgp = k ∆z + (Pminz + 0.5 ∆z)

To simplify these last equations, the coordinate values of the grid point in box
[0, 0, 0] are assigned to a unique variable;

startx = Pminx + 0.5 ∆x
starty = Pminy + 0.5 ∆y
startz = Pminz + 0.5 ∆z

(2.2)

Thus at last the coordinates of grid points referenced as [i, j, k] can be calculated
by the following equations;

xgp = i∆x+ startx
ygp = j ∆y + starty
zgp = k ∆z + startz

(2.3)

2.2.6 The Search Origin

The search origin was introduced in section 2.1 as being a special point located
outside the mesh bounding box. The following explanation is more exact. The
location of the search origin is defined relative to two points, Pmax and Pmin that
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are specified in a given solid file along with the shape descriptions. These two
points contain the extreme coordinate values that are used to define the mesh
bounding box. Thus the search origin is defined relative to the mesh bounding
box. In matrix notation the search origin is defined as;

So = diag {udsox, udsoy, udsoz}(Pmax − Pmin) + Pmin

Where diag {a, b, c} refers to a diagonal square matrix filled with the terms a, b,
and c on the diagonal. The equation is equivalent to;

Sox = udsox (Pmaxx − Pminx) + Pminx
Soy = udsoy (Pmaxy − Pminy) + Pminy
Soz = udsoz (Pmaxz − Pminz) + Pminz

The terms udsox, udsoy and udsoz are user defined constants. For the search origin
to be guaranteed to be outside the mesh bounding box, the following restrictions
must be enforced;

udsox < 0 or udsox > 1
udsoy < 0 or udsoy > 1
udsoz < 0 or udsoz > 1

This particular approach to defining the search origin was suggested by a good
friend and colleague, Surender Mohan. Clearly by using this equation the search
origin can be placed anywhere relative to the mesh bounding box. During program
development this equation was found to be particularly useful. Further details of
the significance of this definition and the suitable selection of the constants udsox,
udsoy and udsoz are discussed in sections 2.4.4 and 2.4.6.

2.2.7 Describing Surfaces

To avoid confusion, a few special descriptive terms were developed for use in this
document. As described earlier, a particular facet is defined by a finite set of
coplanar three dimensional points, thus facet refers to the subregion of an infinite
plane. The phrase facet plane refers to the infinite plane that the facet is actually
a subregion of. It is implicitly understood that a given set of coplanar points are
used to define both a facet and facet plane. Lastly, note that facet and facet plane
are most often used in three dimensional spatial contexts.
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The phrase bounded region also refers to a facet, but is properly used in context
only in a certain restricted sense, that of two dimensional space. Paliouras and
Meadows[43] provide a clear introduction to the Jordan Curve Theorem. Since
the edges of a facet must represent a simple closed path, according to the Jordan
Curve Theorem the facet plane is divided by a curve formed by the sides, into
three mutually disjoint sets as follows:

1. The curve itself, denoted C.

2. The interior of the curve, denoted Int(C), which is an open and bounded set.

3. The exterior of the curve, denoted Ext(C), which is an open and unbounded
set.

The truth of the Jordan Curve Theorem should be intuitively obvious, its simple
geometric meaning is illustrated in figure 2.11. Following the clear terminology
presented by Paliouras and Meadows it makes sense to refer to facets in the context
of a two dimensional space as being a bounded region, or alternately as being a
bounded set.

Ext(C)

C

Int(C)

F1

F2

F3

F4

F5

Figure 2.11: Facet Plane Regions

The two dimensional space being referred to above is called facet space. In
the sense of linear algebra, a facet space is a vector space. Strang[61] as well as
Anton and Rorres[4] provide clear explanations of vector spaces. A given facet
space is simply a two dimensional subspace that completely contains a facet plane.
Note that every facet has a uniquely associated facet space. Section 2.4.2 provides
details of how a given facet space is defined. Lastly, there should be no confusion
as to which facet space corresponds to each facet. In the algorithm, facets are
processed one at a time thus there should a clear understanding as to the facet
space which corresponds to the current facet.
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2.3 Mesh Algorithm Overview

The parity count method described in section 2.1 effectively reduces the job of
generating a three dimensional orthogonal mesh to the simpler problem of iden-
tifying and counting intersections. The job of actually counting intersections is
trivial, thus the remaining problem is the identification of intersections with a
shape surface.

n Grid
Point

oS

Search
LineOrigin

Search

Facet
Normal

Boundary
Facet

Figure 2.12: Search Line Intrersecting a Facet

In section 2.2, we showed how the surface of a shape is described by using a
set of interconnected facets. Thus it should make sense that we must count the
number of intersections a search line makes with all the facets that are used to
describe the shape. Given a search line and an arbitrary facet, like the example
shown in figure 2.12, there are only a small number of possible scenarios that are
possible. We consider each of them now;

1. – The search line may not reach the facet. Remember that a search line
extends only from the search origin to its associated grid point, thus has
finite length.

2. – The search line may be orthogonal to the facet normal vector, �n. What
this means is that either the search line cannot intersect the facet, or that
the search line intersects the facet an infinite number of times. (That is, the
search line in “inside” the facet space.)

A simple test can be used to determine if the search line is orthogonal to
the facet normal vector. If the test passes, we simply ignore the facet. If
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the search line is inside the facet space, the search line will also intersect the
shape element of a connected facet, which we can detect.

3. – The search line may intersect the facet plane once. Given that a facet is a
closed region of the facet plane, in this scenario it is possible for the search
line to intersect the facet, at most once. Special care must be made to check
if the search line intersects a shape element. If this happens the associated
grid point must be declared as unresolved.

With this list in mind, it is now safe to state a simple yet powerful assertion. The
job presented in section 2.1 of counting the number of times a search line intersects
with a shape surface amounts to totaling the number of facets that experience a
single intersection with the given search line. This assertion is intrinsic to the
entire algorithm.

Given that a search line intersects a facet plane once, it is not immediately
obvious whether the intersection appeared inside the facet. Clearly, determining
if a search line intersects a facet is the “crux of the problem.” Thus the task of
counting intersections is dependent on the solution of a two dimensional problem.
The two dimensional problem is simply stated; Determine if an ‘arbitrary point’
(the intersection point between the facet plane and a search line) is located in the
interior of a ‘two dimensional bounded region’ (the facet). One possible solution to
the two dimensional problem is presented in section 2.4.5, along with a discussion
of other possible solutions. Once all of the facets have been examined and all the
intersections with search lines counted, if the tally is odd then the grid point must
be inside the shape.

An introductory diagram of the algorithm used to count intersections for a
single shape is presented in figure 2.13. Note that the algorithm simply loops
repeatedly until all the facets describing the current shape have been examined.
Note in figure 2.13, if an intersection is seen between a search line and a facet, it
is appropriate to simply increment a counter by one.
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Figure 2.13: Counting Intersections for Parity Count Method

2.4 The Mesh Algorithm

In this section we present the entire mesh generation algorithm. The algorithm was
broken into smaller tasks that individually are more easily defined. The flowchart
in figure 2.14 illustrates the proper sequence in which tasks are performed to im-
plement the algorithm. Each square block in the flowchart is equivalent to a task
listed in table 2.1. Note that depending on how the flowchart is interpreted, either
a serial or a parallel implementation of the algorithm will result.

Table 2.1: List of Algorithm Tasks

Item Section Name of Task
1 – 2.4.1 – Initialize Analysis
2 – 2.4.1 – Initialize Shape
3 – 2.4.2 – Facet Server
4 – 2.4.3 – Pick Next Grid Point
5 – 2.4.4 – Intersection Finder
6 – 2.4.5 – Facet Solver
7 – 2.4.6 – Check Insideness
8 – 2.4.6 – Resolve Singularities
9 – 2.4.7 – Copy Out
10 – 2.4.8 – Store Results in Files
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Figure 2.14: Flowchart of Mesh Generation Algorithm Tasks

The overall flow chart was divided into three smaller flowcharts that are linked
as layers. The Mesh level flowchart is where the algorithm starts and ends and is
performed once. The shape level flowchart is performed for each and every shape
that is analyzed. The facet level flowchart is performed for each and every facet
that is processed. Next is an in depth discussion of each task.

2.4.1 Initialization Tasks

Initializationwas split into two tasks. Before the algorithm can be started, a certain
amount of initialization is required. In addition, a certain amount of initialization
is required before each shape can be analyzed, the list of vertex points associated
with the shape to be analyzed are loaded into memory and is searched to find the
largest and smallest coordinate values. The extreme coordinate values are used to
define a workspace for the facet.

It is important to realize that it is not necessary that every grid point be checked
for containment by every shape. Since the largest and smallest coordinate values
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associated with each shape are known, it is a simple matter to define a subregion of
the overall mesh. Such a subregion is easily defined by using a three dimensional
bounding box inside the overall mesh. Clearly in examining a given shape it is
only necessary to check for containment, the grid points in a subregion where
the shape is known to be, thus it is appropriate to name such a subregion the
analysis subregion. Thus part of the job of preparing a workspace is defining
the associated analysis subregion. With the workspace set aside, the list of vertex
points associated with the current shape loaded, and the anylysis subregion defined,
the next task can be performed.

2.4.2 Facet Server Task

To make a facet more usable, calculations are performed to result in three items
of useful information. First, the parameters used to define the facet plane are
determined. These planar parameters are needed by the Intersection Finder Task
to determine if intersections exist between the facet plane and given search lines.
Second, the facet server produces two orthogonal unit vectors that serve as basis
vectors for facet space. These unit vectors will be needed also by the intersection
finder to map any intersections found, to facet space. Last, the facet server pro-
duces the list of boundary points that define the facet in facet space. This list
of boundary points is needed by the facet solver to determine point containment.
The following sections provide a detailed description of the facet server and its
duties.

Selecting From Facet Points

A set of three dimensional points are used to define each facet.

{Fi : i = 1, 2, . . . , n}

For this discussion, it should be acceptable to the reader that somehow a set of
three dimensional points used define each facet are automatically provided to the
facet server. An outline of how this is actually done is presented in section 3.4.
The number n, is simply the total number of points used to define a facet.

From the set of points used to define a facet, the first two points are selected
and named P0 and P1. A third point, named P2 is arbitrarily selected from the
remaining points used to define the facet. It is important to note that P2 is selected
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such that, if possible, P0, P1 and P2 are not collinear, or form a single straight line.
Using the three selected points, two vectors �u, and �% are defined. Note that both
vectors originate from point P0.

�% = (P2 − P0)

�u = (P1 − P0)

To determine that P2 is an acceptable choice we must show that �% and �u are not
parallel. It is simple enough to use the following formula to determine the cosine
of the angle between the two vectors.

cos (αlu) =
�% · �u∥∥∥�% ∥∥∥ ‖�u‖ (2.4)

Once the cosine of the angle between the two vectors has been determined, its
absolute value is compared against the cosine of an arbitrary constant angle near
0o. Thus we define αcoll = 0o + ε where ε is a small number. If it is true that;

αcoll < αlu < (180o − αcoll)

then it must also be true that;

| cos (αlu) | < cos (αcoll)

To perform such a test, an arbitrary small angle can easily be selected for αcoll.
The actual test performed is stated as follows;

|�% · �u|∥∥∥�% ∥∥∥ ‖�u‖ < cos (αcoll) (2.5)

Suppose we pick αcoll to be 10o, then cos (αcoll) = 0.984808. . . All angles that are
greater than 10o, and less than 170o will have | cos (αlu) | < cos (10o), for example
cos (60o) = 0.5. Thus, all such angles that satisfy equation (2.5) are associated
with vectors that are clearly not parallel.
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Basis for Facet Space

Formally, the next job that the facet server performs is to define a unique set of two
dimensional coordinates for the facet space. The new two dimensional coordinate
system is defined such that P0 corresponds to the new origin and that two unit
length vectors, �un and �an act as basis vectors for the new coordinate axes. Half
the job of defining the two basis vectors is nearly already done. The basis vector
�un is simply the normalized �u vector.

�un =
�u

‖ �u ‖

Only a small bit of work will be needed find the other basis vector, �an.
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Figure 2.15: Facet Related Vectors

Line U is defined as a parametric equation, with respect to �un and P0, as shown.
Also, refer to figure 2.15.

U = �un t+ P0 (2.6)

Vector �a is defined to be orthogonal to �u. The length of �a represents the distance
from point Uc on line U to point P2. The basis vector �an is simply the normalized
�a vector. Point Uc is found as follows; First determine the parametric variable tc
that corresponds to Uc, via the dot product.

tc = �% · �un

Next use equation (2.6) to determine Uc. With Uc in hand, determine �an.

Uc = �un tc + P0

�a = (P2 − Uc)

�an =
(P2 − Uc)

‖ P2 − Uc ‖
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Thus �un and �an are orthogonal basis vectors that define a two dimensional
subspace. It is interesting to note that basis vectors in general are not necessarily
orthogonal or unit length. It was simply an arbitrary decision to select basis
vectors that are orthogonal and of unit length. Some simplification of the algorithm
is possible, for example �u and �% could be used directly as basis vectors. The
fundamental requirement that basis vectors be linearly independent is guaranteed
since P0, P1 and P2 were selected such that they are are not collinear. In regards
to the actual implementation, the task of defining a two dimensional system of
coordinates really does not represent any additional work other than defining two
linearly independent vectors. The point P0 was arbitrarily selected to be mapped
as the new two dimensional origin.

Defining Planar Parameters

To define the infinite plane that a given facet is a subregion of, it is useful to start
with the point-normal form then determine the general form of a plane. Anton and
Rorres[4] provide a full introduction to the point normal form. Two data items are
needed to produce a point-normal form of an infinite plane. The first item needed
is just any vector �n that is normal to the facet surface. Such a vector is easily
found by performing a cross product;

�n = �un × �an (2.7)

The second item needed is just any point on the facet, such as P0.

The basic idea behind the point-normal form is that a plane can be defined as
the locus of all points such that a line drawn from P0 to any point in the plane,
must be orthogonal to �n. Thus;

�n ·
−→
P0P = 0 (2.8)

Given that an arbitrary point in the facet plane is given as P = (x, y, z) and that
point P0 = (x0, y0, z0) it follows that;

−→
P0P= (x− x0, y − yo, z − z0)

Further, given that �n = (a, b, c), equation (2.8) can be rewritten as;

a (x− x0) + b (y − y0) + c (z − z0) = 0

This last equation is the point-normal form of a plane. The general form of a plane
is;

a x+ b y + c z + d = 0 (2.9)
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In equation (2.9), d is easily defined as;

d = −(a x0 + b y0 + c z0) (2.10)

Thus with �n and d in hand, a plane is completely defined in a most useful manner.

Mapping to 2D Space

Each point in two dimensional space has two coordinate values that are uniquely
arranged in an ordered pair, such as;

Bi = (ui, ai)

To map each vertex point from three dimensional space to the current two dimen-
sional facet space, use the following equation;

ui = (Fi − P0) · �un
ai = (Fi − P0) · �an

(2.11)

The reader will notice that until this point all vertex points have been labeled
with the following conventional form: PID. The associated capital P strictly im-
plies that the given point named ID belongs to a set of three dimensional points
used to define a facet. Similarly, the following conventional form BID will be used
to identify boundary points. For this document, the term boundary points refers
to two dimensional points in facet space that are mapped from three dimensional
vertex points.

Facet Server Task Summary

Figure 2.16 contains a flowchart that helps to provide a summary of the Facet
Server Task. Note that in nearly all cases the first choice of P2 is acceptable.
When the ‘A’ circle is reached, points P0, P1 and P2 will be selected from the list
of points that define the facet. After defining the facet plane and facet space, the
remaining loop iterates through the list of points that define the facet and maps
them to facet space.

To summarize, three significant items are produced by the facet server. First,
two orthogonal unit vectors, �un and �an are produced that serve as basis vectors for
the facet space. Second, planar parameters �n and d that define in three dimensional
space the infinite facet plane. Third and last, a list of the boundary points that
were mapped from the three dimensional vertex points.
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Figure 2.16: Flowchart of Facet Server

2.4.3 Pick Next Grid Point Task

It was pointed out by the ‘Initialize For Shape’ task in section 2.4.1 that it is
not necessary that every grid point be examined for containment by every shape.
This task picks from the overall mesh only those grid points that will be checked.
Note again that depending how the flowchart in figure 2.14 is interpreted, either
a parallel or serial implementation will result. For example if a single grid point
were to be selected each time this task is called, a serial implementation would
result.

Consider the following as an alternative scenario; Each time this task was called,
if a set of grid points were selected all at once, and simultaneously each associated
search line was checked for an intersection with the current facet, then the imple-
mentation could be thought of as being “parallel.” In a sense, many cases of the
Facet Level Flowchart would be performed simultaneously, in parallel. Continu-
ing the same thought process, yet another scenario could have multiple instances
of the shape level flowchart performing in parallel. Such scenarios easily lead to
different levels and types of parallelism. This topic will be considered further with
the discussion of time complexity in section 2.7.
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2.4.4 Intersection Finder Task

The purpose of the intersection finder is to determine if and where there exists
an intersection between a facet plane and a search line. There are two cases that
result in no intersection between a search line and a facet plane, first as described
in section 2.1, a search line is simply a finite length line segment and may not
reach the facet plane. It is also possible for the search line to be orthogonal to the
facet plane normal vector. In this second case there is either no intersection, or an
infinite number of such intersections. In any circumstance, the intersection finder
must only report an intersection between a given search line and given facet plane
if and only if there is exactly one intersection present.

The first job performed by the Intersection Finder Task is to define the search
line as a parametric equation.

L = �l ts + So ; 0 ≤ ts ≤ 1 (2.12)

The variables are defined as;

L = A Point on The Search Line
ts = The parametric term
Gi = Grid Point i
So = The Search Origin
�l = (Gi − So)

Note that in defining the search line as a line segment, the parametric term ts
is restricted to a set of values that range from zero to one, inclusive.

Near Orthogonal Test

The next job is to test if the search line is orthogonal to the plane normal vector.
Because of the way that floating point numbers are stored in digital computers,
simply taking the dot product and testing the result for equality with zero, will not
be useful in checking for vectors that are exceedingly close to being orthogonal.

Two methods of checking for near orthogonal vectors were considered. The first
method is to use an equation similar to equation (2.5) to determine the cosine of
the angle between the vectors, the equation is shown next.
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ttest = cos (αln) = abs


 �l · �n∥∥∥�l ∥∥∥ ‖�n‖




Since �n is equal to the cross product of two orthogonal unit length vectors, �n
must also be a unit length vector, thus the equation can be simplified to;

ttest = cos (αln) = abs


�l · �n∥∥∥�l ∥∥∥


 (2.13)

External to the program, the cosine of some arbitrary angle near 90o can easily
be defined as a constant. Thus, if ttest is smaller than the given arbitrary constant,
the two vectors are said to be, close to being orthogonal. Conversely, if ttest is larger
than the arbitrary constant then the vectors are not orthogonal.

While equation (2.13) is reasonably efficient, performing such a calculation still
requires a significant amount of computer resources. Determining the length of a
search line calls for the use of the square root function which is computationally
expensive, especially since equation (2.13) must be performed once for every grid
point in the mesh, for every facet processed. Rather than looking for a complicated
“fix,” such as calculating the square of the cosine of the angle between vectors
instead, if it is realized that such an exacting test is not really required, then a
very simple test can be designed. An alternative method is presented next.

Consider one definition of the dot product[4], where θ is the angle between two
arbitrary vectors vectors �u and �v. Note that the following equation was selected as
a means to present the following topic from a clear conceptual standpoint. Since it
was decided that all vectors would be stored in a component wise fashion, a more
efficient method was actually selected to calculate dot products.

�u · �v =

{
‖�u ‖ ‖�v ‖ cos (θ) if �u �= 0 and �v �= 0

0 if �u = 0 or �v = 0

Since the search origin must be outside the mesh bounding box and grid points
must be inside the mesh bounding box, clearly�l which is associated with the search
line should never be of zero length. Also, �n is normal to the facet plane and known
to be a unit length vector. Making suitable substitutions, and given that α is the
angle between �l and �n, the dot product for these two vectors can be expressed as
follows;

�l · �n =
∥∥∥�l ∥∥∥ cos (α)
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Note that since Pmax and Pmin define the extreme coordinate values of the mesh
bounding box, ‖Pmax − Pmin‖ is equal to the length of the diagonal of the mesh
bounding box. See figure 2.2 on page 48 for an illustration of the mesh bounding
box, including one such diagonal. Using the last math expression, the following
constant can be defined for testing for nearly orthogonal vectors;

Ktest = ‖Pmax − Pmin‖ cos (αk)

αk = 90o−ε, where 0o < ε� 90o
(2.14)

The constant Ktest represents a quantity equal to the length of the diagonal of the
mesh bounding box, multiplied by the cosine of an arbitrary constant angle that
is just under 90o.

To test if �l and �n are nearly orthogonal, simply check if the absolute value
of the dot product between the two vectors is less than Ktest. If the following
mathematical statement is true, it should be possible to guarantee that the two
associated vectors are not orthogonal;

|�l · �n| > Ktest (2.15)

This test is particularly appealing since the dot product between�l and �n is actually
an intermediate value that may be required later in the algorithm, thus performing
the approximate test for nearly orthogonal vectors is almost at no cost. While the
test is certainly simple, it is not so clear as to what angles will pass or fail this
test or how we can guarantee that the test will always work, so let’s clear up the
mystery.

By combining equation (2.13) and equation (2.14), the angle at which test 2.15

just indicates that vectors �l and �n are nearly orthogonal is equal to;

αorth = arccos


‖Pmax − Pmin‖∥∥∥�l ∥∥∥ cos (αk)


 (2.16)

By examining this last equation, it is clear that
∥∥∥�l ∥∥∥ is the only independent

variable. By placing the search origin at a distance from the mesh bounding box,
the range of values that

∥∥∥�l ∥∥∥ and αorth may have are easily controlled. The length

of �l must always fall into the following range;

∥∥∥�l ∥∥∥
smallest

<
∥∥∥�l ∥∥∥ < ∥∥∥�l ∥∥∥

largest
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The largest range of values that
∥∥∥�l ∥∥∥ can have results for a highly dense mesh

when the search origin is placed at a location that is in line with a diagonal of the
mesh bounding box. For our purposes it is reasonable to place the search origin
at a distance from the mesh bounding box, approximately equal to the length of
the diagonal. Thus, given that the search origin is in fact placed in line with a
diagonal such that the distance from the mesh bounding box is equal to the length
of a diagonal, then the following extreme values are defined as;∥∥∥�l ∥∥∥

smallest
= ‖Pmax − Pmin‖

∥∥∥�l ∥∥∥
largest

= 2‖Pmax − Pmin‖

This last statement along with equation (2.16) will be used to determine the range
of angles that are guaranteed to pass or fail the near orthogonality test defined by
equation (2.15). Figure 2.17 is presented next to help the reader to visualize the
range of angles that is being discussed.
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Figure 2.17: Diagram of Associated Angles

The angles associated with the near orthogonality test are computed as fol-
lows. Note that ε is a small positive number. As ε approaches zero the following
approximations become equalities.

a1 = arccos(cos(90o − ε)) = 90o−ε

a2 = arccos

(
cos(900 − ε)

2

)
≈ 90o−

ε

2

a3 = arccos

(
cos(900 + ε)

2

)
≈ 90o+

ε

2

a4 = arccos(cos(90o + ε)) = 90o+ε

Consider the following example, suppose that ε = 0.1o, then a1 = 89.9o, a2 =
89.95o, a3 = 90.05o, and a4 = 90.1o. For this example, this situation is equivalent
to measuring angles with an absolute accuracy of ±0.025o and then stating that
the angles are nearly orthogonal if the measured value is greater than 89.925o and
less than 90.075o. In any event, we can guarantee in this example that angles that
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are between 89.95o and 90.05o will be detected as nearly orthogonal. Likewise, we
can guarantee that angles greater than 90.1o or less than 89.9o will not be detected
as being nearly orthogonal.

Finally, since ε is defined before the program is executed and the placement
of the search origin is arbitrarily selected relative to the mesh bounding box, the
tolerance of the test can easily be made tighter than was demonstrated in the
above example.

The Intersection Point

Given that the normal of the current facet plane is not orthogonal to a given search
line, at most one intersection point may exist between the search line and the facet
plane. The next job is to try to find that intersection point. First consider an
extended search line to be of infinite length. The extended search line is defined
as;

E = �l te + So (2.17)

Where �l is the familiar search line orientation vector, te is the parametric term,
So is the search origin and E is a point on the extended search line. Given that
vectors �l and �n are not nearly orthogonal, one and only one intersection point must
exist between the extended search line and the facet plane.

Equation (2.9) is the general form of the facet plane. The definition of the
extended search line is given as equation (2.17). Both equations are easily solved
to determine the parametric term for the extended search line that corresponds to
the intersection point.

te =
−(d+ (aSox + b Soy + c Soz))

�l · �n
(2.18)

As before, �n = (a, b, c) Note that since �l and �n are non-zero and non-orthogonal,
�l · �n must be nonzero.

The next step is to decide if the intersection point found on the extended
search line indicates that the search line cut through the facet plane. While equa-
tion (2.12) says that the parametric term for the search line is valid over,

0 ≤ ts ≤ 1

this range does not suggest an efficient or useful test. For a search line to possibly
experience an interior to exterior transition, the tip of the search line must cut
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through the facet plane. In addition since the search origin is known to be outside
the mesh bounding box and grid points are known to be inside the mesh bounding
box, there is no reason to test if 0 ≤ te, since this condition is guaranteed. Thus if
the following is true,

te < 1 (2.19)

the search line is guaranteed to cut through the facet plane. Next, the value of the
parametric term te is substituted back to find the coordinates of the intersection
point. Lastly the intersection point is mapped to the facet space.

Intersection Finder Task Summary

Figure 2.18 contains a flowchart that is helpful in summarizing the Intersection
Finder Task. Note that the entire Intersection Finder Task summarized in fig-
ure 2.18 matches the ‘Intersection Finder’ and ‘Intersection Found?’ blocks in
figure 2.14.
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Figure 2.18: Flowchart of Intersection Finder

The intersection task first defines the search line and equivalently the extended
search line by defining terms for equation (2.12) and (2.17). Before attempting to
find an intersection point it is necessary to check that a single intersection point
is guaranteed to exist between the extended search line and a given facet, this
test is performed by evaluating equation (2.15). The next action performed is to
actually find the parametric term corresponding to the intersection point between
the extended search line and the facet plane by using equation (2.18).
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The intersection finder must next decide if the search line cuts through the
facet plane, the decision is made by evaluating equation (2.19). If equation (2.19)
is true, the intersection point is found by evaluating equation (2.17), and lastly
the intersection point is mapped to the facet space, by using equation (2.11). If
equation (2.15) or equation (2.19) are not satisfied, then the intersection finder
simply reports that no intersection was found between the search line and facet
plane.

2.4.5 Facet Solver

At this point it is useful to think of a facet as being a bounded region in two
dimensional facet space, as was presented in section 2.2.7. If an intersection point
is indeed found between a search line and a facet plane, this task has the job of ex-
amining where the intersection point is located relative to the facet. As introduced
in section 2.3, this task essentially attempts to answer a “true or false” question,
that of whether an arbitrary point is clearly inside a given bounded region. Un-
fortunately as presented in section 2.1, it may not be possible to determine in a
clear sense whether or not the arbitrary point is inside the bounded region, this
task also detects such situations.

The job performed by the facet solver can be thought of as being similar to
the job performed by the entire mesh generation program. While the Facet Solver
Task decides in a two dimensional sense if a given point is contained by a given two
dimensional bounded region, the core objective of the mesh generation program as
a whole is to decide if arbitrary points are contained by a given three dimensional
bounded region. Essentially the three dimensional problem of generating an or-
thogonal mesh was reduced to solving the two dimensional containment problem.
The solution to the two dimensional containment problem presented in this doc-
ument is named the lines and intersections method, and is presented next. While
only one method of solving the two dimensional containment problem is presented
here in detail, several references are made in the following facet solver summary.
Hansen and Levin[20] present a simple technique that can be extended to solve the
two dimensional containment problem, but is not considered to be a satisfactory
solution as it can only solve for the special case of convex facets. This alternate
technique is discussed only in passing in section 2.10.



CHAPTER 2. PARALLEL MESH ALGORITHM 81

Introduction to Lines and Intersections

The lines and intersections method of solving a facet actually implements the same
parity count method introduced in section 2.1, but in a two dimensional sense.
A two dimensional facet search origin is defined for each and every facet to be
outside the bounded region. As with the three dimensional analysis, a search line
segment is first drawn from the search origin to some arbitrary point. In this case
the arbitrary point is the point mapped from the intersection between the three
dimensional search line and the facet plane, to see why this is true see section 2.4.4.
If the number of intersections between the sides of the bounded region and the two
dimensional search line is odd, then the arbitrary point must be inside the bounded
region. Conversely, if the number of intersections is even, then the arbitrary point
must be outside the bounded region.

The two dimensional parity count method is easily implemented using a tech-
nique analogous to that used in the three dimensional analysis. Since the sides
of a bounded region are actually straight line segments, if the facet search line is
not parallel to any side then at most one intersection may exist between the facet
search line and any given side. Given that such a case is true and further given
that the intersection is not coincident with either of the side endpoints and lastly is
not coincident with the end7 of the facet search line then a clear intersection is said
to exist. If all intersections between a search line and the sides of a facet are clear
intersections then the total number of intersections is equal to the total number
of side elements that have intersections with the facet search line. The subsection
titled ‘Handling the Intersection,’ discusses in greater detail how intersections are
accounted for. Special emphasis is placed on how intersections that are not clear
intersections are handled.

Facet Search Origins

In defining a facet search origin, the first thing required is a list of the largest and
smallest coordinate values of boundary points used to describe the facet. The job
of finding these boundary values is usually an additional task that the facet server
performs. The largest and smallest coordinate values are assigned to two variables,
together the variables define a two dimensional bounding box.

7Clearly like all line segments the facet search line must have two endpoints, but we are only
concerned with the end that can possibly be inside the bounded region. The reader can think of
a search line as being a ray that extends to infinity.
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Bmax — maximum coordinate values
Bmin — minimum coordinate values

A facet search origin is defined by the following equation. Note that udsou and
udsoa are constant values defined such that the facet search origin is always outside
the bounded region.

Bsou = udsou (Bmaxu −Bminu) +Bminu
Bsoa = udsoa (Bmaxa −Bmina) +Bmina

(2.20)

It is important to clarify the following point; The single point referred to as
the search origin is a three dimensional point that is specifically defined relative
to the three dimensional mesh bounding box. The search origin is to be regarded
as being defined by constant value coordinates thus are not allowed change during
program runtime. The unique symbol So is assigned to the search origin.

In contrast to the search origin, each facet has an associated facet search origin.
It is to be understood that there is a one to one correspondence between each facet
and its facet search origin. A single facet origin is defined for the current facet
being studied. While many facet origins may exist, there should be no confusion
regarding the unique symbol Bso, which is assigned to the current facet search
origin.

Facet Search Line

A search line is defined as a parametric equation as follows;

Bs = �vs ts +Bso ; 0 ≤ ts ≤ 1 (2.21)

The variables are defined next. Note that in defining the facet search line as a line
segment, the parametric term ts is restricted to a set of values that range from
zero to one, inclusive.

Bs = A point on the facet search line
�vs = (BI −Bso)
BI = Point mapped from 3D intersection
Bso = The facet search origin
ts = The parametric term
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Facet Sides

A side of the bounded region is defined as a parametric equation as follows; The
points Bi and Bi+1 are the end points of a given facet side element and Bmid is
the point exactly between the two endpoints. Note that in defining a facet side
element in this way, the parametric term is restricted to a set of values that range
from minus one to one, inclusive.

Bb = �vb tb +Bmid ; − 1 ≤ tb ≤ 1 (2.22)

The variables are defined as;

Bb = A point on the facet search line
�vb = (Bi+1 −Bmid)
Bmid = 1

2
(Bi+1 +Bi)

Bi, Bi+1 = Two boundary points in order
tb = The parametric term

Intersection Solution

In the following we consider the solution of equations (2.21) and (2.22). The
coordinates of the actual intersection point between a side element and a facet
search line need not be determined to check if an intersection exists. The solutions
of the facet search line equation (2.21) and the facet side equation (2.22) are
presented in terms of parametric terms. First for the search line;

ts =
vba(Bmidu −Bsou)− vbu(Bmida −Bsoa)

vsuvba − vsavbu
(2.23)

Next, for the facet side;

tb =
vsa(Bmidu −Bsou)− vsu(Bmida −Bsoa)

vsuvba − vsavbu
(2.24)

In using equations (2.23) and (2.24), steps must be taken to avoid division by
a number close to zero, as such a situation would lead to an overflow condition.
To avoid such an overflow condition, it may at first make sense to compare de-
nominators to some fraction of the numerators, unfortunately this is not a good
idea in general as the situation becomes more complicated when a numerator is
also close to zero. Such a situation corresponds to the indeterminate condition of
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zero divided by zero. Note that the use of the subtraction operator is significant
here. Whenever we subtract two numbers that are close in value, we expect the
difference to be small, unfortunately the smaller the difference is, the worse the
precision of that value. Such cases of reduced precision must be handled carefully.

A certain insight can be obtained by making an investigation from a geometric
point of view. By examining the denominators of equations (2.23) and 2.24, it is
seen that the denominators are identical and have a particular significance.

denominator = vsuvba − vsavbu = 2A (2.25)

The variables are defined as;

|2A| = Twice the triangular area
vsu, vsa = Components of �vs
vbu, vba = Components of �vb

The absolute value of equation (2.25) is equal to twice the area of a triangle
formed from �vs and �vb when their tails are joined at a common point and a line
segment is drawn between the tips of the vectors, see figure 2.19. It is important
to note that figure 2.19 does not show the ordinary relationship between the facet
search line and the side of a facet. Something similar to figure 2.19 is easily formed
when any two vectors are joined in just this way. Hansen and Levin[20] presented
equation (2.25) in a more general determinant form. Equation (2.25) is actually
derived in appendix D.
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Figure 2.19: Vectors and Triangular Area

If the ‘denominator’ term which corresponds to the triangular area between �vb
and �vs is measurably not zero, then these vectors cannot be parallel, and thus no
more than one intersection may exist between the corresponding facet side and
facet search line. Conversely, if the denominator term is zero then �vs and �vb must
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be parallel vectors. While informative, what we really need to know is if the facet
search line and facet side are coincident, or rather are they parallel and represent
an inconsistent system of equations. If the search line and given facet side are
parallel, but not coincident then no intersection can possibly exist between them.
If however the lines coincide, then an infinite number of intersections will exist.

numerator = vba(Bmidu −Bsou)− vbu(Bmida −Bsoa) (2.26)

It is easily shown that if the numerator of equation (2.23), given above as
equation (2.26) is also zero, then the facet search line and facet side must be
coincident. First, the numerator of 2.23 gives twice the area of a triangle formed
by points Bso, Bmid, and Bi+1. Given that these points should actually be three
separate, non-coincidental points, the area of the triangle can be zero, only if the
points are collinear. See figure 2.20. Remember that Bmid and Bi+1 are two points
on the facet side. Since the facet search line also originates from Bso, if the facet
search line is parallel to a facet side, implying that equation (2.25) is zero, and at
the same time equation (2.26) is determined to be zero then the search line and
facet side must be coincident with the line drawn from Bso to Bmid.
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Figure 2.20: Collinear Points

For our purposes will will state that equation (2.25) or equation (2.26) are not
considered zero if their absolute value is larger than an arbitrarily small fraction
of the area formed by the current two dimensional bounding box.

Note that the case of zero divided by zero for equations (2.23) and 2.24 only
arises when the facet search line is coincident with a facet side. Whenever this
unique case is detected, it is important to determine if the arbitrary point BI is on
the facet side. This is accomplished by determining where BI is located relative
to the facet side;

tb =
�vb · (BI −Bmid)

‖�vb‖
(2.27)

If −1− ε < tb < 1 + ε, then BI is considered to be on the facet side, otherwise BI
is not on the facet side.
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Thus to summarize what we have covered in this section so far, first we have
defined the facet search origin, facet search line, and facet side. Before we can
perform equations (2.23) and (2.24), we must perform equation (2.25) to show
that �vs and �vb are not parallel. If these two vectors are considered parallel then
it is necessary to perform equation (2.26) to determine if the search line and facet
side are coincident. For the case that the lines are not coincident, no intersection
can exist. If the lines coincide then equation (2.27) is used to determine whether
BI is on the facet side, if this is the case then we have detected a singularity. This
topic will be discussed further in this section. If BI is not on the facet side, then
we continue and examine the next facet side.

Handling the Solution

Given that �vs and �vb are not parallel, equations (2.23) and (2.24) provide the
parametric terms that serve as the single solution. Table 2.2 is used to determine
what relationship exists between the facet search line and facet side element.

Table 2.2: Intersection Cases

Search Side Element tb
Line ts |tb| < 1− ε 1− ε ≤ |tb| ≤ 1 + ε |tb| > 1 + ε

ts > 1 + ε MISS MISS MISS
1− ε ≤ ts ≤ 1 + ε CASE 1 CASE 3 MISS

ts < 1− ε HIT CASE 2 MISS

The columns of the table correspond to three ranges of value that a side el-
ement’s parametric term may have. The rows of the table correspond to three
ranges of values that the facet search line’s parametric term may have. The term
ε is simply an arbitrary small number that we define. The ranges selected may
appear odd at first glance, but recall from equation (2.21) and equation (2.22) that
constraints were placed on the associated parametric terms. For a side element
the parametric term was restricted to −1 ≤ tb ≤ 1. Likewise for a facet search
line the parametric term was restricted to 0 ≤ ts ≤ 1. Note that since the facet
search origin should be outside the facet bounded region, there is no need to test
if 0 ≤ ts.

The MISS entries in Intersections Case Table indicate that no intersection exists
between the facet search line and side element. The HIT entry in the table indicates
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that a clear intersection exists. The remaining entries are discussed in the following
paragraphs.

The entry CASE 1 corresponds to a situation that arises when the intersection
point happens to be coincident with the end point of the facet search line. Several
topics that have already been introduced merge at this point. First, a facet search
line was defined explicitly to be a straight line segment that extends from the as-
sociated facet search origin which is outside the bounded region, to an arbitrary
point which might be inside the bounded region. Since the arbitrary point is the
end of the search line that we are concerned with, it should be obvious that this
situation implies that the arbitrary point is coincident or nearly coincident with
a point in a side element. Next recall that the arbitrary point corresponds to the
intersection between a three dimensional search line and a facet plane. This cor-
respondence is based on the one to one mapping established by equation (2.11) in
section 2.4.2. It should be clear that the situation of having a facet search line
coincident with a side element corresponds to the cases of singularities that was
introduced in section 2.1, and was illustrated by figure 2.5. Thus by detecting
CASE 1, Kalay’s[24] singularities are detected. Because such a situation is associ-
ated with analysis performed on three dimensional shapes, the situation might be
referred to as 3D singularities.

The entry CASE 2 corresponds to a situation that arises when the intersection
between a facet search line happens to be coincident with an end point of a side
element, see figure 2.21. In such a situation the intersection could imply: (1) A
transition from an internal region of the bounded region to an external region (or
vice versa) in 2D space. (2) A tangency condition in which the facet boundary is
not penetrated and thus no inside to outside transition occurs. Kalay refers to both
types of coincidence as singularities. Since this situation arises from the application
of the parity count method to two dimensional structures, such singularities might
be referred to as 2D singularities.

Arbitrary
Point

Search
Origin

Arbitrary
Point

Origin
Search

(2) Non-Transition Case(1) Transition Case

Figure 2.21: Cases of Singularities for 2D Analysis

The entry CASE 3 corresponds to a situation that arises when not only the
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intersection is coincident with the end of the search line but also the intersection is
also coincident with an end point of a side element. Clearly, following CASE 1 and
CASE 2, this situation corresponds to a singularity that arises from two sources.

As with all cases of singularities the resolver method was selected to handle
them. The associated grid points are marked as unresolved and will not be analyzed
further till all facets associated with the current shape have completed processing.
It is suggested that the reader review the flowchart in figure 2.14 on page 67 at this
point. The mesh resolver is located in the Shape Level Flowchart. The resolver
task is discussed in section 2.4.6.
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Figure 2.22: Facet Solver Flowchart
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Facet Solver Summary

This section provides an overview of the two dimensional containment problem and
presented one solution in detail. The lines and intersections method was presented
and is summarized by figure 2.22. This section also provided a discussion on
detecting singularities. Note that singularities are rarely encountered, thus most
execution takes places in the left part of the flowchart. In the flowchart the parity
count method is applied in a two dimensional sense, if the arbitrary point BI is
found to be contained in the bounded region then counters associated with surface
intersections are incremented.

In addition to the lines and intersection method, other methods exist for solving
the two dimensional containment problem. Kalay[24] refers to several methods,
one of which is based on the idea of summing angles around a facet. Lee and
Preparata[27] present other solutions to the two dimensional containment problem
and refer to techniques presented elsewhere by Ketelsen as well as Shamos. Bentley
and Carruthers[10] also present techniques along with references to Shamos as well
as Lipton and Tarjan. Many of these techniques are summarized by Preparata and
Shamos[47], one technique in particular requires on average 2log(n) operations to
solve a facet. Unfortunately these and other references were not available when
the overall mesh generation algorithm was developed. These references provide
solutions to the two dimensional containment problem, that appear to be less
computationally intensive then what was presented here. If we had been aware of
these references, most likely a different algorithm would have been selected for the
Facet Solver Task.

The dependence of the overall performance on the facet solver is examined by
complexity analysis in section 2.7. In addition, section 2.10 provides more insight
by examining the determinant method, which unfortunately can only handle the
special case of convex facets. Based on the information presented, we can get a
feel for how much overall performance improvement an alternate facet solver might
provide.

2.4.6 Insideness and Resolver Tasks

At this point there should be no surprise regarding the function of the Insideness
Task. As introduced way back in section 2.1, after all intersections between search
lines and the facets associated with the current shape have been counted, it is
time to determine whether immediately resolvable grid points are contained by
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the shape. Following the parity count method, immediately resolvable grid points
which counted an odd number of intersections must be contained by the shape
surface. Alternatively, immediately resolvable grid points which counted an even
number of intersections must not be contained by the shape. With immediately
resolvable grid points taken care of, if any unresolved grid points remain, they are
tallied and the count is reported to the user. The resolver is given the task of
taking care of any remaining unresolved grid points.

Unresolved grid points are handled by the resolver method, which is performed
by making a simple observation; Unresolved grid points inside the shape should
notice that neighbor grid points are contained by the shape. Conversely, unre-
solved grid points outside the shape should notice that neighbor grid points are
not contained by the shape. While it is true that a grid point deep inside the mesh
bounding box has six nearest neighbors or twenty six neighbors in total, only two
neighbors are selected from opposite directions. See figure 2.23.

- Unresolved

- Queried  Neighbor

- Non  Queried  Neighbor

Z

X

Y

Figure 2.23: Two Point Resolver Neighbors

The resolver handles all unresolved grid points, effectively all at the same time.
To do this, the facet solver temporarily stores the state of neighboring grid points
before applying the precedence method, in this way there is no possibility of having
a pattern “propagated” by the facet solver. Table 2.3 lists the possible cases that
might arise while performing the two point resolver method.

The first two cases listed in table 2.3 should characterize most of the unre-
solved grid points that are ever encountered, and based on the information already
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Table 2.3: Two Point Resolver Cases

1) Both neighbors queried are contained by the shape.
2) Neither neighbor is contained by the shape.
3) Only one neighbor is contained by the shape.
4) One neighbor is not contained, the other is unresolved.
5) Both neighbors are unresolved.

presented should be self explanatory.

The third and forth cases represents a weakness of the resolver, as it only queries
two neighboring grid points. The third case usually represents a situation where
the unresolved grid point is physically close to the shape surface. For this case
the “other” neighbor most likely would not be contained by the shape, but could
possibly be another unresolved grid point. The third case is handled by arbitrarily
declaring the unresolved grid point in question as being contained by the current
shape.

While in the fourth case the unresolved grid point in question is most likely
not contained by the shape, it could potentially be physically close to the shape
surface. The fourth case is handled by arbitrarily declaring the unresolved grid
point in question, as being not contained by the shape.

Assuming that the event of having adjacent unresolved grid points is exceedingly
rare, then such arbitrary decisions as declaring a grid point as being ‘contained’
or ‘not contained’ should not be a problem. In comparison to an entire orthogonal
mesh, the presence or absence of extra mesh boxes near the surface of shapes, in
exceedingly small numbers (fewer than one, on average) should not be a problem.

The fifth case represents a particular problem where the two point resolver
“falls apart.” Such a grid point is referred to as an unresolvable grid point. For the
two point resolver to provide reasonable results, the probability of encountering
singularities must be comparatively small so that the probability of having three
unresolved grid points as in-line neighbors would be nearly impossible. The re-
solver method handles unresolvable grid points arbitrarily by declaring them as
not contained by the current shape.

Future work could investigate ways of enhancing the resolver method, for ex-
ample more neighbors could be queried. A decision of containment could be made
based on the average of the responses. Such an enhancement would better handle
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cases four, five, and six.

Probability of Singularities

As pointed out, for the resolver method to provide reasonable results, the proba-
bility of encountering a singularity must be small. A simple technique for reducing
the probability of encountering singularities is based on the special property that
linear combinations of irrational numbers or rational and irrational numbers that
do not result in zero, are irrational. While it is not possible to represent an irra-
tional number exactly by using finite precision floating point numbers, it is noted
that such a representation is “close to irrational.” Both versions of the existing
code use double length floating point variables, which provide a better approxi-
mation of irrational numbers than single precision floating point numbers. If the
term unique is used to describe the finite precision approximation of an irrational
number, then the modified statement will nearly always be true for the situations
that we have in mind.

Next, note that in nearly all situations, the coordinate values associated with
vertex points are typical, that is rational or closely related to rational numbers8.
This is important as every point on every edge is expressed by using parametric
equations, thus is a linear combination of the coordinate values of vertex points.

Recall that a singularity is caused when any given search line intersects the edge
of a shape. Clearly, if we wisely choose a unique location9 for the search origin,
then except for the associated grid point, every point on the search line will have
unique coordinate values. If floating point numbers had infinite precision then for
special cases it would be possible to guarantee that singularities would never be
encountered.

Experience has shown that even with the use of finite precision numbers, and
with typical examples, by selecting a unique location for the search origin, the
probability of encountering singularities is in fact, greatly reduced. Experience has
also shown that any extreme corner of the bounding box represents a particularly
“bad” location for the search origin. Such a location virtually guarantees that
singularities will be encountered.

In summary, the reason for selecting a unique location for the search origin is

8The number π or the square root of an integer are often encountered as component factors
in typical numbers.
9Implies that the coordinates of the search origin are unique
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to minimize the number of unresolved grid points that will be encountered. While
the selection of such a location is essentially arbitrary, it is important to remember
the point made in section 2.4.4 that the search origin should be at least a distance
from the bounding box, equal to the long diagonal of the bounding box. Refer to
section 2.2.6 for the notation and equations used to define the search origin.

2.4.7 Copy Out Mesh Task

After it is known which grid points are contained by a shape, it is the duty of the
Copy Out Task to assign material property identifiers to boxes in the overall mesh.
Since the workspace that was prepared for the current shape is separate from the
overall mesh, and given that a shape must be uniform in composition, a bitmap
conveniently indicates if each associated grid point is contained by the current
shape. For each bit in the bit map, true indicates that the corresponding grid
point is contained by the current shape. A value of false indicates the converse.
To implement the precedence method introduced in section 2.2.3, for each bit that
is true, the Copy Out Task compares the material identifier associated with the
current shape to that of the corresponding box in the overall mesh. The precedence
method says that a mesh box can only be assigned a new material identifier if one
has not yet been assigned, or if the previously assigned material identifier has a
numerically smaller value.

The Copy Out Task essentially copies results out of the current workspace,
hence the name. After the Copy Out Task has completed its job, if another shape
is going to be analyzed, the workspace is returned to the Initialize Shape Task.

2.4.8 Store Results In Files Task

This task has the job of writing the finished mesh to files. The files written are
selected by the user in a dialog fashion with the program. Of the file types that can
be written, text and Ideas files were intended primarily for visualization purposes.
Patran files are used for visualization and analysis. The mesh file format is read
only by the FDTD solver.
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2.4.9 The Mesh Algorithm Summary

This section provided an in depth discussion of the mesh generation algorithm.
While it has not yet been formally presented how the algorithm was used in a
parallel environment, section 2.4.3 introduced some interesting ideas. This next
section presents a time complexity analysis and will attempt to present a com-
pelling argument for one particular type of parallel implementation.

2.5 The Detection of Singularities

The detection of singularities presents a collection of important issues; What is the
largest threshold value ε (see section 2.4.5) that we can use and still guarantee that
the resolver method will provide reasonable results? Alternately, what is the small-
est possible threshold value that we can use and still guarantee that singularities
will be detected? Is it possible to make such absolute guarantees? Unfortunately
such questions can only be answered in the realm of numerical analysis and discrete
probability theory. While these topics are important, for two primary reasons it
was decided to not perform a comprehensive treatment of these topics. First, such
topics are beyond the scope of this thesis. The development of the mesh generator
and FDTD solver has already been a sizable software development. Second, while
a comprehensive treatment may be a useful intellectual activity, it is not needed
to obtain useful results from the mesh generator program.

To determine a reasonable threshold value, a shortcut based on experimental
data was used. While it is certainly true that the number of unresolved grid points
is dependent on the geometry of the problem, the number of facets, and the number
of vertex points, it was decided that the small sphere would serve as our model.
The shortcut made was based on the assumption that the number of unresolved
grid points encountered during an analysis is proportional to the number of grid
points in a mesh.

To examine the relationship between the number of unresolved grid points,
the number of mesh boxes, and and the threshold ( ε ), three mesh sizes were
considered: 20x20x20, 30x30x30, and 50x50x50. For several ranges of threshold
values, the number of unresolved grid points encountered was recorded. Note
that for each mesh size, threshold values were selected to be large enough so that
unresolved grid points would actually be seen. For each mesh, the numbers of
unresolved grid points encountered was divided by the number of mesh boxes. If
there is an approximately linear relationship between the number of unresolved grid
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points and the number of mesh boxes in a mesh, we should see it in a graph of the
data. Figure 2.24 is a graph showing the relationship for each mesh size, between
the number of unresolved grid points and the threshold values. The closeness of
the curves implies that there definitely is a correlation between the number of mesh
boxes and the number of unresolved grid points in a mesh.
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Figure 2.24: Detection Data for Three Mesh Sizes

It was arbitrarily decided that an acceptable threshold value would produce
approximately one unresolved grid point in a 100x100x100 mesh model of the small
sphere, which corresponds to a detection ratio of 10−6. To estimate the required
threshold value, the data from the 50x50x50 mesh was used. By simply drawing
a straight line on the curve as shown in figure 2.25, it appears that a threshold
value of approximately 10−8 should provide the desired performance. Thus it was
decided to use 10−8 as the threshold ( ε ) value.
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2.6 Introducing Complexity Analysis

One of the classic texts in regards to complexity analysis was written by Aho,
Hopcroft and Ullman[2]. The following is a quote10 from from their text, the
quote serves as a useful introduction to this section.

“Algorithms can be evaluated by a variety of criteria. Most often
we shall be interested in the rate of growth of the time or space re-
quired to solve larger and larger instances of a problem. We would
like to associate with a problem an integer, called the size of the prob-
lem. . . For example, the size of a matrix multiplication problem might
be the largest dimension of the matrices to be multiplied. The size of
a graph problem might be the number of edges. The time needed by
an algorithm expressed as a function of the size of a problem is called
the time complexity of the algorithm.”

While many problems can adequately have size specified by a single integer,
this is not generally true. For most problems, it is usually necessary to state
additional assumptions or conditions that apply. For example, consider the mail
sorting problem where the goal is to route a set of letters received all at once,
such that each letter is correctly placed in a matching mailbox. Suppose that we
wish to describe the ammount of time that is reqired to perform this task, based
solely upon the number of letters received. We might first suspect that there exists
a simple linear relationship between time and the number of letters received, but
consider the following: First, it can be easily shown that if a large stack of received
letters is first sorted, then the average time required to find the correct mailbox
for a given letter can be made much smaller than for the case that if only a small
number of letters were received. Second, a moderately large mailroom may have
additional staff that can be called on to process large mail shipments. Only if
we assume that a fixed number of mail personell will follow a strict protocol in
handling mail, then we might be able to justify such a linear time complexity
relationship. The point being made here is that the cost of being able to describe
problem size with a single number, is that we must encumber ourselves with the
burden of such assumptions.

Time complexity analysis is most often used as a theoretical tool. While Aho,
Hopcroft and Ullman point out that the goal of time complexity analysis is to
characterize the time or space needed to solve a problem, based on problem size.

10page 2 of Aho, Hopcroft and Ullman[].
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they continue to point out that time complexity is usually examined in a special
way;

“The limiting behavior of the complexity as size increases is called the
asymptotic time complexity.”

What this means is that we are less interested in determining the exact am-
mount of time it takes to solve a problem, but that we have a general rule that
characterizes how time scales with problem size. Asymptotic time complexity is
often represented by using a standard big - oh notation, which Aho, Hopcroft and
Ullman describe;

“If an algorithm processes inputs of size n in time c n2 for some
constant c, then we say that the time complexity of that algorithm is
O(n2), read “order n2”. More precisely, a function g(n) is said to be
O( f(n) ) if there exists a constant c such that g(n) ≤ c f(n) for all but
some finite (possible empty) set of non-negative values for n.”

Knuth[25]11 provides a far more in depth explanation of big-oh notation that the
reader is referred to. In addition Baase[5]12 provides a list of properties associated
with big-oh notation. The reader is referred to Bentley[7][8], who has written
two papers that serve particularly well as introductions to the field of complexity
analysis.

Aho, Hopcroft, and Ullman13 point out, one of the most important motivations
for complexity analysis and one of the reasons why formal models of computation
are developed is to;

“discover the inherent computational difficulty of various problems.
We would like to prove lower bounds on computation time. . . to show
that there is no algorithm to perform a given task in less than a certain
amount of time. . . ”

11See page 104 of Knuth
12See page 34 of Baase
13See page 4 of Aho et. all.
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This last quote is in agreement with Kronsjö[26] who states that14

“The two major questions of arithmetic complexity—what is the
minimum number of arithmetic operations needed to perform the com-
putation and how can we obtain a better algorithm. . . ”

This document does make use of techniques that are commonly used in the field
of complexity analysis. Such techniques are used in presenting the parallel algo-
rithm. Where appropriate, this document will consider more efficient algorithms.

2.7 Time Complexity

In this section we will examine the time complexity of the mesh generation algo-
rithm. In examining algorithm complexity, it was found to be useful to study the
serial model of the algorithm. With a serial model, we won’t be so concerned with
the actual computer that we run the code on. Also, if it is possible to construct
parallel and serial implementations based on a single algorithm, both implementa-
tions should perform the same type and number of opertions. For now the reader
will have to be content with the notion that this section provides important defi-
nitions and clues that will serve as an introduction to the parallel implementation
of the orthogonal mesh generator.

2.7.1 Problem Size

In the following, parameters that describe problem size are introduced. First, the
parameters associated with the size of an input solid file are presented in table 2.4.
Shapes are described separately and each is represented by a system of facets. In
turn each facet is defined by a sequence of referenced vertex points.

The parameters presented in table 2.5 are associated with the resultant mesh.
Note that since every grid point in the overall mesh may not be examined for
containment by every shape, the number of mesh boxes in the analysis subregion
of each shape can be expressed as a ratio of the total number of boxes. In addition,
the term asi is defined to be the set of all grid points in the analysis subregion
associated with shape i.

14See page 7 of Kronsjö
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Table 2.4: Solid File Size Parameters

Term Description
Ns – Number of shapes

Nf – Total number of facets

Nf(i) – Number of facets associated with shape i

Ñfs – Average number of facets per shape

Nv – Total number of vertices

Nvi – Number of vertices in shape i

Ñvs – Average number of vertices per shape

Nv(i,j) – Number of vertices on facet j associated
with shape i

Ñvf – Average number of vertices per facet

Table 2.5: Mesh Size Parameters

Term Description
Nx Ny Nz – Number of boxes along each axis

of a complete mesh

Nm – Total number of boxes in the
overall mesh = NxNyNz

Nbi – Number of boxes in the shape i
analysis subregion

Ri – Ratio of Nbi to Nm
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2.7.2 Time Complexity by Task

This subsection contains a discussion of the time complexity. The contribution of
each task is examined and a final time complexity is then determined.

Initialization Tasks

For our purposes, since the Initialization Analysis Task is performed once and is
nearly independent of problem size, we shall assign its contribution a time com-
plexity of;

CXIA = O( 1 )

Likewise, since the Initialize Shape Task is performed for each shape and has the
effect of reading in every vertex point, we shall assign it a complexity dependent
on the total number of vertex points;

Nv =
∑
i

Nv(i) = Ns

(
1

Ns

)∑
i

Nv(i) = Ns Ñvs

CXIS = O (Nv ) = O
(
Ns Ñvs

)

Facet Server

By examining figure 2.16 it is seen by inspection that the facet server itself has a
time complexity of O

(
Nv(i,j)

)
. Since the facet server is performed for each facet,

where a given facet has Nv(i,j) vertex points, we can determine the total number
of references to vertex points.

refFS =
∑
i,j

Nv(i,j) = Ns

(
Nf

Ns

)
1

Nf

∑
i,j

Nv(i,j) = Ns Ñfs Ñvf

Thus from the facet server the total contribution to the execution time is;

CXFS = O
(
Ns Ñfs Ñvf

)

Pick Next Grid Point

This task amounts to a typical loop control structure. In determining time com-
plexity, this task can be thought of as being part of the Intersection Finder Task.
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Intersection Finder

By examining figure 2.18, it can be seen by inspection that the intersection finder
itself is O( 1 ). For each shape analyzed there is a corresponding analysis subregion
asi. The intersection finder is performed for each facet, for every grid point in the
current analysis subregion. Based on the number of times the intersection finder
is called, we can determine the contribution to the execution time.

callsXF =
∑
i

NbiNfi = Nm
∑
i

RiNfi = NmNs

(
1

Ns

∑
i

RiNfi

)

callsXF = NmNsF̃s

The variable F̃s is related to the average number of facets per shape, for example
if Ri = 1 for all i, then F̃s = Ñfs. Note that in general, F̃s can be expressed as
follows;

F̃s = R̂XF Ñfs

Since Ri is constrained to the range 0 < Ri ≤ 1 for all i, it can easily be shown
that 0 < R̂XF ≤ 1. Thus the number of times that the Intersection Finder Task is
called will be;

0 < callsXF ≤ NmNs Ñfs

Thus the contribution of the Intersection Finder Task to the overall execution time
is;

CXXF = O
(
NmNs Ñfs

)

Facet Solver

By following the assumption that the total number of unresolved grid points en-
countered is negligible in comparison to the number of grid points examined, it
can seen by inspection of figure 2.22 that the facet solver itself has a time com-
plexity of O

(
Nv(i,j)

)
. Each time the intersection finder is called there is a certain

probability that the facet solver will also be called. This probability is dependent
on the grid point location in the overall mesh given by index values x, y, z, and is
also dependent on the shape and facet i, j. The term asi defines the analysis sub-
region associated with shape i. Thus the total contribution from the facet solver
is roughly proportional to;

loopsRX =
∑
i,j

asi∑
x,y,z

Pv(i,j)
g(x,y,z)

Nv(i,j) =
∑
i,j

Nv(i,j)

asi∑
x,y,z

Pv(i,j)
g(x,y,z)
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Note that x, y, and z are restricted to those points in analysis subregion asi
associated with shape i. To simplify things we define;

asi∑
x,y,z

Pv(i,j)
g(x,y,z)

= NbiP̃v(i,j)

Note that we find that;

P̃v(i,j) =
1

Nbi

asi∑
x,y,z

Pv(i,j)
g(x,y,z)

Thus the term P̃v(i,j) can be regarded as the average probability that a three

dimensional search line will intersect facet j on shape i. Clearly P̃v(i,j) must be a
positive number that is less than or equal to unity.

Thus we return to the analysis to find that;

loopsRX =
∑
i,j

Nv(i,j)NbiP̃v(i,j) = Nm
∑
i,j

Nv(i,j)RiP̃v(i,j)

loopsRX = NmNs

(
Nf
Ns

)  1

Nf

∑
i,j

Nv(i,j)RiP̃v(i,j)




To simplify further we will state that;

Ṽ =
1

Nf

∑
i,j

Nv(i,j)RiP̃v(i,j) = Ñvf R̂RX

Since Ri and P̃v(i,j) are positive numbers less than or equal to unity we can state

that Ṽ is related to the number of vertex points per facet, such that 0 < R̂RX ≤ 1.
Next we obtain the following;

loopsRX = NmNsÑfsÑvf R̂RX

Thus the total number of loops performed in the facet solver can be expressed as;

0 < loopsRX ≤
(
NmNs Ñfs Ñvf

)

Lastly, the total contribution from the Facet Solver Task to the overall execution
time is found to be the order of;

CXRX = O
(
NmNs Ñfs Ñvf

)
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Check Insideness

This task is performed once per shape. Each time this task is called, every grid
point in the corresponding analysis subregion is checked for containment by the
current shape.

checksCI =
∑
i

Nbi = Nm
∑
i

Ri = NmNs

(
1

Ns

∑
i

Ri

)

checksCI = NmNs R̂CI

It should be clear that 0 < R̂CI ≤ 1 thus the contribution from the Check Inside-
ness Task is;

CXCI = O (NmNs )

Resolve Singularities

Following the assumption made earlier, we will assume that singularities are rarely
encountered. Thus the contribution from this task is considered negligible and is
not included in the complexity analysis.

Copy Out

Like the Check Insideness Task, this task is performed once per shape, for every
grid point in the current analysis subregion. Thus the contribution from this task
should be;

CXCO = O (NmNs )

Store Points in Files

The contribution from this task is particularly difficult to characterize as it is
heavily dependent on data transfer rates. The contribution from this task can
be significant as some selected file types can be huge. For this reason it was
decided that execution time in the overall program is to be reported with and
without contributions from this task. For the complexity analysis we will ignore
the contribution from this task.
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2.7.3 Overall Time Complexity

Table 2.6 provides a summary of the contribution from each task, where each
contribution is expressed in terms of big-oh notation.

Table 2.6: Time Complexity by Task

Task Name Term = Expression
Initialize Analysis CXIA = O ( 1 )

Initialize Shape CXIS = O
(
Ns Ñvs

)
Facet Server CXFS = O

(
Ns Ñfs Ñvf

)
Intersection Finder CXXF = O

(
NmNs Ñfs

)
Facet Solver CXRX = O

(
NmNs Ñfs Ñvf

)
Check Insideness CXCI = O (NmNs )

Copy Out CXCO = O (NmNs )

To get a feeling for what table 2.6 is implying, consider the following line of
thought. Based on experience it has been found in general that Ñfs tends to be
less than 10, also Ñvs and Ñvf tend to be on the order of 100 for contoured shapes
but may be on the order of 10 for simpler shapes. In contrast, since Nm is equal to
the product of three integer values, that is Nm = NxNyNz, it should be clear that
Nm can potentially be a large number and in most cases will be the largest factor.

To obtain a better understanding, we consider the modeling of a small sphere.
For the sphere, Ñfs = 256, Ñvs = 242, Ñvf = 3.875, and Ns = 1. A 22 by 22 by 22
mesh was chosen for the model so that Nm = 10648, note that such a mesh size is
considered modest. For the given model, the contribution from each task model is
summarized in table 2.7.

This example shows that the complexity terms that include Nm can easily be
made much larger than all other terms. By comparing the contributions from each
task, it should be obvious that the intersection finder and facet solver should make
the largest contributions to the overall execution time. Thus in general terms,
given the results of the ‘big-oh’ complexity analysis, we might be so bold as to
present an expression for the asymptotic behavior of the entire algorithm;

CXoverall = CXRX = O
(
NmNs Ñfs Ñvf

)
(2.28)
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Table 2.7: A Small Example Case

Task Name Term = Expression ≈ Order
Initialize Analysis CXIA = O ( 1 ) ≈ O ( 1 )

Initialize Shape CXIS = O (242) ≈ O (102)

Facet Server CXFS = O (992) ≈ O (103)

Intersection Finder CXXF = O (2725888) ≈ O (106)

Facet Solver CXRX = O (10562816) ≈ O (107)

Check Insideness CXCI = O (10648) ≈ O (104)

Copy Out CXCO = O (10648) ≈ O (104)

As a “back of the envelope” exercise, we can use the arguments from table 2.7
to make an educated guess of where the algorithm will spend most of its time.
Based on the ‘Expression’ column we might guess that the Intersection Finder and
Facet Solver together will consume 99.83% of the total execution time.

To get an even better idea of how the algorithm is actually spending its time,
the example of the small sphere was performed by the serial version of the mesh
generator. As before, the mesh produced is 22 by 22 by 22. The execution time
was profiled with the MasPar profile tools, the results are summarized in table 2.8.
To obtain a meaningful profile, it is important to note that the mesh generator
executable was not optimized under compilation.

In table 2.8, the time attributed to each task is listed in milliseconds, in the
column ‘Time-ms’. The last entry in the ‘Time-ms’ column provides the total
execution time, also in milliseconds. The column ‘Percent’ gives the percent of the
total execution time that was consumed by each task. The column ‘Coef.’ gives
the ratio of the time consumed by each task to the complexity argument given in
the column ‘Expression’ of table 2.7. With these coefficients, given the problem of
modeling the small sphere, the execution time can be estimated for any mesh size.

In examining table 2.7, we might expect the facet solver to require more time
than the intersection finder task. Yet in examining table 2.8, it is seen that the
facet solver is actually consuming slightly less time than the intersection finder.
Two things are going on here, first the amount of time consumed by facet solver
is dependent on the number of intersections that the intersection finder actually
finds. This is an important point as it states that the overall execution time
is dependent not only on the problem size but also on the configuration of the
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Table 2.8: Profile Results

Task Name Time-ms Percent Coef.
Initialize Analysis ≈ 1 0.001 1.00×100

Initialize Shape 58 0.033 2.40×10−1

Facet Server 150 0.086 1.51×10−1

Intersection Finder 92021 52.495 3.38×10−2

Facet Solver 83007 47.352 7.86×10−3

Check Insideness 29 0.017 2.72×10−3

Copy Out 30 0.017 2.82×10−3

total 175296

shapes that are being modeled. For shapes that fill the bounding box more fully,
the facet solver will be called more often. Clearly in most cases, equation (2.28)
will be misleading, since more than half of the execution time time may easily
be consumed by the intersection finder. In addition to the dependence on the
facet solver on the configuration of the shape being modeled, recall that the time
consumed by the Pick Next Grid Point Task was also assigned to the intersection
finder. Since the Pick Next Grid Point Task is simply a loop control structure,
this additional term is less significant.

In comparing the facet solver and the intersection finder, since the time com-
plexity of the facet solver only has one additional factor, namely Ñvf , a better
asymptotic expression can be presented. Since Ñvf is generally less than ten, and
is 3.875 for the case of the small sphere, this term can be incorporated into the
assumed coefficient. Thus a better expression for the complexity would include
contributions from both the intersection finder and the facet solver. Such an ex-
pression can be expressed as;

CXoverall = O
(
NmNs Ñfs

)
(2.29)

To summarize this section, complexity analysis provides useful tools for com-
paring algorithms as well as for characterizing the execution time of a program as
a function of problem size. In examining the algorithm, note that 99.85 percent
of the total execution time was consumed by the intersection finder and the facet
solver routines. This is considered to be very close to the “back of the envelope”
estimate that was made earlier.
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2.8 Presenting the Parallel Algorithm

A conclusion that is directly raised from the complexity analysis and the profile
data given is that nearly all of the execution time is accounted for by two tasks.
Rather than writing the entire algorithm in parallel, a sizable speed up should be
realized by performing key tasks in parallel. In particular it was found to be a great
benefit to implement the entire Facet Level Flowchart in parallel, thus the inter-
section finder and the facet solver are implemented in the DPU. Figure 2.26 gives
an outline of which parts of the algorithm are performed in parallel rather than in
serial form; The parts of the algorithm in the shaded region are implemented in
parallel in the DPU, while the parts in the unshaded region are implemented in
serial in the front end. The following discussion explains each part of this figure.
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Figure 2.26: Division of Mesh Generation Algorithm Tasks

It was a logical choice to perform the facet server in the front end. The work of
the facet server is inherently composed of serial operations that are best handled
by a high performance uniprocessor. The facet server performs such activities as
reading a serial data stream, searching through a small list for coordinate values,
and performing a small list of calculations for each facet, as needed. While the
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ACU is certainly capable of performing this task, the ACU is not optimized for
such serial operations.

From an abstract viewpoint, for each shape that is modeled, the facet server
prepares facets and the Facet Level Flowchart consumes facets. For each shape
that is modeled in turn, a workspace is established in the DPU. In such a scenario,
the entire Facet Level Flowchart is performed in parallel in the DPU. In one sense,
a multitude of copies of the Facet Level Flowchart are performed simultaneously.
In addition, since the workspace established in the DPU to model each shape is
inherently parallel, the Check Insideness and Resolve Singularities Tasks are best
performed in parallel as well.

It was an arbitrary decision to store the overall mesh in the front end. In such
a scenario the DPU only needs to produce a bitmap indicating the containment
of every grid point by the current shape. Essentially only one bit, in a yes/no
fashion is needed to specify if each grid point is contained by the current shape.
Use of a bitmap was chosen primarily as a means of reducing the overhead of
communications from the DPU to the front end. Thus the Copy Out Task takes
on the additional role of organizing each bitmap and converting it from parallel to
serial form. It was found to be most useful to implement parts of the Copy Out Task
on the DPU and front end. The parallel part of the Copy Out Task organizes the
bitmaps. The serial part of the Copy Out Task actually performs the precedence
method that assigns material identifiers to boxes in the overall mesh. Lastly the
remaining tasks and the entire Mesh Level Flowchart are performed in serial.

2.9 Anticipating Speed-Up

Lewis and El-Rewini[28] present one form of the speed-up equation that was pre-
sented in section 1.7.4 of this document. The equation presented by Lewis and
El-Rewini was made famous because of a statement made by Amdahl15 when he
expressed his skepticism of computer parallelism. Known as Amdahl’s law, the
formula first assumes that some fraction ψ of a program is “naturally parallel”
and as such the program can be improved by evenly dividing that ψ fraction of
the program among Np processors. Thus the execution time Tafter is found to be;

Tafter =

(
ψ

Np
+ (1− ψ)

)
Tbefore

15Gene Amdahl, 1967, see page 31 of Lewis & El-Rewini
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The expression for Tafter is substituted into the expression for speed-up, which is
simplified to yield Amdahl’s law;

speed-up =
Np

Np (1− ψ) + ψ

There are a few additional assumptions that were made while forming Amdahl’s
law, we discuss a few of these in turn. We assumed that all the processors used are
identical and that the “naturally parallel” part could be evenly divided among Np
processors without cost. First off, array processors typically provide parallelism by
implementing a multitude of simple processors. The MasPar MP–1 series DPU uses
four bit processors. What we are calling Tbefore is the execution time of the serial
code on the front end. Clearly there is a huge disparity between the performance
of a DECstation 5000 and an individual PE in the DPU. Since in general terms
the front end is a 24 MIPS machine and a PE is a 1.8 MIPS machine, some scaling
of the Np number of processors is in order, an approximation might be;

Nscale
p = Np

1.8 MIPS

24 MIPS

Clearly, there will be some overhead in dividing the ψ part of the program
among a group of processors. Characterizing this system overhead is not easy,
not all PEs are always used, the ACU requires some time to coordinate PEs, the
front end requires some time to coordinate processes, and communications between
the front end and the DPU requires time to actually move data as well as ACU
instructions. For now we will ignore these terms.

Another major assumption made by Amdahl’s law is that the amount of paral-
lelism in a program is independent of problem size. Lewis and El-Rewini[28] point
out that this assumption is most often false. Lewis and El-Rewini present the
Gustafson-Barsis Law16, which is an alternative to Amdahl’s law. The Gustafson-
Barsis Law makes the point that the problem size can be used to increase the
“naturally parallel” part of a computer program. Relative to Amdahl’s law, the
Gustafson-Barsis law gives a more optimistic view of parallelism. The Gustafson-
Barsis law is not presented here, readers are referred to Lewis and El-Rewini.

Lastly it is not clear what is meant by “naturally parallel”, this definition is cru-
cial as Amdahl’s law become ever more sensitive to changes in ψ, as ψ approaches
unity. In the example of the small sphere in section 2.7.3, the job of producing a
modest size mesh had 99.85% of its execution time attributed to only two tasks.

16Page 32 of Lewis and El-Rewini
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For the sake of simplicity we consider two values for ψ, we pick ψ1 = 0.9985 and
pick ψ2 = 0.90. We find that speed-up1 = 68.96 and speed-up2 = 8.95. Note that
even though ψ was varied by approximately ten percent, the anticipated speed-up
changed an amount that is many times that amount.

Thus to summarize, Amdahl’s law is a famous equation. We use Amdahl’s
law here only as an indicator that a parallel version of the mesh generator should
have a significant speed-up in comparison to the serial version. Based on the data
presented, we might guess that the speed up would be at least ten times.

2.10 An Alternate Facet Solver

The following is the overview of an alternate solution to the two dimensional con-
tainment problem. The following solution was named the determinant method.
Unfortunately the determinant method is not considered to be satisfactory as it
can only handle the case of convex facets. It is for this reason alone that the
determinant method was not selected for our use. The determinant method was
implemented in the serial code but not in the parallel code.

2.10.1 The Determinant Method

Appendix D introduces equation (D.7), which can be used to determine if a se-
quence of three arbitrary points in 2D space follow a counter-clockwise (CCW),
clockwise (CW) circular path, or a straight line (SL) path. Such an equation is
particularly useful and can be used to form a solution to the two dimensional
containment problem, but is suitable only for the special case of convex facets.

The algorithm is presented as follows; Take two boundary points Bj, Bj+1, at a
time and along with the arbitrary point BI , substitute into equation (D.7), which
is written as equation (2.30).

dmyj =
1 Bju Bja
1 Bj+1u Bj+1a

1 BIu BIa

(2.30)

The variable dmyj is only used to temporarily hold the result of the expression.
The following table indicates the path direction followed by the point sequence Bj,
Bj+1, BI .
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Table 2.9: Point Sequence Direction

dmyj Direction
positive Counter-Clockwise
zero Straight Line

negative Clockwise

If it is found that for all values of j of the current facet, that all the paths
formed follow a clockwise path, or alternatively all paths formed follow a clockwise
path, then the arbitrary point must be contained by the facet. If the path direction
changes from clockwise to counter-clockwise, or alternately from counter-clockwise
to clockwise for any value of j then the arbitrary point is not contained by the
facet.

If for any value of j, the associated value of dmyj is found to be zero, then the
path followed is along a straight line, implying that the points Bj , Bj+1 and BI
are all collinear. In such a situation if it is found that BI is between Bj and Bj+1,
or if BI is coincident with Bj or Bj+1, then it is said that a singularity has been
detected, in which case the resolver will handle the associated grid point later. If
however, Bj, Bj+1 and BI are all collinear, but Bj is not between or coincident
with the other points, then the arbitrary point is clearly not contained by the facet.

To calculate the determinant given in equation (2.30), the following formula is
actually used. The following formula is used rather than actually calculating the
determinant as the formula is much more efficient for this special case,

dmyj = Bju (Bj+1a −BIa)

+ Bj+1u (BIa −Bja)

+ BIa (Bja −Bj+1a)

(2.31)

Note that in performing equation (2.31), two adds, three subtracts, and three
multiply operations are performed on floating point data, a total of eight floating
point operations.

2.10.2 Close Examination

The flowchart in figure 2.27 presents a summary of the determinant method of
solving facets. It can be seen by examining the flowchart that generally the number
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of iterations will be less than the number of facet boundary points, this is a certain
advantage over the lines and intersection method which must examine every edge
associated with a facet. To character the complexity the time complexity of this
facet solver however, it is actually O

(
Nv(i,j)

)
for each facet.

START

j = 0SET

PICK  NEXT

j  AND  j+1

POINT  NOT
CONTAINED CONTAINED

POINT  IS

GO  SOLVE  DET.

GO  SOLVE  DET.

GO  SOLVE  DET.

dmy0 jdmy&

SAME SIGNS?

SOLVE  DET.

jdmy
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Bj+1Bj
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, ?
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SINGULARITY

POINT  NOT
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MORE
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NO

YES

NO

DETERMINANT  METHOD

NO

YES

YES

NO

Figure 2.27: Flowchart of Determinant Method Facet Solver

In comparing flowcharts, the determinant method is much simpler than the
the lines and intersection method. Each iteration inside the determinant method
requires fewer floating point operations. Assuming that no singularities are encoun-
tered, the determinant method requires 8 floating point operations per iteration,
compared to the lines and intersection method which requires 19 floating point
operations. Based on these figures it is expected that the determinant method
should yield a significant improvement in the overall performance.

2.10.3 Comparing Performance

To compare the facet solver algorithms, two versions of the mesh generator were
timed by using the MasPar profile tools. Both executables were not optimized and
produced a 22 x 22 x 22 orthogonal mesh representation of the small sphere as was
performed in section 2.7.3. The total CPU execution time associated with each
version of the mesh generator is listed in table 2.10.
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Table 2.10: Comparing Serial Mesh Generator Versions

Version CPU Time (msec)
lines & intersections 175,250
determinant method 105,199

In examining table 2.10, it is seen that the overall speed-up is 1.66589. To deter-
mine how much faster the determinant method is than the lines and intersections
method, the speed-up equation (1.7) was solved for the enhancement factor Ef .

Ef =
ψ speed-up

1− speed-up(1− ψ)

The percent of the total execution time consumed by the lines and intersection
method is ψ, and was given by table 2.8 as 0.47352. After substituting values into
the above equation, it is found for this example that the determinant method is
6.41629 times faster.

2.10.4 So What is Possible?

The overall time complexity summary presented in section 2.7.3 indicates that
for large mesh models of objects like the sphere, approximately fifty percent of
the total execution time can be attributed to the facet solver. Section 2.10.3 is
significant as it clearly shows that a measurable improvement is possible, even with
less than one order of magnitude performance improvement in the facet solver itself.
Unfortunately as stated earlier, the primary failing of the determinant method is
that it can only handle the special case of convex facets. Given that the facet solver
consumes 50% of the total execution time, for this type of problem the limiting
factor on the overall speed-up over the existing algorithm is approximately 2.0.

2.11 Parallel Mesh Algorithm Summary

Along with many details associated with orthogonal mesh generation, this chapter
presents the mesh algorithm used to implement a parallel realization the mesh gen-
erator. The complexity analysis in section 2.7 provides important insight into the
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mesh generation algorithm. An outline of the parallel algorithm is presented in sec-
tion 2.8. Chapter 3 will serve to clarify the parallel algorithm further. Section 2.9
provides a sense of the speed-up that we expect in the parallel implementation. The
performance of alternate facet solvers was also considered. Lastly, sections 2.4.4
and 2.4.6 explain why the correct placement of the search origin, relative to the
overall bounding box is so important.



Chapter 3

Mesh Generator Implementation

This chapter discusses both the parallel and serial implementations of the orthog-
onal mesh generator. Important details associated with the implementations are
discussed, an outline of the implementations is presented, examples are presented
and performance is characterized. Note that although both the serial and parallel
implementations are discussed, the parallel version is emphasized.

In the following few sections the most significant implementation details are
presented. Such details are fundamental and deserve an appropriate presentation.
The details discussed include minimizing data traffic between the front end and the
DPU, mapping data, and a scheme for allocating memory. Note that the topic of
mapping memory for this implementation is broken down into five related topics:
Organization of the overall mesh, defining an analysis subregion, organization of
the counters used to implement the parity count method, and mapping memory
to the PE array.

3.1 Transferring Data with the DPU

During program run-time, some data structures must be updated for every facet,
or for each shape. Still other data structures can be regarded as constants. For
the parallel version of the mesh generator, this observation is particularly useful as
it immediately suggests a means by which data traffic between the DPU and the
front end can be controlled. In examining the algorithm presented in section 2.8,
four opportunities were found where communications between the front end and
the DPU are most convenient for transferring data that needs to be updated for

116
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each shape, for each facet, or is considered as constant. Table 3.1 summarizes
these opportunities, describes how often the data needs to be transferred, as well
as which direction the data is transferred.

Table 3.1: Data Transfer Opportunities

Opportunity Transfer Frequency Transfer Direction
1) Initialize Analysis Constant Variables To & From DPU
2) Initialize Shape Changes with Shape To DPU
3) Facet Server Changes with Facet To DPU
4) Copy Out Changes with Shape From DPU

The Initialize Analysis task produces constants that both the front end and the
DPU must be aware of. Being constants, it is necessary to have the data transferred
only once. An example of such a constant is the search origin. In preparation for
a new shape, the Initialize Shape Task will change the values of certain variables.
All the variables that could change are transferred by the Initialize Shape Task.
An example of data that changes with each shape is the definition of the current
analysis subregion. For every facet that is processed by the facet server, new
data is produced, and is transferred to the DPU by using a combination of formal
parameter passing as well as DMA style copying. Lastly, after the containment of
every grid point in the current analysis subregion is determined, DMA style copy
operations are used to move a compressed bitmap from the DPU back to the front
end. Because an ‘unsigned int’ type variable is 32 bits long, each entry in an array
of ‘unsigned int’ variables can represent the containment of 32 grid points. This
compression of data provides a sizable savings in communications overhead.

3.2 Presenting the Mapping

In the following the mapping scheme is introduced. Note that the scheme presented
applies to both the parallel and serial versions of the mesh generator. For clarity,
the overall mapping scheme was broken down into four related topics, that are
each discussed in turn.
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3.2.1 The Overall Mesh

The array ‘grid[]’ is a linear array of character variables used to store the overall
mesh. A character variable can store an integer value ranging from 0 to 255. Since
0 is defined as the default material identifier, users are free to assign up to 255
additional material types. Recall from section 2.2.5 that Nx, Ny, and Nz are the
number of brick shaped subdivisions along each edge of the overall bounding box.
It should be clear that such a linear array will require Nentries = NxNyNz entries
to store the overall mesh.

As in section 2.2.5, each referenced mesh box corner is indexed with an ordered
triple of integers [i, j, k]. Since the overall mesh is actually stored in a linear array,
each ordered triple is mapped to an index value by using the following formula;

indexm = i+ j Nx + kNxNy = i+ (j + kNy)Nx (3.1)

Since this is a one to one mapping, given an index value from the linear array the
following formula will produce the corresponding ordered triple.

k = �index/ (NxNy)�

temp = index % (NxNy)

j = �temp/Nx�

i = temp %Nx

(3.2)

In the previous expressions, the floor function � · � and the divide operator / are
used to return the integer part of a quotient, while the modulo operator % re-
turns the integer remainder. The term ‘temp’ is used simply a temporary dummy
variable.

3.2.2 The Analysis Subregion

The idea of an analysis subregion was first introduced back in section 2.4.1 as
being a subregion of the overall mesh. This section presents the means by which
an analysis subregion is defined, along with additional concepts associated with an
analysis subregion.

Defining an Analysis Subregion

Recall from section 2.2.5 that the overall mesh is formed by placing equally spaced
marks along each edge of the overall bounding box. An extension of this simple
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idea is used to first introduce the idea of a mesh subregion. By selecting a range of
marks on each edge of the overall bounding box, a smaller bounding box contained
by the overall bounding box is easily defined. The set of index values corresponding
to such a range of marks is called the analysis range. For this smaller bounding
box, we again define a mesh by placing equally spaced marks along its edges. The
smaller mesh is said to be a mesh subregion. The heavily shaded part of figure 3.1
is an illustration of a mesh subregion.

Figure 3.1: Visualization of an Overall Mesh and Subregion

The whole point behind the idea of an analysis subregion is that by using the
extreme coordinate values of a shape, an analysis range can be defined that provides
a “ball-park idea” of where the shape currently being modeled is located in the
overall bounding box. With such information, we don’t have to check every grid
point in the overall mesh for containment by the shape. It will only be necessary
to check those grid points in the analysis subregion.

To define an analysis range, the index values corresponding to the extreme index
values are found. To find the maximum and minimum index terms corresponding
to the x axis, the following formulas are used. Note that formulas for the y and z
axes are formed by a simple change of variables.

AR mini =

⌊
shape minx − Pminx

∆x
+AS OFFSET

⌋
(3.3)

AR maxi =

⌈
shape maxx − Pminx

∆x
− AS OFFSET

⌉
(3.4)

The � · � and � · � symbols correspond to the familiar floor and ceiling functions.
The associated variables are defined as follows;
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AR min – Minimum index terms in analysis range
AR max – Maximum index terms in analysis range
Pmin – Minimum coordinate values of bounding box

shape min – Minimum coordinate values of current shape
shape max – Maximum coordinate values of current shape

∆x – Mesh discretization size along x axis
AS OFFSET – Offset coordination term

The term ‘AS OFFSET’ is arbitrarily selected by the programmer at compile-
time, such that the analysis subregion will always correspond to an actual subregion
of the overall mesh and that grid points exceedingly close to the current shape are
not excluded from being tested for containment by the current shape. After all it
is supposed to be the job of the parity count method to determine whether grid
points are contained by the current shape. For AS OFFSET, the value 0.4 has
been found to be effective.

Figure 3.2 illustrates how a range of index values is determined, note that the
shape minimum coordinate value is in the neighborhood of ‘a’, and that the shape
maximum coordinate value is in the neighborhood of ‘b’. The dashed outline
indicates which value is assigned for any arbitrary spot on the given axis.

b b+1b-1

Point  between  two  marks  on  the  bounding  box

Mark  on  edge  of  bounding  box.

AS_OFFSETAS_OFFSET

a-1 a a+1
MaximumMinimum

Current  Shape Max

Min

Figure 3.2: Determining Range of Index Values

Bounding Box for Analysis Subregion

To determine the extreme coordinate values of the bounding box associated with
the analysis subregion, we substitute AR max and AR min into equation (2.1), to
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determine the following;

box maxx = AR maxi ∆x+ Pmin x
box maxy = AR maxj ∆y + Pmin y
box maxz = AR maxk ∆z + Pmin z

(3.5)

and further;
box minx = AR mini ∆x+ Pmin x
box miny = AR minj ∆y + Pmin y
box minz = AR mink ∆z + Pmin z

(3.6)

Subdividing the Analysis Subregion

In defining the analysis subregion, we define a smaller mesh that is part of the
overall mesh. Inside the analysis subregion, given an ordered triple [i, j, k], each of
the index values is valid in the following sequences.

i = AR mini,AR mini + 1, . . . ,AR maxi

j = AR minj,AR minj + 1, . . . ,AR maxj

k = AR mink,AR mink + 1, . . . ,AR maxk

By simply taking differences, it is seen that there are N ASx, N ASy, and N ASz
boxes along each of the corresponding x, y, and z axes. The terms are defined as;

N ASx = AR maxi − AR mini

N ASy = AR maxj −AR minj

N ASz = AR maxk − AR mink

It is preferable to use an alternate index scheme to refer to points in the analysis
subregion. Such a scheme simplifies references by considering the analysis subre-
gion as being separate from the overall mesh. In the alternate scheme, an ordered
triple 〈ia, ja, ka〉 of integers is defined by first defining AR min as being 〈0, 0, 0〉.
Thus each of the alternate index terms is valid in the following sequences;

ia = 0, 1, 2, . . . ,N ASx

ja = 0, 1, 2, . . . ,N ASy

ka = 0, 1, 2, . . . ,N ASz

The angled braces associated with alternate index terms are first meant to imply
that the ordered triple is composed of integers rather than physical dimensions,
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and second that a given reference is different from a reference made with square
brackets.

Following a convention similar to what is presented in section 2.2.5 for the
overall mesh, boxes in the analysis subregion are referenced by the extreme corner
closest to 〈0, 0, 0〉. Note that while the smaller bounding box edge parallel to, say
the x axis has N ASx subdivisions, these subdivisions were formed from N ASx+1
marks on that edge. Thus when referencing boxes in the analysis subregion, the
alternate index terms are valid in the following sequences;

ia = 0, 1, 2, . . . ,N ASx − 1

ja = 0, 1, 2, . . . ,N ASy − 1

ka = 0, 1, 2, . . . ,N ASz − 1

The correspondence between 〈ia, ja, ka〉 and [i, j, k] references in the analysis
subregion is given by the following formula;

i = ia +AR mini
j = ja +AR minj
k = ka +AR mink

(3.7)

Note that the correspondence between references is restricted to the analysis
subregion, since references in [i, j, k] that are made outside the analysis subregion
do not map to points in 〈ia, ja, ka〉.

Coordinates in the Analysis Subregion

The simplest way to determine the physical coordinates of references made in the
analysis subregion as 〈ia, ja, ja〉 is to write equations analogous to those given in
section 2.2.5. In particular, to determine the physical coordinates of grid points in
the analysis subregion, the analogue of equation (2.3) is written as;

xgp = ia ∆x+ start ASx

ygp = ja ∆y + start ASy

zgp = ka ∆z + start ASz

The term ‘start AS’ contains the physical coordinates of the grid point asso-
ciated with box 〈0, 0, 0〉, and appropriately is the analogue of ‘start’ which was



CHAPTER 3. MESH GENERATOR IMPLEMENTATION 123

defined by equation (2.2).

start ASx = box minx + 0.5 ∆x
start ASy = box miny + 0.5 ∆y
start ASz = box minz + 0.5 ∆z

(3.8)

Using the equations from section 2.2.5, the following equations are derived.
To determine the physical location (x, y, z) corresponding to [i, j, k], we use the
following formula;

x = i∆x+ Pminx

y = j ∆y + Pminy

z = k ∆z + Pminz

To determine the physical coordinates corresponding to 〈i, j, k〉, we substitute
the correspondence equations into the previous formula and simplify to find that;

x = ia ∆x+ (AR mini ∆x+ Pminx)

y = ja ∆y +
(
AR minj ∆y + Pminy

)
z = ka ∆z + (AR mink ∆z + Pminz )

Lastly, it is important to be able to determine the actual physical coordinate
values of grid points in the analysis subregion. Since a grid point is located in the
center of its corresponding mesh box, the following is determined from the previous
expression;

xgp = (ia + 0.5)∆x+ (AR mini ∆x+ Pminx)

ygp = (ja + 0.5)∆y +
(
AR minj ∆y + Pminy

)
zgp = (ka + 0.5)∆z + (AR mink ∆z + Pminz )

To simplify this expression, the coordinate values of the grid point in box 〈0, 0, 0〉
are assigned to a unique variable;

start ASx = (AR mini ∆x+ Pminx) + 0.5 ∆x = box minx + 0.5 ∆x

start ASy =
(
AR minj ∆y + Pminy

)
+ 0.5 ∆y = box miny + 0.5 ∆y

start ASz = (AR mink ∆z + Pminz ) + 0.5 ∆z = box minz + 0.5 ∆z
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Thus the same equation results for determining the physical coordinates of grid
points in the analysis subregion.

xgp = ia ∆x+ start ASx
ygp = ja ∆y + start ASy
zgp = ka ∆z + start ASz

(3.9)

3.2.3 A Linear Array of Counters

It was arbitrarily decided that character variables would be used to store inter-
section count used in the parity count method. Since the value ‘-1’ is reserved to
indicate that a grid point is unresolved, any given search line may have as many as
‘254’ intersections with an individual shape surface before the associated counter
overflows. To make the mapping of the counters simple, we mapped the counters
associated with the parity count method as a linear array. Mapping the counters in
this way offers a certain benefit because of the fact that the overall mesh is stored
in the front end as a linear array. Such a situation makes the job of determining
the correspondence between entries in the overall mesh, and associated counters
in the analysis subregion, particularly simple.

In the parallel version of the mesh generation algorithm there is little need for
communications between PEs. The two point resolver represents the rare case
when communications between PEs is needed. Since the PE communications re-
quirements of the two point resolver are simple, such a linear mapping of the
counters is adequate. By first mapping the counters as a linear array, we will be
able to use a single dimensional virtualization, which generally offers better use of
PEs and PE memory than higher dimensional virtualizations.

Since the list of counters associated with the parity count method is stored as
a linear array, each ordered triple 〈ia, ja, ka〉 is mapped to an index value by using
the following formula;

indexc = ia + ja N ASx + kaN ASxN ASy

= ia + (ja + ka N ASy) N ASx
(3.10)

Since this is a one to one mapping, given an index value from the linear array
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of counters, the following formula will produce the corresponding ordered triple.

ka = �index/ (N ASxN ASy)�

temp = index % (N ASx N ASy)

ja = �temp/N ASx�

ia = temp % N ASx

(3.11)

In the previous expressions, the floor function � · � and the divide operator /
are used to return the integer part of a quotient, while the modulo operator %
returns the integer remainder. The term ‘temp’ is used simply a temporary dummy
variable.

3.2.4 One Dimensional Cut and Stack

The means by which a programmer incorporates the concepts of PE identity and
memory layering determines the specific virtualization1 that will be used to map
data to PE memory. As we shall see, the phrase “One Dimensional Cut and
Stack,” provides a clear description of this specific virtualization. To understand
the following discussion, you may need to review the following subjects; The orga-
nization of the PE array and how to determine the ‘iproc’ value assigned to each
PE, these topics start on page 13 of section 1.5. In addition the reader should be
familiar with the way in which PE memory can be thought of as being layered, this
concept is also introduced in section 1.5.2. Lastly, the reader should be familiar
with the techniques used to define and describe an analysis subregion, these topics
are presented in section 3.2.2.

The first step in initializing this virtualization is to determine how many layers
of PE memory will be needed. Given that the linear array to be mapped has a
nonzero number of entries equal to ‘n entries’, the following formula is used;

Nlayers = 1 +

⌊
n entries

nproc

⌋
(3.12)

As before, the � · � symbols represent the floor function, and nproc is the number
of PEs in the array. Immediately after the required number of layers is determined,
the required memory is allocated as a plural array.

1If you are not familiar with the concept of virtualization, see appendix section C.3.
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The next step in initializing the virtualization is to assign each entry in each
layer of the allocated plural array, an integer index that corresponds to its location
in the linear array. Note that if ‘n entries’ is less than nlayers ·nproc, then the top-
most memory layer will only be partially filled. This assignment is made by each
PE based on its associated ‘iproc’ value as well as the index value that corresponds
to the associated ‘layer’ in the plural array. The actual formula used to make this
assignment is;

indexc = layer · nproc + iproc (3.13)

For the virtualization to be useful, it must be possible to determine which
combination of ‘iproc’ and ‘layer’ correspond to a given entry ‘indexc’, in the linear
array. The following formula is used;

layer = �indexc/nproc�

iproc = indexc %nproc
(3.14)

As before, the � · � and / symbols represent the floor function and the divide
operator, together they return the integer part of a quotient. The % symbol
returns the integer remainder of that quotient.

To illustrate the virtualization, consider the following hypothetical example. We
are given nproc = 9 and n entries = 13, thus we find that n layers = 2. Figure 3.3
shows how indexc is assigned to each entry in our hypothetical example. Note that
five entries in ‘layer 1’ are unused.
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Figure 3.3: Hypothetical Example of Virtualization

If each layer in figure 3.3 is first “cut” into rows, and then the each of the rows
is “stacked” in sequence, end to end, then the construction will form a linear array.
The result of “cutting” and “stacking” the layers of our hypothetical example is
shown in figure 3.4. At this juncture, the phrase “one dimensional cut and stack,”
should make sense to the reader.
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Figure 3.4: Virtualization Presented as Linear Array

To summarize the virtualization, the parallel mesh generation code maps data in
a linear array form that is best described as One-Dimensional Cut-and-Stack Data
Mapping2. Note that even though data being processed is associated with three
dimensional space, data is mapped to the two dimensional processor array memory
in a way that is characterized as one dimensional. While such a mapping improves
the use of PEs and PE memory, it also complicates use of the X-Net. This type of
mapping is adequate for mesh generation for one reason in particular. In the mesh
generation algorithm there is very little need for communications between PEs. In
the rare case where such communications is needed, it will only be needed along
one dimension of the mesh. Thus the mesh generation code trades off the ability
to easily perform communications between PEs in favor of improved PE use.

3.2.5 Mapping Summary

In examining the previous sections, the reader will note that the mapping equations
are all related and are meant to be used together. For example, to determine the
physical coordinates of a grid point, equation (3.9) provides the answer in terms
of a 〈ia, ja, ka〉 reference. Alternately equation (2.3) on page 61 also provides the
physical coordinates but in terms of a [i, j, k] reference. Equation (3.7) provides the
correspondence between references in [i, j, k] and references in 〈ia, ja, ka〉. Equa-
tion (3.1) is used to find a [i, j, k] reference in the overall mesh. Equation (3.10) is
used to find reference 〈ia, ja, ka〉 in the linear array of counters. And lastly equa-
tion (3.14) is used to find where an entry in the linear array of counters is actually
stored in PE memory.

2See page 2-9 of MasPar MPDDL Reference Manual[33]
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Note that the primary tradeoff of the mapping scheme was to decide that coor-
dinates associated with each mesh box would not be stored in memory. What this
means is that for each iteration of the facet level flowchart, index values must be
reverse mapped so that the coordinates associated with grid points can be deter-
mined. Thus the cost of the tradeoff is a slight loss in performance. The benefit
from this tradeoff is that memory is better used for storing the mesh, this allows
for exceedingly large meshes to be modeled by the mesh generator.

Figure 3.5 provides a visual summary of the mapping scheme. The overall mesh
is mapped to a linear array of material identifiers. The analysis subregion inside
the overall mesh is mapped to an array of counters used to perform the parity count
method. There is a unique correspondence between the array of material identifiers
which are stored in the front end, and the array of counters which is stored in the
DPU. This correspondence is important as once the containment of grid points is
determined, the Copy Out Task must be able to read the resulting bitmap, and
based on the precedence method, insert the shape’s material identifier into the
array of material identifiers used to represent the overall mesh. In the parallel
version of the mesh generator, the linear array of counters is stored in PE memory
according to the one dimensional cut and stack virtualization.

3.3 Allocating Memory

For both the parallel and serial versions of the mesh generator, adequate memory
must be allocated for two general purposes. First, memory must be allocated for
storing the overall mesh. Second, a workspace must be available for the analysis of
each shape. As we shall see, setting up and maintaining such a workspace requires
that memory be allocated in different ways. Following a linear model of memory,
the following discussion considers only large blocks of memory that are allocated.

For the parallel version of the mesh generator, the arrangement of having the
overall mesh stored in the front end and having counters associated with the parity
count method stored in the DPU has at least two significant outcomes: First, better
use can be made of front end memory. Because the counters associated with the
parity count method are not stored in the front end, more memory should be
available for the overall mesh. While the front end does have the advantage of
efficient demand paging, by minimizing its use it is possible to store meshes that
are ever larger.

In addition, because the overall mesh is not stored in the DPU, use of memory
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in the DPU can be very simple. Since shapes are modeled one at a time by using
the parity count method, memory requirements in the DPU have been simplified to
the point where it is only necessary to ensure that the largest shape to be modeled
can “fit into” DPU memory.

Even with differences in memory use between the parallel and serial versions
of the mesh generator, the decision to store the overall mesh in the front end
guarantees that data structures in both versions will be similar. In developing the
parallel code, this similarity provided a significant savings in time.

For the following, please refer to figures 3.6 and 3.7. Figure 3.6 illustrates how
memory is allocated for the serial version of the mesh generator. Figure 3.7 is an
illustration of how memory is allocated in the parallel version. In both figures,
the ‘char’ variable type, the ‘unsigned int’ variable type, and the use of ‘*’ to
indicate pointers should be familiar to the ‘C’ programmer. The terms ‘point’
and ‘point 2d’ refer to defined data structure types that store the three or two
dimensional coordinates of points, respectively, along with an associated point
identification number.

point *

point_2d

point

char

char

Boundary  Points

Pointers

Overall  Mesh

Workspaces

Space  for

Vertex  Points

Free Memory

bounds

pntr_vtx_pntr

pnt_list

count

grid

Allocated As;

Workstation  Memory

Figure 3.6: Memory Allocation in Serial Version

For both versions of the mesh generator, the first block of memory allocated is
assigned to a character variable pointer named grid and is used to store the overall
mesh. For the serial version, the next block of memory allocated is assigned to a
character variable pointer named count and is used by the current workspace to
apply the parity count method. For the parallel version the next block of memory
is assigned to an ‘unsigned int’ pointer, also named count but is used as a buffer for
receiving data from the DPU. Note that for both the serial and parallel versions,
the first two blocks of memory are allocated by the Initialize Analysis Task. These
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Figure 3.7: Memory Allocation in Parallel Version

first two blocks are not returned to free memory until the program terminates.

For both the parallel and serial versions of the mesh generator, the third, fourth
and fifth blocks of memory are allocated in the front end. The third block of
memory allocated is assigned to a pointer named pnt_list and is used to store
a list of vertex points for each shape. The fourth block of memory is assigned to
a pointer named pntr_vtx_pntr and is used to store a list of pointers to vertex
points. Such a list of pointers is used to indirectly define the current facet. The
fifth block of memory is assigned to a pointer named bounds and is used to store
the two dimensional boundary points that define the current facet in facet space.

Whenever a new shape is initialized, if more memory is needed for storing
vertex points, the last three blocks of memory allocated in the front end are first
returned to free memory, then the memory needed to store the vertex points is
allocated as one complete block. The list of vertex points must be allocated as
one complete block, as a binary search is used to identify individual vertex points.
Once the number of vertex points associated with a facet is known, a decision can
be made as to whether more memory should be reallocated for storing pointers
and boundary points.

In the parallel version, memory must also be allocated in the DPU. For each
shape that is initialized, the function simd_init allocates the required amount of
PE memory to store counters for applying the parity count method. As stated
earlier, memory for the overall mesh is not allocated in the DPU, only the required
memory is allocated to model the current shape. The memory allocated for coun-
ters used to implement the parity count method, is assigned as an array of plural
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character variables to a pointer named count.

For each facet processed, the function simd_solve_a_facet ensures that ade-
quate memory is allocated in the ACU for receiving the boundary points used to
define the current facet. The memory used to receive boundary points is assigned
to a pointer named bounds. Note that since the ACU and PE memories are dis-
joint, there is no possibility of interaction. For example, the memory allocated to
count may grow as much as it needs to, but there never will be a possibility of
overwriting the memory assigned to bounds.

3.4 Implementation Outline

This section presents an outline of the implementation of the parallel mesh gen-
erator. Note that this section does not discuss details regarding the algorithm,
the complete algorithm is actually presented in chapter 2. Nor does this section
dive into great detail regarding the implementation, the actual code itself serves
this purpose. The purpose of this section is to provide a rough sketch that will
assist readers who may wish to become more familiar with the serial or parallel
implementations, in a sense it provides a guided tour of the mesh generator codes.
Section 3.4.1 adds to this section as it provides an outline of how the software
modules are organized.

3.4.1 Organization of Software Modules

In developing the parallel and serial versions of the mesh generator, software mod-
ules were organized into groups. Figure 3.8 illustrates these module groups and
shows how the module groups are organized to produce two versions of the mesh
generator. Modules used by both the parallel and serial versions are referred to as
common modules. The common modules perform the majority of the initialization
tasks as well as the Facet Server Task, the Store Results Task, and a collection of
the vector operations. Note that in the parallel and serial versions, the common
modules are essentially identical, in fact in the case of the parallel version, the
common modules actually execute in the front end as serial code.

Since the common modules are meant to be used by both the serial version and
the parallel version, some additional serial code is needed to manage transactions
with the DPU, thats the job of the interface module. The interface module is
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Figure 3.8: Software Modules in Generator Versions

essentially a kind of liaison to the DPU. The DPU module executes only in the
DPU and performs the parallel versions of the intersection finder, facet solver,
Check Insideness Task, Resolve Singularities Task, and half of the Copy Out Mesh
Task.

Lastly, modules used only by the serial version are referred to as the serial
modules, which perform the serial versions of the intersection finder, facet solver,
Check Insideness Task, Resolve Singularity Task, and the entire Copy Out Mesh
Task.

3.4.2 Mesh Initialization

The term initialized is defined in this context to be that point in time when facets
are actively being read. In comparison, the term invoked is used to indicate that
execution of the mesh generator has begun. The reader will recall from section 2.4.1
that initialization is divided into two tasks. The Initialize Analysis Task is per-
formed first. The Initialize Shape Task is performed once for each shape.

Initialize Analysis

The Initialize Analysis Task is started the moment that the mesh generator is
invoked and may or may not include an interactive component, as it is possible to
start the mesh generator by use of an ‘autostart file’. An autostart file contains
all the required information that a user would normally enter manually.

When invoking either version of the mesh generator, the user may optionally



CHAPTER 3. MESH GENERATOR IMPLEMENTATION 134

include a file name, if such a file name does not contain an extension, the extension
‘.aum’ will automatically be appended. Note that the ‘.aum’ extension is usually
associated with autostart files. If however a user does not provide a file name
when invoking the mesh generator, the user will be prompted for a file name. In
this second case, if the file name given does not have an extension, the extension
‘.sld’ will automatically be appended. Note that the ‘.sld’ extension is usually
associated with solid files. In both cases if an extension is given as part of a
filename, an extension will not be appended.

After a file name has been acquired, and the associated file has been opened,
the first few characters are examined to determine the file type. If the first four
characters match with the word ‘auto’, then the autostart file type is assumed, in
which case the mesh generator will immediately attempt to load the rest of the
file. One item always specified in an autostart file is a solid file name, thus after
loading the autostart file, the mesh generator will open the specified solid file,

Whenever a file is opened and the first five characters match the word ‘solid’,
the solid file type is assumed. If an autostart file was not loaded, then more data
will be needed. The user is asked a series of questions, starting with the requested
number of mesh box divisions along each coordinate axis. Next the user is asked
which output files should be produced. Output file types are discussed in the
user’s manual, see section F.3. Lastly the user is asked if an autostart file should
be written. In writing an autostart file, the file contains a summary of all the user
responses along with the specified solid file name.

Lastly note, if the first few characters of a file do not match either ‘auto’ or
‘solid’, then the mesh generator will immediately alert the user that the file type
is unrecognizable and will then abort execution.

After all necessary information has been gathered either directly from the user
or from the autostart file, and the solid file has been successfully opened and
identified as a solid file, the next job is to load the solid file header. The solid file
header is four lines of text that contains the unit conversion factor, dimensions of
the overall bounding box and the number of shapes in the file. It is important that
the solid file contain at least the stated number of shapes or the mesh generator
will terminate later in an abnormal fashion.

After the solid file header has been loaded, a function called ‘set up grid’ is
called to define initial constants and allocate two blocks of memory. The first block
of memory is used to store the overall mesh. For the serial version the second block
of memory is used to store counters, in the parallel version the second block is used
as a receive buffer. For more details about the allocation of these two blocks of
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memory, see section 3.3. The constants defined by ‘set up grid’ include the search
origin, the constant for detecting nearly orthogonal vectors, and the coordinates of
the grid point in the first mesh box. In the parallel version, ‘set up grid’ sends
the constants it defined to the DPU by calling ‘simd pag’. The function ‘simd pag’
returns the number of groups of 1024 processors that are present in the PE array.
After ‘set up grid’ returns control to ‘main’, the time of day is stored and is
used later to determine the system execution time. Initialization is now partially
complete. The next section describes the remaining initialization that needs to be
done.

Initialize Shape

The section of a solid file that is used to store a shape is referred to as a shape
description, and has three parts: The shape header, a list of vertex points, and
a list of facets. The shape header contains a unique integer shape label, the
material identifier, the number of vertex points and the number of facets used
to describe the shape. The list of vertex points defines for each vertex point, a
correspondence between an integer used to identify the vertex point and a set of
three dimensional coordinates. Note that for each shape the values given as vertex
identification numbers usually start at zero or one. Since a binary search is used to
locate individual vertex points, the only restrictions made regarding the sequence
of vertex point identifiers is that each value be unique and that the sequence
be ascending. Lastly each shape description has a section containing facets. Each
facet is defined by referencing a list of vertex points by their identification numbers.

To initialize a shape, the shape header is first loaded. If space is needed to store
vertex points, it is allocated. See section 3.3 for more details regarding the memory
allocation. Next, a function called ‘gather points’ is called. In this function a
loop loads all of the vertex points associated with the shape into memory. While
the vertex points are being loaded into memory, they are compared to yield the
extreme coordinate values. These extreme coordinate values are stored in two data
structures, ‘shape min’, and ‘shape max’.

The function ‘prepare scratch’ is next called to prepare the workspace that
will be used to apply the parity count method. This function starts by defining
the analysis subregion. Section 3.2.2 describes exactly how an analysis subregion
is defined. For the serial version, since space has already been allocated for use
as counters, it is only necessary to fill the memory locations associated with the
analysis subregion with zeros.
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For the parallel version, since the shape will be modeled in the MasPar DPU and
memory has not yet been allocated there, some additional work will be needed. In
the front end, after the analysis subregion is defined, a bounding box containing the
associated mesh subregion is defined. Since the workspace bounding box must “fit
in” the overall mesh, the coordinates of the extreme corners of the new bounding
box are assigned to the data structures ‘obj box min’ and ‘obj box max’. The
number of mesh box subdivisions along each edge of the workspace bounding box
is assigned to the data structure named ‘obj boxes’, the receive buffer named
‘count’ is cleared by filling it with zeros. Lastly, ‘simd init’ is called in the DPU
to perform the memory allocation and store the data structures associated with
the analysis subregion.

After entering a ‘for’ loop control structure, the next thing encountered is a
scanf that will read in part of the description of a facet. Initialization of the mesh
generator is now complete.

Model the shape

For each facet that is examined, memory may need to be allocated for data struc-
tures needed to store the facets. Shapes are examined one at a time. Until it is time
to start writing out data files, the program follows the algorithm specified in chap-
ter 2. Note that while a unit conversion factor is included in the solid file header,
it is not applied to the data when the shapes are actually being modeled. Only the
actual output file data is scaled by the unit conversion factor. Thus rather than
scaling the coordinate values of every vertex point, only the coordinates associated
with the overall bounding box are scaled. It is felt that this approach provides
a savings in performance as well as a possible improvement in the accuracy of a
model.

Since the ownership of each mesh box by a single shape can be expressed by the
value of a single bit value, it was possible to compress the description of groups of
32 mesh boxes into an array of long integer variables. The generation of a bit map
and the compression of the bit map into an array of long integers was chosen as
a means to efficiently move the resultant mesh out of the DPU and into the front
end. The precedence method3 is implemented in the front end to write the mesh
associated with the current shape into the overall mesh.

3For more information regarding the precedence method see section 2.2.3



CHAPTER 3. MESH GENERATOR IMPLEMENTATION 137

3.5 Characterizing Performance

In the following sections we will consider performance of the mesh generator code.
We will start by presenting the shape referred to in this document as being the
small sphere. The type of model represented by the small sphere is unique as it
has a relatively large number of facets where each facet represents a small part of
the surface area of the overall shape. In addition the facet planes are all oriented
relative to each other at unusual angles. Because of these properties the small
sphere model is considered somewhat rigorous and computationally intensive.

The small sphere model is comprised of 242 vertex points, which are used to
define a system of 256 facets. The facets are constructed of either three or four
vertex points and on average each facet is defined by 3.875 vertex points. One
property to note is that while the analysis subregion contains the entire bounding
box, the sphere does not fill the entire space.

Figure 3.9 is an illustration of a mesh representation of the small sphere. The
illustration was produced by Patran, a commercially available software package.
Note that the sphere was was defined to be constructed of a solid material and all
the surrounding material was removed. The overall mesh was defined to be of size
30x30x30.

In the sections that follow, we characterize the performance of both the serial
and the parallel mesh generator programs. CPU time refers to user time spent
performing serial code and DPU time refers to time spent performing parallel
code. Both CPU time and DPU time were introduced in section 1.7.1.

In gathering execution time data from the serial code, two cases were always
considered, non-optimized code as well as fully optimized code. The RISC cc

compiler produced non-optimized serial code when the -g flag was specified, con-
versely fully optimized code was produced when the -O3 flag was specified. Note
that the parallel code was not optimized. While the MasPar compiler does have
an option to produce optimized code, it does not always work and has bugs, some
of which are known and documented. In our situation the optimized parallel code
that the MasPar compiler produced was non-functional, thus we were limited to
non-optimized parallel code.

In gathering execution time data from the parallel version, two different ma-
chines were used to perform the parallel code. The first machine was the MasPar
system owned by Worcester Polytechnic Institute. This machine is an MP1101,
known as node ‘goofy’. In writing the parallel code, special care was taken to
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Figure 3.9: 30x30x30 Mesh of the Small Sphere
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ensure that no assumptions were made regarding the size of the PE array. Upon
startup, the parallel code self adjusts the mapping to the size of the PE array. This
adjustment at startup is provided to ensure that the parallel code will work as effi-
ciently as possible in any MasPar system configuration. We made good use of this
software feature as MasPar graciously provided us with access to a larger MasPar
system, an MP 1208 with 8192 PEs. This MasPar system has eight times as many
PEs as the system owned by WPI. Section A provides a complete description of
the configurations of these two machines.

3.6 Parallel Time Complexity Analysis

In section 2.7.2 a complexity analysis modeled the asymptotic behavior of the
serial version of the mesh generator. The following presents the time complexity
equations in the context of the parallel implementation. The reader should note
that the big-oh equations developed for the serial code are also valid for modeling
the asymptotic behavior of the parallel version of the mesh generator. This is not
unusual, as the time complexity equations are supposed to be characteristic of the
underlying algorithm.

According to section 2.8, from an algorithmic point of view, the primary differ-
ences between the parallel and serial versions of the mesh generator are that the
Pick Next Grid Point, Intersection Finder, Facet Solver and Check Insideness tasks
are implemented in parallel rather than in serial form. In addition, the Copy Out
Task is implemented partially in parallel and partially in serial code. We will con-
sider each of these tasks in turn. A copy of figure 2.26 is presented as figure 3.10,
as a convenience to the reader.

The Pick Next Grid Point Task amounts to a for-loop control structure, along
with some calculations. As introduced in section 3.2.4, the array of grid point
counters is distributed across many memory layers. Appropriately, the memory
associated with grid point counters is indexed by a singular memory layer index
value.

Before the Intersection Finder Task can be performed, for each memory layer,
each PE must determine its location in the overall mesh by using equation (3.13)
and 3.11. With the index terms 〈ia, ja, ka〉, the corresponding coordinates of a
grid points are found by using equation (3.9). Note that the index terms and
coordinate values are only stored temporarily and must be recalculated for each
iteration. While the cost of such a tradeoff is increased computation, the benefit
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Figure 3.10: Division of Mesh Generation Algorithm Tasks

is that better use is made of parallel memory, allowing us to model larger meshes
than would otherwise be possible. The serial version of the mesh generator also
makes use of this tradeoff.

For the serial version of the mesh generator, for each facet processed, Nm grid
points4 must be examined, one at a time. For the parallel version of the mesh
generator, since at most nproc grid points are examined simultaneously, there will
be significantly fewer iterations of the facet level flowchart. With the idea of the
analysis subregion in mind, each facet processed will require this many iterations
in the facet level flowchart;

serial iterations = O (Nm)

parallel iterations = O ( �Nm/nproc� )

In the above equations, Nm is the number of grid points in the overall mesh
and nproc is the number of PEs, and � · � refers to the ceiling function. For the

4For background of the related variables, see section 2.7.1
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purposes of a time complexity analysis, we will make the following approximation;

�Nm/nproc� ≈
1

nproc
Nm

Thus we can state that;

parallel iterations = O (Nm) (3.15)

To review, while we know that for each facet processed, the number of iterations
in the facet level flow chart is much smaller for the parallel version than the serial
version, both grow asymptotically in a first order fashion.

The code associated with the Initialize Analysis Task is performed once, and
as with the serial implementation, has a time complexity of O( 1 ). The identical
code is used in the parallel and serial versions to perform the Initialize Shape
Task. Likewise, the identical code is used to perform the Facet Server Task. In
this section however, we will follow the assumption made in section 2.7.3 that led
to equation (2.29). The assumption is that the average number of vertex points
per facet Ñvf is a relatively small number. Based on this assumption, we restate

the overall contribution from the facet server to be O
(
Ns Ñfs

)
.

As with the serial version of the intersection finder, each call to the parallel
intersection finder is O(1). Given Ns shapes where each shape has an average
number of facets equal to Ñfs, the overall contribution from the parallel intersection
finder is the same as the serial version.

CXXF = O
(
NmNs Ñfs

)

As with the serial version of the facet solver, each call to the parallel facet solver
is O

(
Nv(i,j)

)
. Following the same argument given in section 2.7.3, we will assume

that the average number of vertex points per facet Ñvf is a relatively small number
and thus is incorporated into the assumed constant, as in equation (2.29). Thus
the overall contribution from the parallel facet solver is given as;

CXRX = O
(
NmNs Ñfs

)

Since the parallel versions of the intersection finder and facet solver were written
into the same function, it is difficult to separate their timing values in a timing
profile. For this reason we define the combined term to contain the contributions
from the facet solver and intersection finder.

CXPC = O
(
NmNs Ñfs

)
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As with the serial code, the contribution from the Pick Next Grid Point is
incorporated into the intersection finder and is referred to here as the parallel core
of the mesh generator. In this case CXPC contains contributions from Pick Next
Grid Point, Intersection Finder and Facet Solver tasks.

Lastly, the Check Insideness Task and Copy Out Task have overall contributions
of O (NmNs ). Whenever we report execution time profile data for the parallel
Copy Out Task, the times used to execute the parallel and serial parts of the
program are reported separately and combined.

Table 3.2 provides a summary of the contributions from each task. Of these
tasks, the Initialize Analysis, Initialize Shape, and Facet Server tasks were im-
plemented in serial form. For more information, the reader is referred back to
section 2.7.2.

Table 3.2: Revised Time Complexity by Task

Task Name Term = Expression
Initialize Analysis CXIA = O ( 1 )

Initialize Shape CXIS = O
(
Ns Ñvs

)
Facet Server CXFS = O

(
Ns Ñfs

)
Parallel Core CXPC = O

(
NmNs Ñfs

)
Check Insideness CXCI = O (NmNs )

Copy Out CXCO = O (NmNs )

After examining table 3.2, a few points can be considered. First, since the
parallel core has the most number of terms in its argument, it has the potential of
being the largest contribution to the overall execution time. This is essentially the
same conclusion that was made back in section 2.7.3.

To get a better idea of the size of the contributions from each task, a 22x22x22
mesh representation was generated, as was done back in section 2.7.3, but this time
execution was also performed on the MP 1101 and MP 1208. The MasPar tools
were used to determine the timings associated with each task, and are listed in
table 3.3. Note that on the parallel machines the check insideness task and parallel
core are much faster than the serial code. The parallel version of the copy out task
is slower than the serial code as the parallel version has the additional overhead of
data transfer back from the DPU to the front end. Note that the MP 1208 we used
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was able to perform the transfer faster than the MP 1101, this may be evidence of
the fact that the MP 1208 had a high performance parallel VME connection. The
MP 1101 only had a serial VME connection.

The last row of table 3.3 indicates the percent of the total execution time that is
represented by the parallel core. Note that even though the total execution times
vary drastically, the contribution represents more than 90% of the total execution
time. Since a 22x22x22 mesh is considered to be small, with knowledge of the
time complexity it should be clear that as the mesh size increases, the parallel
contribution will remain large, even for large MasPar configurations.

Table 3.3: Execution Time(mSec) by Task

Task Comp. Serial
Name Term = Code MP 1101 MP 1208
Initialize Analysis CXIA = 1 1 1

Initialize Shape CXIS = 58 54 50

Facet Server CXFS = 150 133 147

Parallel Core CXPC = 175028 15756 3195

Check Insideness CXCI = 29 6 3

Copy Out CXCO = 30 74 43
Task Totals = 175296 16024 3438

Percent Parallel Core = 99.85% 98.33% 92.93%

During the development of the mesh generator we considered the possibility
of running the front end and DPU in an asynchronous fashion as a means of
improving the overall efficiency of the parallel code. We reasoned that if the front
end and DPU each spent a significant amount of time waiting for the other to
complete tasks, a performance gain could be realized by allowing both machines
to work simultaneously. This is probably the primary reason why the facet server
was put in the front end, rather than in the DPU. Serving facets in the front end
provides a secondary means of reducing the impact of such serial operations on
the parallel algorithm. This scenario represents an opportunity, since the front
end unit and the DPU can be run, asynchronously. After the first facet of a shape
has been delivered to the DPU, asynchronous operation allows the front end to
immediately start preparing the next facet. Assuming that the DPU takes more
time to consume a facet than the front end needs to prepare one, a newly prepared
facet will always be available for the DPU to immediately process. We suspected
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that the net result would be of partially hiding the serial operation in the front
end from the parallel execution in the DPU, thus improving the performance of
the algorithm.

The data in table 3.3 appears to indicate that in this case, if the MasPar sys-
tem was run in an asynchronous fashion, there might be an improvement in per-
formance, but the improvement would be small. At the time that this data was
collected, it was decided that the effort to convert the code from its current syn-
chronous operation to that of asynchronous operation was not worth the effort.
For future work it would be worthwhile to consider the circumstances where such
asynchronous operation would provide a significant savings in performance, and to
assess those savings.

Parallel Time Complexity Summary

The goal of the time complexity analysis is to show that an approximately linear
relationship exists between the execution time and the terms used to define the
problem size. A few of the terms used to define the problem size are the number of
mesh boxes that will be in the resultant mesh, and the number of facets in a shape,
see section 2.7.1 for a listing of the terms used to define the problem size. The
knowledge of such a relationship is important as it provides a means to compare
the algorithm with other possible algorithms. The dependence of the execution
time on the problem size is particularly useful in this respect as a figure of merit.
The timing results given in section 3.7, along with curves fitted to the data serves
to verify the expected linear dependence of the execution time on the number of
boxes in a mesh.

3.7 Timing Results

Figure 3.11 provides a graph of the execution time for each case that was consid-
ered. As described earlier, we considered optimized and non-optimized versions of
the serial code. Also parallel code was executed on two different MasPar systems.
The mesh sizes that were examined were cubic, thus to determine the number of
mesh boxes along each axis simply take the cube root of the number of mesh boxes
for a given mesh.

By visual inspection of the data presented in figure 3.11 it can be inferred that
there is an linear relationship between the execution time and the number of mesh
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boxes in a resultant model. To better quantify this relationship, lines were fit
to the data. To draw the graphs, a program called xmgr was used. To fit the
lines to the given data, xmgr provides a regression analysis tool. Table 3.4 is a
summary of the of the curve fit data that xmgr produced, note that xmgr refers
to goodness of fit as being the correlation coefficient, which in this case appears
to be the correlation between the data sets represented by the execution time and
the number of boxes in the resultant mesh.

Table 3.4: Results Fitted for Small Sphere

Case Description Slope Intercept Correlation Coef.
Serial - Not Optimized 1.610523 × 10−2 -1.291225 0.9999990
Serial - Optimized 1.192160 × 10−2 -1.026041 0.9999998

MP 1101 - Not Optimized 1.013866 × 10−3 10.668460 0.9985120
MP 1208 - Not Optimized 1.638132 × 10−4 1.525807 0.9999717

In table 3.4, the correlation coefficient is used to describe the “goodness of
fit” of each linear fit to actual data. By noting the closeness of the correlation
coefficients to unity, it can be said in general that there is an approximately a
linear relationship between the execution time and the number of boxes in the
mesh.

3.7.1 Speed Up Characteristics

The concept of speed-up was introduced in general terms, back in section 1.7.4.
Basically, speed-up provides a means of characterizing how much faster a program
becomes when the program is enhanced in some way. Starting with non-optimized
serial code, the first enhancement was to use the optimized serial code instead. In
both instances, the front end workstation of the MasPar system owned by WPI
served as the platform for the serial code. The second enhancement made was
to perform certain tasks in parallel form on the MasPar parallel array processor,
rather than in serial form on the front end. Section 2.8 provides a detailed ex-
planation of which tasks were performed in parallel form. The MasPar MP 1101
owned by WPI served as the platform for evaluating this second enhancement. The
third enhancement was to perform the parallel code on a larger MasPar system,
a MP 1208 system (node ‘maspar’) at MasPar corporation. The configuration
of both MasPar systems is summarized in section 1.5.5. As before, the parallel
code was not optimized by the parallel compiler. In the following we examine the
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speed-up that resulted from each of these enhancements. Note that the results
used in the following speed-up characterization correspond to the generation of a
mesh model of the small sphere.

Serial Versions Compared

Figure 3.12 provides an illustration of the speed-up that resulted in selecting fully
optimized serial code The speed-up figure appears to be close to 1.35, corresponding
to a 35% increase in the performance.
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Figure 3.12: Comparing Serial Execution Times for Small Sphere

Parallel Code on the MP 1101

Figure 3.13 provides an illustration of a comparison of the parallel code performed
by the MP 1101 system owned by WPI (Node ‘goofy’) and serial code performed
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only on the front end. For very small meshes (1000 mesh boxes) the speed-up
is the smallest; Note that as the problem size increases the speed-up increases
as well. This observation can be interpreted as the fact that a parallel hardware
platform requires a large problem to make the best use of the hardware. This topic
is investigated in greater depth in the discussion of processor element use. Note
that as the problem size increases, an asymptotic limiting behavior appears to be
present. Compared to the non-optimized code, the speed-up figure appears to be
asymptotically approaching the value 16. Compared to the optimized code, the
speed-up figure appears to be asymptotically approaching a value just under 12.
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Parallel Code on a MP 1208

Figure 3.14 provides an illustration of the parallel code performed on a MP 1208
versus optimized as well as non-optimized serial code. As before, for very small
meshes the speed-up is the smallest, and in general appears to improve as the prob-
lem size becomes larger. In comparison to the non-optimized code, as the problem
size becomes ever larger the speed-up appears to asymptotically approach a value
near 98. In comparison to the optimized code, speed-up appears to asymptotically
approach a value just above 72.
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Comparing Parallel Systems

Figure 3.15 provides a speed-up comparison between the two parallel machines.
Note that for the smallest mesh size the speed up factor is unity. For a 10x10x10
size mesh, the MP 1101 and the MP 1208 each use a single memory layer in
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the DPU to store the array of counters, so naturally for this case the speed up
should be unity. For the parallel versions, the speed-up peaks to almost seven and
appears to settle near 6.15 for large meshes. Unfortunately it is not clear why the
speed up peaks for a 40x40x40 mesh. It may be because of the odd way that the
memory layers fill. The size of peak seems to indicate the definite presence of some
phenomenon.
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Figure 3.15: Speed-Up, MP 1208 vs. MP 1101

By increasing the number of PEs in the array by a factor of eight, the reader
might expect a corresponding speed-up of eight times. According to Amdahl’s law
which was presented in section 2.9, such a direct relationship between execution
time and the number of PEs does not exist. According to Amdahl’s law, the
“sequential part” of the implementation will serve as a limiting term that limits
the maximum improvement in execution time that can be achieved by simply
increasing the number of PEs. Equation (1.7) is easily solved to yield an expression
that determines the percent of the execution time ( ψ ) that corresponds to the
parallel part of the program.
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ψ =
Ef (speed-up − 1)

(Ef − 1) speed-up
(3.16)

The serial part of the program is simply equal to 1 − ψ, after substituting in
equation (3.16) the expression simplifies to the following expression. To determine
the size of the serial component in terms of percent, simply multiply the speed-up
by 100%.

serial-part = 1− ψ =
Ef − speed-up

(Ef − 1) speed-up
(3.17)

Note that for the speed-up to be equal to the enhancement factor Ef , which is in
this case eight, then the numerator of equation (3.17) would be zero, thus implying
that the serial part of the program is insignificant. Given the observed speed-up
between the two parallel machines, equation (3.17) was used to determine the size
of the serial part of the program execution time as a function of problem size. The
results are presented in figure 3.16. Note that the data point corresponding to the
10x10x10 size mesh was not included, as there was no speed-up. Earlier we had
explained that for this unique mesh size, both the MP 1101 and MP 1208 each
require only one memory layer to store the counters used to implement the parity
count method. For this unique situation, since the MP 1208 is to a large extent
underutilized, there is no point in considering Amdahl’s equation.

One thing is immediately obvious from the graph, it appears that what Amdahl’s
law refers to as the “serial part” of the program execution is not necessarily just
that part of the mesh generation code that executes in the front end. As the mesh
becomes larger and larger, the amount of time executing parallel code in the DPU
should become more and more significant in comparison to the front end serial
code, see section 3.6. According to figure 3.16, the serial part of the execution
time is not falling as we would expect.

3.7.2 PE Use Figure

In examining the flowchart of figure 3.10, it should be clear that the facet solver
task represents a hazard in terms of branching. A better PE use figure will result
if a larger number of PEs participate in performing the facet solver. One theory is
that as the problem size becomes ever larger, each memory layer in the PE array
will correspond to a relatively smaller part of the overall mesh, implying that the
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conditions experienced by each grid point in the memory layer will be more closely
related. Thus it can be said in general that use of parallelism should improve with
problem size.

To get a better understanding of the processor element use, two sets of of coun-
ters were inserted into the parallel facet solver code. The first set only contains a
singular counter that is referred to as the facet solver entry counter ( FSe ), which
is used to count the number of times the ACU enters the code block associated
with the facet solver. Recall that the ACU will only enter the facet solver code
if at least one PE finds an intersection with the current facet plane. Thus for a
shape being modeled, the final count in the facet solver entry counter ( FSe ) does
not have to equal the number of facets used to describe the shape.

The second set of counters inserted into the facet solvers is a plural variable
referred to as the facet solver PE counter, which is used to count the number
of times each PE participates in the facet solver code. After a shape has been
modeled, all the facet solver PE counters are summed together to yield the total
facet solver PE count ( PEpe ). The following formula is used to determine the
average overall PE use in performing the facet solver.

PEuse =
FSpe

FSe nproc
(3.18)

Table 3.5 provides a summary of the facet solver entry counter, total facet solver
PE count, and PE use values for a range of mesh sizes. Figure 3.17 is an illustration
of the corresponding PE use values.

Since the overall processor use figures that we have determined can be thought
of as being the product of the PUFM and PUFB values, by independently de-
termining PUFM, we can easily determine the values for PUFB. The processor
element use figure due to mapping (PUFM) can easily be determined theoretically
for a single shape. As indicated in section 3.2.4, the following equation gives the
number of memory layers that are allocated for storing the counters associated
with the current analysis subregion.

n layers = 1 +

⌊
N AS

nproc

⌋

As presented in section 3.2.2, N AS is the number of mesh boxes in the analysis
subregion and nproc is the number of PEs in the PE array. Since each memory
layer represents nproc virtual processor elements, , the PUFM is found to be;

PUFM =
N AS

n layers nproc
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Table 3.5: Overall PE Use Data

Mesh MP 1101 Node ‘MP 1208’
Boxes FSe FSpe PEuse FSe FSpe PEuse
1× 103 256 128378 0.489723 256 128378 0.061215
8× 103 1761 1028522 0.570367 256 1028522 0.490438
27× 103 5891 3471639 0.575500 911 3471639 0.465186
64× 103 12887 8229714 0.623639 1795 8229714 0.559668
125× 103 23124 16073850 0.678824 3549 16073850 0.552871
216× 103 37443 27776009 0.724435 5978 27776009 0.567184
343× 103 57148 44107769 0.753727 9292 44107769 0.579450
512× 103 82501 65840382 0.779351 13908 65840382 0.577880
729× 103 116223 93745938 0.787699 19679 93745938 0.581513
1× 106 157380 128595474 0.797951 26743 128595474 0.586983
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Figure 3.18 is an illustration of the processor element use figure due to mapping
for the given range of mesh sizes. Note that PUFM quickly improves with size of
the mesh and hovers around unity.
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Figure 3.18: PE Use due to Mapping

To determine the processor element use figure due to branching (PUFB), it is
only necessary to divide the overall processor element use figure by the processor
element use figure due to the mapping (PUFM).

PUFB =
PEuse
PUFM

Figure 3.19 shows an illustration of the processor element use figure due to
branching, associated with the calling of the facet solver function. For the small-
est mesh considered (10x10x10), the PUFB was approximately 50% for both the
MP 1101 and the MP 1208. As expected, as the mesh becomes larger, the PUFB
value becomes larger. For the largest mesh considered, the MP 1101 had PUFB
at almost 80% (actually 79.8309%), while the MP 1208 had PUFB at almost 60%
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(actually 59.1453%). Thus it should be clear that while the MP 1208 is much faster
than the MP 1101 the parallel version of the mesh generator runs more efficiently
on the MP 1101.
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Figure 3.19: PE Use due to Branching

It is suspected that the reason for this variation in the use of the two machines
is that for a larger PE array, the conditions experienced by each grid point will
be more varied and result in a lower PE utilization than that of a smaller PE
array. The data summarized in figures 3.19 and 3.17 helps as it is used to explain
why a speed-up of approximately six was seen for large meshes, rather than the
anticipated speed-up of eight. While the PE use figures that we have been exam-
ining are not for the overall program, since the execution time associated with the
facet solver makes up a significant part of the execution time (see section 2.7.3 for
representative data for the serial code), we can use the PE use figure associated
with the facet solver to gain some insight into the overall program.

Consider the following, if we take the ratio of the overall PE use figure for the
MP 1208 and the overall PE use figure for the MP 1101, and multiply the quotient
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by 8, the resulting graph (see figure 3.20) looks much like the speed up graph
that compares the two machines. The reason for scaling by 8 is that the MP 1208
has that many times more PEs. Clearly there appears to be an approximate
relationship between the PE use figure, the number of PEs, and the execution
time of the array processor.
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Figure 3.20: Scaled ratio of PUFB values

3.7.3 MFLOPS Performance

While it is true that the algorithm selected for the mesh generator is floating point
operation intensive, it is also true that a less floating point intensive algorithm
can be developed and implemented, section 2.10 serves as a testament of that fact.
The point being made is that because of the nature of the mesh generator concept,
the MFLOPS rate does not serve as a useful tool in comparing implementations
of the mesh generator based on different algorithms. While we will be using the
MFLOPS rate to compare our program implementations, it is important to realize
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that a different algorithm could easily produce code with a lower MFLOPS rate, yet
execute in less time then the implementations presented here. Thus in examining
the following, MFLOPS will not be considered as an absolute indicator of program
performance.

Square Root Function

One of the issues we faced in determining the MFLOPS rates is the use of the
square root function. As explained in section 1.7.5, a floating point operation is
an addition, subtraction, multiplication, or division operation. While a square
root function is assumed to be programmed as a power series that incorporates
floating point operations, it is not easy to make an estimate of how many such
floating point operations are actually used. In determining the MFLOPS rate we
will assume that our algorithm encounters no singularities, which in turn implies
that the only use of the square root function is in the front end.

To get a better understanding of the square root function, a test program was
written, see figure 3.21. The program first times the execution of an empty loop.
This timing is used to measure the overhead associated with the for construct.
The double precision operation we are using is just a simple increment operation
that uses a register variable. By measuring the time to execute one million such
double length addition operations, we estimate the peak MFLOPS rate. Further,
by taking the ratio of the time to perform one million double precision square
root operations, to the time to perform one million double precision additions, we
estimate the number of addition operations that execute in the same amount of
time as a single square root operation.

Note that the goal of the program listed in figure 3.21 is not to determine
the actual number of floating point operations that are associated with a square
root operation, but to set a limit on the number of floating point operations that
we are to associate with a square root operation. The double precision addition
was specifically chosen as it should be the simplest and fastest to perform. In
other words we may assume that fewer than an estimated number of floating
point operations are actually associated with a square root operation. Based on
this estimate we will be able to show that the contribution from the square root
function to the total number of floating point operations is negligible.

In executing the test program listed in figure 3.21, the MFLOPS rate was es-
timated to be 8.46 MFLOPS. The equivalent number of adds per square root is
determined by our test program to be approximately 50 floating point operations.
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/******************************************************************

Estimate Floating Point Operations in Square Root

Except for minor changes, this program was written by Mitch Mason,

member of the support staff at MasPar corporation. Mitch can be

reached at mitch@mpppac.maspar.com.au -- Tue Aug 1 01:30:28 1995

Compile this with cc -o target source.c -lm

The program first determines the amount of time to execute one

million iterations of an empty loop. This timing figure is

subtracted from later loop structures. The second loop executes

one million iterations of a simple addition operation. The last

loop executes one million iterations of a square root operation.

The ratio of the times to execute the square root operations to

the add operations gives an estimate of the number of addition

operations that execute in the same amount of time as a single

square root operation.

******************************************************************/

#include "stdio.h"

#include "time.h"

#include "math.h"

main()

{

unsigned int i, j, k, l1, l2;

register double a;

double d, e;

a = 0.0;

d = 10101.010101;

clock(); /* Start system Clock. One tick = 1 micro sec. */

for(i=0; i<1000000L; i++)

{ /* Time the empty loop */

}

k=clock(); /* Loop overhead constant */

printf("Loop Time Overhead Constant = %u \n", k);

j=clock();

for(i=0; i<1000000L; i++)

{ /* How long for 1Meg floating point add operations? */

a = a + (double)1.0;

}

l1=clock()-j-k;

printf("1 Meg. Double Float ops takes %u Micro Sec.\n", l1);

printf("Double Float Add %f DOUBLE PRECISION MFLOP/Sec.\n",

(float)1000000/l1);

j=clock();

for(i=0; i<1000000L; i++)

{ /* Now, how long for 1Meg floating adds? */

e=sqrt(d);

}

l2=clock()-j-k;

printf("1 Meg. Double Float Sqrts takes %u Micro Sec.\n", l2);

printf("Therefore one Double Float Sqrt takes %f D.P. OPS.\n",

((float)l2)/l1);

Figure 3.21: Source Listing of Square Root Test
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Counting Floating Point Operations

To determine the MFLOPS rate, a special consideration has to be taken care of.
Since the execution of the facet solver task is dependent on whether the intersection
finder actually finds intersections, in examining the algorithm it is not immediately
obvious what the number of floating point operations actually performed is. To
remedy the situation it was decided that we would insert integer type counters into
the code to keep track of the number of times certain events take place. For the
serial code, the counter named FSc keeps track of the number of times the facet
solver was called. Also since facets may be defined with any arbitrary number of
vertex points greater than three, another counter called LPc was used to keep a
total of the number of loop iterations that were actually performed inside the facet
solver.

For the parallel code, the situation is just a little bit more complicated. For each
iteration of the intersection finder task, nproc intersections can be detected by the
PE array. If there is even one intersection found, the block of code associated
with the facet solver must be entered by the ACU. As introduced in sections 1.5.3
and 1.7.3, in such situations the ACU must broadcast all the instructions that
are required to perform the facet solver, even if only one PE is participating. The
counter FSe counts the number of times that the facet solver is entered by the ACU.
Each PE is also assigned a counter that totals the number of times it performs the
facet solver. To determine the number of instances in which the facet solver was
performed, the PE counters are reduced to a singular value by use of addition and
is assigned to the variable FSpe. The variables FSe and FSpe are also useful for
examining PE use, see section 3.7.2.

In a manner analogous to the serial code, counters are used in the parallel code
to keep track of the looping performed inside the facet solver. A singular counter
named LPe keeps track of the total number of times that the ACU iterates the loop
inside the facet solver. Also a plural counter keeps track of the total number of
times each PE participates in the loop inside the facet solver. The instances of this
plural counter are reduced by addition to a singular value named LPpe. Table 3.6
summarizes the remaining variables used to characterize the MFLOPS rate. Note
that the values given refer to the small sphere example.

The variable Nrv is associated with the actual number of references to vertex
points made by the facet solver. The variable Nrv is defined as follows;

Nrv =
Ns∑
i=1

Nvi∑
j=1

Nv(i,j)
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Table 3.6: Some Variables used in Determining MFLOPS

Symbol Description Value
Ns – number of shapes being modeled = 1
Nf – total number of facets in solid file = 256
Nrv – vertex point reference number = 992
Nas – grid points in analysis subregion
Nlayers – memory layers allocated

Organization of Software Modules

To examine the MFLOPS performance closely, we must understand where floating
point operations are performed in the code. Section 3.4.1 provides an introduction
to the organization of the software modules. Figure 3.22 was produced by modi-
fying figure 3.8 in section 3.4.1. The figure was modified to help in the discussion
presented in the following sections. In this figure, the block ‘Common Modules’
refers to modules shared by the parallel and serial versions of the mesh generator.
The number of floating point operations performed by the common modules is
referred to by the variable ‘FPcom’.

ser

com

FP

FP

FP

com

Serial

Common
Modules

FP

FP
Modules

dpu

int
Interface
Module

Common
Modules

DPU
Module

Parallel  Version

Serial  Version

Figure 3.22: Software Modules in Generator Versions

The ‘InterfaceModule’ interfaces the parallel part represented by ‘DPU module’,
and serial parts of the parallel version of the code. The number of floating point
operations performed by the interface module and DPU module are referred to by
the variables ‘FPint’, and ‘FPpar’, respectively. Note that the interface module and
DPU module are used only by the parallel implementation of the mesh generator.
The number of floating point operations performed by the serial modules is referred
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to as ‘FPser’.

Common Module Floating Point Operations

After examining the implementations, equation (3.19) was devised to give the
number of floating point operations that are performed by the common modules.
The term FPsqrt refers to the actual number of floating point operations that are
used to perform a square root operation. Note that in examining equation (3.19),
it is noted that FPcom is solely dependent on the input solid file. For the case of
the small sphere if FPsqrt = 50, then FPcom = 70300 floating point operations.

FPcom = (74 + 3FPsqrt)Nf + 13Nrv + 54Ns + 6 (3.19)

Serial Module Floating Point Operations

Equation (3.20) was devised to determine the number of floating point operations
that are performed in the serial modules that are only associated with the serial
version of the mesh generator. Table 3.7 provides the parameters and number of
floating point operations performed in the serial module for each given mesh size.
The mesh sizes were all cubic with Nb mesh boxes along each coordinate axis, thus
for each mesh Nas = N3

b .

FPser = 4Nf
(
Nb +N2

b +N3
b

)
+21NasNf+13FSc+19LPc+30Ns+FPsqrt+30 (3.20)

Serial Version MFLOPS Rate

To determine the MFLOPS rate for a single given mesh size, divide the total
number of floating point operations by the corresponding execution time. For the
serial version the total number of floating point operations is the sum of FPcom
and FPser, see equation (3.21). Table 3.8 lists the actual MFLOPS rates. Note
that the optimized and non-optimized serial versions performed the same number
of floating point operations but had slightly different execution times, resulting
in slightly different MFLOPS rates. Also see figure 3.23 for an illustration of the
MFLOPS rates.
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Table 3.7: Variables Associated with Serial Version

Nb Nas FSc LPc FPser
10 1×103 1.2838×105 4.9751×105 1.76343×107

20 8×103 1.0285×106 3.9847×106 1.40711×108

30 27×103 3.4716×106 1.3450×107 4.74426×108

40 64×103 8.2297×106 3.1883×107 1.12403×109

50 125×103 1.6074×107 6.2271×107 2.19472×109

60 216×103 2.7776×107 1.0761×108 3.79175×109

70 343×103 4.4108×107 1.7088×108 6.02033×109

80 512×103 6.5840×107 2.5507×108 8.98567×109

90 729×103 9.3746×107 3.6318×108 1.27930×1010

100 1×106 1.2860×108 4.9818×108 1.75476×1010

MFLOPSser =
FPcom + FPser
Execution Time

(3.21)

Interface Module Floating Point Operations

Equation (3.22) gives the number of floating point operations performed by the
interface module. In examining the equation it should be noted that the results are
independent of the size of the resultant mesh and is only dependent on the number
of shapes in the input solid file. By combining the expressions for FPcom and FPint,
we can see that for the example of the small sphere, the front end performs a total
of 70434 floating point operations.

FPint = 54Ns + FPsqrt + 29 (3.22)

DPU Floating Point Operations

Equation (3.23) was devised to determine the number of floating point operations
that are performed in the DPU. Table 3.9 provides the parameters and number
of floating point operations performed in the MP 1101 (node ‘goofy’), for a range
of mesh sizes generated of the small sphere. Table 3.10 provides the same data,
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Table 3.8: Floating Point Rate – Serial Version

Mesh Size FLOP Rate

Nb Nas FPtotal Not Optimized Optimized
10 1×103 1.7705×107 1.0984×106 1.4757×106

20 8×103 1.4078×108 1.0943×106 1.4858×106

30 27×103 4.7450×108 1.0909×106 1.4889×106

40 64×103 1.1241×109 1.0902×106 1.4792×106

50 125×103 2.1948×109 1.0907×106 1.4713×106

60 216×103 3.7918×109 1.0887×106 1.4715×106

70 343×103 6.0204×109 1.0909×106 1.4725×106

80 512×103 8.9857×109 1.0908×106 1.4730×106

90 729×103 1.2793×1010 1.0912×106 1.4729×106

100 1×106 1.7548×1010 1.0887×106 1.4716×106

but for the MP 1208 (node ‘maspar’). Note that because of the way that the algo-
rithm adjusts to different PE array sizes, the number of floating point operations
performed in the MP 1101 will be similar but will not necessarily be identical to
the number of floating point operations performed in the MP 1208.

FPpar =
(
13Nas + 4Nlayers

)
Nf + 21FSpe + 11LPe + 8LPpe + 5Nf + 12Ns (3.23)

Parallel Version MFLOPS Rate

To determine the MFLOPS rate for a single mesh size, as before divide the total
number of floating point operations by the associated execution time. For the
parallel versions, the total number of floating point operations is the sum of FPcom,
FPint, and FPpar, see equation (3.24). Table 3.11 lists the actual MFLOPS rates
for the MP 1101 and MP 1208, which are illustrated in figure 3.23.

MFLOPSpar =
FPcom + FPint + FPpar

Execution Time
(3.24)
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Table 3.9: Variables Associated with Node MP 1101

Nas Nlayers FSpe LPe LPpe FPpar
1×103 1 1.2838×105 9.92 ×102 4.9751×105 1.0017×107

8×103 8 1.0285×106 6.792 ×103 3.9847×106 8.0185×107

27×103 27 3.4716×106 2.2706×104 1.3450×107 2.7064×108

64×103 63 8.2297×106 4.9731×104 3.1883×107 6.4149×108

125×103 123 1.6074×107 8.9358×104 6.2271×107 1.2528×109

216×103 211 2.7776×107 1.4488×105 1.0761×108 2.1648×109

343×103 335 4.4108×107 2.2131×105 1.7088×108 3.4376×109

512×103 500 6.5840×107 3.1976×105 2.5507×108 5.1312×109

729×103 712 9.3746×107 4.5065×105 3.6318×108 7.3059×109

1×106 977 1.2860×108 6.1048×105 4.9818×108 1.0022×1010

Table 3.10: Variables Associated with MP 1208

Nas Nlayers FSpe LPe LPpe FPpar
1×103 1 1.2838×105 9.92 ×102 4.9751×105 1.0017×107

8×103 1 1.0285×106 9.92 ×102 3.9847×106 8.0114×107

27×103 4 3.4716×106 3.516 ×103 1.3450×107 2.7040×108

64×103 8 8.2297×106 6.924 ×103 3.1883×107 6.4096×108

125×103 16 1.6074×107 1.3685×104 6.2271×107 1.2519×109

216×103 27 2.7776×107 2.3049×104 1.0761×108 2.1633×109

343×103 42 441078×107 3.5824×104 1.7088×108 3.4352×109

512×103 63 658404×107 5.3618×104 2.5507×108 5.1278×109

729×103 89 937459×107 7.5868×104 3.6318×108 7.3011×109

1×106 123 128595×108 1.0316×105 4.9818×108 1.0015×1010
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Table 3.11: Floating Point Rate – Parallel Versions

Mesh Size MP 1101 MP 1208

Nb Nas FPtotal FLOP Rate FPtotal FLOP Rate
10 1×103 1.0088×107 4.9860×106 1.0088×107 4.9003×106

20 8×103 8.0255×107 7.1913×106 8.0184×107 3.8513×107

30 27×103 2.7071×108 7.4702×106 2.7047×108 4.4272×107

40 64×103 6.4156×108 8.1371×106 6.4103×108 5.5478×107

50 125×103 1.2529×109 8.7083×106 1.2520×109 5.5934×107

60 216×103 2.1649×109 9.1481×106 2.1633×109 5.8009×107

70 343×103 3.4376×109 9.4258×106 3.4353×109 5.9862×107

80 512×103 5.1312×109 9.6653×106 5.1279×109 5.9800×107

90 729×103 7.3059×109 9.7406×106 7.3012×109 6.0259×107

100 1×106 1.0022×1010 9.8330×106 1.0015×1010 6.0694×107
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Figure 3.23: Floating Point Rate for Small Sphere
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Review of Contribution from Square Root Function

As promised earlier, we will show that the number of floating point operations
associated with our use of the square root function is insignificant in comparison
to the total number of floating point operations that are actually performed. In
examining the previous equations it is seen that the following equation correctly
gives the total number of times the square root function is called in each of the
implementations.

CALLSsqrt = 1 + 3Nf

Given that each call to the square root function corresponds to FPsqrt floating
point operations, we can say that our use of the square root function corresponds
to this many floating point operations.

FPtot sqrt = (1 + 3Nf ) FPsqrt

Further given that for the small sphere that Nf = 256 and assuming that
FPsqrt = 50, then FPtot sqrt = 38450 floating point operations. This total is less
than 0.4% of the total number of floating point operations performed for even the
smallest mesh size that we considered. For larger mesh sizes, the contribution from
our use of the square root function is even less significant.

Summary of MFLOPS Performance

In comparing the MFLOPS rates of the parallel versions with the serial versions,
it should be very clear that while the parallel version does perform slightly fewer
double precision floating point operations, the parallel version performs floating
point operations much faster than the serial version. In fact the comparisons are
remarkably similar to the speed-up curves. While encouraging, what really should
be catching the reader’s eye is how small the MFLOPS rates really are! For instance
the program we used to examine the square root function indicated a FLOP rate
of 8.46× 106, which is significantly larger than the performance of approximately
1.5 × 106 that we observed with the serial mesh generators. Likewise, MasPar
claims that a MP 1101 should have a peak double precision floating point rate of
34 MFLOPS, and a MP 1208 should have a peak double precision floating point
rate of 275 MFLOPS. For a large mesh we observed the MP 1101 having a floating
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point rate of 10 MFLOPS and the MP 1208 at 60 MFLOPS. The point being made
is that there is an apparent discrepancy here.

To understand this apparent discrepancy we must review a statement that was
made earlier. While these implementations do perform floating point operations,
it is NOT the goal of these implementations to only perform such operations. In a
sense in reviewing the algorithm, floating point operations amount to the necessary
drudgery that needs to be performed before solving the problem. Recall that the
parity count method is really based on the principle of counting an integer number
of intersections. Recall that in section 1.7.5, it was stated that the use of MFLOPS
as an absolute performance metric is only valid if it is the sole purpose of a program
to perform floating point operations.

While in this situation the use of MFLOPS does not make sense as an absolute
measure of performance, we can use it as a relative measure of performance to
compare similar implementations. This point will be discussed again in section 3.8.
The point being made can be presented in another fashion; We have shown that
there are other methods of performing the necessary drudgery of floating point
operations, such algorithms use fewer floating point operations than our algorithm.
The point is that the use of a relative performance metric has no meaning in
comparing implementations based on very different algorithms.

3.8 Performance Summary

There are two goals of our performance analysis. The first goal is to show how
efficiently the hardware platform is being used. The second goal is to show how
effectively the implementation actually solves the problem. While these two goals
are often seen as being linked, this is not necessarily the case. It is a simple matter
to write a program that will effectively make full use of computer hardware, yet
produce no useful results. Thus, in reviewing each of the performance metrics, we
will consider each of these goals.

The speed-up curves clearly shows that the parallel implementation is much
faster than the serial implementation, but the speed-up curves do not provide a
clear indication of how effectively hardware is being used. Since the MP 1208 has
eight times as many PEs as the MP 1101, we might hope for a speed-up of eight
times between the two machines. For a large mesh size a speed-up of approximately
six was actually seen, thus we might be led to the qualitative conclusion that node
MP 1208 is not being used as effectively as it could be. Clearly in this situation a
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more quantitative conclusion is desired. Lastly, while the speed up curves clearly
state that the parallel code more effectively generates a mesh than the serial code,
the speed-up curves do not provide an absolute indicator of what the performance
really is.

The PE use figures are useful as they provide insight into how effectively the
hardware is being used. The idea of PE usage statistics is fundamental in an array
processor as the available compute power is primarily related to the number of
PEs that are involved in computation. While PE use figures do provide insight
into how well the hardware is being used, the metric does not provide a very clear
understanding of how effectively a mesh is actually being generated.

It was hoped that a determination of the MFLOPS rate would provide an in-
dication of how effectively meshes are being produced. In floating point intensive
type problems, the primary goal is typically limited to the need to quickly per-
form floating point operations, so naturally a performance metric like MFLOPS is
useful. The whole point of the MFLOPS metric is to tell you how often floating
point operations are actually being performed. Unfortunately, characteristics of
the mesh generation algorithm make it pointless to use MFLOPS as an absolute
indicator of how effectively a mesh is being produced.

First and foremost, while the mesh generation algorithm we selected does per-
form floating point operations, a large part of the algorithm involves the manipula-
tion of binary data. Floating point operations are needed primarily to make deci-
sions regarding whether certain binary counters should be incremented or whether
certain flags should be set or cleared. A large part of the algorithm is involved in
manipulating those flags and counters. Consider further that if we had selected
a more effective facet solver, it would most likely use fewer floating point opera-
tions than our current algorithm. While the use of MFLOPS allows us to see that
the parallel implementation is much faster than the serial implementation, it is
important to realize in this instance that the use of MFLOPS does not provide a
meaningful indication of how fast meshes are actually being produced.

3.8.1 An Alternative Metric

To provide an absolute indicator of how quickly meshes are being generated, a
unique metric was devised. Since it is known from the complexity analysis that
the execution time is proportional to the product of the number of facets in a solid
file and the number of mesh boxes in the resultant mesh, a unique metric was
based on this knowledge. The metric is called, mesh boxes per facet second, and
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describes the efficiency at with a mesh is produced. For a given mesh size, simply
divide the total number of mesh boxes in the mesh by the product of the execution
time and the number of facets in the associated solid file. While the metric does
have some dependence upon the problem geometry, by dividing by the number
of facets, it should be possible to compare the metric for meshes generated from
different solid files.

The justification for this metric is very simple, just as compilers rate perfor-
mance in terms of lines of source code compiled per second, it is useful to charac-
terize the rate at which mesh boxes are generated. For the case of the small sphere
there were 256 facets in the associated solid file. See figure 3.24 for a graph of the
metric for various mesh sizes.
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Figure 3.24: Absolute Performance Metric

It should be clear in examining figure 3.24 that there is not much of a difference
in performance between the two serial implementations. While the boxes per facet
second performance metric may at first just appear to resemble other performance
metrics that we have considered, the real value in this metric is that it should allow
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us to compare in a very reasonable way, the performance of this implementation
with other orthogonal mesh generators.

3.9 Summary

Both the serial and parallel implementations of the orthogonal mesh generator
were presented. Important details such as transferring data to the DPU and data
from the DPU, the mapping, the allocation of memory were introduced. The issue
of time complexity was reviewed, this time as a parallel algorithm. Performance
was examined by considering execution time, speed-up, the rate of performing
floating point operations, the processor element use figure, and the rate at which
mesh boxes were generated. For this type of algorithm we found that the proces-
sor use figure due to branching played an important role in describing how the
implementation scales with PE array size. By examining the data, it appears that
for moderately sized meshes, the front end consumes a very small amount of the
overall execution time. Thus it appears that with this algorithm the asynchronous
process model would offer an almost no improvement in performance.



Chapter 4

FDTD Algorithm

This chapter introduces the finite difference time domain technique as an algorithm
that could be implemented on nearly any workstation. Important topics associated
with FDTD analysis are first introduced. Practical issues associated with the
actual use of the FDTD method are discussed as well. By allowing a magnetic
loss term into the FDTD equations, materials can be modeled that allow for the
development of a simple absorbing boundary condition that is uniquely suited
for parallel computation. A derivation of suitable discrete difference equations is
presented in Appendix E. The last section of this chapter formally presents the
FDTD method as an algorithm.

4.1 FDTD Topics

This section introduces basic topics associated with FDTD analysis, starting with
the FDTD mesh. The Yee Cell is introduced along with a description of its impli-
cations, especially the handling of materials and the reporting of field components.
Central to FDTD analysis is the idea of time step leap-frogging which is explained.
Lastly, the topic of FDTD stability is introduced.

4.1.1 Mesh Topics

In the following, we first review some ideas associated with the orthogonal mesh.
While these topics were first presented in chapter 2, they are are presented again

172
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here for the convenience of readers who may be less interested in the mesh gener-
ation algorithm. Readers already familiar with this material may wish to skip to
section 4.1.2 on page 175.

First we show how to define a bounding box. A bounding box having edges
parallel to the coordinate axes is easily defined by interpreting Pmax and Pmin to
be the extreme points on a diagonal. Figure 4.1 is an illustration of a bounding
box.

Z
Y

X

maxP

minP

Figure 4.1: Three Dimensional Mesh Bounding Box

To form a mesh, along each edge of the bounding box place equally spaced
marks to form brick shaped subdivisions that we call cells or boxes. There are
Nx, Ny, and Nz subdivisions along each edge corresponding to the x, y and z

coordinate axes. It will be noted that marks placed along each respective edge of
the bounding box are spaced apart a distance ∆x, ∆y and ∆z, corresponding to;

∆x =
Pmaxx − Pminx

Nx

∆y =
Pmaxy − Pminy

Ny

∆z =
Pmaxz − Pminz

Nz

Points in the mesh can be associated with a unique index that can be expressed
as an ordered triple of positive integer values. Note that i, j, and k are integers
that correspond to real values x, y and z in the conventional right handed three
dimensional coordinate system.

INDEX = [i, j, k]
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Each index is valid in each of the following sequences. It is important to point
out that while a bounding box edge parallel to the x axis has Nx divisions, for
example, these subdivisions were formed between Nx + 1 marks placed on that
edge.

i = 0, 1, 2, . . . , Nx

j = 0, 1, 2, . . . , Ny

k = 0, 1, 2, . . . , Nz

The square braces associated with an index imply that the ordered triple is com-
posed of integers rather than real physical dimensions. Also, parenthesis imply real
physical coordinates. To determine the physical location (x, y, z) corresponding to
[i, j, k], we use the following formula:

LOCATION = (x, y, z)

x = i∆x+ Pminx

y = i∆y + Pminy

z = i∆z + Pminz

Given a brick shaped box, the corner with the smallest coordinate values (x, y, z)
is called the mesh box corner. The significance of a mesh box corner is that it is
the point that we use to reference any given box in the mesh. Since each box has
a unique mesh box corner, each box must be uniquely identified by specifying a
set of index values, [i, j, k]. Given that there are Nx, Ny, and Nz mesh boxes along
each respective axis, when referencing mesh boxes inside the mesh, index values
are valid on the following sequences.

i = 0, 1, 2, . . . , Nx − 1
j = 0, 1, 2, . . . , Ny − 1
k = 0, 1, 2, . . . , Nz − 1

(4.1)
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4.1.2 The Yee Cell

Rather than defining all electric and magnetic fields at individual points in space,
the Yee Cell distributes electromagnetic field components in a manner that makes
the application of the discrete form of Maxwell’s equations rather simple. The Yee
Cell is presented graphically in figure 4.2. In the Yee Cell, electric field components
are distributed along the edges such that each edge is parallel to the assigned
component. Magnetic field components are defined to be normal and in the center
of the cell faces.

Ex

Ey

Hy

Hz

Hx

[i,j,k]

X

Y

Z

Ez

Marks  the  Mesh
Box  Corner

Figure 4.2: Three Dimensional Yee Cell

A standard notation is used to refer to field components in the mesh. This
notation is similar to that used by Taflove and Umashankar[64]. The terms i,
j, and k are simply index terms, as opposed to x, y, and z which correspond to
real physical dimensions. This notation was selected as it should improve the
readability of equations.

Ex(x+ 1
2
∆x, y, z) ⇔ Ex[i, j, k]

Ey(x, y +
1
2
∆y, z) ⇔ Ey[i, j, k]

Ez(x, y, z +
1
2
∆z) ⇔ Ez[i, j, k]

Hx(x, y +
1
2
∆y, z + 1

2
∆z) ⇔ Hx[i, j, k]

Hy(x+ 1
2
∆x, y, z + 1

2
∆z) ⇔ Hy[i, j, k]

Hz(x+ 1
2
∆x, y + 1

2
∆y, z) ⇔ Hz[i, j, k]



CHAPTER 4. FDTD ALGORITHM 176

A good mental tool that can be used to keep track of this use of notation is to
think of a named component as referencing a field component, of the Yee Cell in
the mesh box marked by mesh box corner [i, j, k]. For example, Ex[1, 2, 3] refers
to the Ex component in the Yee Cell associated with mesh box [1, 2, 3].

Material Handler

While each mesh box is defined to have certain material properties, the Yee Cell
defines the electric and magnetic fields as being located on the surfaces of mesh
boxes. What this implies is that at the interfaces between mesh boxes, some
mechanism is needed to properly handle material properties. To more fully un-
derstand what is being described, see figure 4.3 which illustrates a cross section
of the interface between materials ‘A’, ‘B’, ‘C’, and ‘D’. To be able to determine
the field components, we must be able to define the material properties where field
components are actually located.

Hz xzHExE E

X Y

Z
Exx zH

Material ‘B’

Material ‘A’Material ‘A’

Material ‘B’

Material ‘C’

Material ‘D’

Figure 4.3: Interface Between Materials

Since field components are defined to be at interfaces between mesh cells, some
means of determining the material properties at the interfaces between mesh cells
is required. If adjacent mesh cells have identical material properties, then there is
no question as to what material property to assign. If however, there is a difference
in material properties between mesh cells, then a material discontinuity is said to
exist. To handle such a situation, Li, Tassoudji, Shin, and J. Kong[29] suggest that
we assign material properties at nodes by taking the algebraic average of adjacent
mesh cells.

Since magnetic field components are centered between mesh boxes, to estimate
the material properties required to update a given magnetic field component, we
must average two materials. For example in figure 4.3, the magnetic permeability
µz[i, j, k] is one of the material properties that we use to update magnetic field
component Hz [i, j, k]. In reviewing figure 4.2, it should be clear that to determine
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the value of the needed magnetic permeability, the following applies;

µz [i, j, k] =
1

2
(µzz [i, j, k] + µzz [i, j, k− 1])

While µzz [·] refers to the z axis permeability assigned to each mesh cell, it is
µz[·] that is actually associated with updating Hz [·]. For isotropic materials we
can state that;

µxx[i, j, k] = µyy [i, j, k] = µzz [i, j, k] = µ[i, j, k]

While in most cases we will be using isotropic materials, it is important to
remember that nodal properties are associated with the averages of the properties
of adjacent mesh cells. Thus in general, even for isotropic materials:

µx[i, j, k] �= µy[i, j, k] �= µz[i, j, k]

We handle the material properties associated with updating the electric fields
in a similar fashion. Electric field components are located on the edges of the Yee
Cell, thus each electric field component is centered between four mesh boxes. To
estimate the material properties needed to update a given electric field component,
we must average four materials. For example, in figure 4.3, the electric permittivity
εx[i, j, k] is one of the material properties needed to update Ex[i, j, k]. In reviewing
figure 4.2, it should be clear that to determine the needed permittivity value, the
following applies;

εx[i, j, k] =
1
4
( εxx[i, j, k] + εxx[i, j − 1, k]+

εxx[i, j, k− 1] + εxx[i, j − 1, k − 1])

Remember that while εxx[·] corresponds to a material property associated with
each mesh cell, it is εx[·] that is actually associated with updating Ex[i, j, k]. The
remaining material properties are presented in section 4.3 are handled in a similar
fashion.

Estimating Components

While the Yee Cell simplifies the application of the discrete form of Maxwell’s
equations, it complicates the reporting of meaningful data. What we want to report
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to the user is the electric and magnetic field components at the points [i, j, k], as
defined in section 4.1.1. The problem is that while electric and magnetic field
components are defined in the Yee Cell, they are distributed about the cell.

In examining the mesh closer, we can see that it is possible to estimate the elec-
tric and magnetic field components at the mesh box corners, by averaging adjacent
field components. Figure 4.4 shows that to estimate electric field components at a
point, we can average the electric field components along the edges that intersect
that point. Note that the use of the hat symbol is meant to imply two things, first
that the associated variable is estimated, and second that the estimate is located
at the point [i, j, k].

Êx[i, j, k] =
1

2
(Ex[i, j, k] + Ex[i− 1, j, k])

Êy[i, j, k] =
1

2
(Ey[i, j, k] + Ey[i, j − 1, k])

Êz[i, j, k] =
1

2
(Ez[i, j, k] + Ez[i, j, k − 1])

X

Y

E

[i, j, k-1]

Z

y

[i, j, k]

E

[i-1, j, k]

z

E [i, j, k]

z

Ex [i, j, k]

Ey [i, j-1, k]

xE

Point   [i, j, k]

Figure 4.4: Estimating E Field Components

In a similar fashion, magnetic fields are estimated by averaging the four magnetic
field components that surround a point. Figure 4.5 shows how point [i, j, k] is
surrounded by four Hx components. The situation is similar for the other magnetic
field components. Lastly, to estimate components on the boundary surface requires
special handling that is discussed further in section 4.4.2.

Ĥx[i, j, k] =
1

4
(Hx[i, j, k] +Hx[i, j − 1, k] +Hx[i, j, k − 1] +Hx[i, j − 1, k − 1])
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Ĥy[i, j, k] =
1

4
(Hy[i, j, k] +Hy[i− 1, j, k] +Hy[i, j, k− 1] +Hy[i, j − 1, k − 1])

Ĥz[i, j, k] =
1

4
(Hz[i, j, k] +Hz[i− 1, j, k] +Hz[i, j − 1, k] +Hz [i− 1, j − 1, k])

Hx[i, j, k-1]

H

Hx[i, j, k]

x[i, j-1, k-1][i, j, k]
Point

Hx[i, j-1, k]
Z

Y

X

Figure 4.5: Estimating Hx Field Component

4.1.3 Time Stepping

To indicate time, Yee’s[67] use of a superscript is used. The superscript n is related
to time t by the following equation. The variable ∆t is referred to as the time-step
size.

t = n ∆t

In the FDTD method, electric field values are only defined at whole number
time steps, while magnetic field values are defined only at half time steps. Thus
relative to time step n, two arbitrary electric field values can be expressed as;

En[i, j, k] and En+1[i, j, k]

Likewise, relative to time step n, two magnetic field values can be expressed as;

Hn+1
2 [i, j, k] and Hn−1

2 [i, j, k]

The benefit of defining electric and magnetic field components in this way in
regards to time is that it allows electric and magnetic field component updates in
a FDTD analysis to be interlaced in time. Electric field values are first calculated
at each time step, then the magnetic field values are calculated at half time steps.
Figure 4.6 provides an illustration of why the term leap-frogging is commonly
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n + 5/2

E

H

E E

H H

Time = n n + 1/2 n + 1 n + 3/2 n + 2

Figure 4.6: Time Step Leap-Frogging

used. Note that in updating a field component, only past electric and magnetic
field components are required.

In cases where an electric field value is needed at a half time step, a value
can be approximated by averaging electric field values between whole time steps.
Likewise, in cases where a magnetic field value is needed at a whole time step, a
value can be approximated by averaging magnetic field values between half time
steps.

4.1.4 Stability and Accuracy

Since the primary goal of this thesis is to introduce a unique new implementation of
the well known FDTD technique, rather than justify the FDTD technique, it seems
appropriate that this section should simply introduce the reader to some basic
guidelines regarding stability and accuracy of the FDTD technique. Regarding
stability for an isotropic FDTD analysis, most authors refer to a paper by Taflove
and Brodwin[62], which provides a derivation of the Courant criterion. According
to Taflove and Brodwin, for a FDTD analysis based on central differencing to
remain stable the following mathematical statement must be true;

vmax∆t ≤ ((∆x)−2 + (∆y)−2 + (∆z)−2)−
1
2

Where vmax is the maximum wave phase velocity expected in the model, ∆t is the
time step size, ∆x, ∆y, and ∆z refer to the mesh discretization size along each
coordinate axis. For a simple implementation where cube shaped mesh cells are
used,

∆x = ∆y = ∆z = δ



CHAPTER 4. FDTD ALGORITHM 181

thus the stability criterion can be restated as;

vmax ∆t ≤
δ
√
3

The choice of the mesh density and the time step size is motivated by the need
for analysis stability as well as accuracy. According to Li, Tassoudji, Shin and
Kong[29], in general the length of an edge of a mesh cell must be a small fraction
(∼ 1

10
) of either the smallest wavelength in any media expected in the model or the

smallest dimension of an object being modeled. For a detailed discussion on the
topic of stability and FDTD accuracy conditions, the reader is referred to Bayliss,
Goldstein and Turkel[6], Petropoulos[45], as well as Taflove and Umashankar[64].

In one sense, these requirements are analogous to Nyquist’s criterion which is
well known in digital signal processing. Nyquist’s criterion states that the sampling
interval must be less than half the period of the highest frequency component of
the signal being sampled. The way that the Yee cell defines field components at
specific places in a mesh corresponds to discrete sample locations. Also the size of
a mesh box corresponds to the discrete spatial sampling interval. The whole point
of the stability criterion and requirements for accuracy is that a wave be must large
in comparison to any individual mesh cell and that the distance an electromagnetic
wave travels in one unit of time must be small relative to individual mesh cells.

The stability criterion sets a minimum limit in the relationship between the time
step size, mesh cell size, and propagation speed. Likewise the need for accuracy
sets a limiting relationship between the quality of results and the overall mesh
size. While this discussion may seem to be purely academic at this point, it will
be revisited in the next chapter when the topic of memory allocation is discussed
for the FDTD implementation.

4.2 Frequency Domain Analysis

While the FDTD method is conducted in the time domain, it has become standard
practice to take samples from fixed locations in a FDTD mesh, and use a Fast
Fourier Transform to post process the results. Oppenheim and Schafer[42] provide
a clear introduction to the concept of the Fast Fourier Transform algorithm. Such
post processing allows for the estimation of scattering parameters and feed-point
impedance of a FDTD model over a wide range of frequencies. Zhang and Mei[68]
as well as Sheen, Ali, Abouzahra, and Kong[56] present the details on how such an
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analysis is performed. In a few instances we used these techniques to post-process
the results from our research.

4.3 Finite Difference Equations

This section introduces the equations used to derive the finite difference equations
used to perform the FDTD method. Note that since this chapter is supposed
to present an algorithm, rather than including the derivation of FDTD equations
here, the derivation is presented in appendix E. This section only goes so far as
to present the general form of the finite difference equations. The equations we
use apply to three dimensional space and assume linear materials in a source-less
region. Further, all variables are real valued.

According to Li, Tassoudji, Shin and Kong[29] Maxwell’s divergence equations
are always satisfied in the FDTD scheme by ensuring that initial and boundary
conditions are correctly applied. Thus the actual difference equations are based
solely upon Maxwell’s curl equations and the constitutive relations which have
already been applied.

∇× �H = ε
∂ �E

∂t
+ σ �E (4.2)

∇× �E = −µ
∂ �H

∂t
− σm �H (4.3)

Using the MKS system of units, table 4.1 summarizes the variables that are
central to Maxwell’s Equations. Note that except for the term σm which is fictitious,
the remaining terms in this presentation of Maxwell’s curl equations should be
familiar. Li, Tassoudji, Shin and Kong[29] use these same equations and identical
notation. Taflove and Umashankar[64] use these same equations but only with
slightly different notation. Taflove and Umashankar explain that the term σm
is provided to yield symmetric curl equations and to allow for the possibility of a
magnetic loss mechanism. They refer to this loss mechanism as equivalent magnetic
resistivity, see page 293 of their book. Note however that since we follow the
notation from Li et al[29], we will be consistent with their use and refer to this loss
mechanism as magnetic conductivity. While the magnetic loss term σm is fictitious,
its use will allow us to develop a simple material that can be used immediately
to render an effective absorbing boundary condition. The details of this special
material are presented in section 4.5.
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Table 4.1: Terms in Maxwell’s Equations

Term Description Units
�E – Electric Field Intensity – Volts / Meter
�H – Magnetic Field Intensity – Amperes / Meter
ε – Electric Permittivity – Farads / Meter
µ – Magnetic Permeability – Henrys / Meter
σ – Electric Conductivity – Siemens / Meter
σm – Magnetic Conductivity – Ohms / Meter

As you will see in examining the derivation in appendix E, from an algorithmic
point of view, equations used to update electric fields, or update magnetic field
values look very similar and generally fit the following general form;

F new = KF& · F
previous +KFc

(
Gprevious

b+ −Gprevious

b−

∆a
−

Gprevious

a+ −Gprevious

a−

∆b

)

The terms KF& and KFc can be thought of as proportionality constants. The
letter F that is part of the names KF& and KFc, indicates a symbolic association
with the variable F. The variable F is either an electric (E) or a magnetic field (H)
component in the Yee Cell. The variables ∆a, ∆b, and ∆c are mesh discretization
dimensions that correspond to ∆x, ∆y, and ∆z, but not necessarily in that order.
The remaining terms are the field components, either electric or magnetic that are
needed to perform the given update.

Two sets of equations similar to this generic form are used to perform the
field updates. One set of equations updates electric field components, the other
set updates magnetic field components. In the derivation of the actual difference
equations, the reader should keep this general form in mind.

4.4 Mesh Boundaries

In the following, the handling of mesh boundaries is examined. From algorithmic
as well as implementation viewpoints, our interest in mesh boundaries is moti-
vated by the fact that a FDTD mesh must be finite in size. While the form of the
finite difference equations presented in section 4.3 assumes an infinite space, we
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must remember that all computers have finite memory. Unfortunately, the finite
difference equations will not allow us to simply “chop up” a theoretically infinite
mesh, to produce a finite size mesh. For the finite difference equations to remain
valid, special handling is needed near those places where the FDTD mesh will end.
(i.e. near the surfaces of the bounding box.) We first consider some practical as-
pects of mesh boundaries, next we consider the modeling of certain mesh boundary
conditions.

4.4.1 Practical Mesh Boundaries

This section addresses some practical aspects of mesh boundaries. While the mesh
concepts presented in section 4.1.1 and the idea of the Yee Cell presented in sec-
tion 4.1.2 makes sense from a conceptual standpoint, only a small amount of
thoughtful reflection is needed to realize that these concepts do not provide a
fully useful explanation of what mesh boundaries really are, or what the FDTD
mesh really is. Since this section discusses boundaries, this is the most appropriate
place to discuss such an issue in detail.

In examining the Yee Cell illustrated in figure 4.2, we can see that the Yee Cell
defines electric field components on only three edges of the mesh box and that
magnetic field components are defined only on three surfaces of the mesh box.
Note however that when Yee Cells are placed side by side, and on top of each
other, the Yee Cells actually “fill in” a three dimensional space. What this means
is that all of the needed electric and magnetic field components in the interior of
the mesh are properly defined. Figure 4.3 should help give the reader some sense
of this point. While all this should make sense, the attentive reader will ask, “But
what about the north, east and top surfaces of the of the bounding box, are electric
and magnetic field components defined there?” For the reasons presented next,
the answer to this question is ‘yes’.

The FDTD algorithm was written for this application to allow the mesh to be
augmented. The variable offset_pos defines the number of mesh layers that are
added to the north, east, and top sides of the mesh. In the current implementation,
offset_pos is defined to be one. Thus the actual mesh that we use in the FDTD
analysis, referred to as the augmented mesh has more mesh boxes than the mesh
produced by the mesh generator code. We refer to the mesh produced by the mesh
generator as being the standard mesh. To be able to reference mesh boxes that are
outside the standard mesh, but inside the augmented mesh, we will have to be able
to use index values that are outside the sequences given by equation (4.1). Thus
for mesh boxes in the augmented mesh, index values are valid on the following
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sequences;
i = 0, 1, 2, . . . , Nx
j = 0, 1, 2, . . . , Ny
k = 0, 1, 2, . . . , Nz

(4.4)

The variable offset_neg defines the number of mesh layers that are to be
added to the west, south, and bottom sides of the standard mesh. In the current
implementation, offset_neg is defined to be zero, and because of this we will
not be concerned with offset_neg. Figure 4.7 illustrates a 2x2x2 standard mesh,
along with the additional layers needed to form a 3x3x3 augmented mesh.

north

Augmented  Layers

east

up

X

Z

Y
Standard Mesh

Figure 4.7: Construction of Augmented Mesh

Figure 4.8 provides an illustration of the cross section of an augmented mesh,
along with electric field components from the associated Yee Cells. In this illus-
tration the cross section of the standard mesh (shaded) has 3 columns and 2 rows,
thus the overall cross section of the augmented mesh has 4 columns and 3 rows.
Note that in the augmented layers, only the electric field components against the
standard mesh are shown, this illustrates the fact that in the augmented layers of
the mesh, we only use the electric and magnetic field components that are against
the east, north, and top of the standard mesh. What we call the FDTD mesh
is actually the Yee Cells in the standard mesh, along with the parts from the
augmented layers that we need to define the boundary conditions.

To summarize, the need for an augmented mesh is that it allows us to define
electric and magnetic field components where we need them on the boundaries.
While this section does provide a slight taste of the implementation, the next
chapter dives far deeper into the implementation.
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Figure 4.8: Augmented Mesh with Standard Mesh Shaded

Estimating Components Along the Mesh Boundary

For situations where a mesh point is on the boundary surface of the FDTD mesh,
it is not possible to use the equations presented in section 4.1.2, (page 177), for
estimating field components, because points needed to perform the equations lie
outside the FDTD mesh and are thus undefined. To handle the situation, the field
estimation equations are modified to average only those field components that are
available. In instances where only one electric field component is available, that
component will be taken as the estimate. In instances where only two magnetic
field components are available, the average of the two components will be used
as the estimate. Lastly in instances where only one magnetic field component is
available, it will be used as the estimate.

Handling Materials Along the Mesh Boundary

For situations where an edge of a Yee Cell is on the boundary surface of the FDTD
mesh, it is not possible to use the equations presented in section 4.1.2, (page 176)
for averaging material properties, because material properties needed lie outside
the mesh and are thus undefined. To handle the situation, material properties
associated with magnetic field updates that are available will be used. Instances
in which the material properties associated with electric field updates exist only in
one adjacent Yee Cell, the average will be used, otherwise the available property
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will be used.

4.4.2 Boundary Conditions

By handling field components along the mesh boundaries in certain ways, we will
model certain electromagnetic phenomena associated with surfaces. The handling
of field components along the mesh boundary forces neighboring field components
to behave as is if there were actually a surface along the boundary of the mesh. For
example we can model the effect of a perfectly conductive metal surface. Because
a special handler separate from the FDTD difference equations is directly manipu-
lating field components, we use the phrase applied boundary condition to describe
the handling of the mesh boundary conditions. In a sense we handle boundary
conditions by “applying” specific field values directly to the mesh.

In the following sections we will introduce several methods of handling mesh
and spatial boundaries by first describing the effect that each method models. Li,
Tassoudji, Shin and Kong[29] provide a meaningful explanation of PEC as well as
PMC boundary conditions, their paper is cited as a reference for those two topics.

PEC Boundary Conditions

The term PEC is an acronym for perfect electric conductor, and is used to model
a perfectly conductive metal surface. It is interesting to note that what Kane
Yee[67] referred to as a perfectly conducting surface in his seminal paper, is what
we refer to as PEC boundary conditions. The boundary conditions at a perfect
electric conductor are such that the electric field components tangential to the
surface must be zero, stated mathematically where �n is a surface normal vector;

�n × �E = 0

By examining the Yee Cell in figure 4.2, it should be clear that the electric
fields calculated at points on the surface of a perfect electric conductor are always
tangential to the surface. Thus by using the Yee Cell in the finite difference
time domain scheme, the boundary condition at the surface of a perfect electric
conductor can be satisfied by simply setting these electric field components equal
to zero at every time step.

In addition to being used on the boundaries of the FDTD mesh, PEC type
conditions can be assigned to the surface of Yee Cells that are inside the mesh. The
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use of PEC surfaces inside the mesh allows us to model perfectly conductive metal
surfaces of minute thickness. The use of such conditions helps in the modeling of
strip-lines and other such structures.

PMC Boundary Conditions

The term PMC refers to a perfect magnetic conductor. The boundary conditions
at a perfect magnetic conductor are such that the magnetic field components tan-
gential to the surface must be zero, or rather;

�n× �H = 0

It should be clear by looking at figure 4.2 that on the surface of a Yee Cell, there
are no tangential magnetic fields specified. To handle this situation, Li, Tassoudji,
Shin and Kong recommend use of the image method. As we shall see, using the
image method implies a certain restriction. Shen and Kong[57] provide a clear
introduction to the image method. Unlike the typical application to electrostatics,
but like magnetostatics we apply the image method to discrete magnetic field
components. Figure 4.9 part (a) illustrates the interface between media and a
perfect magnetic conductor. Part (b) is an illustration of the image problem. The

x Ex Ex Z
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X
EEx

(b) Image Problem(a) PMC Material Shaded

H H H H

-H-H

Z1 Z1 Z2Z2

Z1 Z2

Boundary
Dashed

Point [i, j, k]

Figure 4.9: PMC Boundary Conditions

image problem is easily solved by inspection, clearly the phantom image fields take
on values opposite the values of corresponding field values in the media. In doing
so if we were to estimate the magnetic field tangent to the PMC boundary at point
[i, j, k], (See section 4.1.2 on page 177.) we would average adjacent magnetic field
values. Since the effective adjacent field values are opposite, the average must be
zero.

PMC surfaces are often used in the modeling of a symmetric region. The idea
is that if a model and its excitation can be shown to be symmetric about a given
surface, then instead of simulating the whole model, it is only necessary to simulate
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one of the symmetric parts of the model. Thus by symmetry, we can realize a sig-
nificant savings in computer resources (time, computer memory, data storage) and
will be able to simulate a model that would not otherwise fit into the computer‘s
memory.

By now the reader may have an idea as to the restriction implied by the image
method. Note the image method implies a sense of image sides, that is, there is
an in-side and a phantom image side. This sense of image sides does not present
a problem if we wish to make a surface associated with the mesh bounding box
appear as a perfect magnetic conductor. Clearly the mesh bounding box has an
associated inside and outside, thus there is no question as to how to solve the
image problem. A problem arises if a user were to wish having a PMC boundary
associated with an arbitrary object placed inside the mesh bounding box. Such
a PMC boundary would be presumed to be of minute thickness. Because of the
problem of image sides, it is unclear how to solve the image problem inside the
FDTD mesh. Thus, PMC boundaries are to be restricted to the mesh bounding box
surface. For future work it may be worthwhile to consider how PMC boundaries
could be implemented in the interior of the mesh bounding box.

Absorbing Boundary Conditions

Absorbing boundary conditions (ABCs) are supposed to allow the modeling of
fields in an unbounded region. Such modeling is particularly useful for examining
the free space characteristics of antennas. We considered two kinds of ABCs,
the first is an applied boundary condition, the second is based on the idea of an
impedance matched material placed inside the mesh. We consider applied ABCs
first.

The principle behind applied ABCs is that by using some function to estimate
what the electric field components should be on the surface of the mesh boundary,
electromagnetic fields should appear to be “absorbed” into the boundary surface.
As a simple example, Taflove and Brodwin[62] presented an applied ABC that
works by averaging adjacent electric field components inside the mesh. Clearly,
in developing an applied ABC, a fundamental decision is deciding which function
should be used to model the ABC.

We considered Mur’s[41] second approximation to absorbing boundary condi-
tions. Taflove and Umashankar[64] indicate that Mur’s second approximation to
absorbing boundary conditions is based on the two term Taylor series expansion of
radiation boundary conditions (RBCs). Mur refers to Engquist and Majda[13] as
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presenting a similar ABC. We selected Mur’s second approximation as we wanted
an ABC that would fulfill a range of general uses. According to Mur, “The second
and higher approximations are less subject to reflection problems, especially for
fields grazing the outer boundary. . . ” We anticipated that an ABC suitable for
general use should be able to handle such grazing fields.

As an alternative to applied ABCs, we considered an absorbing boundary con-
dition based on the idea of an impedance matched lossy material (MABC) that
we place inside the mesh. This is not an applied absorbing boundary condition in
the same sense as any applied ABC, but is incorporated with PEC type boundary
conditions. The absorbing material is simply placed in layers against the PEC
boundary surface, see figure 4.10. Section 4.5 presents a discussion of the material
in some detail.

Absorbing Layers

Free  Space

PEC  Boundary

Figure 4.10: Matched Absorbing Boundary Conditions (MABC)

The use of lossy material to model absorbing boundary conditions has been used
by researchers, for example Reineix and Jecko[51] used such absorbing boundary
conditions for their modeling of patch antennas. Rappaport[49], as well as Rappa-
port and Bahrmasel[50] report the use of similar lossy material in FDTD analysis.
From our point of view, Mur’s ABC provided us with a standard of comparison
for our MABC. If our MABC could be shown to be as good as Mur’s ABC, then
we would feel comfortable in using it.
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4.4.3 Implementing Boundary Conditions

Next we briefly consider the implementation of boundary conditions. Since an
array processor must execute the same instructions across all processors simulta-
neously, the most straightforward way to handle boundary conditions is to mask
out processors alternately. Thus one part of the code calculates the interior of the
problem while the boundary processors are switched off, and vice versa. Since the
boundaries form a small percentage of the actual problem domain, this method is
inefficient and can have a significant impact on the overall execution time. Since
the majority of the processor elements will be idle when boundary conditions are
handled, any time spent processing boundary conditions, directly degrades the
average processor use figure.

As one might suspect, there are at least two caveats that will allow us to im-
plement boundary conditions, and still be able to achieve high performance in our
parallel implementation. First, if the time required to process boundary condi-
tions can be made to be small in comparison to the time required to update field
components, then the average processor use figure can still be made to be large.
Second, if it can be shown that the relative overhead of handling boundary con-
ditions becomes smaller as the problem size becomes larger, then we may still be
able to realize a benefit in using a massively parallel machine, such as our MasPar
system. In the following, we examine in an abstract way how each of the boundary
conditions we presented was implemented.

The handling of PEC boundary condition requires that certain electric field
components be set to zero. While masking is used as a mechanism to handle PEC
boundary conditions, the handling amounts to assigning an initial value to field
components in the mesh, and assuring that the field components associated with
the PEC surfaces remain unchanged. This handling amounts to setting an active
set that excludes the PEC field components. Clearly, in comparison to the time
required to update interior field components, the time required to set up an active
set is negligible. What this means is that the average processor use figure due to
branching can still be good and that the use of PEC boundary conditions will not
impact the overall performance in any significant way.

PMC type boundary conditions are taken care of by an exception handler.
Before the finite difference equations are performed, field component values are
fetched from memory. Processor elements that are handling PMC boundaries use
an interior electric field component twice, appropriately handling the signs of the
magnetic field component. The point is that a simple exception handler allows the
same equations used to update interior field components, to update PMC boundary
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components. Since only a very simple exception handler is used, the use of PMC
boundary conditions should not impact the overall performance in any significant
way.

From an implementation viewpoint, Mur’s absorbing boundary conditions are
computationally intensive and because of that they present a problem. When
Mur’s ABCs are being handled, the vast majority of the array processor is left idle
for a significant amount of time, representing a waste of computational resources.
Rather than using an applied ABC, which is inherently inefficient, we need an
absorbing boundary condition that does not rely heavily upon the technique of
masking out processor elements. Use of MABC is particularly appealing to a
parallel implementation and is considered to be a natural fit between the algorithm
and the machine architecture.

Table 4.2 is a comparison of the performance of Mur’s absorbing boundary
conditions and the impedance matched lossy material (MABC). As a test model
we performed an analysis similar to that presented by Mur[41]. Rather than being
two dimensional, our analysis was three dimensional. All interior surfaces were
made to be absorbing with either Mur’s ABC or MABC. Excitation was applied
by simply exciting one point in the FDTD mesh near one corner of the mesh.

Table 4.2: Comparing ABCs

Problem FDTD CPU FDTD CPU
Size Cells Time Cells Time
Cells (Mur) (Mur) (MABC) (MABC)

80x80x25 82x82x27 86.40sec 90x90x35 61.23sec
62x62x25 64x64x27 51.81sec 72x72x35 61.20sec

Since the MABC results are from a mesh that used an additional 10 layers for
each dimension, a certain amount of overhead associated with MABC is seen. For
smaller problems this additional overhead made the MABC analysis slower than
an implementation using Mur’s ABC. However, as the problem size grows, this
overhead becomes negligible in comparison to the rest of the mesh. Eventually
MABC outperforms Mur’s ABC. The results in table 4.2 were obtained from the
MP 1101, node ‘goofy’ at WPI.

In addition to the possible improvement in performance, the results from the
analysis incorporating MABCs were noticeably better than those performed with
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Mur’s ABC. Based on these two observations, improved execution time and im-
proved data quality, we decided to dismantle Mur’s ABC. For future work it may
be worthwhile to reconsider how and when it would be useful to use an applied
ABC such as Mur’s ABC.

4.4.4 Assigning Boundary Conditions

From a user’s point of view, boundaries are assigned to surfaces of the FDTD
mesh. A user might select certain parts of the outer surface of the FDTD mesh to
model a PMC boundary condition, leaving the remaining outer surfaces as PEC
type. PEC and PMC surface types were presented in section 4.4.2

From an algorithmic point of view, to properly handle applied boundary condi-
tions as presented here, we are primarily concerned with the handling of electric
field components. For PEC surfaces, we assign electric field components tangent
to the PEC surface a value of zero. For PMC surfaces we use the image method
to determine the magnetic field components needed to update electric field com-
ponents. Likewise, for applied ABCs, it is the electric field components that we
are concerned with properly updating by using some arbitrary function. This ob-
servation, that the proper handling of electric field components on the surface of
the FDTD mesh is responsible for the modeling of surface types is important as
it raises a fairly obvious rhetorical question, that is how to properly handle adja-
cent boundary conditions that are of different types. Consider figure 4.11, which
shows the surfaces of Yee Cells that have been assigned different types of boundary
conditions.

PEC ABC

PEC PMC

EE

E

E

Figure 4.11: Adjacent Boundary Conditions

The problem illustrated by figure 4.11 is associated with the interface between
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different boundary condition types. Because electric field components are defined
to be on the edges of the Yee Cell, it is not immediately obvious how to properly
handle the electric field updates. To properly handle electric field components,
an order of precedence was defined so that when different boundary condition
types are adjacent, the boundary type with precedence will the used to update the
electric field component along the common edge. The order was set by reviewing
situations in which a user might assign each boundary condition type.

PEC surfaces are given precedence over PMC and ABC surfaces. Figure 4.12
shows cases when PEC is adjacent to PMC. For the case when PEC and PMC
are adjacent at a corner, the PEC surface should be handled so that it is modeled
as extending continuously across the PMC boundary. For the case when PEC
and PMC do not meet at a corner, it is important that the edge between the two
types appear as PEC, otherwise the PEC edge will not be modeled as straight.
This second case is common for the modeling of strip-lines. For this same reason,
whenever PEC is adjacent to ABC, the PEC handling should have precedence.

Inside

FDTD  MESH

PEC

PMC

PMCPEC FDTD  MESH
Inside

Outside
Symmetric  Region

(b) Meet  in  line(a) Meet  at  corner

Outside

Symmetric  Region

Figure 4.12: PEC abutting PMC

One situation in which PMC and ABC surfaces meet is at a corner. In such a
situation the applied ABC should appear to be continuous across the PMC bound-
ary, thus the ABC is given precedence over PMC. This point is for your information
only, since our applied ABC has been dismantled. Table 4.3 summarizes the order
of precedence for the surface types we considered. PEC type is given first and is
considered to have the highest precedence, followed by ABC, then PMC.

One last comment, since some kind of boundary conditions must be specified
for every part of the outside surface of the FDTD mesh, it was decided that a
default boundary condition would be assigned before the user assigns boundary
conditions. Wherever a user specifies a boundary condition, the default is over-
ridden. Currently, if a user does not specify a boundary condition type on any
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Table 4.3: Precedence of Surface Types

Entry Surface Type
1 PEC
2 PMC
3 ABC

part of the outer surface of the FDTD mesh, the PEC type will be assigned.

4.5 Conductive Materials

This section provides a more fundamental discussion of material properties used
to describe conductive materials. A special case is discussed that leads to a non-
physical material suitable for a simple boundary condition.

4.5.1 Electric Conductivity

Shen and Kong[57] provide a useful discussion of plane waves in dissipative media.
As is usual in this kind of analysis we assume complex sinusoidal excitation and
use the harmonic form of Maxwell’s equations. In this analysis we assume that
σ and σm are positive, real valued constants. A conductor is characterized by
conductivity σ and is governed by Ohm’s law. For isotropic conditions Ohm’s law
states that the conduction current is;

�Jc = σ �E

The unit of conductivity σ is Siemens per meter, alternatively called mhos per
meter. From Ampère’s law;

∇× �H = j ω �D + �J

We see that the current density �J can in fact embody two kinds of current, source
current �Jo and conduction current �Jc, thus;

�J = �Jc + �Jo
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For an isotropic dielectric we apply the following constitutive relationship: �D =
ε �E. Thus, Ampère’s law can be rewritten as follows,

∇× �H = j ω ε �E + σ �E + �Jo

to include the conductivity as a complex term;

∇× �H = j ω

(
ε− j

σ

ω

)
�E + �Jo

Thus a new permittivity is defined to contain an imaginary part derived from the
material conductivity.

ε̃ = ε− j
σ

ω

Since ε̃ = εoε̃r, we can say that;

ε̃ = εo

(
εr −

jσ

εoω

)
(4.5)

As pointed out by Luebbers[30], when applying the FDTD method to a ma-
terial, the usual approach is to specify a real permittivity and a constant electric
conductivity. The corresponding frequency dependence is given by equation (4.5).
Luebbers discusses alternative methods for characterizing lossy dielectrics that the
active researcher may have some interest in.

Lastly, in a conductive media devoid of sources, we can write Ampère’s law as
follows;

∇× �H = j ω ε̃ �E

4.5.2 Magnetic Conductivity

Although Shen and Kong don’t present this next derivation, we can rewrite Fara-
day’s law, equation (E.2) in harmonic form and follow the same thought process.

∇× �E = −j ω µ �H − σm �H

In this case the magnetic conductivity term is incorporated into the permeability
term.

∇× �E = −j ω
(
µ− j

σm

ω

)
�H

∇× �E = −j ω µ̃ �H
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While there may be speculation surrounding the idea of magnetic conduction
current, allowing such a phenomenon in our simulation proves to be useful. Thus
a new permeability is defined as;

µ̃ = µ− j
σm

ω

µ̃ = µo

(
µr −

j σm

µo ω

)

4.5.3 A Special Case

The intrinsic impedance of such an isotropic media can now be expressed as a
complex quantity. Substituting into the impedance formula shows that in general
the intrinsic impedance is dependent on ω.

η =

√
µ̃

ε̃
=

(
µ− j σm

ω

ε− j σ
ω

) 1
2

=

(
ω2µε+ jωµσ − jωεσm + σσm

ω2ε2 + σ2

)1
2

From the previous expression, a special case can easily be noted. If µσ = εσm then
the complex terms cancel. This special case is better stated as a ratio,

σm

σ
=

µ

ε
(4.6)

Assuming the special case of equation (4.6), we continue simplifying the intrinsic
impedance equation.

η =

(
ω2µε+ σσm

ω2ε2 + σ2

) 1
2

=


µ
ε

(
ω2ε+ σσm

µ

)
(
ω2ε+ σ2

ε

)


1
2

=

√
µ

ε

We discover that assuming the special case not only makes the intrinsic impedance
real valued but also sets the impedance of the material independent of ω. In fact
if ε = εo and µ = µo we can define a conductive media that has the same intrinsic
impedance as free space.

Such a conductive media can be used to implement an absorbing boundary
condition. As Rappaport[49] as well as Sacks, Kingsland, Lee and Lee[53] point
out, the following condition is referred to as the free space impedance matching
condition.

µo

εo
=

µ1

ε1
=

σm

σ
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The impedance matching condition corresponds to maintaining constant frequency
domain wave impedance. Such a case implies no reflections for normal wave inci-
dence.

Returning to Shen and Kong[57], conductive media can be classified by severity
of loss according to what is called the loss tangent which is σ/ωε. A highly conduc-
tive media will have σ/ωε� 1, in which case the skin depth can be approximated
as;

δp �

√
2

ωµσ
(4.7)

It is important to remind the reader that this document is not supposed to be an
in-depth presentation of electromagnetic field theory, let alone the FDTD method
itself. The purpose of this chapter is to present the FDTD method as an algorithm,
the purpose of this complete document is to present a unique application that uses
the FDTD method. For more details regarding lossy media, the reader is referred
to Shen and Kong[57].

4.6 The FDTD Algorithm

This section serves as a summary to this chapter by formally presenting the FDTD
method as an algorithm. Figure 4.13 provides a flowchart of the algorithm that
we used to implement the FDTD method. The algorithm starts by performing
an initialization operation. Initialization is performed by first determining the
mapping of data structures, then loading the standard mesh into the FDTD mesh,
estimating material properties, adjusting mapping flags so that the simulation will
properly handle boundary conditions, open files for data, and configure simulation
parameters according to user requests.

After initialization the algorithm enters the main loop of the flowchart. After
each iteration of handling boundary conditions, updating fields by using the finite
difference equations, and incrementing the time step counter, a test is performed
to see if the simulation has been completed. At appropriate times the loop takes
a detour to write data to files. While the FDTD equations used to update elec-
tromagnetic field values can be considered to be the core of the algorithm, this
aspect is actually one of the easier parts of the algorithm to implement. In com-
parison, the mechanisms used to write data to files is far more complicated than
the FDTD equations. The mechanisms used to initialize the simulation are even
more complicated than the mechanisms used to write data to files.
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Figure 4.13: Flowchart of FDTD Algorithm

Determining the time complexity of the FDTD algorithm is relatively straight-
forward. While the task of initializing the analysis is complicated, it is performed
only once per FDTD analysis, thus we can assign the initialization a time com-
plexity of O(1)1. We will assume that the time to handle boundary conditions
is small in comparison to the time required to update the fields. We will further
assume that as the problem size becomes larger, the time required to update field
values, becomes even larger in comparison to the time needed to handle boundary
conditions. Lastly, we will assume that data is rarely written to files. After making
these assumptions and examining figure 4.13, we arrive at the conclusion that the
time complexity of the overall algorithm is primarily dependent on the time needed
to update the electromagnetic field vales.

Since there are Nm boxes in a FDTD mesh, the time to update the electromag-
netic fields once is O(Nm). Since Nstep time steps are required in an analysis, we
will assign the FDTD algorithm an overall time complexity of O(Nm Nstep). In
section 5.5.2, the time complexity is examined by using experimentally measured
data.

This chapter presented the FDTD method as an algorithm. Topics central to
the FDTD method such as the FDTD mesh itself, the Yee Cell, time stepping,

1For a review of time complexity analysis, and the use of ‘big-oh’ notation, see section 2.6.
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stability and accuracy, and mesh boundary conditions were discussed. The idea
of using a Fast Fourier Transform to perform frequency domain analysis was just
touched on. The form of the finite difference equations used to perform the FDTD
method was introduced. The actual finite difference equations used to perform the
FDTD method are derived in appendix E. A discussion of conductive materials
was presented along with a special case that we use to derive a special absorbing
material that we can use to model absorbing boundary conditions. Lastly, this
chapter presented the FDTD method in the form of an algorithm, complete with
a flowchart and a discussion of its time complexity.



Chapter 5

FDTD Implementation

In this chapter we examine the implementation of the finite difference time domain
code. Perhaps the most important decision that was made during the development
of the FDTD code was how to map the FDTD mesh to PE array memory. Because
of its importance, this topic is addressed first. Next, a general outline of the FDTD
code is presented. Lastly, the performance of the code is examined in detail.

5.1 The FDTD Mapping

This section introduces the mapping used to store a three dimensional FDTD mesh.
The first section presents useful directional terms. The second section presents
how a three dimensional mapping is constructed by layering two dimensional hi-
erarchical maps. The third action introduces data structures used to manage the
mapping.

5.1.1 Directional Terms

Figure 5.1 illustrates the terms used to describe directions relative to the FDTD
mesh. While these terms were actually introduced back in chapter 1, for your
convenience are presented here as well. The terms north, south, east, west, up, and
down were defined as an attempt to ease the task of the writer as well as reader.
For example the phrase “Take a specified value from the nearest Yee cell found
in a direction of increasing i index values but constant j and k index values. . . ”

201
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is better stated as “Take a specified value from the nearest cell to the east. . . ”
Clearly the simple idea expressed is more clearly stated in the second sentence
fragment.

Z-Axis

FDTD mesh is inside
the shaded region.

Y-Axis

X-Axis

NORTH

SOUTH

UP

DOWN

WEST

EAST

Figure 5.1: The Six Basic Directional Terms and Coordinate Axes

In implementing the mapping and associated virtualization on the MasPar, co-
ordinate axes were aligned so that the terms north, south, east and west would
agree with terms established by MasPar literature. Also index values were coor-
dinated so that up refers to increasing index values and down refers to decreasing
index values. These simple notions saved much confusion. Implementation of the
three dimensional mapping is introduced next.

5.1.2 Introduction to the Mapping

Figure 5.2 provides an illustration of how a 4x4x4 mesh is stored in a hypothetical
2x2 PE array. It is suggested that as you read the following, refer to the figure as
needed. Note that individual mesh boxes are referred to by using a simple [i, j, k]
notation. To produce the mapping, a three dimensional mesh is first divided into
sheets. A sheet is simply a two dimensional array of mesh boxes that correspond to
a single k index value. Each sheet is mapped to a virtual two dimensional processor
array by assigning each virtual processor a single Yee cell from the sheet. In this
example the virtual array processor has sixteen PEs, numbered from 0 to 15.

It is important that the reader remember, that in this example there are only
four in the processor array, and that a virtual processor array is only a handy
abstract concept that we use. The virtual two dimensional processor array is
mapped to the physical PE array by using a mapping equivalence. To illustrate
this equivalence, the virtual array is first divided into squares that we call sub-
sheets. Each sub-sheet is assigned to a PE. In figure 5.2, the PEs are numbered
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Figure 5.2: Introduction to Layered 2D Hierarchical Mapping

PE0 to PE3, and each PE is assigned four Yee cells. To get a better sense of this,
consider the following analogy; If you fold a sheet of paper into half and then fold
into quarters and so forth, then when you unfold the sheet and lay it flat, the
creases in the paper will mark boundaries between squares. A pattern of squares
is selected that will best match a two dimensional array of PEs.

Except for sub-sheets near the edges of a sheet, each sub-sheet will have the
same number of Yee cells assigned. The right-most part of figure 5.2 shows four
Yee cells are mapped in each PE to memory layers, numbered 0 thorugh 3. The
symbol lps is an acronym for the phrase layers per sheet. We use this number to
describe the number of memory layers that are needed per PE to store a sub-sheet
of Yee cells.

It is important to realize that by dividing each sheet into sub-sheets, a hierarchy
is formed. Each sheet is a two dimensional array constructed from a two dimen-
sional array of smaller two dimensional arrays(sub-sheets). Because of the way
that each sheet is mapped, the sheet mapping is referred to as two dimensional
hierarchical. Since the overall mesh is constructed by layering these two dimen-
sional mappings, we state that for the FDTD solver, a three dimensional mesh is
mapped according to a layered two dimensional hierarchical mapping.

Unlike the mesh generation algorithm, where in most cases each mesh box can
independently decide if it is inside or outside a given solid object, the FDTD solver
performs finite difference equations that require data from adjacent Yee cells. Note
that the term adjacent is used to describe mesh boxes, or equivalently Yee cells
that share a common surface in the FDTD mesh. Once mapped to PE memory,
adjacent Yee cells may actually be stored in different PEs.

Since each sheet is mapped to memory in a similar fashion, moving data up and
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down1 the mesh is simple. The mesh box [i, j, k] for instance is in the same PE as
mesh box [i, j, k− 1], but is lps layers higher in memory. Moving data across the
mapping is not as simple however. If a mesh box is on the edge of a sub-sheet,
to send data to an adjacent mesh box on a different PE, the use of interprocessor
communications is required. Performing interprocessor communications requires
time, so naturally, we try to minimize the use of interprocessor communications.
The time required to perform communications between adjacent PEs is roughly
equivalent to half the time it takes a PE to perform a floating point addition.

An important feature that a hierarchical mapping has over a cut-and-stack
mapping, like the two dimensional cut-and-stack mapping presented by Pickering
and Cook[46], or the one dimensional cut-and-stack used by the mesh generation
code, is that a hierarchical mapping can store entities that are adjacent in the
problem domain, in the same PE. What this means for an application like the
FDTD solver that requires data to be shared between adjacent Yee cells, is that
use of a hierarchical mapping will produce a program that uses interprocessor
communications less often, than if a cut-and-stack mapping were used.

Like all design decisions there is an associated trade-off. On the down side, for
certain problem sizes this mapping will not make the best use of all the PEs. For
certain problem sizes all the PEs will be able to participate in the simulation, but
for other problem sizes a sizable fraction of the PE array will be unusable and
will represent wasted resources. On the plus side however, such a mapping makes
the transfer between adjacent Yee cells very simple, and actually minimizes the
use of communications between PEs. For such an application, these benefits are
particularly appealing and were the reason why this mapping was selected.

5.1.3 Mapping Data Structures

To be able to perform the finite difference equations, it was decided that key in-
formation associated with the mapping would be stored in data structures. The
data structures are used like look up tables, that is at any moment of the simula-
tion, to determine how to find data in the mapping, or how to handle boundary
conditions, only a simple reference to the data structures is needed. These data
structures, summarized in table 5.1 are set up during program initialization, and
remain unchanged until the program terminates. To set up these data structures,
macros were written to identify special cases associated with the mapping.

1See section 5.1.1 for an introduction to these terms.
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Table 5.1: Mapping Reference Elements

mark[k] – Array stored in Processor Array Memory, describes
at the mesh cell level whether a given Yee cell is
against the overall mesh boundary.

b control[k] – Array stored in Processor Array Memory, indicates
how to update electric field components.

eq choice[l] – An array of data structures, stored in ACU memory.
This array globally describes if and how the X-NET
will be used for communications.

The mark array is particularly useful in identifying the boundaries of the overall
mesh. The b control array is an array of flags used to indicate how to process
field components. It is by use of the flags in this array that we simulate PEC
or PMC surfaces. The eq choice array is used to identify how to transfer data
between Yee cells. To make the actual transfer easier, a set of macros were written
to handle array indexes. These data structures are used together in concert to give
the appearance of the intended mapping.

5.2 Implementation Outline

The following amounts to being a high level guided tour of the FDTD code. While
this is high level, it still contains many details. It is suggested that before your
first reading of this section, glance through the headings to get a sense of the
bigger picture. The FDTD code goes through a long drawn out initialization
procedure that takes a bit of space to describe. The finite difference equations
actually represent the core of FDTD method and are derived in appendix E. The
discussion of the floating point performance in section 5.6 actually lists the finite
difference equations.

Program execution starts in the DPU. The very first thing the program concerns
itself with is checking if it has a valid mesh file name. The point of a mesh file
is that an FDTD simulation should be performed without any direct interaction
with the user. To make things simple, the format of the mesh file was designed to
contain all the information needed to perform a simulation.
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If the user does not provide a file name in the command line used to start the
program, the user will be asked to provide a file name. Before a FDTD simulation
can begin, the program must be initialized. Once initialized, the rest of the FDTD
simulation is relatively straight forward. The program just loops through the
finite difference equations to advance the time step with each iteration. At regular
intervals, data is extracted from the mesh, and is stored in files.

5.2.1 FDTD Initialization

The initialization procedure centers on gathering data stored in a mesh file and
processing the data so that the simulation can proceed quickly. A mesh file is
broken down into five parts that are given in order. The initialization procedure
was organized in a manner that directly mirrors this file format. The first part
of a mesh file is referred to as the mesh file header, which is just three lines that
describe how many mesh boxes are contained in the mesh, and what the size of each
mesh box is. The second part of a mesh file is referred to as the commands section
which describes how the simulation will proceed, what type of excitation function
to use, and what kind of output data will be produced. The third part contains the
standard mesh produced by the mesh generator program. The fourth part is the
materials section which describes the material properties of every material used
in the simulation. The last section contains data used to describe mesh boundary
conditions.

The practice of opening and reading files in the front end, then passing data in
formatted data structures to the DPU appears to provide the most efficient way
to load serial data into the MasPar system, and was used by this implementation.
The mesh file is actually loaded by several functions. Each of these functions
takes its turn once, to process specific information in the mesh file. As you might
suspect, there is a parser to load the commands section. There is a special loader
that is used to move the standard mesh into PE array memory. Another loader
gathers materials from the mesh file to produce a materials table. One step of
the initialization is to take the materials table and standard mesh, and produce
all the coefficients needed to perform the FDTD method. The last step of the
initialization is to set up flags to represent boundary conditions.
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Opening a Mesh File

The mesh file is opened in the front end by a small function called open mesh xyz1.
The first few lines of the standard mesh contain the number of mesh boxes that are
along the x, y, and z coordinates, as well as the coordinates of the point [0, 0, 0],
as well as the mesh discretization sizes. These lines are read in the front end
and are passed to the DPU by calling the function define const. With the size
of the standard mesh and the dimensions of the PE array known, the DPU can
set the first constants associated with the selected memory mapping. Think of a
standard mesh as being made up of many sheets that are stacked, in a manner
similar to the stacking of paper. To prepare for storing the mesh, we need to
consider how we can cut each sheet into sub-sheets, such that each sub-sheet will
fit into a single PE. Such a mapping is referred to as hierarchical, see section 5.1.2
for a graphical introduction to this mapping. The variable lps (layers per sheet)
defines the number of PE memory layers that are to be associated with a single
mesh sheet. Another variable associated with the mapping is the total number of
memory layers that we will associate with storing the mesh in PE memory. This
variable, referred to as alayers is important as it tells us how many mesh sheets
need to be stored in PE memory.

Simulation Directives

The command parse function is called to load the user defined simulation directives.
The directives specify such important simulation parameters as the output file
types, output file names, the simulation time step size, the number of time steps
to simulate, and the type of excitation required. For an explanation of how a user
enters simulation directives, see appendix section F.5.

Before returning to open mesh file, the command parse function performs a
quick check to ensure that the minimum requirements for a simulation have been
specified, that is the time step size, number of time steps to simulate, some kind of
output type and file name, and some kind of excitation. Given that the required
items are present, a pointer to a data structure called RData that summarizes the
simulation directives is returned so that the DPU can copy out the data from the
front end.



CHAPTER 5. FDTD IMPLEMENTATION 208

Loading the Standard Mesh

The next step of program initialization is to load the standard mesh from the
mesh file into PE array memory. The standard mesh is represented by a sequence
of integer values, where each integer corresponds to exactly one mesh cell. The
value of each integer is used to indicate the material type of each mesh box.

Before the standard mesh can be loaded into memory however, PE array mem-
ory must be allocated. PE array memory is actually allocated in three steps. The
first memory allocation step involves the arrays listed in table 5.2. In the table,
array names are each listed with a short description. The column “Element Size”
gives the size in bytes of a single entry in each of the allocated arrays.

Table 5.2: First Allocation in PE Array

Array Name Array Description Element Size
b control boundary conditions marker 4 bytes

mark bounding box marker 1 byte
found flags a match for material 1 byte
ID integer material index 1 byte

The standard mesh is loaded one sheet at a time into front end memory and
then is moved to PE memory. To be able to transfer the data, the number of
memory layers associated with the actual transfer must be calculated. Because
the blockIn command is used to perform the actual transfer from the front end
to the DPU, memory layers must be allocated for the transfer in multiples of four
bytes.

The setup load function is called to allocat memory in the front end for load-
ing a single sheet of the standard mesh at a time, as well as to set up a few
constants needed to configure the loader function load sheet. Following the call
to setup load, each call to load sheet in the front end loads the next mesh sheet
from the mesh file. Thus a mesh is loaded into the array ID by repeatedly calling
load sheet to load a single sheet at a time and then calling blockIn to copy the
mesh sheet from the front end to PE array memory.

After the sequence of integers is loaded into PE memory, each integer is matched
with its corresponding entry in the materials property table.
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Initializing the Materials

The function material file reader next loads the entire materials table from
the mesh file, into front end memory. The function check mat table is called to
move the materials table to the DPU. Checks are performed to ensure that for each
material type present in the standard mesh, at least one set of material properties
is actually present in the materials table. Also, a check is made to ensure that the
real parts of the relative permeability and relative permittivity are not equal to
zero. The values of relative permeability and permittivity are each multiplied by
the appropriate physical constant to yield the actual values of permeability and
permittivity. A stability criterion number is calculated as an approximate test to
see if the simulation will be stable.

Handling Materials

Each mesh cell integer used to describe a mesh cell simply is a reference into the
materials table. With the materials table loaded and checked, PE array memory
is reconfigured by calling field memory allocation. Since the boundary control
array b control has not yet been assigned any values, we temporarily transfer the
ID values to the b control array and free up the ID array. We also free up the
found array. Memory is allocated for KEl, KEc, KHl, and KHc finite difference
coefficients, as well as arrays for storing electric and magnetic field components.
All these new arrays are allocated to store single precision floating point numbers.

The last block of memory allocated by field memory allocation, is allocated
in ACU memory. The allocated memory, named eq choice is configured by
setup eq choice to be a look-up table for managing the finite difference equa-
tions used to implement the hierarchical mapping.

To calculate the finite difference coefficients KH and KE, the mesh cell properties
are first temporarily assigned to the KH and KE arrays. As described in section 4.1.2,
adjacent mesh cell property values are averaged together to define nodal material
properties. The average values are temporarily stored in electric and magnetic
field component arrays. Using the equations presented in appendix E, the KH and
KE finite difference coefficients are calculated by using the nodal material property
values. With the KH and KH arrays defined, the materials table in ACU memory
can be freed up and the electric and magnetic field component arrays are cleared
by filling them with zeros.
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Setting Boundary Conditions

As section 4.4.4 points out, as far as the user should be concerned, boundary
conditions are assigned to surfaces of the FDTD mesh. The abstraction presented
to the user is that the mesh is made up of many uniformly shaped boxes. Note that
no sense of the Yee Cell is directly presented to the user. Inside the FDTD solver
however, boundary conditions are handled by manipulating electric field values
associated with the edges of Yee Cells. The details of how boundary conditions
are actually handled is presented in section 4.4.3. except the case when boundary
conditions of different types are adjacent, the assignment of boundary conditions
is simple. Table 4.3 provides an order of precedence for resolving situations when
different boundary types are adjacent.

The function set b control is called in the DPU to set the flags in the array
b control. The array b control serves as a look-up table by the code that actually
handles boundary conditions. The following is a list of the steps that are followed
in assigning the flags to the array b control.

1. Memory is made available in the mesh to temporarily store de-
scriptions of surface types. By placing a value in one of these
memory locations, it is said that “a surface has been assigned to
the mesh.”

2. Default surface types are assigned to the surfaces of the mesh that
are associated with the mesh bounding box.

3. The description of surface types provided by the user is compiled
into a list that will make sense in the context of the mesh.

4. The compiled list of surface types is assigned to the mesh, over-
writing any default surface types that may already be present.

5. By examining the assigned surface types and following the order
of precedence for surface types, flags are assigned to the array
b control.

Note that while the FDTD solver has default boundary types defined, the user
is free to assign boundary types. Of course, user defined boundary types over-ride
the default boundary types.
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Final Memory Allocation

Table 5.3 summarizes the parallel memory allocation for the FDTD simulator,
when initialization is complete. Note that the table groups variables together in a
meaningful way, for example the Ex, Ey, and Ez arrays are used to store electric
field intensity values. Together, these three arrays describe the entire electric field
being simulated. The allocation value given on this table describes the amount
of memory required to properly store the values associated with a single Yee cell.
With the flags in the b control array defined, the program initialization is almost
complete.

Table 5.3: Final Allocation in PE Array

Array Names Composite Description Bytes per PE

Ex, Ey, Ez Electric Field Intensity 12
Hx, Hy, Hz Magnetic Field Intensity 12

KElx, KEly, KElz Difference Coefficients for 24
KEcx, KEcy, KEcz Updating Electric Fields
KHlx, KHly, KHlz Difference Coefficients for 24
KHcx, KHcy, KHcz Updating Magnetic Fields

b control Boundary Control Flags 4
mark Mesh Limits 1

PE Allocation per Yee Cell: 77

We can think of the layered hierarchical two dimensional mapping as storing
Yee cells in parallel memory layers, where each memory layer has at most nproc2

Yee cells. Each memory layer is 77 bytes thick. This number will be important in
section 5.3.1, where we more closely examine parallel memory allocation.

Finishing Initialization

The last step in program initialization is calling setup timewise to define con-
stants that are associated with the user selected field excitation function, and
then calling either sampler prep or setup data output to configure the output
handlers.

2nproc is the number of PEs in the DPU
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5.2.2 Simulation Run Time

After everything that needs to be initialized has been taken care of, the FDTD
simulation begins. The code that actually performs the finite difference equations is
stored in a file called ‘fdtd solve 3d.m’. The function ‘FDTD solver’ is responsible
for keeping track of simulated time, it calls the functions that perform the finite
difference equations and calls the functions to output data as necessary. The
function update Elayer performs the finite difference equations used to update
the electric field components. The function update Hlayer performs the finite
difference equations used to update the magnetic field components. The details of
how data is output is described in section 5.2.3.

5.2.3 Producing Output Data

The FDTD code provides two mechanisms for the output of data from a simulation.
The first mechanism is handled by the function ‘sampler’, it can take samples from
as many as two electric field components in the mesh, and will do so at every time
step. Sampled data is formatted into files that can be immediately processed by a
fast Fourier transform. No special processing is performed to handle data that is
sampled by the first mechanism. At every time step, electric field components are
written to files.

The second mechanism is handled by the function ‘output data’, it is used to
report all the electric field components from a range of specified sheets in the FDTD
mesh, at regular intervals of simulated time. The data produced by this second
method is formatted into files that are readable by Patran. Patran is the tool that
we use to visually post process output data. Because this second mechanism is
capable of producing large amounts of data that all must be properly formatted,
this second method of producing data could potentially impact the performance
of the FDTD simulation. To minimize this problem, it was decided that the work
associated with transforming raw data into formated files would be performed
asynchronously in the front end. To be able to output data, the DPU must pause
from the simulation so that it can estimate field component values, and then it
sends the data produced directly to the front end. Note that by not having the
DPU format data into files and not requiring the DPU to directly handle file I/O,
the DPU can immediately return to the task of performing the simulation.

Next we consider how asynchronous processing is organized, please refer to
figure 5.3. When the DPU is ready to send data to the front end, it proceeds to
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the sync-lock mechanism. What happens next depends on what the front end is up
to. If the front end is able to format data and write files before the DPU produces
new data, the front end will be idle when the DPU arrives at the sync-lock. In
such a situation, data is immediately transferred to the front end, and the DPU
returns immediately back to performing the simulation. If however the front end
is not able to “keep up” with the DPU, the DPU will have to wait until the front
end is ready to accept new data. The sync-lock mechanism guarantees two things,
first that the DPU will only transfer data when the front end is ready to receive
new data, and secondly that the front end will not begin to process data until it
has actually be transferred from the DPU. The net result is that one process will
be constantly busy, leaving the other process idle at regular intervals. Determining
which process experiences idle time is related to both mesh size, the number of
mesh sheets that are reported each time output is produced, and the frequency
that data needs to be produced.

DISK

FILES
Lock

Sync

ControlControl

DPU

MasPar Front

End

DATA

FILES

Figure 5.3: Asynchronous Processing Model

5.2.4 Closing the Simulation

Before exiting, any files that are open are closed. If Patran files were produced,
the front end is instructed to shut down asynchronous processing and return full
process control to the DPU. Lastly, the run time statistics are reported,

5.3 Parallel Memory Use

Table 5.4 summarizes the most important variables that are associated with deter-
mining the memory requirements of the mapping being used to store the FDTD
mesh in PE array memory. The variables nxproc and nyproc are associated with
the actual size of the PE array, see section 1.5.2 for details. The variables Nx, Ny,
and Nz describe the size of the standard mesh, see section 4.1.1.

As discussed earlier in section 5.1.2, each sheet from the FDTD mesh is divided



CHAPTER 5. FDTD IMPLEMENTATION 214

Table 5.4: Parallel Memory Allocation

Variables Description
nxproc, nyproc columns, rows in PE array
Nx, Ny, Nz size of standard mesh
nxbox pe, nybox pe size of sub-sheet
lps memory layers per sub-sheet
nlayers total number of memory layers
mem lay size allocation for a memory layer
mem overhead excess allocation required

into sub-sheets, where for each sheet, each sub-sheet is assigned to a single PE.
Each sub-sheet consists of a two dimensional array of mesh boxes having nxbox pe

columns and nybox pe rows. The variables nxbox pe and nybox pe are determined
by taking the ceiling integer values of the following ratios:

nxbox pe =

⌈
Nx + 1

nxproc

⌉
(5.1)

nybox pe =

⌈
Ny + 1

nyproc

⌉
(5.2)

The variable lps describes the density of the mapping of mesh sheets to PE
array memory, lps indicates exactly how many memory layers are needed to store
each mesh sub-sheet in a PE. The variable lps is simply equal to the product of
nxbox pe and nybox pe, or rather:

lps = nxbox pe · nybox pe (5.3)

Lastly, the variable nlayers describes the total number of memory layers needed
to store a mesh in PE array memory. nlayers equals to the product of the sheet
mapping density and the number of sheets in the mesh, plus one mesh layer or:

nlayers = lps · (Nz + 1) (5.4)

5.3.1 PE Memory Allocation

When discussing memory allocation in the PE array, it is important to remember
that while we talk of the allocation on each individual PE, the allocation must
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always be uniform for all PEs. For the selected mapping, the variable mem lay size

describes the amount of memory in bytes that each PE will use to store a single
mapped memory layer. Section 5.2.1 describes in detail what the contents of each
memory layer is and gives the actual number of bytes consumed each memory layer.
For the FDTD mapping the value of mem lay size was found to be 77 bytes.

The following expression gives the total number of bytes that each PE will
be allocated when an FDTD mesh is stored in PE array memory. The variable
mem overhead is simply the required memory that is not directly associated with
the mesh. Currently there is an overhead of approximately 24 bytes required for
the mapping.

PE allocation = mem lay size · nlayers+ mem overhead (5.5)

Appendix section C.1.3 presents a discussion, showing how you can estimate
the amount of parallel memory that you can use in your DPU. For a MP 1101
with 16K of RAM per PE for example, when the PE array is fully allocated, 15137
bytes of memory is consumed by each PE. Given that a machine has ‘PE mem’ bytes
of memory available per PE, we can estimate that the total number of memory
layers available to your mapping will be:

Memory Layers =

⌊
PE mem− mem overhead

mem lay size

⌋
(5.6)

In the previous equation, the � � symbols refer to the mathematical floor function.
For a MP 1101, 196 memory layers are available using this mapping. With this
many memory layers available, we can just fit a 95x95x20 mesh, which has lps = 9
and requires 180 memory layers.

5.3.2 Processor Use Figure Due to Mapping

The processor use figure due to mapping (PUFM), introduced in section 1.7.3,
describes how well a given mapping does at fitting a problem “into” the processor
array. For a static mapping, PUFM can always be calculated from what is known
about the problem size and the PE array size. Using the layered, two dimensional
hierarchical mapping to store a mesh having sheets Nx boxes wide and Ny boxes
long, this mapping models a virtual PE array that has lps times as many PEs as
the actual PE array.

Since PUFM is just the ratio of the number of virtual processors used, to the
total number of virtual processors available in the mapping, we express PUFM
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below. Note that nproc is equal to the total number of PEs in the actual PE
array.

PUFM =
(Nx + 1) · (Ny + 1)

nproc · lps
· 100% (5.7)

For this mapping, as the problem size grows, PUFM periodically approaches
100% and then drops. A graph of PUFM versus problem size produces the familiar
saw tooth waveform that is typically associated with the efficiency of array type
processors. The worst case PUFM corresponds to a mesh without any mesh boxes,
but such a trivial case is of no interest to us. In section 5.5, PUFM is examined
for a range of mesh sizes.

5.4 Performance

To examine the performance of the FDTD code, we will be concerned with execu-
tion time, time complexity, processor use due to mapping (PUFM), processor use
due to branching (PUFB), speed-up, and MFLOPS metrics. Our interest in PUFB
is primarily associated with the handling of PMC boundary conditions. Also our
interest in speed-up is to examine how well our FDTD code scales with the number
of PEs in the processor array.

From a performance standpoint, the key to speed is being able to execute the
finite difference equations as fast as possible. The finite difference equations form
the core of the algorithm. As soon as the required constants have been determined
and the simulation has been initialized, the remainder of the run time should be
spent simply executing the finite difference equations. To make the execution of
the finite difference equations faster, a decision was made that if any values were
known in advance to not change, they would be calculated once during program
initialization, and stored in memory. What this means is that we deliberately
traded the memory needed to store these constant values in favor of improved
execution time. The cost of this tradeoff is that memory is not used as effectively
as it would be otherwise.

5.4.1 A Model for Performance

To be able to examine the performance of the FDTD solver, we needed a simple
model that we could use. Since we planned on using a wide range of mesh densities,
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detailed structures inside the mesh were undesirable. Sacks[52] provided us with
just such a model. Sacks used the finite element time domain method to model
a resonant cavity. For his simulation Sacks used a cavity that was 3 meters by
4 meters by 5 meters. By exciting the cavity with a Gaussian pulse, sampling
fields inside the cavity, and applying th fast Fourier transform, Sacks was able
to estimate the frequencies of the resonant modes. Sacks was able to compare
his results with well known analytical results and found that his estimates of the
resonant modes were in agreement.

There are two things that make Sack’s model desirable for our use. First as
stated above, the model is simple, there are no detailed structures inside the cav-
ity. Second, the test produces results that are easy to compare with well known
analytical results. Table 5.5 lists five of the modes that should be observed in such
a resonant cavity. The frequencies given were calculated analytically, see Sacks[52].

Table 5.5: Resonant Modes for Test Cavity

Resonant Exact
Mode Frequency - MHz
011 47.990
101 58.269
110 62.457
111 69.279
012 70.706

It was decided that to prove that the FDTD solver was working correctly, we
would examine one mesh model in detail. The mesh model selected was 30 boxes,
by 40 boxes, by 50 boxes, making each mesh box 0.1 meters along each edge. While
this mesh density is approximately three times finer than that used by Sacks, it is
important to point out that the mesh density selected was completely arbitrary.
Again, our first goal was only to prove that the simulator works.

For excitation, a single Yee cell was chosen and energy was added to indi-
vidual electric field components, using the technique described by Taflove and
Brodwin[ 62]. The excitation function given by Sacks is given as equation (5.8).

f(t) = e
−(t−5σ)2

σ2 (5.8)

The 3dB frequency of the excitation is approximately given by equation (5.9).
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Using this equation, the shape of the excitation was selected to be band-limited to
approximately 100MHz. (σ = 3nsec)

f3dB ≈
1

πσ
(5.9)

The simulation was run three times, each time exciting the Ex, Ey, and Ez field
component of the selected Yee cell, respectively. Each time the simulation was
run, ten thousand time steps were used to allow the system to settle. A time step
size of 0.1nsec. was used, which corresponds to a total simulated time of 1µsec.

Electric field components were sampled at a suitable distance from the exci-
tation. After the simulation, the data was padded with zeros to produce 32768
sample points per sampled field component. Padding with zeros is a common
practice in DSP, used to improve the resolution of the fast Fourier transform. A
simple radix-2 fast Fourier transform was used. Figures 5.4 through 5.6 show the
magnitudes of the transforms.

In figure 5.4, the Ex field component was excited and the Ex field component
was sampled; Note that modes appear at approximately 47.8MHz and 70.6MHz.
In figure 5.5, the Ey field component was excited and the Ey field component was
sampled; Note that modes appear at approximately 58.3MHz and 69.3MHz. In
figure 5.6, the Ez field component was excited and the Ez field component was
sampled; Note that modes appear at approximately 62.5MHz and 69.3MHz. All
the resonant frequencies were found to be well within 1% of the correct values.
Thus in summary, it appears that our FDTD solver performs simulations that are
correct.

5.4.2 Target Machines

To examine the performance of the FDTD code, two different MasPar systems
were used: a MP 1101 at Worcester Polytechnic Institute, and a MP 1104 at the
University of Oregon. Unfortunately, the MP 1208 at MasPar headquarters has
been having severe technical problems and was not available for our use. See ap-
pendix A for a summary of the configurations of these machines. In general terms
it can be said that the MP 1104 is four times larger than the MP 1101. By run-
ning code on machines of different sizes, it is possible to do speed-up performance
estimates, to examine the scalability of the program.
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Figure 5.4: Excite Ex, Sample Ex
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Figure 5.5: Excite Ey, Sample Ey
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Figure 5.6: Excite Ez, Sample Ez
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5.5 Execution Time

To measure time, DPU time3 as well as wall clock time were measured. The parts
of the code responsible for performing the FDTD difference equations as well as
providing field excitation are referred to as the FDTD core code. Time associated
with the initialization of the program will be referred to as initialization time.
Conversely, time associated with performing the FDTD core code will be referred
to as simulation time.

In performing these time measurements, the FDTD core code was run with ex-
citation as described in section 5.4.1, but without outputting any data. Remember
that it was our goal to determine the processing rate of the MasPar system while
running this program, not to determine the speed of our NFS file server system.
In section 5.4.1 we have already shown that the program works for a specific mesh
size. For each mesh size used here however, the program was run for one thousand
time steps. A time step size of 10 picoseconds was selected to guarantee that all
the simulations would be numerically stable.

5.5.1 Mesh Sizes and PUFM

Table 5.6 provides a summary of the mesh sizes used to examine execution time.
Mesh sizes were specifically chosen to provide a range of PUFM values. The mesh
sizes selected have lps4 figures of 1, 2, 4, 6, 8, and 9 on the MP 1101. The
configuration of the meshes with lps equal to 4 and 8 were specifically chosen and
should provide the best possible performance on the MP 1104.

The values of PUFM in table 5.6 were calculated by using equation (5.7) from
section 5.3.2. Note that in table 5.6 the worst case PUFM for a mesh having lps

larger than one is not shown, the worst case for the MP 1101 is actually 26.59%,
which corresponds to a mesh having Nx = 32, and Ny = 32. The values of PUFM
for the MP 1101 and MP 1104 are illustrated in figure 5.7.

3See section 1.7.1 for an explanation of these measures of time.
4See section 5.1.2 for an explanation of mapping variables.
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Table 5.6: FDTD Mesh Sizes

Size Mesh MP 1101 MP 1101 MP 1208 MP 1208
NxxNyxNz Boxes lps PUFM% lps PUFM%
10x10x20 2000 1 11.82 1 2.95
31x31x20 19220 1 100.00 1 25.00
32x31x20 19840 2 51.56 1 25.78
63x31x20 39060 2 100.00 1 50.00
32x63x20 40320 4 51.56 1 51.56
63x63x20 79380 4 100.00 1 100.00
64x63x20 80640 6 67.71 2 50.78
95x63x20 119700 6 100.00 2 75.00
96x63x20 120960 8 75.78 2 75.78
127x63x20 160020 8 100.00 2 100.00
90x90x20 162000 9 89.85 4 50.54
95x95x20 180500 9 100.00 4 56.25

5.5.2 Execution Time on a MP 1101

Figure 5.8 shows that for the MP 1101, there is an approximately linear relationship
between DPU initialization time and mesh size. The straight line fit to the data
shown has a slope of approximately 14.8 microseconds per mesh box. Figure 5.9
shows that for a MP 1101 the DPU simulation time is most apparently stair shaped,
where each stair step corresponds to a different mapping value of lps. While
the shape of figure 5.9 is certainly non-linear, the data was fit to a straight line.
Figure 5.10 provides the summary of the curve fit that was performed.

The curve fit data presented in figure 5.10 should support the argument given
in section 4.6, that for very large changes in mesh size, the asymptotic time
complexity5 of the FDTD solver should be approximately linear. For the MP 1101
the slope is approximately 1.3 milliseconds per mesh box for one thousand time
steps, or 1.3 microseconds per mesh-box, per time step.

5See section 2.6 for an explanation of time complexity.
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Figure 5.10: Report of Curve Fit for DPU Simulation Time

Regression of set 2 results to set 3

Number of observations = 12

Mean of independent variable = 85260

Mean of dependent variable = 144.1777

Standard dev. of ind. variable = 62304.42

Standard dev. of dep. variable = 85.49991

Correlation coefficient = 0.9632146

Regression coefficient (SLOPE) = 0.001321813

Standard error of coefficient = 0.0001166188

t - value for coefficient = 11.33447

Regression constant (INTERCEPT) = 31.48001

Standard error of constant = 12.13487

t - value for constant = 2.594177

Analysis of variance

Source d.f Sum of squares Mean Square F

Regression 1 74605.37 74605.37 128.4702

Residual 10 5807.213 580.7213

Total 11 80412.59

5.5.3 Speed-Up Examined

The point of speed-up analysis in this sense is to see how well the FDTD code
scales with processor array size. The argument that is often made is that if a
program is able to make full use of an array processor, regardless of the number of
PEs in the system, then the performance of that program should be proportional
to the number of PEs in the array. For the mesh generator, we saw that when
we compared the MP 1208 to the MP 1101, there was a speed-up of six, which is
somewhat smaller than the expected speed-up of eight.

Figure 5.11 presents the execution times on the MP 1101 and MP 1104, for the
mesh sizes that we have been considering. One thing interesting to note about the
MP 1104 is that for lps = 1, the simulation time is approximately 31.7 seconds,
but for lps = 4 the simulation time increased to 113.4 seconds. Taking the ratio of
these times gives a value of 3.58, which is somewhat less than the expected ratio
of 4.00.

Figure 5.12 provides the actual speed-up comparison between the MP 1101 and
MP 1104. Note that depending on the problem size, speed-up can be one, almost
two, almost three, or almost four. The largest speed-up actually observed was
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3.85, which is within four percent of the anticipated speed-up of four.
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Figure 5.12: FDTD Speed-Up Comparison for MP 1101 and MP 1104

In comparing figure 5.12 with table 5.6, an interesting observation is made; The
largest speed-up is seen for those mesh sizes where the MP 1101 and MP 1104 have
the same PUFM figures. Note that while the MP 1104 is faster than the MP 1101,
in many cases the PUFM is better for the MP 1101 than for the MP 1104. What
this means is that in most cases, the program is able to make better use of the
MP 1101 than the MP 1104. In other words, wherever the speed-up seen is not
approximately four, the utilization is better for the smaller machine.

5.6 MFLOPS Performance

To estimate the MFLOPS rate, we will only be concerned with that part of the
execution that we associate with the core of the FDTD simulation. The core of
the FDTD simulator has three parts, they are:
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• Finite Difference Equations

• Field Excitation Equations

• Mechanisms for Reporting Results

Note that we are not including the time required to initialize the FDTD sim-
ulator. The finite difference equations are responsible for performing the FDTD
simulation, and are central to the floating point rate analysis. Based on the finite
difference equations we estimate the theoretical sustained maximum performance
figure for our instruction mix. The contribution from the field excitation equations
is discussed, and is found to be negligible in the FLOPS analysis. Lastly, while the
simulator was set to produce no results during the MFLOPS analysis, its impact
on overall performance is examined when the program does produce output.

5.6.1 Finite Difference Equations

The finite difference equations used to update electric and magnetic field com-
ponents are presented in appendix E. In the source code, the finite difference
equations are actually expressed as shown in table 5.7. The KE and KH terms are
proportionality constants that correspond to material properties, these constants
are defined during program initialization. To implement the equations presented
in appendix E, some slight changes were made. Rather than performing division,
the terms 1

∆x
, 1

∆y
, and 1

∆z
, are stored as constants and are multiplied by the differ-

ence terms. Also, before performing difference equations, a small amount of code
retrieves field components and stores values in local variables.

In examining these finite difference equations, a few things should be self ev-
ident. First of all, to update a single field component requires 4 multiplication
operations and 4 addition/subtraction type operations. To perform these oper-
ations, a total of five electromagnetic field components and two proportionality
constants must first be fetched from PE array memory. Also, two of the mesh
density variables (KIx, KIy, KIz) must be fetched from ACU memory. After these
operations are performed, the updated field value must be stored back into PE
array memory. This information is summarized in table 5.8.

By examining table 5.8 we find that to update a single field component, a total
of 8 floating point operations are required. Table 5.8 also specifies the number
of clock cycles that are required to perform each of these operations. By adding
the totals given for each operation, we find that to perform one field component
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Table 5.7: Finite Difference Equations

Ex[·] = KElx[·] ∗ Ex[·] +
KEcx[·] ∗ (KIy ∗ (Hz ijk− Hz ijmk)−KIz ∗ (Hy ijk−Hy ijkm))

Ey[·] = KEly[·] ∗ Ey[·] +
KEcy[·] ∗ (KIz ∗ (Hx ijk− Hx ijkm)−KIx ∗ (Hz ijk− Hz imjk))

Ez[·] = KElz[·] ∗ Ez[·] +
KEcz[·] ∗ (KIx ∗ (Hy ijk− Hy imjk)−KIy ∗ (Hx ijk− Hx ijmk))

Hx[·] = KHlx[·] ∗Hx[·] +
KHcx[·] ∗ (KIz ∗ (Ey dz− Ey[·])−KIy ∗ (Ez dy − Ez[·]))

Hy[·] = KHly[·] ∗Hy[·] +
KHcy[·] ∗ (KIx ∗ (Ez dx− Ez[·])−KIz ∗ (Ex dz − Ex[·]))

Hz[·] = KHlz[·] ∗Hz[·] +
KHcz[·] ∗ (KIy ∗ (Ex dy− Ex[·])−KIx ∗ (Ey dx− Ey[·]))

update requires a total of 2132 clock cycles. Since the 12xx series of MasPar DPUs
has a clock period of 80 nanoseconds, we can estimate that to perform a single
field component update would nominally require 170.56 microseconds.

To estimate the theoretical sustained maximum performance figure we just
need to multiply the total number of floating point operations by the number
of PEs in the PE array, then divide by the required time, which we found to be
170.56 microseconds. Thus we find that the theoretical sustained maximum perfor-
mance figure for the MP 1101 is 48.03 million floating point operations per second.
The MP 1104 should have a theoretical sustained maximum performance figure of

Table 5.8: Operations for Single Field Component Update

Floating Point Clock Cycles Use per Total Clock
Operation per Operation Operation Cycles per Op.

PE Memory Load 76 7 532
PE Memory Store 76 1 76
ACU Memory Load 6 2 12
PE F.P. Add/Sub. 126 4 504
PE F.P. Multiply 252 4 1008
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192.12 million floating point operations per second.

5.6.2 Field Excitation Equations

To provide Gaussian pulse excitation, the exponential function was used. To be
able to set a limit on the number of floating point operations that are associated
with the exponential function that we use to calculate our Gaussian excitation, we
used the program shown in figure 5.13. The point of this exercise is to prove that
the number of floating point operations is small in comparison to the number of
floating point operations that are required to update the FDTD mesh once. For
such proof, an exact value is not needed, an approximate estimate will be adequate.

In the program shown, there are three loops, each loop is performed NLOOP

times. The first loop is used to estimate the overhead associated with the for loop
structure. We used the mpTimerElapsed() function to determine elapsed time as
measured by the UNIX system clock. Time is returned in milliseconds. The second
loop is used to measure the time to perform the addition operation. The floating
point values are stored as register variables. The last loop is used to measure the
time to perform the f_exp() function.

The output of this program is shown in figure 5.14. Remember that time is
printed in values of milliseconds. By dividing the number of additions by the time,
converted to seconds, a floating point rate is estimated. The first thing that you
might notice in the results shown in figure 5.14 is that the floating point rate
is not very impressive. It turns out that the ACU is not capable of performing
floating point operations, such operations are actually performed by one of the
PEs. Thus, what we are seeing for the floating point rate is roughly the floating
point performance of a single PE. There is some overhead associated with moving
the data to a selected PE, and returning the results back to the ACU.

To determine the number of floating point operations that we will associate with
the f_exp() function, we simply divide the time to perform the f_exp() function
by the time to perform the additions, this gives us a value of approximately 9.01546.
Since we are really only looking for a reasonable limit, we round this to 10 floating
point operations.

To produce the excitation at a single time-step, we use equation (5.10). To
evaluate the argument of the exponential function, we perform four floating point
operations. The exponential operation requires approximately ten, producing a
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/*******************************************************

* exptime

*

* The goal of this program is to set an upper limit on

* the number of floating point operations that are to

* associate with the exponential function f_exp().

* jmhill@ee.wpi.edu -- Sat Jun 1 20:51:58 EDT 1996

******************************************************/

#include <mpl.h>

#include <mp_libc.h>

#include <math.h>

#include <time.h>

#include <mp_time.h>

#include <stdio.h>

#define NLOOP 100000

#define KVAL 1.234

main()

{

unsigned int t0, t1, t2, t3, tval;

unsigned int i, tloop, tsum, texp;

register float sum, eval;

sum = 0.0;

eval = 1.0;

mpTimerStart();

t0 = mpTimerElapsed();

for (i = 0; i < NLOOP; ++i)

{ }

t1 = mpTimerElapsed();

for (i = 0; i < NLOOP; ++i)

{ sum += KVAL; }

t2 = mpTimerElapsed();

for (i = 0; i < NLOOP; ++i)

{ eval = f_exp( -eval ); }

t3 = mpTimerElapsed();

tloop = t1 - t0;

tsum = t2 - t1 - tloop;

texp = t3 - t2 - tloop;

printf("NLOOP %d\ntime loop %6d\n", NLOOP, tloop);

printf("time sum %6d\ntime exp %6d\n", tsum, texp);

printf("FLOP rate %e\n", (NLOOP*1.0e3)/(float)tsum);

} /* end of exptime.m */

Figure 5.13: Program exptime.m
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goofy.WPI.EDU> a.out

NLOOP 100000

time loop 277

time sum 4592

time exp 41399

FLOP rate 2.177700e+04

goofy.WPI.EDU>

Figure 5.14: Results from exptime.m

count of fourteen floating point operations.

exc val = exp

(
(time step size · time step− time delay)2

variance

)
(5.10)

In comparison to the total number of floating point values given in section 5.6.1,
that are needed to perform a single update, the number of floating point operations
needed to calculate the excitation at a single time step is very small. In calculating
the FLOPS rate of the overall program, the number of floating point calculations
required to calculate the excitation will be ignored.

5.6.3 Actual FLOPS Rate

To determine the FLOPS rate, we divide the total number of floating point oper-
ations performed by the simulation time. Since the simulation time is known for
the cases presented in section 5.5, our first order of business here is to calculate
the associated number of floating point operations.

For this analysis we use the data presented in section 5.5. For such a cavity
with PEC surfaces, equation (5.11) gives the number of electric field updates that
are performed at each time step. Equation (5.12) gives the number of magnetic
field updates that are performed at each time step. Recall from earlier in this
section that eight floating point operations are required to perform each component
update.

E field updates = 3NxNyNz +Nx +Ny +Nz
−2 (NxNy +NyNz +NxNy)

(5.11)

H field updates = 3(Nx + 1)(Ny + 1)(Nz + 1) (5.12)
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Table 5.9 summarizes the total number of field component updates that are
required to perform a single time step. With the knowledge that 8 floating point
operations are required to perform a single field component update, and that the
simulation times shown in figure 5.9 correspond to one thousand time steps, we
can readily calculate the floating point operation rates on the MP 1101. These
rates are illustrated in figure 5.15. Of the mesh sizes considered for the MP 1101,
the largest FLOPS rate was estimated to be 34.37 million floating point operations
per second. The smallest was estimated to be 3.1 million floating point operations
per second.

Table 5.9: Time Step – Field Update Totals

Mesh Size Mesh E Field H Field Total
NxxNyxNz Boxes Updates Updates Updates
10x10x20 2000 5040 7623 12663
31x31x20 19220 53340 64512 117852
32x31x20 19840 55099 66528 121627
63x31x20 39060 109628 129024 238652
32x63x20 40320 113243 133056 246299
63x63x20 79380 225208 258048 483356
64x63x20 80640 228923 262080 491003
95x63x20 119700 340988 387072 728060
96x63x20 120960 344603 391104 735707
127x63x20 160020 456668 516096 972764
90x90x20 162000 462800 521703 984503
95x95x20 180500 516060 580608 1096668

To get a better sense of the absolute performance of the program implementa-
tion, the FLOPS rate was divided by the theoretical maximum sustained FLOPS
rate, to give the percent of maximum FLOPS utilization graph shown in figure 5.16.
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Figure 5.15: FDTD FLOPS Rate for MP 1101
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Figure 5.16: Percent of Maximum Theoretical FLOPS Rate
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5.7 PMC Boundary Conditions

To minimize the impact of PMC boundary conditions on the performance of the
FDTD simulator, the use of the magnetic image method was used, see section 4.4.2.
To get a sense of the actual impact of PMC boundary conditions on performance,
a test was performed. The same model used to examine FLOPS performance was
used with a 30x40x50 mesh. The simulation was run for 1000 time steps, without
producing any output. A first simulation was run without making any changes to
the boundary condition (All PEC). A second simulation was run after replacing
the north surface with PMC boundary conditions. The results of these simulations
are summarized in table 5.10.

Table 5.10: PMC Test Summary

Simulation Initialize Simulation
Name Time(sec.) Time(sec.)

PEC Only 2.3 149.4
PMC One 7.0 153.9

Note that the time to required to initialize each simulation increased when one
boundary surface was changed to PMC type. This increase is due to the fact that
the PEC surfaces were set by default. To set a boundary surface to PMC type,
indicators had to be inserted into the mesh file to describe the PMC boundary.
Thus the increase in initialization time is associated with the handling of these
indicators.

To implement the magnetic image method, a handler fetches magnetic field
component values and applies a sign change. The point is that while the same
finite difference equations are used to perform the updates to PMC boundary
components as the rest of the mesh, it is just the data input to the difference
equations that makes a component appear as if its part of a PMC surface.

When PMC surfaces are used, there is a slight increase in the simulation time.
This increase is due to the Processor Use Figure due to Branching (PUFB). While
the PMC handler has a very low PUFB, (approximately 10%) it performs its action
very quickly. Between the two simulations that we considered, the simulation time
increased by only three percent. This change, while present is not considered to
be significant.
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5.8 Data Output

So far, all performance testing has assumed that the program produced no output
data. To get a sense of how producing data impacts simulation performance, a
test was performed. The same model as used to evaluate FLOPS performance
was used. The simulation used a 30x40x50 mesh, was run for 1000 time steps,
and produced ten files. For each run, the amount of data produced was varied by
changing the number of mesh sheets that was reported each time a file was written.
Since there was a pronounced difference between DPU time and wall clock time,
wall clock time was used to measure performance, see figure 5.17.
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Figure 5.17: Time vs. Output Data Size

The shape of the curve in figure 5.17 is significant, note that it is exactly linear
in appearance. Because of the asynchronous handling of output data, if only a
small amount of data needs to be output, performance is not greatly impacted.
Midpoint in the curve, the time the front end and the DPU each spend on handling
file output is roughly equal. When more output is produced, the DPU spends more
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time waiting for the front end to format output data.

5.9 Summary

From the simulations presented it appears that the FDTD simulation code works.
It is clear from the speed-up analysis that large simulations should be run on large
MasPar systems. While a larger machine may be faster in executing programs,
most often a smaller machine will have a better utilization than a larger machine.
On the MP 1101 it appears that the code has a peak absolute performance figure
of approximately 34 million floating point operations per second. This figure is
impressive as it represents 70.8 percent of the theoretical sustained peak perfor-
mance figure. The Processor Use Figure due to Mapping (PUFM) provides an
explanation of why the FLOPS graph is square in appearance. The impact of
PMC boundary conditions and the output of data, on the overall performance of
the FDTD code was examined quickly.



Chapter 6

Thesis Conclusion

This chapter brings this thesis to a close by drawing from all other chapters in
this thesis, to present the lessons learned and summarize the nuggets of knowledge
that we revealed. The material in this chapter is presented in several forms. First
this chapter reviews a few of the highlights from this thesis. Second, a discussion
of lessons learned in programming the MasPar system is presented. And last,
suggestions for future research are discussed.

6.1 Thesis Highlights

Chapter 1 presented an introduction to the central topics of this thesis, that is the
development of two programs for the MasPar computer system. The first program
is a mesh generator that provides a spatial decomposition of three dimensional
objects. The second program is an implementation of the Finite Difference Time
Domain Method. To make the need for these two programs plain, the application
of these two programs to antenna design was presented.

Before presenting the MasPar system, chapter 1 presented some history of the
array processor. The continuum type problem was introduced along with an ex-
ample that serves as a vehicle for introducing the concept of performance analysis.
Following the example, specific metrics used to measure performance on an array
processor were given. This material is important as performance analysis is an
important part of the content of this thesis.

In chapter 2, the algorithm associated with the mesh generator was presented.

239
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The complexity analysis in section 2.7 provided important insight into the mesh
generation algorithm. An outline of the parallel algorithm was presented in sec-
tion 2.8. To gain more insight into the mesh generator, a serial implementation
was produced from the algorithm. By using preliminary results from the serial
version, we attempted to predict the performance of the parallel version of the
mesh generator.

In chapter 2 we also showed that while the algorithm works, we can do better.
The time complexity analysis presented in section 2.7.3 indicates that for large
mesh models, approximately fifty percent of the total execution time can be at-
tributed to the facet solver. Section 2.10.3 is significant as it clearly showed that
a measurable improvement is possible, even with less than one order of magnitude
performance improvement in the facet solver. Given that the facet solver consumes
50% of the total execution time, then the limiting factor on the overall speed-up
over the existing code should be approximately 2.0.

Chapter 3 presented the parallel version of the mesh generator and the serial
version of the mesh generator in more detail. Important details such as trans-
ferring data to and from the DPU, the mapping, and allocation of memory were
introduced. The issue of time complexity of the mesh generator was reviewed, this
time as a parallel algorithm. Performance was examined by considering execution
time, speed-up, the rate of performing floating point operations, the processor el-
ement use figure, and the rate at which mesh boxes were generated. For this type
of algorithm we found that the processor use figure due to branching played an
important role in describing how the implementation scales with PE array size.
Lastly, by examining the data, it appears that for moderately sized meshes, the
front end consumes a very small amount of the overall execution time. Thus it
appears that with this algorithm the asynchronous process model would offer little
improvement in performance.

Chapter 4 presented the FDTD method as an algorithm. Topics central to the
FDTD method such the FDTD mesh were reviewed. Topics including the Yee Cell,
time stepping, analysis stability and accuracy, and mesh boundary conditions were
discussed. The idea of using a fast Fourier transform to perform frequency domain
analysis was just touched on. The form of the finite difference equations used to
perform the FDTD method was introduced. The actual finite difference equations
used to perform the FDTD method are derived in appendix E. A discussion
of conductive materials was presented along with a special case that we used to
derive a special absorbing material that we can use to model absorbing boundary
conditions. Lastly, this chapter presented the FDTD method in the form of an
algorithm, complete with a flowchart and a discussion of its time complexity.
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Chapter 5 presented the parallel implementation of the FDTD algorithm. From
the simulations presented it appears that the FDTD simulation code works. It
is clear from the speed-up analysis that large simulations should be run on large
MasPar systems. While a larger machine may be faster in executing programs,
most often a smaller machine will have a better utilization than a larger machine.
On the MP 1101 it appears that the code has a peak absolute performance figure
of approximately 34 million floating point operations per second. This figure is
impressive as it represents 70.8 percent of the theoretical sustained peak perfor-
mance figure. The Processor Use Figure due to Mapping (PUFM) provides an
explanation of why the FLOPS graph is jagged in appearance. The impact of
PMC boundary conditions and the output of data, on the overall performance of
the FDTD code was examined quickly.

The appendixes contained in this thesis must not be overlooked. Appendix A
provides a summary of the MasPar systems that we ran code on for this thesis. Of
the three electromagnetic simulations presented, the one presented in Appendix B
is the most complete. See section 1.1.2 for details regarding all three of the simu-
lations presented in this thesis.

Appendix C serves as a source of useful information for those who have more
than a casual interest in developing an application for the MasPar system. Ap-
pendix D presents some formulas that are associated with cross products. These
formulas were found to be useful for the development of parallel mesh genera-
tor. Appendix E presents the derivation of the finite difference equations that are
central to the FDTD method. Appendix F contains the user manual and lastly
Appendix G contains the list of references for this thesis.

6.2 Lessons Learned While Programming

This section discusses a few of the lessons that were learned while programming the
MasPar system. To start with, I refer to a few of these lessons as being universal,
as they will always be useful, regardless of the platform used. The first lesson
is that the concept of mapping equivalence presented in appendix section C.3 is
central to the use of any computer system. While the idea of mapping equivalence
was central to the development of specific virtualizations for the DPU, we also
used the idea of mapping equivalence to explain how the overall mesh was stored
in the front end of the MasPar system.

The next lesson was the generality of algorithms. While an algorithm can be
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devised so that an implementation of it will take advantage of certain features
in a computer system, there are certain qualities that algorithms have that a
programmer cannot “shake off.” Things like the time complexity of an algorithm
will be somewhat obvious, whether implemented on a serial machine or a parallel
machine.

As pointed on in the beginning of chapter 1, just having high performance com-
puter hardware will not bring you high performance results. For the best results,
high performance computers demand that programmers devise better, more so-
phisticated algorithms. This lesson should especially hearten those who do not
have access to a machine like the MasPar. By devising better algorithms, better
performance can be achieved on any computer system. A large part of this thesis is
simply the discussion of the algorithms that were derived for this research. In one
particular case, an example was given to prove that a better algorithm must exist.
For more details regarding this example, see the suggestions for future research.

The next lesson learned is that clearly, while the DPU is not a general purpose
machine, the front end is. Clearly while some applications, or parts of applications
run well on an array processor, others do not. Many applications, or parts of appli-
cations actually run better on a uniprocessor system. When writing applications
for the MasPar system it is important to not forget the front end processor. In
both of the programs presented in this thesis, the front end served as an important
concurrent processor element, along with the DPU.

The fourth lesson learned is that moving data between the front end and the
DPU is most efficiently performed by using data structures. One of the biggest
headaches in writing the mesh generator program was finding a way to share data
between the front end and the DPU in an effective way. In writing the FDTD
code, it was found that data structures provide a simple and clean way to pack
and move data between the two machines by using the DMA transfer mechanism.
I must admit that in programming uniprocessors I viewed the ‘C’ struct tool as
simply a convenience. In programming the MasPar however I have learned the
wisdom that normally only systems developers are aware of. The wisdom is that
there are often very good reasons for such things as the struct tool.

The fifth lesson learned is that serial file I/O is slow and is best managed
directly in the front end. For the DPU to perform any kind of file operation, the
DPU makes a system call, which leads to a series of events, which in turn leads to
the eventual indirect call of functions in the front end to perform the requested file
I/O operation. Rather than having the operating system “rattle about” it is far
more efficient to write code yourself to implement exactly what needs to be done.
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A significant improvement in initialization time was seen when the code associated
with reading the FDTD mesh file was moved to the front end.

The use of data structures was helpful with file I/O as well. By having the front
end read data, and pack the data into data structures before sending the data to
the DPU, additional time savings was realized. The reason for this improvement
is that since there is a fairly slow communications link between the DPU and
front end, the use of data structures which provide compression and the use of
DMA transfers have a noticeable impact on performance. Likewise, by having the
DPU organize resultant data into data structures before sending to the front end,
improvements in performance were also seen. The mesh generator used a bitmap
scheme that provided a compression of at least eight times. Consider also that
numbers are more efficiently stored in binary form than in ASCII form. In the
FDTD solver, by sending numbers in binary form and formatting the output in
the front end, a compression of four was sometimes seen.

The issue of I/O handling came up again and again. In any real application,
significant amounts of data must be transferred to and from files. By having the
MP 1101 owned by WPI mounted as an NFS client a tremendous negative impact
on system performance was observed. Also, the serial link between the DPU and
front end had a negative impact on performance. Having a parallel disk array
present in the DPU may be very useful as a cache, helping to ease the slowness of
I/O handling. While the MP 1101 can be considered to be a relatively fast machine,
I/O represents a terrible shortcoming for this type of system, and deserves much
attention.

6.3 Suggestions for Future Research

The following are few comments that are necessary, regarding possible future re-
search. To start with, while the mesh generator works correctly and exhibits
what could be described as good performance, it can be improved. Shamos and
Preparata [47] present a better solution to the two dimensional containment prob-
lem. Since this problem is at the core of our mesh generator algorithm, it would be
worthwhile to investigate how Shamos’s algorithm could improve the mesh gener-
ator program. Since Shamos’s algorithm requires some setup time for each facet,
this could potentially be a good application of the asynchronous process model.
In such an application, the front end and DPU act as independent concurrent
processors.



CHAPTER 6. THESIS CONCLUSION 244

The FDTD solver represents a situation where overlay type techniques could
effectively be used. Once memory is allocated to the FDTD array, there is no
change in the memory configuration during run-time. The core of the FDTD
solver is a set of equations that are repeatedly performed in a very predictable
way. For future work it would be worthwhile to examine how a memory-recycling
technique could be applied to allow larger FDTD meshes to be studied.

For the FDTD solver, while Mur’s ABC was tried, it was disabled. In the end,
PEC and PMC were the only applied boundary conditions that were implemented.
It would be worthwhile to try implementations of other boundary conditions. In
particular other ABCs should be investigated.

While the mapping selected for the FDTD solver has advantages over other
mappings, to be honest, I was never really completely satisfied. The biggest prob-
lem I see with the mapping is that the performance exhibits a large dependence not
only on the size of the mesh, but also on the shape of the mesh. It would be worth-
while to consider other mapping schemes for FDTD solvers. A three dimensional
hierarchical mapping might be a worthwhile to research, for example.

The measurement of time is important, according to Patterson and Hennessy[44]
time is the most fundamental measure of performance. In regard to the issue
of measuring time, in a concurrent processor it is not so obvious as to what is
actually being measured. Wall clock time is usually only used to characterize the
performance of programs in the context of an overall system. Traditionally, in
a multiprogrammed uniprocessor system, CPU time is used to characterized the
performance of any single program. In a multiprogrammed concurrent processor
system however, the concept of CPU time is exceedingly vague as a process may
be shared by multiple processors, each of which may or may not be overlapping
processing time. For most of the cases we encountered, most of the processing
took place in the DPU. To examine performance I was able to ingeniously sidestep
the larger issue by using DPU time as the measurement of overall process time. I
believe however that the measurement of processor time for concurrent processing
in general is an important topic that deserves some research.

6.4 Summary

It should be clear from all this discussion that the FDTD code and mesh generator
both work. This document presents three examples of electromagnetic simulations.
In section 5.4.1 a simple model is presented that we use to examine the perfor-
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mance of the FDTD solver. In appendix B an example of a microstrip structure
is presented, and the user manual in appendix F the example of a waveguide is
given. A large part of this thesis was the discussion of the algorithms used in the
programs, and the performance of the programs. Chapter 2 presents the mesh
generator algorithm and chapter 4 presents the FDTD method as an algorithm.
Chapters 3 and 5 present the implementations, show how well both programs run
and present absolute indicators of program performance.

Lastly, this this thesis will be archived with all related source code, on tape as
well as on CD-ROM. You may contact the author by email at jmhill@ece.wpi.edu
or the world wide web at http://www.wpi.edu/~jmhill, but please keep your
correspondence brief.

http://www.wpi.edu/~jmhill
mailto:jmhill@ece.wpi.edu


Appendix A

MasPar System Configuration

In this appendix we review the configuration of each machine that we executed code
on for this thesis. Appendix C provides some key topics that a new programmer
would want to know, about how to actually program the MasPar system. We start
here with some general comments regarding possible MasPar configurations.

The MP–1 was the first series of parallel computers from MasPar. At the time
of this writing, MasPar has long released the newer MP–2 series. Due to circum-
stances however, we were not able to run code on any of the newer machines. In a
MP–1 system, processor array boards can be added to increase the system process-
ing power. Each array board is used to contain a set of 1024 PEs. Depending on
the size of the power supply and chassis, there are two possible system groupings.
The MP 1100 series systems support one, two, or four array boards and have five
I/O slots. The MP 1200 systems support one, two, four, eight, or sixteen array
boards and have fifteen I/O slots.

The model number of a MasPar system is derived from the system grouping, by
indicating the number of array boards that the system has. The machine owned
by WPI is referred to here by its node name, ‘goofy’. Note however in the rest of
this thesis the machine is referred by its model name, ‘MP 1101’. Node ‘goofy’ has
one array board, with 1024 PEs.

MP 1100 and MP 1200 systems may have as little as 16K bytes per PE, but
may have as much as 64K per PE. Other hardware options are also possible. To
determine the actual configuration of the DPU in a MasPar system, simply login
and issue the mpconfig command at the user prompt. The mpconfig command
can only be issued from the front end of a MasPar system. The following is a
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mpconfig report from node ‘goofy’;

goofy> mpconfig

Copyright (c) 1989-1993 MasPar Computer Corp. All rights reserved.

Version MP3.2.0

MasPar DPU Model MP-1101 (32 rows, 32 columns)

ACU IMEM size: 1 MByte

ACU CMEM size: 128 KBytes

PE memory size: 16 KBytes

goofy>

Node ‘goofy’ represents a minimum MasPar configuration. From the report
given, we can see that there are indeed 1024 PEs present, arranged an array, 32
rows by 32 columns. We can also see from the report that each PE has 16 Kbytes
of its own memory. The ACU has 128 Kbytes of data memory (Referred to as
CMEM) and 1 MBytes of instruction memory (Referred to as IMEM). Lastly,
note that node ‘goofy’ contains no hardware options, thus all I/O and disk storage
must be handled by the front end. If a parallel disk array were present for example,
a reference to it would be present in the mpconfig report.

To get an idea of what a mpconfig report from a more impressive machine looks
like, consider node ‘maspar’ which is owned by MasPar Corporation. While all of
our software development was performed on the machine owned by WPI, MasPar
was helpful in our research effort by allowing us to have access to one of their
computer systems.

maspar> mpconfig

Copyright (c) 1989-1993 MasPar Computer Corp. All rights reserved.

Version MP3.2.0

MasPar DPU Model MP-1208 (64 rows, 128 columns)

ACU IMEM size: 1 MByte

ACU CMEM size: 128 KBytes

PE memory size: 64 KBytes

PVME in I/O slot 8 (8 MBytes)

IORAM allocation: MPFS, 0 MBytes; IORAMFS, 0 MBytes; other, 7 MBytes

maspar>

The processor array in node ‘maspar’ is formed from 64 rows and 128 columns
of PEs, a total of 8192 PEs. Each PE has 64 KBytes of its own memory. Note
that besides the familiar ACU memory allocation, node ‘maspar’ has two special
options. There is a reference to a ‘PVME’ card, this is a high performance parallel
VME card that provides improved communications between the DPU and the front
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end. There is another reference to ‘IORAM,’ this is just additional memory that
is present to assist in handling input/output operations, see figure 1.8 on page 19.

The last machine we consider is node ‘beauty’, which is located at the University
of Oregon. Special thanks go to Prof. John Conery, who is with the University
of Oregon, and helped to make node ‘beauty’ available to us. It is interesting to
note that unlike the other machines we ran code on, the front end to node ‘beauty’
is a DECstation 3100. The configuration for this machine is shown below, note
that this is a typical MasPar configuration with 4096 PEs and no special hardware
options.

beauty% mpconfig

Copyright (c) 1992 MasPar Computer Corp. All rights reserved.

Version 3.1

MasPar DPU Model MP-1104 (64 rows, 64 columns)

ACU IMEM size: 1 MByte

ACU CMEM size: 128 KBytes

PE memory size: 64 KBytes

beauty%

Thus to summarize, for this thesis I ran code on three different MasPar MP–1
systems. Table A.1 summarizes the configurations of the machines used.

Table A.1: Machines Used in Performance Analysis

MP 1101 MP 1104 MP 1208
Item ‘goofy’ ‘beauty’ ‘maspar’
PE rows 32 64 64
PE columns 32 64 128
PEs total 1024 4096 8192
PE memory 16K 64K 64K
ACU CMEM 128K 128K 128K



Appendix B

A Complete Example

This appendix presents an example that was performed from beginning to end.
The example starts with a solid model of a microwave band eliminator, which is
simulated to produce data in the time domain. After processing the data with a
fast Fourier transform, a transfer characteristic is produced to show clearly that
the example is indeed a band eliminator. The results are compared to well known
published results.

Figure B.1 is a mechanical drawing of a microwave band eliminator based on the
use of a planar stripline structure. The top and bottom surfaces of the structure
are plated to provide a symmetric wave-guide structure. The metallic material
sandwiched inside the structure is assumed to be of minute thickness.

The goal of this simulation was to provide the transfer characteristic of the struc-
ture for the range of frequencies from 2.0 GHz to 4.5 GHz. Bonetti and Tissi[12]
provided this example, they indicate that the transfer characteristic should have a
significant dip in magnitude at a frequency just above 3.0 GHz.

To provide a 50 ohm feed-point match, the stripline width was selected to be
0.5 cm. A Gaussian pulse was used to excite the system. The width of the pulse
was selected to band-limit the excitation to approximately 10 GHz.

To perform the analysis, two different models were used. The first model, shown
in figure B.2 was used to take samples from the incident wave. The second model,
shown in figure B.3 is of the actual stripline structure. Surrounding the exterior of
each model is a lossy material used to absorb waves. Special attention was given
at the feed-points to minimize discontinuities, and hence possible reflections. For
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each model, a 125x125x8 mesh was used.

Figure B.2: Incident Wave Test Model

The simulation was run with a time-step size of two picoseconds, for a total
of five thousand time-steps. The simulation was run several times. During the
first simulation, Patran data files were produced so that the propagation of the
electromagnetic waves could be seen. Results are shown at several time steps, see
figures B.4, B.5, B.6, and B.7. The figures show the incident wave reaching the
circular region, then bouncing inside the circular region. Waves are seen exiting
the circular region, through both ports.

During the second and third simulation, the incident, reflected, and output
waves were sampled. The incident and output waves were examined to produce
the transfer characteristic shown in figure B.8. As reported by Bonetti and Tissi,
the dip appeared exactly where they stated it should be.
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Figure B.3: Band Eliminator Test Model

Figure B.4: Simulation After 100 Time Steps
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Figure B.5: Simulation After 150 Time Steps

Figure B.6: Simulation After 200 Time Steps
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Figure B.7: Simulation After 250 Time Steps
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Figure B.8: Band Eliminator Transfer Characteristic
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Appendix C

Using the MasPar System

In this appendix, we assume that the reader has more than a general interest in the
MasPar system. Here we “get down to serious business” and consider a few of the
more important aspects of programming the MasPar system. In this appendix we
first consider the memory in a MasPar system. Next we consider process control
between the front end and DPU, and lastly we discuss the important topic of
mapping an application to the MasPar system.

C.1 MasPar Memory Topics

In a MasPar system, sharp divisions are present in the memory systems. The front
end and the DPU have entirely separate memories, data must be explicitly moved
as formal arguments or copied between the machines. The operating system and
hardware provide DMA mechanisms just for copying memory between the DPU
and front end. Inside the DPU, memory is divided between the ACU and the PE
array. Memory allocated in the PE array is allocated uniformly for all PEs. The
term plural is used to describe variables stored in PE array memory, or temporarily
in PE registers. The use of memory is extremely important in the MasPar system.
In the following we consider a few memory related topics.
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C.1.1 Front End Memory Configuration

The front end of the MasPar system owned by WPI is a DECstation 5000/200
workstation, we will use this machine here to serve as an example system. In
writing applications for a MasPar system, the memory in the front end will play
important roles in the final implementation. In our research for example, the
amount of memory in the front end played a role in determining the size of the
largest problem that can be handled. The first command we consider reports the
amount of memory that is allocated for use by virtual memory as well as the
amount that is currently available to the user.

goofy> /etc/pstat -s

Since memory is constantly being assigned and de-assigned to and from pro-
cesses, the best that this command can do is report statistics at a given moment
in time. Currently, the front end workstation at WPI has 64 Mbytes allocated for
use as virtual memory. To determine how much memory is represented by a logical
page, use the pagesize Ultrix command. In a DECstation 5000 a page of virtual
memory represents 4096 bytes.

One way to determine the amount of physical memory present in the front end,
is to look into the machine’s error log. Every time a DECstation boots, a report is
made that contains the physical memory configuration. To examine the last entry
at startup, use the following command at the Unix prompt:

goofy> /etc/uerf -R more +/START—

Currently it appears that node ‘goofy’, the machine that serves as the front end
to WPI’s MasPar system is configured with 24 MBytes of physical RAM, of which
18.73 MBytes is available for use.

C.1.2 Plural Declarations

The MasPar MPL programmer’s reference manual[35] provides a good introduction
to the use of the plural1 qualifier that is be used when a programmer defines
variables.

1Page 2-3 of MPL Ref. Manual
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“The plural type qualifier tells the MasPar system that the variable
being defined is a variable to be allocated on each PE, not a variable
to be allocated in the ACU.. . . Storage allocation is uniform across all
PEs. Therefore, plural declarations affect all PEs, even PEs that are
not active when the declaration is encountered.”

Variables that are not stored in PE memory, but stored in ACU memory are
referred to as singular variables. The use of pointers with plural data allows an
unusual flexibility2. While in most cases a plural pointer is actually a singular
variable that points to plural data, it is also possible for a pointer to be stored as
a plural variable. In such situations, such a pointer can be declared to point to
singular data or to plural data. These last two options are particularly interesting,
since a pointer can be regarded as data, by allowing pointers to be stored in PE
memory, this allows each of the PEs to independently address its own memory.

C.1.3 Available PE Memory

Since the MasPar system is meant to be used in a multiuser environment, memory
is partitioned to allow for multiprocessing. Memory is assigned to users as multiples
of a predefined partition size. The size of a memory partition is set by the system
administrator. The DPU manager3 automatically provides a program with enough
memory for its static needs, but a user is allowed to request more memory. In
addition to the static requirements, if a program allocates memory at runtime, the
user must ensure that additional memory is available. The mplimit command4

advises the DPU manager as to how much memory should be made available
to a program. The mplimit command is particularly useful for programs that
dynamically allocate memory.

The mpsize command may be useful in determining the amount of memory that
a user should request. The mpsize command reports the size of an executable
as well as its static memory requirements. In addition, the MasPar Command
Reference Manual[32] points out that in addition to the user requirements, the
DPU requires some PE memory for housekeeping, and gives an estimate of 384
bytes.

To provide an absolute indicator as to how much memory can be allocated by

2Page 2-5 of MPL Ref. Manual
3The DPU manager is a service provided the operating system.
4mplimit and related topics are presented in the MasPar Commands Reference Manual[32]
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a user, the program in figure C.1 was written. The program works by repeat-
edly assigning then freeing up memory. After the program was compiled, mpsize
reported that the executable required 472 bytes of static PE memory.

/*****************************************************************

pmemtest

This program determines the available amount of PE memory and reports

to the user. Use this program with the ‘mplimit’ command to see

how much memory is actually made available to your process.

*****************************************************************/

#include <stdlib.h>

#include <stdio.h>

main(int argc, char *argv[])

{

plural char *char_data;

unsigned int nbytes;

for (nbytes=1; nbytes<16385; nbytes++) {

if ((char_data = p_malloc(nbytes)) == NULL) {

printf("Out of Memory (%d)!\n", nbytes);

exit(0); }

p_free(char_data);

}

}

Figure C.1: PE Memory Size Test Program

The ‘pmemtest’ program was run several times, the results are presented in
table C.1 For each run the mplimit command was used to change the amount of
memory requested. The amount of PE memory requested is listed in the column
‘Request’. The column ‘Actual’ is the amount of available PE memory reported
by the ‘pmemtest’ program. Lastly, the ‘Difference’ column lists the difference
between the amount requested and the amount reported. Note that since 472
bytes of static PE memory was reported by mpsize, and the MasPar Commands
Reference Manual indicates that 382 bytes of overhead exists, it was expected that
the largest deficit would be 854 bytes. Note however that the largest deficit is
always 1247 bytes, which is accounted for by memory being allocated in the DPU
for stack space.

Lastly note that the operating system scheduler makes use of data from the
‘mplimit’ command. By examining the user’s request for memory, the scheduler
can take precautions to ensure that multiple users can share the available memory.
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Table C.1: pmemtest Results

Request Actual Difference
4096 3041 -1055
4288 3041 -1247
4289 7073 +2784
8320 7073 -1247
8321 11105 +2784

12352 11105 -1247
13353 15137 +1784
16384 15137 -1247

C.1.4 Demand Paging and Other Techniques

The MasPar PE array does not implement any kind of demand paging. What this
means is that unless special techniques similar to overlays are used, the amount of
physical memory available immediately determines the amount of data that can be
stored in the DPU. The paging that is performed in the DPU is limited to program
instructions associated with the Array Control Unit. Unfortunately, user access to
instruction memory is not allowed.

Silberschatz, Peterson and Galvin[58] as well as Patterson and Hennessy[44]
both provide a useful introduction to overlays as well as to the idea of demand
paging. Both techniques essentially reuse memory by cycling data to and from
disk storage. This reuse of memory allows a computer to run programs that cannot
otherwise fit all at once into physical memory. There are at least two significant
disadvantages that all overlay type techniques share, the first is complexity. Unlike
demand paging, the operating system provides no support to overlays. All data
movement to and from disk must be organized by the application programmer.
The task of writing code to manage such transactions can be a sizable feat, just
by itself. In comparison, demand paging is performed by the operating system in
a way that is nearly transparent to the user and programmer alike.

The second disadvantage of overlays is that unlike demand paging, there is
always an associated loss of performance. Any time a program spends on manip-
ulating overlays is time that cannot be used to perform useful work. In contrast,
in a demand paged system, the operating system and the hardware have special
features that help to minimize the cost of page swapping. Without direct support
from the lower system layers, overlay techniques cannot help but be slow.
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Clearly the use of such techniques as overlays is best to be avoided. There are
situations where the use of overlay type techniques cannot be avoided however, for
example the processing of extremely large matrices. The MasPar Math Library[34]
provides routines that are known as out of core matrix solvers. These routines use
special techniques that allow the DPU to process huge matrices that could never
fit all at once into PE memory. While there is some loss of performance due to the
cycling of data between PE memory and disk, the loss can be eased by the use of
a parallel disk array.

The current version of the parallel mesh generation program does not implement
any such memory overlay technique. By storing the overall mesh in the front end,
the mesh generator makes use of the demand paging available there. Also, by
having the overall mesh in the front end it is possible to make better use of the
available memory in the DPU. In the current situation, the mesh generator can
produce meshes much larger than could ever be accommodated by the FDTD
solver.

The current version of the FDTD solver does not use any kind of memory
recycling technique either. For the FDTD solver the size of the largest FDTD
mesh that can be studied is directly limited by the amount of physical memory in
the DPU. The FDTD solver represents a situation where overlay type techniques
could effectively be used. Once memory is allocated to the FDTD array, there is
no change in the memory configuration during run-time. The core of the FDTD
solver is a set of equations that are repeatedly performed in a very predictable
way. For future work it would be worthwhile to examine how a memory-recycling
technique could be applied to allow larger FDTD meshes to be studied.

C.2 Process Control

Because the MasPar MP–1 computer system is actually comprised of two machines,
a DPU and a front end that are meant to work together, provisions were made
in MPL to coordinate the two machines. The MPL reference manual[35] provides
information as to how process control is handled.

“The design concept uses a simple subroutine calling convention. All
state changes occur through subroutine requests, execution, and re-
turns. No other forms of communication are allowed or needed. For
example, the DPU user process can call a routine that prints a mes-
sage to the screen(a front end activity) or the front end user process
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can call a routine that will do an image processing transformation in
the DPU. . . routines for moving large amounts of data make a system
call to initiate a more efficient block DMA-style move.”

Thus for one machine to initiate execution in the other machine, something
akin to a typical function call is used. MPL allows for two execution models, a
synchronous model as well as an asynchronous model, each is described next;

“In the synchronous model, either the front end user process or the
DPU user process is running at any given time; they are not allowed to
run simultaneously. . . In contrast to the synchronous model, the asyn-
chronous execution model allows both the front end user process and
the DPU user process to run concurrently.”

MPL provides functions for synchronizing the asynchronous execution model.
Naturally both processors have to be running so that synchronization points can
be reached. For this project the synchronous model found the most use, however
the asynchronous model was used as well. An important point needs to be made,
distinguishing which processor “calls the shots” is an important matter;

“The simple protocol used in these routines requires that there be only
one calling master that may alternate between the front end and the
DPU. Note that this does not preclude either side from doing asyn-
chronous operations as long as it does not require interaction from the
other user process.”

When the front end as master calls the DPU, the DPU becomes the new master.
The DPU then can either return from the subroutine or call another routine in
the front end. Both these actions return master control to the front end. Process
control is most important as it provides a tight link between the DPU and front
end.

C.3 The Mapping Topic

A few issues are always faced anytime an array processor application is written,
one such issue is called the mapping of the application to the computer system.
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The topic of mapping an application is actually a collection of basic issues that
determine, in a fundamental way, how resources will be used. Resources are fea-
tures of a computer architecture that can be used in a program. Such resources
typically include the PE array, the ACU, the front end, communications between
the front end and DPU as well as interprocessor communications between the PEs
themselves and the ACU. The task of mapping an application is actually composed
of two related activities. First consider the mapping of processes, which basically
involves deciding where and when functions will be called and performed. Since
the MasPar system is actually composed of two machines, this activity is not in
general as easy as it might first appear.

In most introductory programming examples, “main” is the only function that
is referenced. For such a program the task of process assignment is trivial. The
activity of mapping processes is usually not introduced to student programmers
until later, after they have mastered more advanced programs. For without such
experience, one really cannot appreciate the complexity of the topic. We will follow
this apparent tradition by first discussing the topic of memory system mapping.
The topic of mapping processes is discussed later in this section.

C.3.1 Mapping Data Structures to Hardware

The second activity involved in mapping an application involves the mapping of
data structures to physical hardware. To understand this second task, three asso-
ciated ideas must be clearly understood:

1. mapping equivalence

2. domain decomposition

3. processor virtualization

We will start the discussion by presenting the idea of mapping equivalence.
In the most basic form used here, a mapping is a mathematical function5 that
defines a correspondence between sequences of numbers. Flanders[15] has a simple
example that we present here. Consider the simple case of mapping N data items
given in a sequence to a linear array of N PEs such that exactly one data item is

5According to Anton[3](See page 53), a function is a rule that assigns to each element in a set
A (the domain), one and only one element in set B (the range).
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held in each PE. The number P identifying the PE in which data item I is stored
is given by:

P = mapfun(I)

where mapfun is a one to one6 mapping of I onto P over the range 0 to N−1. Since
we must not only be able to assign values according to a mapping, but must be able
to determine, according to the mapping, where data came from, it is important
that we be able to determine a reverse mapping that maps P onto I over the same
range. What this implies is that a mapping should be one to one.

I = mapfun−1(P )

The idea of mapping equivalence is actually quite general. Besides being used
to map data to the PE array, it is also used to define any array in the front end.
The next concept we introduce is referred to as domain decomposition. According
to Fox7,

“Each complex system [to be solved] is assumed to have associated with
it a domain of objects or data. The first step in concurrent computation
consists of decomposing this domain into several grains. . . made up of
‘atomic’ or basic entities which cannot be usefully decomposed further.”

The analogy presented by Fox is that like certain cast metals, close inspection
of a sample reveals small metallic regions that are referred to as grains. We refer
to the basic entities as grains, or members of the domain. In problems that satisfy
partial differential equation, such a Maxwell’s equations, space serves as the domain
and is discretized into individual points that represent small regions in the space.
Thus individual points in space serve as grains, or basic members in the domain.

The last topic to introduce before reviewing the concept of mapping data struc-
tures, is the concept of processor virtualization. At this point, the physical ar-
chitecture of the MasPar system should be very familiar to the reader. While
the physical hardware configuration is pretty much fixed, the programmer can
take steps to make the physical hardware appear differently to the problem space.
Rather than mapping domain members directly to processor elements, it has been
found to be more effective to map domain members to a virtual representation of
the computer architecture. While the PE array in the MasPar system is two di-
mensional, memory can be thought of as providing a third axis. By use of mapping

6According to Anton[3](See page 453), a function is one to one if it does not take on the same
value at two distinct points in its domain.
7Page 43 of Fox et. all
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equivalence, processor elements and memory can be made to appear as a different
configuration.

The mapping of memory and processor elements to an alternative configuration
provides a layer of abstraction between the decomposed problem and the actual
hardware that the MasPar Display Library[33] refers to as a specific virtualization.
Figure C.2 is one such example of a specific virtualization. In this example an
n by n processor array is mapped to appear to an algorithm as being a 2n by
2n processor array. It is important to point out that the mapping essentially
determines how the computer will appear in a sense that is very similar to that of
how “memory” appears to a program implementation on a demand paged computer
system. It is important that the reader understand that in the MasPar system, it
is the program implementation that performs this virtualization mapping.

#4#3

#2#1

0,0 0,n

n,0 n,n

#1
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#3

#4

Memory Layers

Think of the problem domain as being constructed of tiles of dimension nxn,
such that the tile dimensions equal the processor array dimensions.

Problem Domain

Problem  Domain  Matches
Virtual  2n x 2n  Processor  Array

Processor Array
n x n

Figure C.2: Two Dimensional Cut and Stack Virtualization

Prins and Smith[48] wrote a sort application for the MasPar system that pro-
vides a good example of the use of a virtualization. According to Prins and Smith;

“To sort arrays that have more elements than there are processors,
a virtualization technique must be employed. Unlike the [Connection
Machine], virtualization is not implemented in hardware; instead the
physical machine size is exposed in the MPL language, so that differ-
ent virtualization techniques can be programmed. This can be done
efficiently because MPL programs the [ACU].”
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Prins and Smith also point out that as an alternative to MPL, automatic virtual-
ization can be provided during compilation of other higher level languages, such
as the Fortran dialect supported by MasPar. As Prins and Smith point out, the
advantage of using MPL is that the programmer has full access and full control
over the virtualization. A case in point is that Prins and Smith found it most
effective to use the processor virtualization of a hypercube, “as it preserves the hy-
percube structure of the original algorithm.. . . ” Jacobsen[18] as well as Tilton[65]
also provide other examples of specific processor virtualizations as well.

Figure C.3 serves as a good summary as it illustrates the mapping of a set of
data structures used to store a problem that has been suitably decomposed. While
the physical hardware configuration is pretty much fixed, the mapfun() function
provides a match between the hardware and the decomposed problem. The al-
gorithm provides a theoretical means of solving a problem that has been domain
decomposed. In the figure, the puffy cloud represents the theoretical aspects of
a problem that are actually being addressed by the algorithm. Note that since
different MasPar systems may have different numbers of PEs, the mapping should
also serve to provide a virtualization that will make the best use of the actual
hardware.

C.3.2 Assigning Processes to the FE and DPU

The job of mapping processes involves deciding how tasks will be assigned to the
front end and the DPU, as well as which type of process control model will be used.
Except for the simplest programs, most applications have some kind of division
between the front end and the DPU. While much emphasis has been placed on
the DPU, we must not lose sight of the front end. First consider situations where
serial computations must be performed, while the ACU is certainly capable, the
front end will do a much better job. In comparison to the ACU which is a 12
Mips machine, the front end is a 24 Mips machine. Also, the front end is better
optimized for performing serial operations.

Next, consider that the asynchronous model allows for concurrent processing8

with the DPU and the front end. By allowing the front end to process data con-
currently with the DPU, the front end provides a means to boost the performance
beyond what is capable by the DPU alone. Such a boost in performance is best
achieved when an algorithm has “naturally serial” and “naturally parallel” parts

8Fox[14] (See page 2) defines concurrent processing as the use of several working entities,
working together toward a common goal.
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that can be performed simultaneously.

Lastly, note that no matter how parallel an application may be, there will always
be some work that the front end must perform9. By taking control of such details
directly from the front end, it is often possible to achieve better performance.
Consider the following example, a function call such as fopen made in the DPU
just calls a library function in the DPU that in turn calls a library function in
the front end. Unfortunately, library functions must be capable of handling many
possible scenarios. By performing library functions in the front end, a layer of
library functions is eliminated.

C.3.3 Making a Decision Regarding Mapping

Almost always a decision involving mapping involves some type of tradeoff between
resources, for example one virtualization might make the best use of PEs and PE
memory, but may complicate use of interprocessor communications. Alternatively,
a virtualization that makes the best use of one form of interprocessor communi-
cations may not make the best use of all the PEs. For certain problem sizes all
the PEs might be used, but for other problem sizes a sizable fraction of the PE
array would be unusable. Likewise, memory use plays a role in determining which
virtualization to select, as we shall see later. In the following we consider the issue
of transferring data between the front end and the DPU, this is an important issue
that must be examined before choosing a particular overall mapping scheme.

C.3.4 FE and DPU Data Transfers

The efficient handling of communications between the front end and the DPU is
an important issue that complicates the task of mapping processes to the MasPar
system. During execution, processes in the front end and the DPU must often
“share” data. Whenever data changes, it is important that processes in the DPU
and front end have updated versions. Because the DPU and front end memories
are disjoint, in physically separate machines, some method must be used to ensure
that shared data values are properly updated. The developers of MPL appear to
have had the viewpoint that requiring the MasPar system itself to automatically
update shared data would be from a performance standpoint, “too expensive.”
Thus the task of ensuring data integrity has been delegated to the programmer.

9Such jobs as disk and terminal I/O are tasks that only the front end can perform, for example.
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In MPL, the programmer must be fully aware of how and where data is being
used, and must select an appropriate means and opportunity for transferring data
between the machines. In a sense, in MPL there really is no such thing as “shared
data”, the phrase “transferred data” is more apt.

There is an obvious need to be able to efficiently transfer data between the front
end and the DPU, this presents a real challenge to the programmer. The transfer
of large amounts of data back and forth between the front end and the DPU can
potentially result in reduced system performance. Rather than sloshing10 data
between the front end and the DPU, it is best that a programmer incorporate as
part of the algorithm, techniques for minimizing the amount of data traffic. One
such technique is to only transfer data at certain opportunities, such that the data
traffic can be minimized. Another technique that applies when opening files in the
front end is to neatly organize data from files into data structures and eliminate
superfluous text that was used to format the data in the files. Remember that
a floating point number stored as a float requires only four bytes, but as an
ASCII string may require ten or more bytes. By properly organizing data into
data structures, data is most easily transferred to the DPU.

To complicate matters, certain data structures can only be moved by using a
DMA style copy. Since a DMA copy in this sense is a strict memory to memory
copy, DMA copies require that memory be properly allocated in both machines
so that transfers can take place. Thus an appropriate solution to the problem of
mapping processes must also consider the proper allocation of memory in both
machines.

C.3.5 Mapping Overview

The specific virtualization and process assignments selected for an implementation
are essentially arbitrary. The MPL programming language is most flexible as it
allows a programmer to make choices as well as implement efficient mappings.
Because of this flexibility, MPL was chosen for our application. Other high level
programming languages such as Fortran automatically provide a virtualization but
do not provide as much flexibility. When programming in MPL, the programmer
first considers the desired performance of the implementation. The programmer
next examines the algorithm and decides how the algorithm can be performed by
the DPU and the front end and considers such things as memory use, the need

10The term sloshing is defined by the MasPar CommandsReference Manual[32] as the inefficient
transfer of large amounts of data back and forth, between the DPU and the front end. The
meaning of the word sloshing should be clear to the reader by its use here in context.



APPENDIX C. USING THE MASPAR SYSTEM 270

for interprocessor communications and the use of input/output operations. Based
on these topics the programmer decides which virtualization will be used, which
processor will perform each part of the algorithm, and what mappings will be used.



Appendix D

Triangular Area

Anton and Rorres[4] present a useful introduction to the cross product, in partic-
ular they provide a geometric interpretation1 that leads to an equation for deter-
mining the area of triangles formed between vectors. A special case is well suited
for two dimensional space and has a unique property that will be introduced. The
following is an excerpt from Anton and Rorres2;

“If �κ and �ν (shown in figure D.1) are nonzero vectors in 3-space,
then the norm of �κ×�ν has a useful geometric interpretation. Lagrange’s
identity (see theorem 3.4.1 in Anton & Rorres). . . states that

‖�κ× �ν‖2 = ‖�κ‖2 ‖�ν‖2 − (�κ · �ν)2 (D.1)

If θ denotes the angle between �κ and �ν, then �κ · �ν = ‖�κ‖ ‖�ν‖ cos(θ), so
that (D.1) can be rewritten as

‖�κ× �ν‖2 = ‖�κ‖2 ‖�ν‖2 − ‖�κ‖2 ‖�ν‖2 cos(θ)

= ‖�κ‖2 ‖�ν‖2
(
1− cos2(θ)

)
= ‖�κ‖2 ‖�ν‖2 sin2(θ)

Thus,
‖�κ× �ν‖ = ‖�κ‖ ‖�ν‖ sin(θ) (D.2)

1See page 129 in Anton & Rorres
2Anton and Rorres use alternate notation for vectors. To follow the same arrow notation as

the rest of this document, without reusing any previous symbols, �κ and �ν were selected to replace
the variables u and v respectively, that Anton and Rorres use.
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But ‖�ν‖ sin(θ) is the altitude of the parallelogram determined by �κ and
�ν. Thus, from equation D.2, the area of the parallelogram is given by

Ap = (base)(altitude) = ‖�κ‖ ‖�ν‖ sin(θ) = ‖�κ× �ν‖

In other words, the norm of �κ×�ν is equal to the area of the parallelogram
determined by �κ and �ν.”
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Area = At

�κ

�ν

Figure D.1: Vectors and Triangular Area

Since the area At of the triangle formed between �κ and �ν is half that of the area
Ap of the parallelogram, we can state that;

2At = ‖�κ× �ν‖ (D.3)

Note that since Anton and Rorres define θ as the smallest positive angle between
�κ and �ν, sin(θ) can only be positive or zero. For the following discussion we define
θr according to the right hand rule, such that θr is the angle from �κ to �ν when
their tails are joined. Since θr is allowed to be positive as well as negative, in terms
of θr, equation D.2 can be rewritten as follows;

‖�κ× �ν‖ = ‖�κ‖ ‖�ν‖ | sin(θr)| (D.4)

D.1 A Special Case

Next, we consider a special case that will lead to a useful equation. Suppose that
�κ and �ν are still nonzero vectors, but that their z components are zero. In such a
situation �κ and �ν correspond to two dimensional vectors drawn on the x-y plane.
Thus, �κ and �ν can be expressed component-wise as follows;

�κ = (κx, κy, 0) = κxı̂+ κy ̂
�ν = (νx, νy, 0) = νxı̂+ νy ̂
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To closer examine this special case we first determine �κ× �ν;

�κ× �ν =
ı̂ ̂ k̂
κx κy 0
νx νy 0

= (κx νy − κy νx) k̂

Thus we find that �κ × �ν only produces a component along the z axis. If we are
only concerned with the value of the z component, we can state that;

z component = (�κ× �ν) · k̂ = κxνy − κyνx = ‖�κ‖ ‖�ν‖ sin(θr)

Or more simply;
z component = κxνy − κyνx (D.5)

Thus for the special case where the z components of �κ and �ν are zero, we can
express the area of the triangle between these vectors as;

At =
1

2
|κxνy − κyνx| (D.6)

Note that equation D.5 is of particular significance, not only is its absolute value
equal to twice the area of a triangle formed between �κ and �ν, but the sign associated
with the result tells us something about how �κ and �ν are oriented. Following the
right hand rule, θr is defined as the angle from �κ to �ν, when their tails are joined.
If θr is positive then equation D.5 will produce a positive value. Alternatively if θr
corresponds to a negative angle, then equation D.5 will produce a negative value.
Equation D.5 is useful and is used in two significant parts of this document.

D.2 Hansen and Levin

Hansen and Levin[20] provide an equivalent form of equations D.5, but in deter-
minant form. First the determinant provides the z component;

z component =
1 cx cy
1 dx dy
1 ex ey

(D.7)

Thus the area At is expressed as;

At =
1

2
abs


 1 cx cy

1 dx dy
1 ex ey


 (D.8)
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Note that the coordinates (cx, cy), (dx, dy), and (ex, ey) correspond to the three
points C, D, and E. Only a small amount of work is necessary to show that
equations D.8 and D.6 are equivalent. We start by evaluating the determinant and
then solve for At.

At =
1

2
| dx ey + cx dy + ex cy
−dx cy − ex dy − cx ey |

(D.9)

Next we define �κ and �ν as follows,

�κ = D − C

�ν = E − C

and substitute into equation D.6 to find that;

At =
1

2
| dx ey + cx dy + ex cy
−dx cy − ex dy − cx ey |

(D.10)

In comparing equations D.10 and D.9, we find that the expressions are identical,
thus the expression given by Levin and Hansen is equivalent.

Note, since Hansen and Levin gave their equations in terms of the coordinates
of points, if the points C, D, and E are taken as a sequence, then the sign of
equation D.7 can be interpreted in the following way. If the result is found to
be positive, then the sequence C, D, E follows a circular path in the counter-
clockwise direction, see figure D.2. Conversely, if the result of equation D.7 is
found to be negative, then the sequence C, D, E follows a circular path in the
clockwise direction. Lastly, note that if equation D.7 is found to be zero, the points
C, D, and E must be collinear and can be thought of being on a circle of infinite
radius.
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A t

ν

θr κ

Area = 
D

E

C

Figure D.2: Points on Circular Path



Appendix E

Derivation of FDTD Equations

This appendix contains a derivation of the FDTD equations that we used. The
equations are for three dimensions and assume linear materials in a sourceless
region. Further, for this derivation all variables are real valued. According to Li,
Tassoudji, Shin and Kong[29] Maxwell’s divergence equations are always satisfied
in the FDTD scheme by ensuring that initial and boundary conditions are correctly
applied. Thus the actual difference equations are based solely upon Maxwell’s curl
equations. As is typically done in this type of derivation, Maxwell’s curl equations
are first expressed in differential form, the constitutive relations have already been
applied.

∇× �H = ε
∂ �E

∂t
+ σ �E (E.1)

∇× �E = −µ
∂ �H

∂t
− σm �H (E.2)

The MKS system of units is used, see section 4.3. In performing this derivation,
material properties in each cell are defined to be the diagonal terms of a matrix.
This use of notation arose from the handling of material properties, see page 176
in section 4.1.2.
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ε =


 εx 0 0

0 εy 0
0 0 εz


 σ =


 σx 0 0

0 σy 0
0 0 σz




µ =


 µx 0 0

0 µy 0
0 0 µz


 σm =


 σmx 0 0

0 σmy 0
0 0 σmz




After incorporating the materials, equations E.1 and E.2 are now expressed as;

∇× �H = ε
∂ �E

∂t
+ σ �E (E.3)

∇× �E = −µ
∂ �H

∂t
− σm �H (E.4)

In proceeding in the derivation, Maxwell’s equations are first rewritten in the
following form;

∂ �E

∂t
= −ε−1 σ �E + ε−1

(
∇× �H

)
(E.5)

∂ �H

∂t
= −µ−1 σm �H − µ−1

(
∇× �E

)
(E.6)

Schwab’s[55] book provides a standard definition of the curl operator which is
easily written in vector notation.

∇× �Q =




∂
∂y
Qz − ∂

∂z
Qy

∂
∂z
Qx −

∂
∂x
Qz

∂
∂x
Qy −

∂
∂y
Qx




The given expression for curl is used next to produce Maxwell’s equations in a
component-wise form, equation E.5 is rewritten as;

∂

∂t
Ex = −

σx
εx
Ex +

1

εx

(
∂

∂y
Hz −

∂

∂z
Hy

)
(E.7)

∂

∂t
Ey = −

σy

εy
Ey +

1

εy

(
∂

∂z
Hx −

∂

∂x
Hz

)
(E.8)
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∂

∂t
Ez = −

σz
εz
Ez +

1

εz

(
∂

∂x
Hy −

∂

∂y
Hx

)
(E.9)

Likewise, equation E.6 is rewritten in a component-wise form as follows;

∂

∂t
Hx = −

σmx

µx
Hx +

1

µx

(
∂

∂z
Ey −

∂

∂y
Ez

)
(E.10)

∂

∂t
Hy = −

σmy

µy
Hy +

1

µy

(
∂

∂x
Ez −

∂

∂z
Ex

)
(E.11)

∂

∂t
Hz = −

σmz

µz
Hz +

1

µz

(
∂

∂y
Ex −

∂

∂x
Ey

)
(E.12)

Maxwell’s equations will be expressed by using a finite difference approximation
of partial derivatives. The following finite difference approximations will be used
for updating x component field values. The term central differencing is sometimes
used to describe this overall FDTD technique, since we apply the concept of central
differences in time and space. The use of central difference equations allows the
FDTD method to have an accuracy on the order of ∆2

For Updating Ex

The following are the difference equations that were used to develop the equations
for updating the x components of electric fields.

∂E
n+1

2
x [i, j, k]

∂t
≈

En+1
x [i, j, k]−Enx [i, j, k]

∆t

∂H
n+1

2
z [i, j, k]

∂y
≈

H
n+1

2
z [i, j, k]−H

n+1
2

z [i, j − 1, k]

∆y

∂H
n+1

2
y [i, j, k]

∂z
≈

H
n+1

2
y [i, j, k]−H

n+1
2

y [i, j, k− 1]

∆z

For Updating Hx

The following are the difference equations that were used to develop the equations
for updating the x components of magnetic fields.

∂Hn
x [i, j, k]

∂t
≈

H
n+1

2
x [i, j, k]−H

n−1
2

x [i, j, k]

∆t
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∂Eny [i, j, k]

∂z
≈

Eny [i, j, k + 1]− Eny [i, j, k]

∆z

∂Enz [i, j, k]

∂y
≈

Enz [i, j + 1, k]− Enz [i, j, k]

∆y

Using the above expressions, equation E.7 is next converted to finite difference
form. While the expressions are presented for the x directed components, equiva-
lent expressions are easily made for the other components by simply changing the
appropriate subscripts. Note that in the following equations, to reduce clutter, the
subscript x in σx, εx, σmx, and µx is not written. The use of the subscript x should
nevertheless be understood. In returning to the derivation, the central difference
equations are first substituted into equation E.7 to yield;

En+1x [i,j,k]−Enx [i,j,k]
∆t

= −σ
ε
E
n+1

2
x [i, j, k]

+1
ε

(
H
n+1
2

z [i,j,k]−H
n+1
2

z [i,j−1,k]
∆y

− H
n+12
y [i,j,k]−H

n+12
y [i,j,k−1]

∆z

)

Note that since electric field components are not actually defined at half time steps,
Ex is approximated as;

E
n+1

2
x [i, j, k] ≈

1

2

(
En+1
x [i, j, k] + Enx [i, j, k]

)

The updated term is brought to the left side of the equal sign, the previous value
is moved to the right;(

1 + σ∆t
2ε

)
En+1
x [i, j, k] =

(
1− σ∆t

2ε

)
Enx [i, j, k]+

∆t
ε

(
H
n+12
z [i,j,k]−H

n+12
z [i,j−1,k]

∆y
− H

n+12
y [i,j,k]−H

n+12
y [i,j,k−1]

∆z

)

This last expression is simplified to produce the following expression,

En+1
x [i, j, k] = 2ε−σ∆t

2ε+σ∆t
Enx [i, j, k]

+ 2 ∆t
2ε+σ∆t

(
H
n+12
z [i,j,k]−H

n+12
z [i,j−1,k]

∆y
− H

n+12
y [i,j,k]−H

n+12
y [i,j,k−1]

∆z

)

The constants KE& and KEc are defined as follows;

KE& =
2ε− σ∆t

2ε+ σ ∆t
(E.13)
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KEc =
2 ∆t

2ε+ σ∆t
(E.14)

Note that KE& can be rewritten along these lines to another form;

KE& =
2εrεo − σ∆t

2εrεo + σ ∆t
=

2εr − σ∆t
εo

2εr + σ∆t
εo

=
2εr − σ

√
µo
εo

1√
µoεo

∆t

2εr + σ
√
µo
εo

1√
µoεo

∆t

KE& =
2εr − σηo∆τ

2εr + σηo∆τ
(E.15)

Where clearly the following is defined as;

∆τ =
1

√
µoεo

∆t

ηo =

√
µo

εo

Similarly, KEc can be rewritten along these lines;

KEc =
2 ∆t

2εrεo + σ∆t
=

2 ∆t

2εr
√
εo
µo

√
µoεo + σ∆t

=

(√
µo

εo

)
2 ∆t√

µoεo

2εr + σ ∆t√
µoεo

√
µo
εo

KEc = ηo
2 ∆τ

2εr + σηo∆τ
(E.16)

Equations E.15 and E.16 are the same exact constants as presented by Li, Tas-
soudji, Shin and Kong[29]. In any case, equations E.15 and E.16 are actually
equivalent to E.13 and E.14.

Returning to the derivation, the equation for updating Ex is presented with
equations used to update the remaining electric field components, which are derived
in a similar fashion.

En+1
x [i, j, k] = KE&xEnx [i, j, k]+

KEcx

(
H
n+12
z [i,j,k]−H

n+12
z [i,j−1,k]

∆y
− H

n+12
y [i,j,k]−H

n+12
y [i,j,k−1]

∆z

) (E.17)

En+1
y [i, j, k] = KE&yEny [i, j, k]+

KEcy

(
H
n+1
2

x [i,j,k]−H
n+1
2

x [i,j,k−1]
∆z

− H
n+1
2

z [i,j,k]−H
n+1
2

z [i−1,j,k]
∆x

) (E.18)
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En+1
z [i, j, k] = KE&zEnz [i, j, k]+

KEcz

(
H
n+12
y [i,j,k]−H

n+12
y [i−1,j,k]

∆x
− H

n+1
2

x [i,j,k]−H
n+1
2

x [i,j−1,k]
∆y

) (E.19)

For the above equations, constants associated with arbitrary axis q are defined
as follows;

KE&q =
2εq − σq ∆t

2εq + σq ∆t

KEcq =
2∆t

2εq + σq ∆t

Next we will finish deriving the equations for updating the magnetic fields.
Using the central difference approximations, equation E.10 is next converted to
a usable finite difference form. Equations E.11 and E.12 are handled in a similar
way. Remember that to reduce clutter in this derivation, the subscript x associated
with µx and σmx is not written. In converting equation E.10, substitutions are first
made;

H
n+12
x [i,j,k]−H

n− 12
x [i,j,k]

∆t
= −σm

µ
Hn
x [i, j, k]

+ 1
µ

(
Eny [i,j,k+1]−Eny [i,j,k]

∆z
− Enz [i,j+1,k]−Enz [i,j,k]

∆y

)
Note that since magnetic field values are not defined for whole time steps, we can
approximate the value of Hn

x as follows;

Hn
x [i, j, k] ≈

1

2

(
H
n+1

2
x [i, j, k] +H

n−1
2

x [i, j, k]
)

Next we move the updated term to the left of the equal sign and the old term to
the right of the equal sign to get;

(
1 + σm∆t

2µ

)
H
n+1

2
x [i, j, k] =

(
1− σm∆t

2µ

)
H
n−1

2
x [i, j, k]

+∆t
µ

(
Eny [i,j,k+1]−Eny [i,j,k]

∆z
− Enz [i,j+1,k]−Enz [i,j,k]

∆y

)
The last expression is simplified to yield;

H
n+1

2
x [i, j, k] = 2µ−σm∆t

2µ+σm∆t
H
n−1

2
x [i, j, k]

+ 2 ∆t
2µ+σm∆t

(
Eny [i,j,k+1]−Eny [i,j,k]

∆z
− Enz [i,j+1,k]−Enz [i,j,k]

∆y

)
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The constants KH& and KHc are defined as follows;

KH& =
2µ− σm ∆t

2µ + σm ∆t
(E.20)

KHc =
2∆t

2µ+ σm ∆t
(E.21)

Note that KE& can be rewritten along these lines to another form;

KH& =
2µrµo − σm ∆t

2µrµo + σm ∆t
=

2µr − σm
∆t
µo

2µr + σm
∆t
µo

=
2µr − σm

√
εo
µo

∆t√
µoεo

2µr + σm
√
εo
µo

∆t√
µoεo

KH& =
2µr − σm∆τ/ηo

2µr + σm∆τ/ηo
(E.22)

Following similar lines, KEc is rewritten to another form as well;

KHc =
2∆t

2µrµo + σm ∆t
=

2 ∆t

2µr
√
µo
εo

√
µoεo + σm ∆t

=
2 ∆t√

µoεo√
µo
εo

(
2µr + σm

∆t√
µoεo

√
εo
µo

)

KHc =
2 ∆τ

ηo (2µr + σm ∆τ/ηo)
(E.23)

Equations E.22 and E.23 are identical to the constants defined by Li, Tassoudji,
Shin and Kong[29]. In any instance, equations E.22 and E.23 are equivalent to E.20
and E.21.

Returning to the derivation, the equations used for updating Hx is presented
with equations used to update the remaining magnetic field components, which
have been derived in a similar fashion.

H
n+1

2
x [i, j, k] = KH&xH

n−1
2

x [i, j, k]+

KHcx
(
Eny [i,j,k+1]−Eny [i,j,k]

∆z
− Enz [i,j+1,k]−Enz [i,j,k]

∆y

) (E.24)

H
t+1
2

y [i, j, k] = KH&yH
n−1

2
y [i, j, k]+

KHcy
(
Enz [i+1,j,k]−Enz [i,j,k]

∆x
− Enx [i,j,k+1]−Enx [i,j,k]

∆z

) (E.25)

H
n+1

2
z [i, j, k] = KH&zH

n−1
2

z [i, j, k]+

KHcz
(
Enx [i,j+1,k]−Enx [i,j,k]

∆y
−

Eny [i+1,j,k]−Eny [i,j,k]

∆x

) (E.26)
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Constants are defined for the equations that update magnetic field components.
For an arbitrary axis q;

KH&q =
2µq − σmq ∆t

2µq + σmq ∆t

KHcq =
2 ∆t

2µq + σmq ∆t

E.1 Special Case of Free Space

For the special case of free space, KE&, KEc, KH& and KHc all simplify since the
magnetic and electric conductivities of free space is implicitly zero. Reviewing
equations E.13, E.14, E.20, E.21, E.16, and E.23, the following is noted for the
special case of free space;

KE& = 1

KH& = 1

KEc =
∆t

εo
= ηo ∆τ

KHc =
∆t

µo
=

∆τ

ηo

Where as before;

∆τ =
∆t
√
µoεo

ηo =

√
µo

εo

E.2 Appendix Summary

In summary, equations E.17, E.18 and E.19 are the difference equations for updat-
ing electric field components at whole time steps. Equations E.24, E.25 and E.26
are the difference equations for updating magnetic field components at half time
steps.



Appendix F

Users Manual

Research was performed with the overall goal of developing a high performance
package for performing finite difference time domain (FDTD) analysis of electro-
magnetic phenomenon. The research resulted in a software package consisting of
an orthogonal mesh generator, a FDTD analysis program, several utility programs,
and file based interface software for using two commercially available programs.
Ideas and Patran are two commercially available programs that are particularly
useful for generating models of solid objects as well as for visualizing results. It
should be pointed out that this user manual is primarily concerned with software
written at Worcester Polytechnic Institute. It is assumed that the user is already
somewhat familiar with Ideas and Patran. This manual only goes so far as to
provide hints regarding use of Ideas and Patran.

Apart from the commercial software, the software package is a collection of serial
as well as parallel code. Serial code was written in ANSI standard ‘C’. The serial
code should execute on any platform that supports an ANSI compatible compiler
and provides adequate memory. The parallel code was written explicitly for the
MasPar SIMD environment and was only tested on a MasPar, DECstation com-
bination. Parallel as well as serial versions of the mesh generator were developed.
At this point only the parallel FDTD analysis software is included in the package.

This user manual introduces topics in an order as would be encountered in a
“typical” FDTD analysis. For a first reading it is strongly suggested that a user
quickly read through the entire document. Figure F.1 presents a helpful outline
that the user should examine closely. For a second reading it is suggested that the
user read each section with a particular example in mind. Section F.9 contains an
example that should be helpful.
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Credit is given to Shipeng Li, who wrote the first version of the universal to
solid file conversion program ‘fconv2’. Credit is also given to Guanghua Peng,
who wrote and maintains the boundary condition assignment program ‘bccode’.
Jonathan Hill wrote the mesh generation, parallel FDTD solver and other utility
programs described in this document.
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Figure F.1: Diagram of Outline

F.1 Managing Ideas

Ideas is currently the program we use to make solid models. A program called
‘fconv2’ converts from the Ideas universal format to the particular solid format
associated with the orthogonal mesh generator. The only reason we currently use
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Ideas is that the software for converting from universal format is already available.
Patran is also capable of solid modeling but unfortunately Patran does not produce
universal files.

Inside Ideas, solid modeling will most likely be performed in the solid modeling
family, and most likely by the object modeling task. Note that objects must be
stored in bins. This point is significant; If you create a model and don’t use
the bins, when you write a universal file it will not contain your model. Menus
associated with bins are found under the manage stored menu. This is also where
you find the write menu to request that a universal file be written.

The names that you assign to bins will later be interpreted as material property
names, thus the user is strongly urged to select meaningful names that will be
easily recognizable. Unfortunately the default bin ‘MAIN’ cannot have its name
changed. Users are not required use the default bin however. Lastly it is suggested
that when storing objects, users pick object names that will be recognizable.

In addition to a bin name, every bin has an associated bin number. The bin
number will later be referred to as the material identifier. It is important to note
that the mesh generator code uses a method of precedence in determining which
material identifier to assign to each mesh box. The precedence method is simply
stated, if two objects are drawn in Ideas so that they share a common space, the
object with the larger material identifier will be assigned the boxes in the region
where both objects coincide. It is strongly suggested that users keep this point in
mind.

While the precedence method employed by the mesh generator was implemented
as a means to guarantee that results be predictable, the precedence method is easily
used to describe a constructive geometry. For example to describe a hollow box,
enclose one block inside another block.

F.2 Conversion to Solid Format

As described earlier, the program ‘fconv2’ converts from universal to solid. The
program fconv2 will accept either complete file names or the base of a file name.
For example ‘sample.unv’ is a file name, while ‘sample’ is the base associated with
that file name. If you specify the filename base, fconv2 will automatically attach
the ‘.unv’ extension. Unless you specify a second filename, the solid file produced
will have the same filename base but will have the ‘.sld’ extension to indicate that
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the file is of solid type. Start fconv2 by entering ‘fconv2’ or by entering ‘fconv2
filename’ at the system prompt.

A second task performed by the conversion software is the handling of material
properties. In the current package implementation, the only indication of materials
inside Ideas is the unique bin names that users assign. Objects in a given bin are
assumed to be made of a material identified by the bin number and associated bin
name. The conversion program ‘fconv2’ has a material editor to allow the user to
enter constants associated with each bin name. A user enters values for relative
permittivity, relative permeability, electric conductivity and magnetic conductivity.

The user will note that the material editor will always have a default material
property with material identifier zero, this default material identifier is interpreted
by the mesh generator to correspond to free space. The material editor can read-
ily handle isotropic or diagonal tensor materials. Permittivity and permeability
materials can have real or complex values. All materials are initially given default
constant values equivalent to that of free space, each material is updated as the
user enters values.

The material editor is driven by single character commands. For an informative
description of all commands the user simply enters the ‘?’ command at the ‘choice:’
prompt. The user can exit the material editor at any time with the ‘x’ command.

F.3 Mesh Generation

Two versions of the mesh generator are provided, a serial version as well as a
parallel version. A makefile will construct either version for you. To start the
serial version with interactive mode enter the command ‘mesh ser’. Likewise to
start the parallel version with interactive mode enter the command, ‘mesh par’.
In the interactive mode the mesh generator first announces that it is running, tells
the user whether the version is serial or parallel then asks a series of questions. A
typical session with the serial mesh generator is presented.

vlsi5> mesh_ser

Orthogonal Mesh Generator; Serial version

Please Enter a File Name or Base Name of a Solid File

Name: duo.sld

Enter the number of uniform boxes that you are

requesting along each respective axis.

X boxes: 10

Y boxes: 10

Z boxes: 10
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Next you will be asked a series of questions, unless you are

specifying a file name, answer each question with ‘y’ for yes

or ‘n’ for no.

Do you want a text visualization? (y/n): y

Accept file name ‘duo_vis.txt’?

(y/n): y

Do you want a universal file visualization? (y/n): n

Do you want a Patran file generated? (y/n): y

Would you like your Patran file made solid for analysis?

If you specify no, the model produced will be ‘hollow’.

(y/n): n

Include the bounding box in your visualization? (y/n): y

Accept file name ‘duo_phm.out’?

(y/n): y

Do you want a mesh file?

(y/n): y

Accept file name ‘duo.msh’?

(y/n): y

If you would rather not start mesh generation now but make an autostart

file, please indicate with ‘y’ for yes.

(y/n): y

Accept file name ‘duo.aum’?

(y/n): y

auto file ‘duo.aum’ written

Mesh program exiting

vlsi5>

The mesh generator also allows users to optionally enter only the base-name
of a file. If the base name is entered in the command line as a formal argument,
then the mesh generator will automatically append the ‘.aum’ extension which is
usually associated with an autostart file. Alternatively, the user can enter a full
name including any arbitrary extension in which case the ‘.aum’ extension will not
be added. If the user does not provide a formal argument when the mesh generator
is called, the user will be prompted for a file name. After the prompt, if the user
provides the base of a file name, the ‘.sld’ extension will automatically be added
which usually corresponds to a solid file. Again, the user is free to enter a complete
file name in which case the ‘.sld’ extension will not be added.

The mesh generator starts by examining the first line of a specified file, to
determine the file type. If the file specified is an autostart file, the mesh generator
loads the rest of the autostart file then proceeds in the non-interactive mode.
Conversely, if the file specified by the user is a solid file, then the mesh generator
enters the interactive mode. In the interactive mode the mesh generator asks the
user a series of questions, starting with the requested number of mesh boxes along
each coordinate axis. This information is used to determine the required mesh
density.
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Next the mesh generator asks a series of questions to determine what output
files should be generated. The text and universal visualization files are meant solely
for visualization purposes. The text visualization file is particularly useful for vi-
sualizing reasonably sized meshes. Patran neutral files are particularly useful, in
addition to helping a user to visualize a mesh, Patran files are useful for assigning
FDTD boundary conditions and visualizing results. For assigning boundary condi-
tions it is recommended that the user select a hollow model but include the default
material bounding box, as illustrated in the example. By producing a hollow file,
the resulting neutral file and Patran database will be significantly smaller in size
than if a complete neutral file were to be generated. A mesh file produced will
have components added later and will become the input file to the FDTD solver.

Eventually the mesh generator will ask if the user wishes to have an autostart
file written. An autostart file saves results from questions that the user replied to
and is particularly useful if you plan to run the mesh generator later, perhaps in
a batch type environment. An autostart file contains all the parameters needed
to perform a mesh analysis. If you choose to have an autostart file generated, the
mesh generator exits after the autostart file is written.

The next example illustrates how the mesh generator can be started in the non-
interactive mode. In this case the parallel version was executed. Note that all
returning comments were written to ‘stderr’.

goofy> mesh_par duo.aum

number unresolved = 0

number unresolved = 0

Text visual ‘duo_vis.txt’ written

Mesh file ‘duo.msh’ written

writing neutral file ‘duo_phm.out’

23-Dec-94 16:26:08

Analysis took 0 seconds.

Including file write time is 2 seconds.

goofy>

It is important to point out that the parallel version of the mesh generator can
only be executed on a workstation that has an attached MasPar data parallel unit.
For both versions of the mesh generator, the number unresolved figure reported
refers to the number of unresolved mesh boxes that were encountered during the
mesh generation process, a report is made for each object that is analyzed. It
is not unusual to have one, two or perhaps three unresolved boxes in the mesh.
The mesh generator has a special function that can take care of small numbers of
unresolved mesh boxes. A large number of unresolved boxes would exceed say one
percent of the total number of boxes in a mesh. Such a situation indicates that
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there is a serious problem in your mesh analysis. The normal number of unresolved
boxes is typically zero.

It has been found that is useful to report the analysis execution time separately
from the total execution time. File write time can be very significant as neutral
files can be exceedingly large.

F.4 Assigning Boundary Conditions

As indicated in section F.3, when running the mesh generator a Patran neutral
file can be generated. A Patran file is used as a vehicle for Patran to describe
boundary conditions. Unfortunately since the orthogonal mesh generator does not
preserve contours, it is not possible to define boundary conditions at the same time
that solid modeling is performed. Thus the earliest opportunity that we have to
assign boundary conditions is after the orthogonal mesh has been generated.

One point needs to be made, since the FDTD solver must have boundary con-
ditions specified, default boundaries are assigned by the FDTD solver. In other
words, wherever the user does not specify boundary conditions on the bounding
box, the parallel FDTD solver will assign an arbitrary boundary condition. The
arbitrary value is by default that of a perfectly electric conducting (PEC) sur-
face. Clearly any circumstance where boundary conditions are not specified on
the bounding box represents an indeterminate state in the FDTD solver. The in-
corporation of default boundary condition guarantees that the bounding box will
always have boundary conditions specified.

The user is free to assign boundary conditions to object surfaces inside the
bounding box or to surfaces of the bounding box. Note that boundary condi-
tions corresponding to perfectly magnetic conductive (PMC) material can only
be assigned to surfaces of the bounding box. The activity of assigning boundary
conditions to the bounding box over-rides default values that would otherwise be
assigned. The use of the default boundary condition can be seen as a time saver,
since the default boundary condition is in effect “already there” on the bounding
box.

To assign boundary conditions you will need to start Patran, create a new
database, then import the Patran neutral file that the mesh generator produced.
Boundary conditions are marked by assigning convection coefficients to surfaces of
the Patran model. You must select an analysis preference that supports convection
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coefficients, one such analysis code is ‘P3/FEA’. If you select this preference, make
sure to select the ‘thermal’ analysis type.

The ‘load/BC’ menu is used to assign the convection coefficients. Make sure
to select the convection object. In the ‘Input Data’ sub-menu it is recommended
that you select arbitrary whole numbers for each boundary condition type that
you mark. You might select say, 50 for excitation and 100 for PMC type boundary
conditions. In the ‘Select Application Region’ make sure to select ‘FEM Geometry
Filter’, likewise in the select menu click on the ‘visible entities’ switch. Lastly
make sure that the icon corresponding to ‘Select a Free Face of an Element’ is
highlighted.

Note that the ‘groups’ and ‘select’ menus are particularly useful for separating
a model into components by material type. This is useful if you need to assign a
boundary condition to an object surface inside your model.

Note that since convection packets are writable and readable, such files can be
saved and allow for changes to convection coefficients later. Once you exit Patran
make sure to rename the neutral file. The program that actually assigns boundary
conditions is expecting the ‘.out’ extension, rather than the ‘.out.1’ or ‘.1’ extension
that Patran sticks on.

The program ‘bccode’ is responsible for actually assigning boundary conditions
to your mesh model. To call bccode use the following syntax;

bccode neutral_base mesh_base unit_conversion

Note that bccode will automatically append the ’.out’ extension to the neutral
file base name and the ’.msh’ extension to the mesh file base name. The unit
conversion is a remnant from Ideas. If you stored your universal file in MKS units
then the unit conversion is simply ‘1.0’.

The program bccode first reads the neutral file, then asks what type of boundary
condition corresponds to each of the convection coefficients found in the neutral
file. Note that in addition to specifying that a surface is to be excited you must
also indicate the type of surface. It is perfectly acceptable for an excitation surface
to correspond to free space, but such a surface is only allowed inside the mesh
model.

Note that the current parallel FDTD solver does not support Mur type absorb-
ing boundary conditions. At one point Mur absorbing boundaries were supported.
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Some work would be needed to re-introduce Mur absorbing boundaries. In the
absence of Mur absorbing boundaries, an appropriately chosen isotropic absorbing
material can be easily selected to provide absorbing boundary conditions. Such
an isotropic absorbing material has permittivity and permeability values corre-
sponding to free space, but includes electric and magnetic conductivities. The
conductivities are selected such that the material has the same impedance as free
space.

F.5 Simulation Directives

The last bit of work needed to prepare for a FDTD analysis is to assign simulation
directives to the mesh file. Simulation directives are used to describe the number
of time steps to perform, the time step size, the type of excitation to use and how
to report results. For excitation, the current parallel code supports real sinusoidal
and real Gaussian pulse excitation. Results can be posted to Patran readable files
or samples of a field component can be dumped to files.

Simulation directives are entered by using the commands editor. The commands
editor is interactive in the sense that it asks a series of questions that a user
responds to. The commands editor follows a script in a file named ‘com script.txt’,
the script must be available for the commands editor to function. To start the
commands editor, enter;

comEdit file-name

The file-name may be the entire file name or just the base part of the file name.
If a file name is not given the commands editor will ask for a file name. Note that
the commands editor automatically makes a back-up file.

If you should need to exit the commands editor, the easiest way is to enter a
bogus entry for a number, ‘bogus’ for example, then reply that you do not wish
to try again. Note that when starting the commands editor your mesh file is first
renamed to ‘file-name.bak’. The commands editor first makes a new mesh file with
your original mesh file name. By exiting the commands editor in the way described
above, the new file will be deleted and ‘file-name.bak’ will be renamed such that
it again has the original file name. If you were to exit the commands editor by
simply issuing control-c, then the new mesh file will be left in an unfinished state.
You will have to rename ‘file.bak’ manually, otherwise the file may be lost.
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Note that if a file already has had commands inserted, there is no danger in run-
ning the command editor again; Before inserting new commands the old commands
are neatly removed, thus a user can use the commands editor to repeatedly make
changes to the same file. Unfortunately however after commands are inserted, the
file format is changed just slightly so that ‘bccode’ will not work. A user should
run ‘bccode’ before running the commands editor.

F.6 Parallel FDTD Solver

Start the FDTD solver by entering, ‘FDTDsolve’. The solver will ask for a file
name, make sure to enter the entire file name with extension. Note that the parallel
FDTD solver can only be executed on a machine with an attached MasPar data
parallel unit.

F.7 Results for Patran

Patran files are automatically given the standard ‘.nod’ extension. Data is easily
imported into Patran using the ‘E VEC.res tmpl’ template file that is included
with the FDTD tools.

Before a results file can be imported into Patran, a corresponding finite element
model must be loaded into Patran. There are at least three ways to accomplish
this. The most direct method is to instruct Patran to make a finite element model.
Examples of this type of procedure can be found in the Patran documentation.

The second method to produce a finite element model is somewhat obvious. The
mesh generator can be instructed to produce a neutral file that will contain a com-
plete finite element model. The neutral file is simply imported before loading the
results files. The third method is similar to the second, the program ‘make neutral’
was specifically written to generate such neutral files. The program ‘make neutral’
is interactive and is particularly useful for quickly generating a small number of
layers of a mesh. The program make neutral is found with the FDTD tools and is
started by entering ‘make neutral’ at the system prompt.
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F.8 Examining Samples

While running the commands editor, at most two locations in the mesh file can be
specified for sampling data. For each location a single component value is reported
to a file for every time step. The file names specified will not have any extension
added. To process sample files, several small useful programs were written and are
summarized in the following table.

Sampling Tools

no. name and use description
1 adjlength newlength [file] Adjust length of data set, if

made larger then inserts zeros.

2 radix2 [file] A fast Fourier transform

3 plotreal [file] Produce plot of real part,
readable by xgraph

4 plotmag [file] Produce magnitude plot,
readable by xgraph

5 dlog Afile [Bfile] Produce plot of ratio dB,
Bfile divided by Afile,
readable by xgraph.

6 makeCos Produces samples of a
cosine signal.

One reason why a user might wish to change the length of a data set would be to
alter the resolution of a discrete Fourier transform. Note that besides ‘adjlength’,
the fast Fourier transform will automatically adjust the data set to have a length
that is a power of 2. Both ‘plotreal’ and ‘plotmag’ can be used to make plots of
sample data or plots of discrete transform data. Note if ‘file’ is not specified, these
programs will expect data on standard input. Note that for ‘dlog’, ‘Afile’ must be
specified. If ‘Bfile’ is not specified then input will be expected on standard input.

All of the programs listed in the above table produce output on standard output
which can easily be redirected to a file or piped to another application. With the
exception of ‘MakeCos’, if a file name is not specified then these programs will
expect an input file to appear on standard input, thus these programs can easily
be made to work together. For example to adjust the length of an input data
file, take the fast Fourier transform and then produce a magnitude plot readable
by xgraph a user might call each program, one at a time. Alternatively all three
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programs can be called in a single line. In this example a file named ‘file.dat’ is
adjusted to have 1024 entries, then is transformed. A magnitude plot is made
from the transform data. Lastly the magnitude plot is saved in ‘file.xgf’, which
incidentally is the only file created.

adjlength 1024 file.dat | radix2 | plotmag > file.xgf

The program ‘makeCos’ was included primarily for verification, to show that
the fast Fourier transform program works correctly. Note that ‘radix2’ is based on
a decimation in time fast Fourier transform written in ‘C’. Jonathan Hill translated
the transform from the Fortran code presented by Oppenheim and Schafer on page
608 of Discrete–Time Signal Processing, published by Prentice Hall, copyright
1989. Lastly, ‘xgraph’ is a simple plotting package written by David Harrison, at
the University of California.

F.9 An Example

For this introductory example, a sinusoidal pulse is applied at one end of a rect-
angular tube. Absorbing material at the opposite end should remove most of the
excitation.

F.9.1 The Test Chamber

Figure F.2 is an illustration of the test chamber used in this example. Note that
the test chamber is constructed using two blocks, each of different material. The
properties of each material is summarized in the table below. Note that such
material properties are to be regarded as real and isotropic. Also note that ‘permit.’
refers to relative permittivity, ‘permea.’ refers to relative permeability, ‘sigE’ refers
to electric conductivity and that ‘sigM’ refers to magnetic conductivity.

Material Properties

material permit. permea. sigE sigM
mat#1 1.0 1.0 0.0000 0.0000
mat#2 1.0 1.0 2.6525e-03 3.7700e+02
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Y
X

Z

10 meters

10 meters

10 meters

40 meters

This corner is (0, 0, 0)

MAT. #1

MAT. #2

Figure F.2: Diagram of Test Chamber

The long rectangular block has been assigned a material equivalent to free space.
Likewise the cube shaped block has been assigned a material with absorbing prop-
erties.

F.9.2 Mesh and Boundaries

An arbitrary mesh configuration is given: 200 by 10 by 10 boxes along the x, y and
z coordinate axes respectively. Since the problem we are considering is basically
one dimensional, that is wavefronts are expected to propagate along the x axis,
the mesh is made most dense along the x axis.

To assign boundary conditions consider the following; Excitation is placed on
the surface furthest from the absorbing material, corresponding to x = 0 and
should be specified as a PEC surface otherwise. Note that when you specify a
surface as being associated with excitation, ‘bccode’ will also ask for an alias type.
which is PEC in this case. Surfaces associated with y = 0 and y = 10meters should
specified as being PMC. All remaining surfaces should be left as PEC. Note that
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we will be apply energy to z components of the electric field, so we will be exciting
a TEM mode.

F.9.3 Analysis Parameters

Tables were provided to help the user with this introductory example. Note that
the parameters selected in most cases are arbitrary, remember that the point of
this exercise is to become familiar with the software. Note that 800 time steps was
arbitrarily selected since this should allow the user to “see” the most interesting
parts of the analysis. A step size of 0.4 nano-seconds provides an ample margin to
guarantee stability. In free space such an excitation should have a wavelength of
10 meters.

Run-Time Parameters

name value
Time Steps 800
Step Size 4.0× 10−10sec

The step size can easily be entered from the keyboard as 4.0e-10. Note also that
there is no need to specify a material center frequency.

Excitation Parameters

name value
Type Real Sinusoid

Component Ez
Amplitude 1.0
Frequency 30× 106Hz
Life Time 133.3× 10−9sec

For reporting results, a user most likely will want to start by using Patran files.
Once convinced that the analysis works, you may want to select one or two sample
points and try using sample files. In total the analysis should produce 21 Patran
files. Patran reports are organized in x-y layers. Since in this example all layers
should all look identical, there is no need to report all values from the mesh. For
the arrangement presented, when you run ‘make neutral’, request a mesh that is
200 by 10 by 1 along the x, y , and z components respectively. Note that even
though such a mesh has a thickness of one box, it has two layers, that is a top and
a bottom. Of course, the Patran file name given is arbitrary.
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Report Parameters

name value
Report Type Patran Files
First Report 0 step
Steps Between 40 steps
First Layer layer 5

Number Layers 2 layers
File Name first

F.10 Summary

It is hoped that this manual gave the user an adequate introduction to the parallel
FDTD solver package. This manual provides hints and directions on how to use
the software and provides a simple introductory example.
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