Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

8-25-1993

PARSEC: A Constraint-Based Parser for Spoken
Language Processing

Mary P. Harper
Purdue University School of Electrical Engineering

Randall A. Helzerman
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Harper, Mary P. and Helzerman, Randall A., "PARSEC: A Constraint-Based Parser for Spoken Language Processing” (1993). ECE
Technical Reports. Paper 237.
http://docs.lib.purdue.edu/ecetr/237

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages

PARSEC: A CONSTRAINT-BASED
PARSER FOR SPOKEN LANGUAGE
PROCESSING

MARY P. HARPER
RANDALL A. HELZERMAN

TR-EE 93-28
AUGUST 1993

@ &,
f%’., %, SCHOOL OF ELECTRICAL ENGINEERING
2 @7:,% PURDUE UNIVERSITY

S ~
o"‘” WEST LAFAYETTE, INDIANA 47907-1285

PARSEC: A Constraint-Based Parser for Spoken Language

Processing

Mary P. Harper and Randall A. Helzerman
School o Electrical Engineering
Purdue University
West Lafayette, IN 47907

August 25, 1993

Abstract

PARSEC!, atext-based and spoken language processing framework based on the Constraint
Dependency Grammar (CDG) developed by Maruyama (26, 27], isdiscussed. The scope of CDG
isexpanded to alow for the analysis of sentences containing lexically ambiguous words, to allow
feature analysis in constraints, and to efficiently process multiple sentence candidates that are
likely to arise in spoken language processing. The benefits of the CDG parsing approach are
summarized. Additionally, the development CDG grammars using PARSEC grammar writing
tools and the implementation of the PARSEC parser for word graphs is discussed.

'Parallel ARchitecture Sentence Constrainer

1 Introduction

In this paper, we adapt the constraint dependency grammar (CDG) formalism introduced by
Maruyama [26, 27, 28] to the problem of analyzing spoken language. Constraint dependency
grammars are more expressive than context-free grammars (CFGs) and more tractable, but less
expressive, than context-sensitive grammars, and they provide an extremely flexible framework for
parsing natural language.

In Section 2 of this paper, the CDG parsing algorithm is described. In the remainder of the
paper, the following three extensions to the CDG parsing algorithm are discussed:

1. Many words in the English language have lexical ambiguity (i.e., more than a single part
of speech) which can cause correctness and efficiency problems for a parser [6]. A related
problem is the processing of utterances with multiple word candidates over the same time
interval. In Section 3.1, we extend the CDG parsing algorithm to handle lexical ambiguity
and multiple word candidates in an integrated and efficient manner.

2. A word can also have ambiguity in the feature information associated with the word, like
number, person, or case. For example, the noun fish can take a number/person value o third
person singular or third person plural. Often feature information is useful for disambiguating
parses for sentences or for eliminating impossible sentence hypotheses; hence, we have also
added lexical feature analysis to the CDG parser, as described in Section 3.3.

3. Maruyama’s CDG parsing algorithm was designed to process single sentences. If a natural
language processor is used in conjunction with a speech recognizer, the input to the natural
language component would typically be a set of sentence hypotheses. However, processing all
of the sentence hypothesesindividually for an utterance provided by a speech recognizer isvery
inefficient since many hypotheses aresimilar. Furthermore, alist of sentence hypothesesis not
the most compact representation to provide a hatural language parser. A better representation
is a word graph or lattice of word candidates, which reduces the redundancy and compactly
represents the set of sentence hypotheses. In section 4, we extend CDG to operate on a
word lattice rather than single sentences. We aso describe the implementation of our word
graph constraint-based parser, PARSEC (Parallel ARchitecture Sentence Constrainer), and
the development of constraint-based grammars using PARSEC grammar development tools.

2 A Description of Maruyama's CDG Parsing

We begin with the definition of Constraint Dependency Grammar (CDG), discuss Maruyama’s
CDG parsing algorithm, and then relate the algorithm to other approaches.

2

21 Elementsof a CDG Grammar

Maruyama defines a CDG grammar as a 4-tuple, (C, R, L, C), where:

2 = afinite set of preterminal symbols, or lexical categories.

R = afinite set of uniquely named roles (or role-ids) = {r1,...,rp}.
L = afinite set of labels = {l,...,1;}.

C = a constraint set that an assignment A must satisfy.

A sentence s = wywows ... wy IS astring of finite length n and is an element of C*. All of the roles
in R are associated with every w; of syielding nx prolesfor the entire sentence. The sentence sis
said to be generated by the grammar G if there exists an assignment A which maps role vaues to
each of the n*p rolesfor s such that the constraint set Cissatisfied. A role valueis an element of
theset L x {1,2,...n,nil}, in other words, it is a tuple consisting of alabel from L and a modifiee,
where a modifiee can be theindex of a word in the sentence or nil. Role values will be denoted in
the examples as label-modifiee. L(QG) is the language generated by grammar G iff L(G) is the set
of al sentences generated by G. Note that the null string € has no roles and is aways generated
by any grammar according to definition.
A constmint set is a logical formulain the form: V z3 z3 ... z, : role (and Py Py ... P),

where the z;s range over dl of the rolesin s. Below is the definition of possible components of a
subformula P;2:

e Variables: z,, z3, ... 7.

e Constants: elements and subsetsof ¥ U L U R u{nil, 1,2,..., n), where n corresponds to
the number of words in a sentence.

e Access Functions:

(pos x) returns the position of the word for variable x.

(rid x) returnsthe role-id for variable x.

(lab x) returnsthe label for variable x.

(mod x) returns the position of the modifieefor variable x.

(cat i) returns the category (i.e., the element in ¥) for the word 3 in position i.

e Predicate symbols:

(eq x y) returnstrueif x =y, false otherwise.

(ot x y) returnstrueif x >y and x, y € Integers, false otherwise®.
(It X y) returnstrueif x <y and x, y € Integers, false otherwise.
(elt x y) returnstrueif x € y, fase otherwise.

ZMaruyama uses an infix notation; whereas, we use a prefix notation throughout this paper.
3Maruyama uses the accessfunction word rather than cat, though the function accesses the category of the word.
*For example, (gt 1 nil) isfalse, because nil is not an integer.

¢ Logical Connectives:

(and p q) returnstrueif p and q are true, false otherwise.
(or p q) returnstrueif p or qis true, fase otherwise.
(not p) returnstrueif pisfalse, false otherwise.

Each P; in C must be of theform (if Antecedent Consequent), where Antecedent and Consequent
are predicates or predicates joined by the logical connectives. A CDG grammar has two associated
parameters, degree and arity. The degree of a grammar G is the size of R. The arity of the
grammar corresponds to the maximum number of variables in the subformulas of C. To simplify
the examples in this paper, we use grammars with a degree of one, that is, with a single role
governor. The governor role indicates the function a word fills in a sentence when it is governed
by its head word. In our implemented grammars (described in section 4.3), we also use severa
needs roles (e.g, needl, need2) to make certain that a head word has dl of the constituentsit needs
to be complete (e.g., a singular count noun needs a determiner to be a complete noun phrase).
Maruyama has proven that a grammar requires a degree and arity of two to be as expressive as a
CFG.

Toillustrate the use of CDG grammars, consider a very simple example grammar, G; = (%,
Ry, Ly, Cy) in Figure 1, which has a degree of one and an arity of two>. A subformula P; iscalled a
unary constraint if it contains one variable and a binary constraint if it contains two. For example,
U-1, U-2, and U-3 are unary constraints because they contain a single variable, and B-1 is a binary
constraint because it contains two variables.

For G4 to generate the sentence The program runs, there must be an assignment of a role value
to the governor role of each word, and that assignment must simultaneously satisfy each of the
subformulas in C;. Note that each word is assumed to have a single lexical category, which is
determined by dictionary lookup. Figure 2 depicts an assignment for the sentence which satisfies

C1. This assignment can be interpreted as the parse graph shown in Figure 9.

2.2 CDG Parsing

To determine whether a sentence is generated by a grammar, a CDG parser must be able to assign
at least one role value which satisfies the grammar constraints to each of the n * p roles, where n
is sentence length, and pis the number of role-ids. Because the role values for the role are selected
from the finite set I; x {1,2,...n,il}, CDG parsing can be viewed as a constraint satisfaction
problem over afinite domain. Hence, constraint propagation [21, 30, 51] can be used to develop the

parse d a sentence. A CDG parser generates dl parses for a sentence in a compact representation

5The constraints in this grammar were chosen for simplicity, not to exemplify constraints for a wide coverage
grammar.

)%
R,
I
G

= {det , noun, verb)
= {governor)
= {DET, SUBJ, ROOT)
=V z y: role(and

;3 [U-1] A det receives the | abel DET and rodifies a word to its right.

(if Ceq(cat (pos x)) det)

(and (eq(lab x) DET)
(1t (poe x) (rod x))))

i; [U-2] A noun receives the |abel SUBJ and modifies a vord to its right.

(if (eq(cat (pes x)) noun)
(and Ceq(lab x) SUBJ)
(1t (poe x) (rod x))))
3 [U-3] A verb receives the | abel ROOT and rodifies no vord.
(if (eq(cat (pos x)) verb)
(and C(eq(lab x) ROQM)
(eq(rod x) nil)))
;3 [B1] A DET is governed by a SUBJ.
(if (and Ceq(lab x) DET)
(eq (mod x) (pos y)))
(eq (lab y) SUBD))

Figure:l_' Gy = (21,R1,L1,Cl).

pos | word cat | governor role's value
the det DET-2
program | noun SUBJ-3
3 runs verb ROOT-nil

Figure 2: An assignment for The program runs.

node

role values (DET-rél, DET-1, DET-2, DET-3,
\ SUBJ-nll, SUBJ-1, SUBJ-2, SUBJ-3,
ROOT-nll, ROOT-1, ROOT-2, ROOT-3}

{DET-nli, DET-1, DET-2, DET-3,
SUBJ-nil, ww- |, 8UBJ-2, SUM-?
ROOT-nll, ROOT-1, ROOT-2, ROOT-3}

program

@ noun

2
word —A }
category {—det GJ*—ro0le
position—\
{DET-nll, DET-1, MT-2, DET-3,
@

SUBJ-nll, SUBJ-1, SUB.J-2, SUBJ-3,
Figure 3: Initialization of rolesfor the sentence The progmm runs.

ROOT* ROOT-1, ROOT-2, ROOT-3}

because enumeration o the individual parses for a highly ambiguous sentence is intractable. The
steps required for parsing the sentence The program runs are provided toillustrate both the process
of parsing with constraint propagation and the running time of the algorithm.

To develop a syntactic analysis for a sentence using CDG, a constraint network (CN) of wordsis
created. Each of the n wordsin a sentence isrepresented as a nodein a CN. Figure 3illustrates the
initial configuration of nodesin the CN for The program runs example. Notice that associated with
each nodeisits word, category, sentence position, and roles (only onefor this example). Each of the
rolesisinitialized to the set of all possible role values (i.e., the domain). Given (;, the domain for
the exampleis L; x {1,2,3,nil} ={DET-nil, DET-1, DET-2, DET-3, SUBJ-nil, SUBJ-1, SUBJ-2,
SUBJ-3, ROOT-nil, ROOT-1, ROOT-2, ROOT-3). Since there are q* (n+ 1) = O(n) possible
role values for each of the p * n roles for a sentence (where p, the number of roles per word, and
g, the number of different labels, are grammatical constants, and n is the number of wordsin the
sentence), there are O(p * n * q* (n t 1)) = O(n?) role values which must be initially generated
for the CN, requiring O(n?) time. Appendix A contains pseudocode for this step and dl of the
remaining steps in the CDG parsing algorithm.

To parse the sentence using G, the unary and binary constraints in C; are applied to the CN
to eliminate the role values from the roles of each word which are incompatible with C;. For a
sentence to be grammatical, each role in each word node must contain at least one role value after
constraint propagation.

The unary constraints are applied to each of the roles in the sentence to eliminate the role
values incompatible with each word's role in isolation. To apply the first unary constraint (i.e.,

{DET-2, DET-3) {DET-nil, DET-1, DET-2, DET-3,
SUBJ-nil, SUBJ-1, SUBJ-2, SUBJ-3,
ROOT-nil, ROOT-1, ROOT-?, ROOT-3}

& &

{DET-nil, DET-1, DET-2, DET-3,
SUBJ-nll, SUBJ-1, 8UBJ-2, SUBJS3,

E’ ROOT-nil, ROOT-1, ROQT-2, ROOT-3}

Figure 4. The CN after the propagation of U-1 for the sentence The program runs.

U-1, shown below) to the network in Figure 3, each role value for every role is examined to ensure
that it obeys the constraint.

33 [U-1] A det receives the | abel DET and nodifies a word to its right.
(if C(eq(cat (pos x)) det)
(and (eq(lab x) DET)
(1t (pos x) (rod x))))

If a role value causes the antecedent of the constraint to evaluate to TRUE and the consequent to
evaluate to FALSE, then that role value is eliminated. Figure 4 shows the remaining role values
after U-1 has been applied to the CN in Figure 3.

Maruyama requires that each subformulain a constraint set be evaluated in constant time.
Because of this restriction, each constraint can only contain access functions and predicates that
operate in constant time (e.g., access functions and predicates like those defined in Section 2.1).
So when the unary constraint U-1 is applied to O(n?) role values, it requires O(n?) time.

To further eliminate role values which are incompatible with the categories of the wordsin the
example, the remaining unary constraints (i.e., U-2 and U-3) are applied to the CN in Figure 4,
producing the network in Figure 5. Given that the number of unary constraintsin a grammar is
a grammatical constant denoted as k,,, the time required to apply all of the unary constraintsin a
grammar is O(ky * n?).

The binary constraints determine which pairs of role vaues can legally coexist. To keep track
of pairs of role values, arcs connect each role to all other rolesin the network, and each arc has an
associated arc matriz, whose row and column indices are the role values associated with the two
roles. The elements of an arc matrix can either be a 1 (indicating that the two role values which
index the element are compatible) or a 0 (indicating that the role values cannot simultaneously
exist). Initialy, all entries in each matrix are set to 1, indicating that the two role values are
initially compatible. Since there are (";”) = O(n?) arcs required in the CN, and each arc contains

a matrix with O((g * (n + 1))?) = 0(n?) elements, the time to construct the arcs and initialize

{DET-2, DET-3} ‘SUB‘“’}

The GPTgAm
det (G} (G) noun
1 2
ROOT-nil}
©

Figure 5: The CN after the propagation of all the unary constraints.

sUBJI
DET-2 1
DET-3 1
{DET-2, DET-3) {susJ-3)
The program
d:‘ G ©) noun
2
RoOTm ROOT-nH
Ry
DET-2 1
beTa - {ROOT-nil} Q SUBJ-3 1
runs
verb
3

Figure 6: The CN after unary constraint propagation and before binary constraint propagation.

the matrices is O(n*). Figure 6 shows the matrices associated with the arcs before any binary
constraints are propagated. Unary constraints are usually propagated before preparing the CN for
binary constraints because they eliminate impossible role values from each role, and hence reduce
the dimensions of the arc matrices.

Binary constraints are applied to the pairs of role valuesindexing each of the arc matrix entries.
When a binary constraint is violated by a pair of role values, the entry in the matrix indexed by
those role values is set to zero. The binary constraint, B-1, ensures that a DET is governed by a
SUBJ:

;3 [B-1] A CET is governed by a SUBJ.
(if (and (eq (lab x) DET)

(eq (rod x) (poe y))
(eq (lab y) SUBI))

After the application of this constraint to the network in Figure 6, the element indexed by the role

values x=DET-3 and y=ROOT-nil for the matrix on the arc connecting the governor rolesfor the

DET-2 1
DET3 1
{DET-2, DET-3} {suBJ-3)
The program
det (G) noun
1 2
ROOT-ni
DET-2 3 ROOT-nl
bET-3 - {ROOT-nil} D suBss | 1
runs
verb
3

Figure 7: The CN after B-1 is propagated.

and runsis set to zero, as shown in Figure 7. Thisis because the must be governed by a word with
the label SUBJ, not ROOT. Since the constraint must be applied to O(n?) pairs of role values, the
time to apply the constraint is O(n%). Given that the number of binary constraints in a grammar
is a grammatical constant denoted as ki, the time required to apply all of the binary constraints
in a grammar is O(kp * n%).

Following the propagation of binary constraints, the roles of the CN could still contain role
values which are incompatible with the parse for the sentence. To determine whether a role value
is still supported for arole, each of the matrices on the arcs incident to the role must be checked
to ensure that the row (or column) indexed by the role value contains at least a single 1. If any
arc matrix contains a row (or column) of 0s for the role value, then that role value cannot coexist
with any of the role values for the second role and so is removed from thelist of legal role values for
thefirst role. Additionally, the rows (or columns) associated with the eliminated role value can be
removed from the arc matrices attached to the role. The process of removing any rowsor columns
containing dl zeros from arc matrices and eliminating the associated role values from their rolesis
called filtering. Following binary constraint propagation any of the O(n?) role values may require
immediate filtering. However, filtering must also be applied iteratively since the elimination of a
role value from one arc could lead to the elimination of a role value from another arc. The most
efficient filtering algorithm requires O(ea?), where e is the number of arcs, and « is the size of the
domain [29]. In the case of CDG parsing, e = (*;7), and the domain size is n * g, so the running
time of the filtering step is O(n%) [26, 27].

Consider how filtering is applied to the CN in Figure 7%. The matrix associated with the arc

50ur implementation of the algorithm determines whether a role value is supported by its arcs by ORing d!| the
elements it indexes in an arc matrix and ANDing the results from dl of those arc matrices. Hence, if any arc matrix
fails to support arole value in a role, the result of the AND would be 0, and the role value would be eliminated.

Figure 8: The CN after filtering.

connecting the and runs contains a row with a single element which is a zero. Because DET-3
cannot coexist with the only possible role value for the governor role of runs, it cannot be a legal
member of the governor role of the and is therefore eliminated as a role value in that role. It is
also removed from the row it indexes in the matrix associated with the other arc emanating from
that role. Figure 8 illustrates the resulting CN after filtering the CN from Figure 7. Notice that
following filtering, there is precisely one role value per role for the example.

After all the constraints are propagated across the CN and filtering is performed, the CN
provides a compact representation for all possible parses. Syntactic ambiguity is easy to spot in
the CN since some of the rolesin an ambiguous sentence contain more than a single role value.
If multiple parses exist, we can propagate additional constraints to further refine the anaysis of
the ambiguous sentence, or we could just enumerate the parses contained in the CN by using
backtracking search. For highly ambiguous grammars, the process of enumerating all possible
parses is intractable, making incremental disambiguation a more attractive option. The parse trees
in a CN are precedence graphs, which we call parse graphs, and they consist of a compatible set of
role values (given the arc matrices) for each of therolesin the CN. The modifieesdf the role values,
which point to the words they modify, form the edges of the parse graph. Our example sentence
has an unambiguous parse graph given G4, shown in Figure 9.

Below we list the stepsin the CDG parsing algorithm and their associated running times:

1. Constraint Network construction prior to unary constraint propagation: O(n?)
2. Unary constraint propagation: O(ky * n?)
3. Constraint Network construction prior to binary constraint propagation: O(n%)

4. Binary constraint propagation: O(kp * n%)

10

Word = program
Cat = noun
Pos=2

G =SUBJ-3

Figure 9: The parse graph for the CN in Figure 8.

5. Filtering: Q' n%)

Notice that the time required to propagate binary constraints is the slowest part of the algorithm.

23 CDG Parsing Compared with Other Approaches

In this section, the CDG parser isfirst compared with other constraint-satisfaction problems, and

then it is compared with more traditional parsing approaches.

231 CDG Parsing Compared with Constraint-Satisfaction Problems

Constraint-satisfaction problems (CSP) have a rich history in Artificial Intelligence [3, 4, 5, 9, 10,
25, 26, 51] (see [22] for a survey of CSP). If CSP is restricted to afinite, discrete domain, and only
constraints over single variables or pairs of variables are allowed, then there is a mapping between
CDG parsing and CSP.

In a typical finiteedomain CSP problem, the variables (roles) are depicted as circles, and each
variable is assigned afinite set of possible values. Constraints imposed on the variables are depicted
along with arcs drawn between the circles (variables) affected by the constraint. Because binary
constraintsinvolve two variables, a constraint arc is drawn between the two corresponding circles.
However, because unary constraints involve only single variables, the constraint arc loops from a
circletoitself. Consider the CSP problem on theleft-hand side of Figure 10 (thisexampleis based on
a CSP network discussed in [1]), and notice how it mapstothe CDG constraint network tothe right.

In CSP, binary constraints are depicted along with their arcs; whereas, in a CN, the constraints are

11

Traditional CSP Network CDG Constraint Network

Constraint 1:
/Val Varz AB C
A D Dj1 0 1
A F B0 0 O
[:] rjr_ o0 o
(AB,C} {D,E.F} D E ¥
A B C Role Role e[T 1 o
i 0 1 1 2 glo o 1
1 0 0 Ijo o0 o
Lo 0 o
A B C
D B ¥ ¢t 1 1
Jii 1 1 Bl 1 1
KjT 1 1 J,K, L] Il 1 1
IO fans
4 3
J K L
Ggjo o o
BT 0 0
Ij1_ o0 1

Figure 10: A CSP network compared to an equivaent CDG constraint; network

not depicted. Instead, constraints are applied to the CN, which maintains information about which
role values are consistent with the set of applied constraints. The algorithm for CDG filtering is
similar to the most efficient algorithm for maintaining arc consistency for CSP problems designed
by Mohr and Henderson [29]. In the arc consistency algorithm, arc matrices are used to detect
and eliminate values associated with a circle (variable) that are not supported by all of the arcs

attached to the circle.

2.3.2 CDG Parsing Compared with Other Parsing Methods

Researchers have developed and used a variety o parsing paradigms which are based on context-
free grammars (CFGs) or are equivaent in expressivity to CFGs. A complete survey of CFG
parsers is beyond the scope of this paper; however, a comparison of the CDG parser with several
representative CFG parsers will illustrate their similarities and differences.

Most of the CFG parsers that are used in computer language applications (e.g., LL and LR
parsers) compile grammar rules into a table which is then used by a parser driver to determinis-
tically parse programs. Though these parsers have been used by the natural language processing
community, the ambiguity that is common in natural language has caused researchers to seek alter-
native methods. A recursive transition network parser [55], which encodes a grammar in a network
and then searches the network in a top-down fashion, is able to produce all possible parses for an
ambiguous sentence. However, if the parser does not cache subresults during that search it can have
an exponential running time. Definite Clause Grammar parsers [34] use unification and search to
determine the parses for asentence. Chart-based parsers[19] use a chart to build up constituents in
a bottom-up fashion, and for some ambiguous sentences, can create charts of constituents that are

12

exponential in size. Tomita [46] has developed an LR parsing method which creates a parse forest
of possible parses using an LR table with shift-reduce and reduce-reduce ambiguities. Tomita’s
parse forest also grows exponentially for some highly ambiguous grammars. Early [7] developed a
parser which provably operates in O(G#n3) time, but the algorithm builds a forest of parses that,
in some cases, includes impossible parses that must be pruned by checking the consistency of leaf
nodes in each tree. There are other approachesthat improve the average case efficiency of the Early
parser, but they do not improve the efficiency under worst-case scenarios [38].

Below we enumerate the differences between CFG parsers and the CDG parser:

1. CFG parsers use production rules (or equivalently, recursive transition networks) in a gram-
mar to determine whether or not a string of terminalsis in the language. The CDG parser,
on the other hand, uses sets of constraints. Any type of constraint that can be formulated as
an if-then rule containing one or two role value variables can be used to constrain a CN.

2. CFG parsers that generate all parses for ambiguous grammars use a variety of methods to
search through the rules for all possible parses. To save time during parsing, grammar rules
can be preprocessed and sub-results cached and reused. In contrast, the CDG parser assumes

anything is possible until constraint propagation is used to eliminate impossible analyses.

3. The best seria running time for a CFG parser operating with an ambiguous grammar is
O(G? * n33 [7], where n is the number of words in a sentence and G is the size of the CFG
grammar. On the other hand, the serial running time for the CDG parser of single sentences
is O(k * n%), where k is the number of constraints in grammar. In practice, we have found
that k is comparable in size to G for grammars with the same coverage.

4. CFG parsers often build trees for each of the possible parses for a sentence. However, enu-
merating the trees for highly ambiguous sentences can require exponential time. Hence, some
CFG parsers construct a parse forest (or similar structure) to circumvent this problem. The
CN constructed by the CDG parser isaforest of parse graphs which is pruned during parsing.
A CN differsfrom a CFG parse forest in that there are no non-terminals in the graph, only
links between terminals, which are assigned sets of labels. A packed parse forest generated by
a CFG parsing algorithm can be mapped to a syntactic graph [44], which likea CN, compactly
encodes all parses of ambiguous sentences by using modifier links between a head word and
its modifiers. Exclusion matrices are associated with the syntactic graph, which, like CDG
arc matrices, prevent impossible parses from being selected from the graph. However, unlike

a CN, a syntactic graph is generated by a grammar which is context-free.

5. The smallest known size for a CFG parse forest is O(G? * n3) [7], regardless of how many

13

parses there are for an ambiguous sentence. In contrast, a CN has the size’ of O(n?), and it

is the only data structure used during parsing; there is no stack or agenda to maintain.

6. When a CFG parser generates a set of ambiguous parses for a sentence, it cannot invoke
additional production rules to further prune the analyses. In contrast, in CDG parsing, the
presence of ambiguity can trigger the propagation of additional constraints to further refine
the parse for a sentence. A core set of constraints that hold universally can be propagated
first, and then if ambiguity remains, additional, possibly context dependent, constraints can
be used. This type of flexibility is easy to achieve, since constraints are not precompiled into
a table (likein LR parsing) or into a network (likean ATN).

7. CFG parsing has been parallelized by several researchers. For example, Kosaraju's method
[20] using cellular automata can parse CFGsin O(n) time using O(n?) processors. However,
achieving CFG parsing times of less than O(=n) has required more powerful and less imple-
mentable models of parallel computation, as well as significantly more processors. Ruzzo's
method [37] has a running time of O(log?(n)) using a CREW P-RAM model (Concurrent
Read, Exclusive Write, Parallel Random Access Machine), but requires O(n®) processors to
achieve that time bound. In contrast, we have devised a parallelization for the single sentence
CDG parser [13, 15] which uses O(n%) processors to parsein O(k) time for a CRCW P-RAM
model (Concurrent Read, Concurrent Write, Parallel Random Access Machine), where n is
the number of words in the sentence and k, the number of constraints, is a grammatical
constant. Furthermore, this algorithm has been simulated on the MasPar MP-18, using the

special features of the machine and O(n*) processors to obtain an O(k +log(n)) running time.

8. To parse a free-order language like Latin, CFGs require that additional rules containing the
permutations of the right-hand side of a production be explicitly included in the grammar
[31]. Unordered CFGs do not have this combinatorial explosion of rules, though the universal
recognition problem for this class of grammarsis NP-complete for an n-character alphabet. A
free-order language can easily be handled by a CDG parser because order between constituents
isnot arequirement of the grammatical formalism. Furthermore, CDG is capable of efficiently
analyzing free-order languages because it is does not have to test for all possible orders of

words.

9. The set of languages accepted by a CDG grammar is a superset of the set of languages which

"In natural language processing, » istypically much smaller than G. English sentences usually contain fewer than
30 words; whereas, hundreds or even thousands of production rules are not uncommon for broad coverage English
grammars.

8The MasPar MP-1 is a massively paralledl SIMD computer, which supports up to 16K 4-bit processing elements,
each with 16K B of local memory.

14

can be accepted by CFGs. In fact, Maruyama [26, 27] is able to construct CDG grammars
with two roles (degree = 2) and two variable constraints (arity = 2) which accept the same
language as an arbitrary CFG converted to Griebach Normal form. We have also devised
an algorithm to map a set of CFG production rules into a CDG grammar. This algorithm
does not assume that the rules are in normal form, and the number of constraints created
is O(G). In addition, CDG can accept languages that CFGs cannot, for example, a"b"c"
and ww, (where w is some string of terminal symbols). Toillustrate the ease of writing such
grammars, we have created a grammar which accepts the language a"b"c", n > 0, shown in
figure 11. This grammar determines whether a string is acceptable by ensuring that there
is a one-to-one correspondence between each b and a, each ¢ and b and each a and c, and
that all as occur before all b’s and all b’s occur before al ¢’s. An assignment for the string
aaabbbccc given G, is shown in Figure 12.

Constraint-based parsing has received considerable interest in computational linguistics in re-
cent years. For example, Covington [2] outlines a constraint-based parser that uses dependency
rules to set up modifiee links between terminals, asin CDG. Covington's parser differsfrom CDG
in that it uses search and unification to provide dependency graphs for sentences, while CDG uses
constraint propagation. However, because both approaches use rules limiting dependency links
between terminals, the dependency rules of Covington’s parser should easily map into CDG con-
straints. Additionally, both share a capability for handling free order languages. Shieber [45]
develops a constraint-based approach to parsing which aso uses unification. Shieber's rules con-
sist of two parts, a CFG phrase-structure portion and a feature analysis portion. The strength
of Shieber's approach is in his well-defined semantics of feature constraints. CDG differs from
Shieber's approach in several ways. First, in CDG, all rules are specified as constraints; there is
no separation between phrase-structure rules and other types of constraints. Second, CDG is not
limited to the use of CFG phrase structure rules.

There has also been considerable interest in the development of parsersfor grammars that are
more expressive than the class of context-free grammars, but less expressive than context-sensitive
grammars [18, 49, 48]. The running time of the CDG parser compares quite favorably to the
running times of parsers for languages which are beyond context-free. For example, the parser for
tree adjoining grammars has a running time” of O(n®). A direct comparison between CDG and
these more expressive grammarsis beyond the scope of this paper.

Insummary, CDG is moreexpressive and flexible than CFGs, making it an attractivealternative
to traditional parsers. It is able to utilize a variety of different knowledge sources in a uniform

framework toincrementally disambiguate a sentence's parse. The algorithm also has the advantage

®This algorithm has also been parallelized, and operates in linear time with O(n°) processors [32].

15

P

Ly
C;

* {3, b, c}.
R, = {governor}

= {A,B,C}
=\Vizy:

role (and
;33 [U-1] An a receives the label A and modifies an item to its right.
(if (eq (root-word x) a)
(and (eq (lab x) &)
(gt (rod x) (pos x))))
;33 [U=2] A b receives the label B and modifies an item to its left.
(if (eq (root-word x) b)
(and (eq (lab x) B)
(1t (rod x) (pos x))))
;53 [U-3]1 A c receives the label C and modifies an item to its |l eft.
(if (eq (rootword x) c¢)
(and (eq (lab x) ©€)
;3: [B-1] Every A precedes every B.
(if (and (eq (lab x) A)
(eq (lab y) B))
(At (pos x) (poe ¥)))
;;; [B-2] Every B precedes every C.
(if (and (eq (lab x) B)
(eq (lab y) ©))
(1t (pos x) (pos y)))
;13 [B=3) If an A occurs after another A, then it rust
;33 modify something after that A's modifiee.
(if (and (eq (lab x) A)
(eq (laby))
(gt (pos x) (pos ¥)))
(gt (rod x) (rod y)))
;33 [B-4] An A rust modify a C.
(if (and (eq (lab x) A)
(eq (rod x) (pos y))
(eq (rid y) governor))
(eq (lab y) €))
;33 [B-5] If a B occurs after another B, then it rust
;;; modify something after that B’s rodifiee.
(if (and (eq (lab x) B)
(eq (lab y) B)
(gt (pos x) (pos y)))
(gt (rod x) (rod y)))
i3+ [B-6] A B rust modify an A.
(if (and (eq (lab x) B)
(eq (rod x) {(pos y))
(eq (rid y) governor))
(eq (lab y) A))
133 [B-5] If a C occurs after another C, then it must
;;:; modify something after that €¢’s modifiee.
(if (and (eq (lab x) €)
(eq (lab y) €)
(gt (pos x) (pos y)))
(gt (rod x) (mod y)))
;33 [B-6] A C rust modify a B.
(if (and (eq (lab x) ¢€)
(eq (rod x) (pos y))
(eq (rid y) governor))
(eq (lab y) B))
)

Figure 11: G; = (X, R2, L2, C3) accepts the language a"b"c", n > 0.

16

pos | word || governor role's value
1 a A-7
2 a A-8
3 a A-9
4 b B-1
5 b B-2
6 b B-3
7 c C-4
8 c C-5
9 c C-6

Figure 12: An assignment for aaabbbecc.

that is is efficiently paralelizeable. Because CDG parsing differs from traditional parsers in its
use of constraint propagation, further study o the relationship between CDG and other parsing
approaches could lead to some useful insights about parsing algorithmsin general.

3 Enhancements of CDG Text-Based Parsing

This section describes a number of enhancements we have made to the CDG parsing algorithm
for single sentences to increase its usefulness for both text-based and spoken natural language
processing. First, the algorithm is modified to parse sentences with lexically ambiguous words.
Next, atableisintroduced tolexically restrict the possiblelabels for aword during CN construction.
Finally, the parsing algorithm is modified to alow constraints to test for features such as number
or person.

3.1 Lexical Ambiguity

Many wordsin the English language have more than a single part of speech. For example, the last
twowordsin The program runs can be either nounsor verbs. Maruyama’s algorithm requiresthat a
word have asingle part o speech, which isdetermined by dictionary lookup prior to the application
of the parsing algorithm. Since parsing can be used to lexically disambiguate a sentence, ideally, a
parsing algorithm should not require that a part of speech be known prior to parsing. In addition,
lexical ambiguity, if not handled in a reasonable manner, can cause correctness and/or efficiency
problems for a parser [6]. We examine four strategies for processing lexically ambiguous sentences
within the CDG framework.

17

{DET-nil, DET-1, DET-2, DET-3, {DET-nil, DET-1, DET-2, DET-3,
SUBJ-nil, SUBJ-1, SUBJ-2, SUBJ-3, SUBJ-nil, SUBJ-1, SUBJ-2, SUBJ-3,
ROOT-nil, ROOT-1, ROOT-2, ROOT-3} ROOT-nil, ROOT-1, ROOT-2, ROOT-3}

{DET-nil, DET-1, DET-2, DET-3,
SUBJ-nll, SUBJ-1, SUBJ-2, SUBJ-3,
ROOT-nil, ROOT-1, ROOT-2, ROOT-3)

Figure 13: Theinitial CN for the second lexical ambiguity strategy.

Thefirst strategy isto create and parse aset of CNs which cover all of the possible combinations
of parts of speech for each word. Because of the combinatorial explosion of CNs, this strategy is
intractable.

A second strategy is to record in each word node all of the applicable parts of speech. For
example, in the CN for The program runs record that thelast two words are both nouns and verbs,
as shown in Figure 13. The parsing algorithm can now no longer generate a parse for the sentence
because, given C,, the noun must have the label SUBJ, eliminating role values with label DET
and ROOT, and at the same time, the verb must have the label ROOT, eliminating role values
with label DET and SUBJ. In other words, after applying the constraints, there are no role values
remaining.

A third strategy is to create a word node for each part of speech for a word, as shown in Figure
14. Using this approach, the maximum size of a constraint network given that each word can have
w parts of speech is (*2") (gn)?, where n is the number of words, p is the number o roles, and q
is the number of labels (simplifying to M%’ll{lq%? = w—zﬁqz—"‘e‘—‘”ﬂﬁi). However, this solution
requires a change in the CDG parsing algorithm, which assumes that a CN is an AND/OR tree
such that the values assigned to the roles account for the only OR nodes in the tree, as shown in
Figure 15. Hence, for a sentence to have a parse, every rolein the CN must have a least one role
value after filtering. On the other hand, for the proposed lexically ambiguous network to have a
solution, only one of the nodes created to represent the multiple parts of speech for a word needs
to be supported. To use this proposed network, we could change the semantics of a constraint
network to include an OR node above the level of the role, but this solution requires modification
of the CDG network construction and filtering algorithms. Furthermore, thereis a fourth solution
which requires requires O(n3) less space than the current strategy, minor modification of the CN

construction routines, and no modification of the filtering algorithm.

18

{DET-nll, DET-1, DET-2, DET-3,
SUBJ-nil, SUBJ-1, 8UB.J-2, SUBJJ,
ROOT-nil, ROOT-1, ROOT-2, ROOT-3}

{DET-nil, DET-1, DET-2, DET-3,
SUB.-nil, SUBJ-1, SUBL-2, SUBJ-3,
ROOT-nll, ROOT-1, ROOT-2, ROOT-3}

{DET-nil, DET-1, DET-2. DET-3,
SUBJ-nil, SUBJ-1, SUBJ-2, SUBJ-3,
ROOT-nil, ROOT-1, ROOT-2, ROOT-3}

{DET-nil, DET-1, DET-2, DET-3, {DET-nil, DET-1. DET-2, DET-3,
8SUBJ-nil, SUBJ-1, 8UBJ-2, SUBJ-3, SUBJ-nil, SUBJ-1, 8UBJ-2, SUBJ-3,
ROOT-nll, ROOT-1, ROOT-2, ROOT-3) ROOT-nil, ROOT-1, ROOT-2, ROOT-3)

Figure 14: The initial CN for the third lexical ambiguity strategy.

vl o vm11 vl v2 ... vmip . vmnp

Figure 15: The AND/OR tree for the CDG parsing algorithm.

19

noun role values =
{DET-nll, DET-1, DET-2, DET},
SUBJ-nil, 8UBJ-1, SUBJ-2, 8UBJ-3,
ROOT-nll, ROOT-1, RC ROOW)

verb role values =
(DET-nll, DET-1, DET-2, DET-3,
det role values = SUBJ-nil, SUBJ-1, SUBJ-2, 8UBJ-3,
{DET-nil, DET-1, DET-2, DET-3, ROOT* ROOT-1, ROOT-2, ROOT-3}

SUBJ-nii, BUBJ-1, SUBJ-2, SUBJ-3, —_
ROOT-nil, ROOT-1, ROOT-2, ROOT-3)

noun role valuss =

(G) (DET-nli, DET-1, DET-2, DET-3,
SUBJ-nll, SUBJ-1, BUBJ-2, SUBJ-3,
ROOT-nll, ROOT-1, ROOT-2, ROOT-3)
verb role values =

{DET-nil, DET-1, DET-2, DET-3,
SUBJ-nil, SUBJ-1, SUW-2, 8UBJ-3,
ROOT-nll, ROOT-1. ROOT-2, ROOT-3)

Figure 16: The initial CN for the fourth lexical ambiguity strategy.

The fourth strategy is to alow role values within the same node to have their own parts o
speech as shown in Figure 16!°. When the CN is constructed, the parts of speech for each word
are determined by looking the word up in the dictionary. If a word is lexically ambiguous then for
each part cf speech, a set of role values in the domain is created and assigned that part of speech.
This solution makes use of the fact that, in CDG parsing, no more than one role value for a role
can occur in the same parse graph. This strategy places the disjunction associated with lexical
ambiguity at the level of the role, and hence requires no modification of the filtering algorithm. As
shown in Figure 17, the categories are represented as the ¢;s, which are ORed below the level of
the role; hence, no modification of the CDG filtering algorithm is required.

Because each role value hasits own part of speech, the constraintsin G in Figure Larerewritten
so that the access function cat operates on a role value rather than on a word node addressed by

its position. For example, U-1 is rewritten asfollows:

;5 [U-1] A det receives the label CE and
;3 modifies a word to itsright.
(if (eq (cat x) det)
(and (e3 (lab x) DET)
(1t (pos x) (rod x))))

This modification of CDG parsing requiresless spacethan the previous strategy. Note that the max-

imum size of this modified constraint network is (%) (wgn)?, which smplifies to prlpn=l) 20252 =

w?p?g2nt —w? pg?n?
2

. Hence, the space requirement for this modified CN is (%) pg®n® smaller than for

the previous strategy.

10Rather than show each role value with its corresponding part of speech in the figures, we show the set of dl of
the role values with a particular part of speech to save space.

20

fardan Ax
RoleI Values

Figure 17: The AND/OR treefor the CDG parsing algorithm with lexical ambiguity.

SUBJ3 ROOT-nll

DET2 1 1
noun role yslues =
DET3 1 1 8UBS3)
verb role vailues =
del role values = {ROOT-nil}
{DET-2, DET-3}

SUBJ-3 ROOT-nil

wooros [+ 1]

noun role values =
4
vrrb roje values =
{ROOT-nll}

DET-2 1
DET3 1

Figure 18: The CN after unary constraint propagation.

By using the modified CN and constraints, the CDG parsing algorithm, operating on the lex-
icaly ambiguous CN for The program runs, produces the same parse graph as the CN without
lexical ambiguity for the same sentence from section 2.2. Following the propagation of unary con-
straints, the labels in the CN in Figure 16 are reduced in number, as shown in Figure 18. Notice
that al of the role values for the noun runs have been eliminated, therefore, the word cannot be
used as a houn in the sentence given G;. Figure 19 depicts the CN after the propagation of binary
constraints, and Figure 20 shows the CN after filtering. Also note that the words in the sentence

have been lexically disambiguated by the parsing process.

Our approach to handling lexical ambiguity can easily be extended to handle multiple word
candidates in the same timeinterval. In this case, each role value keeps track of its word candidate,

as well as its lexical category. This extension is a first step toward processing multiple sentence

21

SUBJ-3 ROOT-nll

oev2 [1. To 1|
DET. i i noun role values =
h {8UBJ3)

verb role vaiues =
det role vakies = {RCOT-nli}
{DET-2, DET-3)

The program
(3 G
1 2

ROOT-mil SUBJ-3 ROOT-mid

oer [roorm [+ T+]

noun rofe valuea =
L H

3 verb role values =
{ROOT-nil)

Figure 19: The CN after binary constraint propagation.

SUBJ-3

noun role values =
(SUB J-3}

verb role values =
4

DET-2

program

ROOT-nll

noun role values =
¢

\3/ verb role values =

{ROOT-nif}

Figure 20: The CN after filtering.

22

L:
SUBJ ROOT DET

noun 1 0 0
C. veb 0 1 0
det 0 0 1

Figure 21: A table of legal labels for word categoriesin the governor role for Gy.

hypotheses provided by a speech recognizer. In Section 4, we describe the necessary modifications

of the CDG parsing algorithm for processing general word graphs.

3.2 An Efficiency Issue: Labd Pruning Using a Table

Given that the role values assigned to a role for a word in CDG are affected by both the role and
the parts of speech, it is possible, at network construction time, to restrict the role values assigned
to arole for each part of speech for a word to those that are appropriate for the role and the lexical
category under consideration. To do so, we add a fifth parameter to the CDG grammar tuple, T,
where T is a table which restricts the possible labels for each role according to the category of the
word and its role id. Now a CDG grammar consists of a quintuple, (C, R, L, C, T). Though T
is not a necessary aspect of the grammar, it does make the analysis of a sentence more efficient
because the roles are initialized to smaller domains, and many of the unary constraints (i.e., those
which restrict labels of role values to lexically appropriate values) can be omitted. The table for
augmenting grammar G, is shown in Figure 21. It shows the lega labels for the governor role
given the word categories in ¥;. If this tableis used during CN construction for the sentence The
program runs along with the assumption that no word modifiesitself, the resulting CN is depicted
in Figure 22. See Appendix A for the pseudocode for CN initialization using T.

In practice, the table reduces the number of role values in the initial CN by a factor of five
to seven, and eliminates the need to propagate some unary constraints. Hence, it does affect the
actual running time of the CDG algorithm, though it does not improve the asymptotic running
time.

3.3 Lexical Featuresin CDG

Many times, even if aword is not lexically ambiguous, it can have ambiguity in the feature informa-
tion associated with the word, like number, person, or case. For example, the noun fish can takethe

number/person feature value of third person singular or third person plural. Lexical features are

23

noun role values |
{SUBJ-nil, SUBJ1, 8SUBJI}
detrolevdun,

vertbrolevdur s
{DET-nil, DET-2, DET -3} {ROOT-nil, ROOT-1. ROOT-3}

nounfolevdunm
{SUBJ-nil, SUBJ1, SUBJ-2)

vetbrolevdurs
{ROOT-nll, ROOT-I. ROOT-2)

Figure 22: Theinitial CN given the table in Figure 21

used in many natural language parsers to enforce subject-verb agreement, determiner-head noun
agreement, and case requirements for pronouns. This information can be very useful for disam-
biguating parses for sentences or for eliminating impossible sentence hypotheses, hence we have
also added lexical feature analysis to the CDG parser

The incorporation of feature testsinto CDG parsing requires the same special care used to in-
troduce lexical ambiguity into the parsing algorithm. Consider another simple example grammar?!?
G3 = (X3, R3, L3, C3,T3), shown in Figure 23.

We will consider how to add number/person featureteststo CDG to processthe sentence *A fish
eat the worm. The grammar should not generate this sentence because it is ungrammatical given
appropriate number/person tests. To add number/person feature tests to CDG grammars, the
algorithm for constructing the initial CN must be modified to look up number/person information
for the word and store this information with the role values. The lexical entries for this example
follow:

(a (category det (number 3s)))

(eat (category verb (nunber 1e 2s 1p 2p 3p)))
(fish (category noun (nunber 3s 3p)))

(the (category det (nunber 3s 3p)))

(vorm (cat egory noun (nunber 3s)))

To simplify the example, we assume that fish is not lexically ambiguous. In addition to storing
number/person information in the lexicon, two agreement constraints must be added to G5 to
ensure thar the number of the determiner agrees with the number of the head noun and that the
number of the SUBJ agrees with the number of the ROOT.

"" Thisgrammar was designed to illustrate feature testing, and is not a general constraint-based grammar. Among
other things, it is missing constraints to support auxiliary verb structuresin the sentences it accepts.

24

s
Rs
L,
Ty
Cs

= {det, noun, verb).
= { governor)
= {DET, SUBJ, DO, ROOT)
= see Figure 24.
=V zy role (and
;3 [U-1] A DET modifies a word to its right.
(if Ceq (lab x) DET)
(1t (pos x) (mod x)))
;3 [U-2] A SUBJ modifies a word to its right.
(if (eq (lab x) SUBJ)
(1t (pos x) (mod x)))
;3 [U-3] A DO modifies a word to its left.
(if Ceq (lab x) DO
(gt (pos x) (mod x)))
;3 [U-4] A ROOI modifies no word.
(if (eq (lab x) ROOM)
(eq (mod x) nil))
;; [B-1] A DET is governed by a SUBJ or DO.
(if (and (eq (lab x) DET)
(eq (mod x) (pos y)))
(or (eq (lab y) IUB)
(eq (lab y) DD)))
;3 [B-2] A SUBJ and DO are governed by a ROOT.
(if (and (or (eq (lab x) SUBJ)
(eq (lab x) DD))
(eq (mod x) (pos y)))
(eq (lab y) ROOT))
;: [B-3] A DET to the left of a RIOF must modify a noun to the
;3 left of the ROOT.
(if (and (eq (lab x) DET))
(eq (lab y) ROON
(1t (pos x) (pos y)))
(1t (mod x) (pos y)))

Figure 23 G3 = <E3,R3,L3,T3, C3)

L:
SUBJ DO ROOT DET
noun 1 1 0 0
C. veb 0 0 1 0
det | O 0 0 1

Figure 24: A table o legal labels for word categories in the governor role for Gs.

25

noun role values with Numbere(3s, 3p):
det role values with Number={3s): {SUBJ-ndl, SUBJ-1, SUBS3, W U 4
{DET-nil, DET-2, DET-, DET-4, DET-8} SUBJ-§, DO-ni, DO-1, DO-3, DO-4, DO-6}

noun role values with Numbaera(3a):
{SUBJ-nil, SUBJ-1, SUBJ-2, SUBS-3,
SUBJ-4, DO-nil, DO-1, DO-2, DO-3, DO}

verb role values with
Number={1s, 2s, 1p, 2p, 3p}
{ROCT-nll, ROOT-1, ROOT-2,
ROOT -4, ROOT-8}

det robs values with Number={3s, 3p):
{OET-ni{, DET-1, DET-2, DET-3, DET-8)

Figure 25: Theinitial CN given Gj.

;; [B-4] A DET which is governed by a noun must agree in number
;3 with the noun's nunber.
(if (and (eq(lab x) DET)
(eg(cat y) noun)
(eq(md x) (pos y)))
(agree (nunber x) (nunber y)))

;3 [B-5] A SUBJ which is governed by a ROOT nust agree in number
;3 with the verb's nunber.
(if (and (eq(lab x) SUBJ)
(eq(lab y) ROOT)
(eg(mod x) (poe y)))
(agree (number x) (nunber y)))

These constraints require the addition of one access function number and a predicate agree.
The function (number x) returns the number/person information associated with the role value,
and the predicate (agree (number x) (number y)) returns true only if its two number/person
arguments agree. We consider two ways to store number/person information with a role value.
One way is to store the entire set of features with each role value. In this case, agree returns
true iff the intersection of the two number sets is non-empty. The second approach is to store
one number/person feature value per role value, and the agree predicate becomes equivalent to an
equality test.

If the CDG parsing algorithm stores the set of number/person feature values with each role
value, the CN depicted in Figure 25for the sentence *A fish eat the worm is constructed. Following
the propagation of unary constraints, the network is as depicted in Figure 26. After the binary
constraints B-1, B-2, and B-3 are propagated and the network is filtered, the CN isin the state
depicted in Figure 27. This figure highlights the matrices corresponding to the arcs that are most
relevant to the agreement constraints, B-4 and B-5. Now consider the impact of constraints B-4 and

26

det role vakses with Numbers{de): noun role valuss with Number={3s, 3p}):
{DET-2, DET-3, DET-4, DET-3} {SUBJ-3, SUB.-4, SUBJS, Do-1)

houn rols valuee with Numbers(3s):
{Do-1, Do-a. W-a. DO-4}

det rois values with Number={3s, 3p}):
{DET-8}

Figure 26: The CN after the propagation of unary constraints.

det roie velues with Number=(3e): houn role valuee with Number={3s, 3p):
-2) SuBJ-3 {susJ-3)

DET-2

verb role values with
Numbers{1s, 2s, ip, 2p, 3p}
{ROOT-nll}

det role values with Numbere(3s, 3p):
{DET-8)

Figure 27: The CN after propagating B-1, B-2, and B-3 and filtering.

27

B-5 on the network, and notice that the constraints succeed for the CN, despite the fact that the
sentence is ungrammatical. Thisoccurs because the words are checked pairwise for agreement. The
word a agrees with fish, and the word fish agrees with eat, but the numbers that cause agreement
on the two arcs areincompatible with each other. Using this approach, theonly way toensure that
sets of numbersjointly agree for the determiner, subject, and verb is by propagating an agreement
constraint over the three role values. This constraint would contain three variables!? as shown
below:

;3 A DET that is governed by a SUBJ, which is governed by a ROOT
;3 rust agree with the ROOT al so.
(if (and (eg(lab x) DET)
(eq(lab y) SUBJ)
(eq(lab =z) ROOQT)
(eq(rod x) (pos y))
(eq(rod y) (pos z)))
(agree (number x) (nunber z)))

To propagate this constraint requires the addition of arcs linking triples of roles in the sentence
and the use of three dimensional arc matrices. Because there are (";*) = O(n®) arcs required in
a CN with 3-variable constraints, and each arc contains a matrix with (q * n)? := O(n3) elements,
the time to construct the arcs and initialize the matrices is O(n®), and the time to propagate a
three variable constraint is O(n®). This constraint will work for the current example, but to handle
four-way agreement for sentences like * The fish which are eating swims would require constraints
with an arity of four. Because of cases like these, we have developed another approach to feature
testing.

To correctly utilize number and person features in agreement tests for CDG parsing without
resorting to greater than two-variable constraints, each role value must be assighed a singl e feature
value, not a set of values. If thereis more than onefeature value, then therole values are duplicated
for each featurevalue. Given this modification, theinitialization of the CN for *A. fish eat the worm
is shown in Figure 28. Figure 29 depicts the CN after unary constraint propagation, and Figure
30 shows the state of the network after binary constraints B-1, B-2, and B-3 have been propagated
and the network has been filtered. After applying constraints B-4 and B-5to the CN in Figure 30,
the matrix entries indexed by role values with incompatible feature values are set to 0, as shown
in Figure 31. When this network isfiltered, there are no remaining role values (see figure 32), and
so the sentence is not generated by the grammar.

If there are two feature types (say number/person and case) to be used in constraints for a
grammar, then the role values will have to be duplicated and assigned feature values from the cross
product of the features' vaues. This could easily lead to a combinatorial explosion of role vaues.

20ne might expect that the illegal parse would be detected during backtracking search, but tlhis assumption would
beincorrect. Thesetsof features are unaffected by parsing in this approach, and there isno way to selectively require
non-empty feature intersection for sets of tree roles.

28

nounrob values with
{SUBJ-nil, SUBJ-1, SUBJ-3, SUBJ-4,
SUBJ-S, DO-nil, DO-1, CC-3, Bxo=d, OO-4)
nounr o b vaiues with Number=3p:
det role vaiuse with Number=ds: {SUBJ-nll, SUBJ-1, SUBJ-3, W W 4
{DET-nM, DET-2, DET-3, DET-4, DET-8) SUBJ-8, DOl DO-1, DO-3, DO-4, DO-S)

vorb role valuss with Numbers1s noun role valuss with Numbersdse:
{SUBJ-nil, SUBJ-1, SUBJ-2, SUBJ-3,
BUBJ-4, DO, DO-1, DD-2, TI0-3,
{ROQT-nM, ROOT-1. ROOT-2, ROOT-4, ROOT-8}
wrt rob velues with Numbers1p
{ROOT-nl, ROOT-1. ROOT-2, ROOT-4, ROOT-6}

verb role valuse with Numbera2p
(ROOT-nll, ROOT-1. ROOT-2, ROOT-4, ROOT-8}
vorb role valuse with

{ROOT-nM, ROOT-1. ROOT-2, ROOT-4, ROOT-§)
det 0 b values with Numbersds:

(DET-nH, DET-1, O-£T-2, DET-3, DET-§]
detrob velses with Number=3p:

(DET-nB, DET-1, O£T 3, DET-3, DET$)

Figure 28: Theinitial CN given that each role value has one feature value.

foun o b values with Numberade:
{SUBJ-3, SUBL-4, SUBJ-S, DO-1)

HH{10b vehsee with Numberada: nounrob vakses with :
{DET-2, DET-3, DET-4, DET-$} {SUBJ-3, SUB.-4, SUBJ-S, DO-1)

verb role values with Numbersle noun role valuss with Number=de:

It i) (DO-1, DO-2, DO-3, DO-4}
verb role veluse with Numbers2s
{ROOT-nil)
verb role valuse with Numbers1p
{ROOT-nil)
yorb rote valuse with Number=2p
{ -nif)
verb role vaiuse with
(ROOT-ni}
dotrob vehsee with Numberade:
{OET-8}
det role values with Numbers3p:
{OET%)

Figure 29: The CN after the propagation of unary constraints.

29

noun role valuss with Number=3s:

8UBJ-3}
noun rols valuss with Number=3p:
det role valuss with Number=3s: 3s » BB
fer-a suBJ3 _SUBJ3

ROOT-nll
ROOT-nll
ROOT-nll
ROOT-nll
ROOT-nil

¥¥s¥ 3

vurb role valuss with Number=1a o3
{ROOT-ni}

verb role valuss with Number=2s
{ROOT-nil)

verb role valuss with Number=1p s DET-5
{ROOT-n) the)

veorb rols veiuss with Number=2p dat 3p DETS 1
ROOT* -

vub:ucvdc(--mnm \A/
{ROOT-nk)

det role vaiues with Number=3s:

5}
det role valuss with Number=3p:
{DET-5)

Figure 30: The CN after propagating B-1, B-2, and B-3 and filtering.

noun rob values with Numberals:

{8UBJ3)
nounrob values with Numberadp:
det role values with Numbers3s: F™ P (8UBJ3}
{DET-2}

SUBJ-3 SUBJ3

'@ G) 2
3 Ip
SUBJ3 SUBJI
ROOT-nil] 0
ROOT-nil 0 0
ROOT-nll 0 0
RAQOT-nll 0 0
0 1
AQOT-nll pom 2 I8 worm
3 s
noun role values with Humbersds:
verb role velues with Number=1s o3
{ROOT-nl) 3
verb role velues with Number=1s 0o-3
{ROOT-ni) @
verd 1 0 b values with Number=1p 3s DETS 1
{ROOT-nil) the
varb 10 b values with Number=2p 4 p DETS]
{ROOT-nl}
verb role values with Number=3p
(ROOT-nil)
det role values with Numbers3s:
-§|

{DET-§}
detr0b veluss with Number=3p:
{DET-$5)

Figure 31: The CN after propagating B-4 and B-5.

30

noun role valuee w | h Numberals:

0
det role values "“6‘ Numberads: noun role valuss w | h Numbera3p:

verb role values | h Numbera1e

verb role values Wolh Numbera2s

verb role values w?h Number=1p

vetb rale values wgh Number=2p

verb role valuss W(|)h Numberadp
0

det role vsiues v | h Numbersde:

0
det role velues with Numberadp:
0

Figure 32: The CN for an ungrammatical sentence after filtering.

Fortunately, there is an excellent strategy for limiting the number of role values. The basic idea
is to store the sets of feature values with a single role value and to duplicate the role values only
on demand, when a particular feature typeis being tested by a constraint. A grammar writer can
then order constraintsin a constraint file in such a way that role values are reduced by pure phrase
structure constraints prior to the feature constraints. Also, feature constraints can be ordered to
minimize useless role value duplication. When the parser is preparing to propagate a constraint
with a particular feature test, each of the role values having multiple values for that feature is
duplicated and assigned one of the feature values. The corresponding feature constraints should
then eliminate many of the duplicated role values before other types of feature constraints are
propagated.

Consider how the sentence *A fish eat the worm is processed given this strategy, assuming that
constraints are propagated in the order they appear in our grammar. Theinitial CN is constructed
as depicted in Figure 25. Once the non-feature constraints have been propagated and filtering has
been performed, the CN would be in the state depicted in Figure 27. Note that many of the role
values have: been eliminated by the constraints before the feature constraints are propagated. Now
in preparation for the propagation of constraints using the number/person feature, the role values
in Figure 27 must be duplicated for each number/person feature value, giving the CN in Figure
30. After thefeature constraints have been applied (Figure 31) and filtering (Figure 32) has been
performed, no parse for the sentence remains.

31

4 Spoken Language M odification

CDG has several advantages that make it attractive for use with spoken language understanding
systems. IFirst, it is able to handle grammars that are beyond context-free. Second, it uses a
single representation, the constraint, to encode syntactic rules and feature tests. This uniformity is
especially compelling for speech understanding because such a system could potentially uselexical,
syntactic, semantic, prosodic, and contextual rules. Third, CDG is able to support the use of
context when determining the meaning of a sentence (especially to reduce ambiguity). Fourth, the
flexibility of incremental constraint-based parsing should also be less sensitive than CFG parsers
to the syntactic irregularities common in spontaneous speech. Finally, the algorithm is amenable
to effective parallel implementation.

One drawback of the CDG parser as defined by Maruyamaisthat it isonly able to process one
sentence at a time. However, since a speech recognizer can generate multiple sentence hypotheses for
a given utterance, a one-sentence-at-a-time parser would be very inefficient. Hence, in this section,
we extend the CDG parser to process word graphs containing multiple sentence hypotheses.

In the Section 4.1, we briefly describe current spoken language approaches and motivate the use
of word graphs for processing the multiple sentence hypotheses provided by a speech recognizer. In
Section 4.2, we adapt the CDG parsing algorithm to operate directly on a word graph. In Section
4.3, we describe how the filtering algorithm must be modified to simultaneously process multiple
sentence hypotheses. Finaly, in Section 4.4, we describe our implementation of the spoken language

parser and the development of two constraint-based grammars.

4.1 Current Approaches to Speech

Among the most successful current speech recognition systems which process continuous speech
for alimited (1000 word) vocabulary are those which utilize hidden Markov models (HMM). Most
systems utilizing this approach (e.g., [22, 40])) have reduced recognition errors by incorporating
some language information (syntactic and semantic) directly into the HMM to reduce perplexity,
but since the goal of these systems is recognition, not understanding, no structural analysis o the
utterance is performed. Instead, the output of such systemsis an ordered list o the N most likely
sentence hypotheses (where N is a constant usually less than 100) (39, 41].

Graceful integration of speech recognition and natural language systems remains a difficult
problem. Early systems [23, 53] grappled with knowledge source interaction and flow o control.
The trend in recent systems has been to use stochastic language models [33, 56]. However, this
approach is limited to relatively simple cases (e.g., bigram or trigram) in order to control network

size and complexity of training. These techniques have proven promising for some speech recognition

32

. Clear all windows.

. Clear windows.

. Clear all the windows.

. Get all windows.

. Give all windows.

. Clear all of the windows.
. Clear the windows.

. Get all the windows.

. Give all the windows.
10. Get all of the windows.
11. Give all of the windows.

© 00 No o h~ WDN P

Figure 33: The word graph for the N-best command sentences.

tasks, but are inadequate for representing the complex linguistic information required to perform
speech understanding. Systems that are attempting to integrate speech recognition processing
with more traditional natural language processing techniques include CMU’s Phoenix, using frame
based parsing and semantic phrase grammars [52]; CSELT’s system, based on firdte-state language
models [11]; MIT’s Voyager, using LR parsing [58]; and Seneff’s robust parsing [42, 43].

To construct a speech understanding system which builds on current recognizers, a researcher
might pass the N-best sentence hypotheses generated by a recognizer through a natural language
parser asafirst step toward producing meaning representations. However, processing each sentence
hypothesis provided by a speech recognizer individually isinefficient since the sentence hypotheses
often differ only slightly from each other. Furthermore, alist of sentence hypotheses is not the
most compact representation to provide a natural language parser. A better representation for the
sentence hypotheses is a word graph or lattice of word candidates which contains information on
the approximate beginning and end point of each word's utterance.

We have conducted an experiment which demonstrates the compactness of a word graph. For
this experiment, we selected three sets of N-best sentence hypotheses!? for three different types of
utterances: a command, a yes-no question, and a wh-question. The list of the N-best sentences
was converted to aword graph in which the duration of the node was approximated by using the
syllable count for the wordsin the utterance. Figure 33 depicts a set of N-best sentences and the
word graph our algorithm constructed for those sentences. In figure 34, the size and expressive
power of the constructed word graphs is compared with N-best sentence lists. The word graphs

were more expressive than the N-best sentence lists while providing an 83% reduction in storage.

13We thank BBN for providing us with the N-best lists of sentences.

33

Sentence Number of Number of Distinct Number of |Words in|Sentences in

Type |N-Best Sentences|N-Best Words |N-Best Words||Graph Nodes| Graph Graph

Command 11 41 7 6 9 21
Yes-No-Q 20 129 17 11 18 48
Wh-Q 20 133 19 11 19 432

Figure 34: N-best sentences versus word graphs.

Even though a word graph is a compact representation for the output of a speech recognition
system, current systems do not provide this type of representation. However, parsers that can
process the graph representation should more efficiently process dl sentence hypotheses. Tomita
[47] has developed an LR parsing algorithm capable of processing a word graph. Chart parsers can
also process alattice by storing the wordsin its chart. Though these approaches handle sentences in
alattice, the CDG approach to parsing, once extended to operate on a word graph, has advantages

discussed in Section 2.3.2 which make it an even more promising approach for speech processing.

4.2 Parsing Word Graphs with Constraints

We have adapted the CDG constraint network to handle the multiple sentence hypotheses stored
in a word graph, caling it a Spoken Language Constraint Network (SLCN). Figure 35 depicts
an SLCN derived from a word graph constructed for the sentence hypotheses: *A fish eat and
*Oﬁ‘ices eats. By representing these hypotheses in a word graph, we are able to process additional
sentences (i.e., A fish eats and Offices eat) not present in thelist of hypotheses, one of which might
represent the intended utterance. Notice that word nodes contain alist of all word candidates with
the same beginning and end points, and edgesjoin word nodes that can be adjacent in a sentence
hypothesis (see Figure 35). A sentence hypothesis must include one word node from the beginning
of the utterance, one word node from the end of the utterance, and these two word nodes must be
connected ley a path of edges. The word nodes along a path can contain multiple word candidates,
so the number of sentence hypothesesfor a particular path of edges can be quite large. In the SLCN
of Figure 35, each word node contains information on the beginning and end point of the word's
utterance, :represented as an integer tuple (b, €), with b < e. The tupleis more expressive than the
point scheme used for CNs and requires modification of some of the accessfunctions and predicates
defined for the CN scheme. The access functions (pos x) and (mod x) now return a tuple (b, €)
which describes the position of the word associated with the role value x. The equality predicate
must be extended to test for equality of intervals (e.g., (eq (1,2) (1,2)) should return true). The

34

rola valuss for sat:
{ROOT-nil, ROOT-(1,2),
ROOT-(3,3), ROOT-(1,3)}
role valuss far sats:

(@) BUBJ-{1,2). (G) {ROOT-nil, ROOT-(1,2),
SUBJ-(3.,4)) ROOT-(2,3), ROOT-{1,3)}
L q

ROOT-nil ROOT-{1,3) ROOT-{1,3) ROOT-(1,3)
sat Y1~ eat V1"~ eat Y1~ eat eats

{DET-nil)
DET-(2,3)
DET-(3.4)}

{SUBJ-ni1,

(EUBI-nil,
EUBJ-(3,4)}

sBI-nil 1 1 1 1 1 1 1 1

SUBJI-(3.4) 1 1 1 1 1 1 1 1

Figure 35: Example of a spoken language constraint network constructed frorn a word graph.

less-than predicate, (1t (bl, el) (b2, €2)), returns true if el < b2, and the greater than predicate,
(gt (bl, el") (b2, e2)), returns trueif bl > e2.

To parse an SLCN, each word candidate contained in a word node is assigned a set of role values
for each role, requiring O(n?) time, where n is the number of word candidates in the graph. Unary
constraints are applied to each of the role valuesin the network, and like CNs, require O(k, * n?)
time. The preparation of the SLCN for the propagation of binary constraints is similar to that
for a CN. All roles within the same word node are joined with an arc asin a CN; however, roles
in different word nodes are joined with an arc iff they can be members of at Jeast one common
sentence hypothesis (i.e., they are connected by a path of directed edges). To construct the arcs
and arc mirtrices for an SLCN, it suffices to traverse the graph from beginning to end and string
arcs from each of the current word node's roles to each of the preceding word node's roles (where a
node precedes a node iff thereis a directed edge from the preceding to the current node) and to each
o the roles that the preceding word nodes' roles have arcs to. For example, there should be an arc
between the rolesfor a and fishin Figure 35 because they arelocated on a path from the beginning
totheend o the sentence a fish {eats, eat). However, there should not be an arc. between the roles
for a and effices since they are not found in any of the same sentence hypotheses (See Appendix A
for the SLCN arc construction pseudocode). After the arcsfor the SLCN are constructed, the arc
matrices are constructed in the same manner asfor a CN. The time required to construct the SLCN
network in preparation for binary constraint propagation is O(n%) because there may be up O(n?)
arcs constructed, each requiring the creation of a matrix with O(n?) elements. Once the SLCN is
constructed, binary constraints are applied to pairs of role values associated with arc matrix entries
(in the same manner as for the CN), requiring O(ky, * n%) time, where n is the number o word
candidates.

Filtering in an SLCN is complicated by the fact that the limitation of one word's function

35

Figure 36: A simple SLCN.

in one sentence hypothesis should not necessarily limit that word's function in another sentence
hypothesis. For example, consider the SLCN depicted in Figure 36. Even tlhough dl the role
values for are would be disallowed by the singular subject empath, those role values cannot be
eliminated since they are supported by paths, the subject in a different hypothesis. To demonstrate
the differences between a single sentence CN and an SLCN, we map the SLCN in Figure 36 to
the AND/OR tree shown in Figure 37. Because the SLCN is based on a parse graph containing
multiple word candidates, not all of which can participate in the same sentence hypotheses, an OR
node is required at the top level of the tree to represent the contribution of various word nodes
to the different sentence hypotheses. Though the individual sentence hypotheses are not indicated
explicitly in the SLCN (this would require exponential space in some cases), the logical presence of

the OR node must be captured by the filtering algorithm for an SLCN.

4.3 SLCN Filtering

Thefollowing notational conventionsare used to develop thefiltering algorithm. The capital letters
A, B, X,Y, U,V represent roles and the letter r represents a role value. Two roles A and B are
arc connected if there exists an arc(A,B) connecting the two roles with an asscciated arc matrix,
arc_matrix(A,B). Note that arc(A,B) and arc(B,A) are the same arc.

Theimplicit top level OR node in the SLCN requires significant revision of the SLCN filtering
algorithm. The filtering algorithm can no longer delete a role value when a single arc matrix fails
to support it, because all of the words in another sentence hypothesis might support that value.
Instead, we must determine how to propagate role value deletion from one arc associated with a
role to other arcs associated with the same role. After propagating role value deletion over the
arcs, if a role value r is supported by at least one arc matrix associated with an arc emanating

36

A A A VAN NN\

Figure 37: The AND/OR tree for the SLCN in figure 36.

from its role, then the role value cannot be eliminated from the role. However, if none of the arc
matrices associated with the role€'s arcs supports the role value, then it should be eliminated from
therole. Also, if dl of the role valuesin a role for a particular word candidate are eliminated, then
that word candidate should no longer be a supported word. If dl of the word candidates for a
word node are unsupported, then the word node should also be unsupported. Furthermore, word
nodes which are no longer members of alegal sentence hypothesis because the only word they are
adjacent to is unsupported should, through filtering, lose support.

In order to develop a correct filtering algorithm for SLCN parsing, we must consider how to
propagate role value deletion from one arc associated with a role to others associated with the same
role. Suppose role A is connected by arcs to roles B and X and the arc matrix associated with
the arc between A and B no longer supports the role value r associated with role A. Should the
elimination of r € A from the arc between A and B cause the value to be removed from the arc
matrix associated with the arc between A and X? Should it also cause r’s removal from the set of
A's role values? Our basic strategy for developing the filtering algorithm is to group the arcs of a
role into classes which will alow us to efficiently determine which arcs should be affected if a role
value is disadlowed by an arc matrix. We begin by introducing two axioms and some basic classes
of arcs.

Filtering Axiomsand Elementary Arc Classes:

Our filtering algorithm was developed given two fundamental axioms. The first axiom is shown

37

below:

Axiom 1 (Modifiee Axiom) If arolevaluer associated with role A iseliminated fromarc_matrix(A,B)
and that role value's modifiee pointsto the word node containing role B, then it should be eliminated

from all o the arc matrices associated with arcs attached to the role A.

The role B has the right to directly eliminate any role values if their modifiees point to B’s node
and none of B’s role values support them. If B cannot support the role value, then none of the
roles associated with other words should.

When setting up the classes of arcs (and their associated matrices), we are guided by the second

axiom:

Axiom 2 (Arc Class Axiom) An arc_matrix(A,B) should disallow r if r is not legal in any
sentence hypotheses that contain arc(A,B), i.e., there exists no path of edges from a beginning node
to an ending node such that every role for every node contains at least one role value compatible
with r.

This suggests that we should group arcsinto sets of arcs which arein the same sentence hypotheses.
Because the topology of an SLCN is a directed acyclic graph (DAG), such sets will be recursive
and hierarchical in nature. Inspection of Figure 38 leads to some initial observations about which
arcs should be grouped together. Note that the small circlesin thisfigure are roles, the large ovas
are word nodes, the straight lines with arrows are edges, and the curved lines are arcs. The first

class of arcs are intm-arcs, which are arcs that connect two roles belonging to the same word node.

Theorem A (intra-arcs) If anarc(A,B) isanintra-arc and arc_matrix(A,B) disallows r from

A, then r :should be disallowed by all arcsincident to A and removed from the ole A.

Proof: Theintra-arc arc(A,B) isa member of every sentence hypothesis that contains A’s word
node; therefore, it is a member of every sentence hypothesis that includes the arcs incident to A.
Hence, by Axiom 2, if r is eliminated by the intra-arc arc_matrix(A,B), it should be removed
by al of the arc matrices associated with the arcs emanating from A. Furthermore, r should be
eliminated from the role A.

The second class of arcs are iso-arcs. The two arcs, arc(A,B) and arc(A,C), are said to be
iso-arcsif roles B and C arelocated in the same word node (i.e., they are different roles associated

with the same word node) and areincident on a common role A. Figure 38 depicts a set of iso-arcs.

Theorem 2 (iso-arcs) If arc(A,B) is a member of a set ©® of iso-arcs incident to A, and
arc_matrix(A,B) disallows r from A, then all of the matrices associated wzth the iso-arcs in

the set ® should also eliminate r from A by zeroing the row or column indexed by r.

38

intra-arcs

local foliow arcs with
respect to role 3

local precede arcs
with respect to role 1

word
node

Figure 38: Illustration of the terms used in this report.

Proof: Because iso-arcs connect the same two word nodes, they are members of exactly the same
set of sentence hypotheses. Hence, by Axiom 2, if one of them eliminates r from A, they dl should.

If arole valuer € A iseliminated by arc_matrix(A,B), depending on the type df roles A and
B, that role value may be eliminated from all the arc matrices of arcs connected to role A, or it
may be removed from some but not others. Clearly, not al of the arcsin the netvvork areintra-arcs
or iso-arcs of each other. Hence to filter an SLCN as thoroughly as possible, we must also be able
to determine whether the deletion of a role value in A from arc_matrix(A,B) should affect the
deletion of the same role value for other matrices corresponding to other types of arcs emanating
from A. Figure 39 depicts the temporal dependency of arc(A,B’) on arc(A,X’) and arc(A,B)
on arc(A,X) in a restricted view of an SLCN. Assume for simplicity that there is only one role
per word node for this discussion. In Figure 39, arc(A,X) provides local precede arc support
for the role values of A for arc(A,B) because there exists a directed edge joining the word node
containing role X to the word node containing role B. Also, arc(A,X”) provides local follow arc
support for the role values of A for arc(A,B’) because thereis a directed edge joining the word
node containing role B' to the word node containing role X'. Furthermore, arc(A,B) provides
local follow support for the role valuesof A for arc(A,X) because of the directed edge between the
word nodes for roles X and B, and arc(A,B’) provides local precede support for the role values
o A for arc(A,X”) because of the directed edge between the word nodes for roles B' and X'.

39

arc(A, X) is a local precede arc for arc(A, X) is alocal follow arc for
arc(A, B) given the directed edge arc(A, B") given the directed edge
between the word nodes of X and B. between the word nodes of B' and X.

arc(A, B) and arc(A,C) both provide arc(A, B") and arc(A,C’) both provide
local follow support for a role value on local precede support for a role value
arc(A, X) . Hence, both must remove on arc(A, X'). Hence, both must remove
support for a role value in A for that role support for a role value in A for that role
value to be disallowed by arc(A, X). value to be disallowed by arc(A, X).

Figure 40: Temporal Dependencies between the arcs for role A.

If arc_matrix(A,B) no longer supports r € A, then arc_matrix(A,X) may no longer have
reason to support that role value because of the loss of the local follow support.. If al paths from
X's word node to A's word node must include the edge from X’s to B’s word node, then al of the
sentence hypotheses containing arc(A,X) must aso contain role B, and hence, arc(A,B). In this
case, the role value should be deleted from arc_matrix(A,X) during filtering. However, if there
exists a path of edges from X’s word node to A’s word node that does not include the edge from
X’s word node to B’s, as in Figure 40, then arc_matrix(A,X) loses some support for r € A if r
is deleted from arc_matrix(A,B), but so long as arc_matrix(A,C) supports that role value, it
cannot be deleted from arc_matrix(A,X).

Symmetricaly, if arc_matrix(A,B’) no longer supports r € A, then arc_matrix(A,X’) may
no longer have reason to support that role value. If the edge from the word node o B' to the
word node of X' is a required link on al paths of edges from the word node of A to the word

40

node of X', then all of the sentence hypotheses containing arc(A,X”) must also contain role B'
and arc(A,B”). Hence, the role value would be deleted from arc_matrix(A,X?) during filtering.
On the other hand, if the edge from the word node of B' to the word node of X’ is not a required
link on dl paths of edges from the word node of A to the word node of X', asin Figure 40, then
arc_matrix(A,X’) loses some support for r € A if arc_matrix(A,B’) delete!; r, but so long as
arc_matrix(A, C') supportsthat role value, it cannot be deleted from arc_matrix(A, X').
Local precede arcs and follow arcs provide two additional useful classes of arcs for thefiltering

algorithm, as the following theorem shows:

Theorem 3 (local precede and follow arcs) If arolevaluer € A for arc(A,B) is disallowed
from all of arc(A,B)’s local precede arcs with respect to A or all of its local follow arcs with respect
to A, then it should ke disallowed by arc(A,B).

Proof: Every role value r € A for arc(A,B) must be allowed by at least one of the local follow
arcs of arc(A,B) with respect to A to be alega role value in at least one sentence hypothesis.
Therefore, if dl of thelocal follow arcs of arc(A,B) with respect to A have disallowed r, then ris
incompatitle with adl| of arc(A,B)’s sentence hypotheses. A symmetric argument holds for local
precede arcs.

In order to create a correct algorithm for filtering an SLCN, we must determine which arcs
temporally support the continued existence of arole value so that if the support is removed, the
role value can be deleted. To utilize the temporal dependencies between arcs, we must associate a
set of local precede and follow supporters with each role value on an arc. If an arc matrix for an
arc eliminates a role value, then it must remove support for that role value from its local precede
and follow arcs. If the role value on one of those arcs has that arc as its only local precede or
follow supporter, then the role value must be removed from that arc's matrix and the arc must
then remove support for the role value from its local precede and follow arcs. On the other hand,
if the role value on each of those arcs has more than one local precede or follow supporter for a
role value, then the loss of support must be recorded in some way even thouglh the role value is
not deleted.. In the next section, we develop the filtering algorithm for SLCNs using the insights
described in this section.

The SLCN Filtering Algorithm:

To implement the filtering algorithm, we must add information to the constraint network. A role
value of a role may not be eliminated until all of itsarc's matrices disallow that value. To determine
whether the role values for a role are supported by the network, we keep a count of dl of the arcs
supporting each of the role values for each of the roles. If the support count dropsto zero, then the
role value is eliminated since none of its arcs support that role value. Additionally, the elimination

41

of arolevaluein one arc matrix can cause the elimination of the role value from other arc matrices.

Below, we enumerate the list of cases for propagating role value elimination to other arcs matrices.

1. If arolevalue, r, associated with therole A iseliminated from theintra-arc arc_matrix(A,B)
(say between A, the governor role for a word node, and B, the needs role for the same word
node), it must be eliminated from dl of the arc matrices associated with the arcs emanating
from the role A.

2. If arolevalue, r, associated with role A is eliminated from arc_matrix(A,B) and that role
value's modifiee points to the word node containing role B, then it should be eliminated from
all of'the arc matrices associated with arcs attached to the role A.

3. If arole value, r, associated with the role A is eliminated from arc_matrix(A,B), it must
also 'be eliminated from the arc matrices of its iso-arcs. For example, if B is the governor
role for a word node, then for dl the other roles, X, associated with that word node, the role
value must also be eliminated from the arc matrices associated with the arcs between A and
X.

4. If a role value, r, associated with the role A is eliminated from arc_matrix(A,B) and
neither condition 1 nor condition 2 from above holds, then support for that role value should
be removed for that role value on the arc matrices associated with the local precede or follow
arcs of arc(A,B) given A. To determine whether r should be eliminated by any of these arc
matrices, we must determine whether they have additional support for r once arc(A,B)’s
support IS removed.

To keep track of which arcs temporally influence other arcsin the the elimination of role values,
we must determine for each of the roles on each arc in the SLCN which arcs arelocal precede and
follow arcs. Each arc_matrix(A,B) must maintain alist of local precede arcs and alist of local

follow arcs for each of the role values associated with roles A and B.

e A-precede-support- The role values associated with role A for arc_matrix(A,B) each

maintain alist of local precede support arcs with respect to B containing:

— All arcs of the form arc(A,X), where there exists a directed edge from the word node
containing X tothe word node containing B. The directed edge implies X's word node
precedes B’s word node, and so arc(A,X) isalocal precede supporter for A's role values
given B.

— All arcs of the form arc(A,B), where there exists a directed edge from the word node

containing A to the word node containing B. The directed edge implies the word node

42

for A precedes the word node for B, hence arc(A,B) is a local precede supporter for

its own role values given B.

— A dummy arc, say arc(B,B), if B's word node is the first word in the sentence.

e A-follow-support- The role values associated with role A for arc_matrix(A,B) each main-
tain » list of local follow support arcs with respect to B containing:

- Al arcs of theform are(A,X), where there exists a directed edge from the word node
containing B to the word node containing X. The directed edge implies X's word node

follows B’s, and so arc(A,X) is alocal follow supporter for A's role values.

— All arcs of the form arc(A,B), where there exists a directed edge from the word node
containing B to the word node containing A. The directed edge implies A's word node

follows B’s, hence are(A,B) is alocal follow supporter for its own role values.

— A dummy arc, say arc(B,B), isincluded in the set if B's word node is the last word in
the sentence.

e B-precede-support- The role values associated with role B for arc_matrix(A,B) each

maintain a list of local precede support arcs with respect to A containing:
— All arcs of the form arc(B,X), where there exists a directed edge from the word node
containing X to the word node containing A.

— All arcs o the form arc(A,B), where there exists a directed edge from the word node

containing B to the word node containing A.

- A dummy arc, say arc(A,A), if A's word node is thefirst word in the sentence.

e B-follow-support- The rolevaues associated with role B for arc_matrix(A,B) each main-

tain alist of local follow support arcs with respect to A containing:
— All arcs o the form are(B,X), where there exists a directed edge from the word node
containing A to the word node containing X .

— All arcs of the form arc(A,B), where there exists a directed edge from the word node

containing A to the word node containing B.
— A dummy arc, say arc(A,A), if A's word node is thelast word in the sentence.
The algorithm in Figure 41 is used to calculate the local precede and follow arcs for each of
the roles on each arc. Word nodes in the network areinitially assigned an arbitrary index between

one and n, where n is the number of nodes required to represent the SLCN. The word node for

an index can be retrieved by using the function get_word_node(index), which returns the word

43

node associated with the index. Note that the store-support routine duplicates and stores the local
precede and follow sets for each of the role values associated with a role on an arc matrix. This
operation requires O(n?) time because each set can contain O(n) arcs, which must be copied and
stored in support of O(n) role values.

Once the SLCN network is created and local role value arc support is calculated, we can prop-
agate constraints as described earlier and then filter the network much asfor a CN. We must first
determine which arc matrices disallow a role value; however, when a role value is disallowed by an
arc matrix, it may or may not be eliminated from all arcs associated with the role. See Appendix
A for the {ull filtering algorithm. This algorithm relies on the two routines in Figures 42 and 43.
Thefirst routine is performed if arc_matrix(A,B) deletes r from A. If arole value is eliminated
from an arc matrix during filtering, support must also be removed from that role value on all of
the local precede and follow arcs for that arc matrix. Hence, the first routine invokes the second
(Figure 43) to handle the removal of local arc support for a role value. If al of the local precede
arcs or the local follow arcsfor a role value no longer support it, then it should be eliminated from
the row or column associated with the role value maintaining the list of supporters in the matrix.
By using the dummy arc supporters for word nodes at the beginning and end of the sentence, we
are able to detect when a role value loses support by examining whether either itslocal precede or
follow sets become empty. If at any time the local precede or follow arc set of support becomes
empty, then the role value must be deleted from the arc because there is no sentence hypothesis
which supports the role value. If the role value is eliminated by the arc matrix, then its support
for the role value must also be removed from those arcsit locally supports.

There are O(n3) role values indexing rows or columns in arc matrices that can be deleted by
SLCN filtering, where n is the number of word candidates. Each of the indices may require the
removal of O(n) arc supporters from their local precede and follow lists before being deleted. Once
dl support is removed from a role value index, it may need to zero O(n) elements in its arc matrix
and remove support from O(=n) role value indices associated with the other arcs incident toitsrole.
Hence, the running time of the SLCN filtering algorithm is O(n%).

To illustrate SLCN filtering, we provide a simple example. Consider the local precede and
follow support sets constructed for the role values in the roles joined by each arc of the simple
SLCN depicted in Figure 44. The support sets were calculated using the create_matrix_support
procedure. The reader should keep in mind that arc(1,2) and arc(2,1) are equivalent, so we store
support arcs with the convention that the lowest index is alwaysfirst.

Toillustrate how the procedure disallow propagates role value elimination. correctly, we will
consider two types of role value elimination, one which eliminates a deleted role value from dl arcs

emanating from its role and one which simply removes support of the role valuefrom itslocal arcs.

44

create_matrix_support — an O(n*) operation.
Procedure create_matrix_support (){
For index]1 = 1ton—-1do{
wl = get_word_node(index1);
For 111 = each of the rolesin wl do {
For index2 = index141 to n do {
w2 = get-wordnode(index2);
For R2 = each of therolesin w2 do {
precede-supportl = get-precede-support(R1,R2);
precede-support2 = get-precede-support(R2,R1);
follow-supportl = get-follow-support(RL,R2);
follow-support2 = get-follow-support(R2,R1);
/* Store the local precede and follow support for each role valuein R1 and R2 */
store-support(precede-supportl, follow-supportl, R1, arc_matrix(R1,R2));
store-support(precede-support2, follow-support2, R2, arc_matrix(R1,R2))}}}}

get-precede-support — an O(n) operation.
Function get-precede-support(For: role; Given: role}{
precede-support = {};
If (edge(word-node-of(For), word-node-of(Given)) exists) then
Add arce(For, Given) to precede-support;
If (Givenisarolefor aword node at the beginning of asentence) then
Add arc(Given, Given) to precede-support;
/* Loop requires O(n) time */
For (each directed edge of the form edge(WORD, word-node-of(Given))
with WORD # For) do {
For X = each of the rolesin WORD do {
Add arc(For, X) to precede-support));
Return(precede-support);

get-follow-support — an O(n) operation.
Function get-follow-support(For: role; Given: role){
follow-support = {};
If (edge(word-node-of(Given), word-node-of(For)) exists) then
Add are(For, Given) to follow-support;
If (Givenisa rolefor a word node at the end of a sentence) then
Add arc(Given, Given) to follow-support;
/* Loop requires O(n) time */
For (each directed edge of the form edge(word-node-of(Given), WORD)
with WORD # For) do {
For X = each of the rolesin WORD do {
Add arc(For, X) to follow-support));
Return{follow-support);

Figure 41: Local precede and follow support routines.

45

Procedure, disallow(arc.matrix(A,B): arc-matrix; A: role; r: role-value){
If arc_atrix(A,B) isan intra-arc of A then{

/* Disdlowr for all arcs incident to role A. Check all roles */
/* connected to A but not equal to B to see if their role values */
/* are still supported. If not add them to the to-be-deleted list. */
For R1 = dl roles not equal to role A or B do { /* O(n) iterations */
remove r from the arc_matrix(A,R1); /* O(n) operation */
For r-index = each o the role valuesin R1 do { /* O(n) iterations. */
if (the role value r-index for role R1 is not /* O(1) operation */

supported by arc_matrix(A,R1)) then
add r-index to the to-be-deleted-list;));
arc.support_count(r,A) = 0;
Eliminate r from role A;

Return();
g
If the niodifiee of r == the position of B {
/* Disdlowr for all arcs incident to role A. Check all roles */
/¥ connected to A but not equal to B to see if their role values */
/* are still supported. If not add them to the to-be-deleted list. */
For R1 = all roles not equal to role A or B do { /* O(n) iterations */
remover € A from the arc_matrix(A,R1); /* O(n) operation */
For r-index = each of the role valuesin R1 do { /* O(n) iterations */
if (the role value r-index for role R1 is not /* O(1) operation */
supported by arc_matrix(A,R1)) then
add r-index to the to-be-deleted-list;}};
arc.support_count(r,A) = O;
Eliininate r from role A;
Return();
kb

/* Remove r from the iso-arcs of arc(A,B) */
For R1 = all rolesin A's word node not equal to A do {

remove r from arc_matrix(A,R1); /* O(n) operation */

arc_support_count(r,A) = arc_support_count(r,A) - 1;

For r-index = each of the role valuesin R1 do { /* O(n) iterations */
if (the role value r-index for role R1 is not /* O(1) operatioil */

supported by arc_matrix(A,R1)) then
add r-index to the to-be-deleted-list;}};
arc_support_count(r,A) = arc_support_count(r,A) - 1;
/* Eliminate support for the role value r from all local precede and follow arcs */
Inform-delete-update(arc_matrix(A,B), A, r);
/* If no arc supports the role value r then it is eliminated from the role. */
If (arcsupport_count(r,A) = 0) then eliminater from A;

Figure 42: disallow(arc_matrix(A,B), A, r) isinvoked whenever r is disalowed for role A by
arc_matrix(A,B).

46

Procedure inform-delete-update(arc_matrix(U,V): arcmatrix; U: role r: role-value){
precede-list = precede-list-of(r, arc_matrix(U,V), U);
For arc = each of the arcs in precede-list do {
arc-matrix = the arc matrix associated with arc;
R1 = get-rolel-of-arc(arc);
R2 = get-role2-of-arc(arc);
If (R1 # R2 && arc # arc(U,V)) then {
/* Remove arc(U,V) asfollow support for r € U on arc-matrix. */
Remove-follow-support(arc(U,V), arc-matrix, U, r);
If unsupported(r, arc-matrix) then {
remover € U from the arc_matrix(U,V); /* O(n) operation */
disallow(arc_matrix, U, r);))
b
precede-list-of(r, arc_matrix(U,V), U) = {};
follow-list = follow-list-of(r, arc_matrix(U,V), U);
For arc = each of the arcs in follow-list do {
arc-matrix = the arc matrix associated with arc;
R1 = get-rolel-of-arc(arc);
R2 = get-role2-of-arc(arc);
If (R1 # R2 && arc # arc(U,V)) then {
/* Remove arc(U,V) as precede support for r € U on arc-matrix. */
Remove-precede-support(arc(U,V), arc-matrix, U, r);
If unsupported(r, arc_matrix) then {
remover € U from the arc_matrix(U,V); /* O(n) operation */
disallow(arc.matrix, U, r);))

follow-list-of(r, arc_matrix(U,V), U) = {};

Figure 43: Update the local and precede arcsfor r in role U associated with arc_matrix(U,V).

47

arc(l,2):

1 precede:

1:follow

2 precede:

2 follow:

arc(2,3):

2 precede:

2 follow:

3 precede:

3 follow:

arc(2,4):

2 precede:

2 foll ow

4 precede:

4 foll ow

(arc (1,2))
{arc(1,3),
(arc (1,1))
(arc (1,2))

{arc(2,3))
(arc (2,4))
(arc (1, 3))
{arc(2,3),

{arc(2,4),
(arc (4,4))
(arc (1,4))
{arc(3,4),

arc(l,4))

arc(3,4))

arc(2,3))}

arc(2,4))

arc(3,4):

3 precede:

3 foll ow

4 precede:

4 foll ow

arc(1,3):

1 precede:

1 follow

3 precede:

3 foll ow

arc(l,4):

1 precede:

1 foll ow

4 precede:

4 foll ow

{arc(3,4),
{arc(4,4))
{arc (2,4))
(arc (3,4))

{arc(1,2)}
{arc(1,4))}
{arc(1,1)}
(arc (2,3))

{arc(1,2),
{arc (4,4))
{arc(1,1))
{arc(2,4))

arc(2,3))

arc(1l,3))

Figure 44: Temporal dependencies between the arcs of a smple SILCN.

48

Suppose that r is to be deleted from the arc matrix associated with are(1,2) :for role 1. In this
case, support must also be removed for r on its local precede and follow arcs. The 1 precede arcs
for arc(1,2) include only are(1,2) and so no propagation is required to other arcs. On the other
hand, the 1 follow arcs for arc(1,2) include are(1,3) and arc(1,4). When arc(1,2) is deleted
from the 1 precede support list for r on are(1,3), its local precede list becomes, empty indicating
that r should no longer receive support on the arc. The reason that are(1,3) loses support for the
role value is that the word node for role 2 must be a member of any path through the SLCN from
the word node containing role 1 to the word node containing role 3. Because r on arc(1,3) has
no remaining 1 precede supporter, it is deleted from arc_matrix(1,3). Since arc_matrix(1,3) no
longer has 1 precede support for r, it must remove its support from its local follow arc, arc(1,4).
When arc(1,3) is removed from the 1 precede arcs for r on arc(1,4), there is one remaining
supporter, arc(1,2). However, arc(1,2) has not completed removing support for role value r from
its remaining 1 local follow arc, are(1,4). When arc(1,2) is deleted from the 1 precede support
list for r on.arc(1,4), itslocal precedelist becomes empty indicating that r should no longer receive
support on. the arc. Because arc(1,4) has no remaining 1 precede supporter, the role value r is
deleted for role1 in arc_matrix(1,4). Since arc-matrix(1,4) nolonger hasloca precede support
for r, it must also remove its support from itslocal follow arc, are(4,4), a dummy arc. Since the
arc is a dummy, no loss of support is propagated to other arcs. Once the local support removal
is complete, none of the arcs emanating from role 1 supports r, and so it is deleted from the role
(because it’s arc support count has become 0).

Now, suppose that r is to be deleted from the arc matrix associated with are(1,3) for role 1.
In this case, the word node for role 3 provides an optional path through the SLCN from the word
node containing role 1, and so the role value r should not be deleted from are(1,2) and arc(1,4).
The 1 precede arcs for r on are(1,3) include only are(1,2). When are(1,3) is removed from
the 1 follow arcs for r on are(1,2), there is one remaining supporter, are(1,4), and so r should
not be deleted from arc_matrix(1,2). Furthermore, the 1 follow arcs for r on arc(1,3) include
only arc(1,4). When arc(1,3) is removed from the 1 precede arcs for r on arc(1,4), there is one
remaining supporter, arc(1,2), and so r should not be deleted from arc_matrix(1,2). Because r
is supported on role 1 by arc_matrix(1,2) and arc_matrix(1,4), it should not be deleted from
the role.

The SLCN constraint parsing algorithm requires O(n%) time to parse a network with n word
candidates. However, by using a CRCW P-RAM model and O(n*) processors, the parse time for
an SLCN can be improved [15]. We are currently implementing the SLCN parsing algorithm on
the MasPar MP-1. Because of the power of the MasPar and the parallel nature of the algorithm,

we can make use of the flexibility and expressivity of CDG grammars to process SLCNs without

49

severe performance penalties.

4.4 An SLCN Parsing Experiment

We have developed a C++ implementation of a CDG parser, PARSEC, which is capable of parsing
CNs or SLCNs on a Sun workstation. The software allows users to specify parameters of the gram-
mar, to design features, and to write unary and binary constraints. It also checks the constraints
for correctness of form given a grammar's parameters. Once a grammar is written and constraints
are checked for well-formedness, the parser is ready to parse a sentence. When parsing a sentence,
it first applies the core set of unary constraints, then it constructs arcs and arc matrices and prop-
agates the core binary constraints. At this point, an X-windows interface for the parser appears
on the screen. Figure 45 depicts the interface to the SLCN constructed from the word graph in
Figure 33. Once the window is present, the user can choosefrom several menu options. Among the
options available are: perform a single step of filtering, filter completely, view the arcs joining the
roles of two word nodes, apply constraints from afile, print node information to afile, and print
arc information to a file. The user can aso view the state of the parse. This interface allows the
remaining role values for each word candidate's roles to be viewed by clicking on the word in the
word node For example, the role values for the three roles for the word windows over the interval
(3,5) in Figure 45 are viewed by clicking on that word. This interface also allows viewing of the
matrices stored on each of the arcsin the network. The arcs joining the roles of two words are
displayed when a user selects the appropriate menu item along with two word nodes. Figure 46
shows the arcs joining the roles for the words d and the. The matrix associated with each of the
arcs can then be viewed by clicking on its arc. Figure 47 shows the matrix for the arc joining the
governor roles of the two words. This implementation of the SLCN parser provides useful tools for
developing and testing constraint-based grammars.

In order to demonstrate the effectivenessof our SLCN parser, we have developed two grammars.
The first grammar was designed to parse sets of sentences in the Resource Management database
[36] The second grammar covered sentences in the ATIS database [16, 35] (Air Travel Information
System).

The Resource Management database grammar contains 3 roles, 11 categories, 70 labels, 100
unary constraints, and 200 binary constraints, capable of parsing statements, yes-no questions,
commands, and wh-questions [57]. The constraints consist of phrase structure rules and features
tests. The feature tests include subject-verb agreement, determiner-head-noun agreement, and
case restrictions on pronouns. Additionally, the subcategorization feature is used to make certain
that a verb has the appropriate set of objects and complements to be complete. The lexicon used

along with this grammar contains many lexically ambiguous words, and its word entries contain

50

(1, 2}
clear
got

QuUIT
windous

Senantic Tgpe bl ank

Ro].e values for governor role =
£ <D0, (1,2¥>)

i Role volues fa nedsrole =
<HEAD_NOUN, <0,0)> 3

tRole values for :econd.need role sl
{ <BLANK, (0,0)>

Figure 45: The X-windows interfacetothe SLCN for the N-best commands.

51

it

Figure 46: The X-window interfaceto the arcs connecting therolesof & and the

QUIT

Arc Matrix connecting governor role of node 3 and governor role of node 4

<DET, (5,7»>

| <DET, (5,7%>

| <DET, (5,7)>

| 1 <DET, (5,7)>
1 XX
<N_PP, (1,2)>
<N_PP, (2,3)>
<Y_PP, (1,2)>
LY_PP, (2,3)>
<DET_PP, (1,2)>
<DET_PP, (2,3)>

OO ™ rmy ey
XM XX X M — -
<< R > <
XX M XX
M I XX
- bt b e
X< R < =<

Figure 47: The X-window interfaceto the arc matrix for the governor roles of o and the.

52

Sentence |[Number Grammatical || Number Grammatical
Type Sentences in N-best Sentencesin SLCN

Command 11 15
Yes-No-Q 8 12
Wh-Q 7 16

Figure 48: N-best versus word graph sentence par ses.

the necessary feature information to support our feature value constraints.

To denionstrate the effectiveness of CDG parsing for eliminating sentence :hypotheses from a
word@ graph, we converted the wor@ graphs described in Section 4.1 into SLCNs and parsed them
using thefirst grammar. More grammatical sentences were parsed in the SLCN than were available
in the original sets of sentences, as can be seen in Figure 48; however, al of the additional parses
had similar meanings to one of the original grammatical N-best sentences. For example, the SLCN
depicted in Figure 45, constructed from the word graph in Figure 33, contains three verbs: clear,
give, and get. Each is the main verbin 5 minor variations of the same sentence.

Syntactic constraints are effective at pruning a word graph of many ungrammatical sentence
hypotheses and limiting the possible parses for the remaining sentences. However, it is often the
case that syntactic information aloneisinsufficient for selecting a single sentence hypothesis from a
word graph. Effective use of multiple knowledge sources plays a key role in human spoken language
understanding. It is, therefore, likely that advances in spoken language understanding will require
effective urilization of higher level knowledge.

To demonstrate the flexibility of constraint-based parsing for utilizing a variety of knowledge
sources, we have incorporated semantic constraintsinto our parser. To do so, we developed a second
grammar for sentences in the ATIS database (Air Travel Information System), which was chosen
because o its semantic richness. First, syntactic constraints were added to the Resource Manage-
ment grammar to demonstrate the ease of adding additional grammar constraints to a previously
developed grammar. Then semantic constraints were constructed to further limit ambiguity [12].
Semantic constraints were relatively easy to create and incorporate into our parser because they
were based on feature testing for certain syntactic configurations. For example, some constraints
limited the semantic type associated with a prepositional phrase based on the semantic type of its
object, and otherslimited the cites of attachment for a prepositional phrase based on semantic type
compatibility. We then conducted a simple experiment to compare the effectiveness of syntactic
and semantic constraints for reducing the ambiguity of word networks constructed from sets of
BBN’s N-best sentence hypotheses [41] from the ATIS database.

53

For this experiment, we selected twenty sets of 10-best sentence hypotheses for three different
types of utterances: a command, a yes-no question, and a wh-question. The lists of the N-best
sentences were converted to +word graphs using syllable count, as described in Section 4.1. These
word graphs were then converted to SLCNs and parsed with the constraints. We determined
for each eliminated word candidate whether a syntactic constraint or a semantic constraint was
responsible for the deletion. Syntactic and semantic constraints together were very effective at
reducing the number of parses for sentencesin the SLCN when compared with syntactic constraints
alone. However, syntactic constraints alone played the major role in pruning inappropriate word
candidates from the network. On the average, syntactic constraints alone eliminated 3.11 word
candidates per SLCN; whereas, semantic constraints, when applied after syntactic constraints,
eliminated an average of .66 additional word candidates per SLCN4.

5 Conclusion

SLCN parsing has several advantages that makeit attractivefor speech. First, it is able to handle
grammars that are beyond context-free. Second, it provides a flexible uniform framework for
using lexical, syntactic, semantic, prosodic, and contextual constraints to incrementally reduce
the ambiguity found in a word graph provided by a speech recognition system (We have already
developed lexical, syntactic, and semantic constraints for our parser (see Section 4.4) and are
currently developing prosodic constraints). Third, the parser is able to support the use of context
when determining the meaning of a sentence. Fourth, theflexibility of incremental constraint-based
parsing should allow us to develop strategies for reducing sensitivity to the syntactic irregularities
common in spontaneous speech. Current spoken language recognition systems are not as accurate
as humans, in part, because they do not utilize the wide range of information that people do when
understanding speech. Hence, we believe that further investigations along these lines will result in
more effective processing of speech.

The filtering algorithm developed in this paper is useful, not only for processing speech, but
also for other CSP problems. Up to this time, CSP arc consistency has always assumed perfect
segmentation of input. Speech recognition is only one area where segmenting the signal into higher-
level chunlrs is problematic. Vision systems and handwriting analysis systems have a comparable
problem.

' Since most semantic rules use some syntactic information, it makes sense to propagate tht: syntactic constraints
before the semantic constraints. When we propagate the semantic constraintsfirst, no word candidates are typically
eliminated because of the high ambiguity in the CN without syntactic constraints.

54

6 Acknowledgments

This work was supported in part by Purdue Research Foundation, NSF grant number IRI-9011179,
and NSF Parallel Infrastructure Grant CDA-9015696. We thank BBN for providing us with the
N-best lists of sentences. We would especially like to thank those students who wereinvolvedin the
implementation of PARSEC: Yin Chan, Mark Rowland, Todd Stewart, Christopher White, Boon
Lock Yeo, and Carla Zoltowski. We would also like to thank Carl Mitchell, Carla Zoltowski, and

Leah Jamiason for their encouragement and comments on various drafts of this paper.

References

[1] J. M. Conrad and D. P. Agrawal. A graph partitioning-based load balancing strategy for a
distributed memory machine. In Proceedings d the Sixth International Conference on Parallel
Processing, August 1992.

[2] M. A. Covington. A parsing algorithm that extends phrases. Computational Linguistics,
4:234--236, 1990.

[3] A. L. Davisand A. Rosenfeld. Cooperating processes for low-level vision: A survey. Artificial
Intelligence, 17:245-263, 1981.

[4] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence,
34:1-38, 1988.

[5] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems. Arti-
ficial Intelligence, 34:1-38, 1988.

[6] P. Dey and B. R. Bryant. Lexica ambiguity in tree adjoining grammars. Information Pro-
cessing Letters, 34:65-69, 1990.

[7] J. Early. An efficient context-free parsing algorithm. Communications d the ACM, 13:94-102,
1970.

[8] L. D. Erman and V. R. Lesser. The Hearsay-11 speech understanding system: A tutorial. In
W. A. Lea, editor, Trendsin Speech Recognition, pages 361-381. Speech Science Publications,
Apple Valley, MN, 1986.

[9] E. Freuder. Partial constraint satisfaction. In Proceedingsd the International Joint Conference
on Artificial Intelligence, pages 278-283, 1989.

55

[10] E. Freuder. Complexity of K-tree-structured constraint-satisfaction problems. In Proceedings
d the Eighth National Conference on Artificia Intelligence, pages 4-9, 1990.

[11] E. P. Giachin. Automatic training of stochastic finite-state |anguage models; for speech under-
standing. In IEEE Int. Conf. Acoustics, Speech, and Signal Processing, March 1992.

[12] M. P. Harper, L. H. Jamieson, C. B. Zoltowski, and R. A. Helzerman. Semantics and constraint
parsing of word graphs. In Proceedings o the International Conference on Acoustics, Speech,
and Signal Processing, volume 11, pages 63-66, April 1992.

[13] R. A. Helzerman. PARSEC: A framework for parallel natural language understanding. Master's
thesis,,Purdue University, School of Electrical Engineering, West Lafayette, IN, 1993.

[14] R. A. Helzerman and M. P. Harper. Log time parsing on the MasPar MP-1. In Proceedings o
the Sizth International Conference on Parallel Processing, August 1992,

[15] R. A. Helzerman, M. P. Harper, and C. B. Zoltowski. Parallel parsing of spoken language.
In Proceedings o the Fourth Symposium on the Frontiers d Massively Parallel Computation,
October 1992.

[16] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington. The ATIS spoken language systems
pilot corpus. Technical Report NTIS PB91-505354, 1990. NIST Speech Disc 5-1.1.

[17] F. Jelinek. Self-organized language modeling for speech recognition. In Alex 'Waibel and Kai-Fu
Lee, editors, Readings in Speech Recognition. Morgan Kaufman Publishers, Inc., San Mateo,
CA, 1990.

[18] A. K. Joshi, L.S. Levy, and M. Takahashi. Tree adjunct grammars. Journal o Computer and
System Sciences, 10:136-163, 1975.

[19] M. Kay. The MIND system. In R. Rustin, editor, Natuml Language Processing. Algorithmics
Press, New York, 1973.

[20] S. R. Kosargju. Speed of recognition of context-free languages by array automata. SIAM
Journal d Computing, 4(3) :331-340, September 1975.

[21] V. Kumar. Algorithms for constraint-satisfaction problems: A survey. A | Magazine, 13(1):32—
44, 1992.

[22] K. F. Lee, H. W. Hon, and R. Reddy. An overview of the SPHINX speech recognition system.
In |EEE Tmnsactions on Acoustic, Speech, Signal Processing, pages 35-45, January 1990.

56

[23] V. R. Lesser, R. D. Fennell, L. D. Erman, and D.R. Reddy. Organization of the Hearsay-11
speech understanding system. |EEE Tmns. Acoust., Speech, Signal Processing, ASSP-23:11-
23, 1975.

[24] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99-118,
1977.

[25] A. K. Mackworth and E. Freuder. The complexity of some polynomial network-consistency
algorithms for constraint-satisfaction problems. Artificial Intelligence, 25:65-74, 1985.

[26] H. Maruyama. Constraint dependency grammar. Technical Report #RT0044, IBM, Tokyo,
Japan, 1990.

[27] H. Maruyama. Constraint dependency grammar and its weak generative capacity. Computer
Software, 1990.

[28] H. Maruyama. Structural disambiguation with constraint propagation. In The Proceedings of
the Annual Meeting & ACL, 1990.

[29] R. Mohr and T. Henderson. Arc and path consistency revisited. Artificia Intelligence, 28,
1986.

[30] U. Montanari. Networks of constraints: Fundamental properties and applications to picture
processing. Information Science, 1976.

[31] M. D. Moshier and W. C. Rounds. On the succinctness properties of unordered context-free
grammars. In Proceedings o the 25th Annual Meeting d the Association for Computational
L inguistics, 1987.

[32] M. A. Palis, S. Shende, and D. S. L. Wel. An optimal linear-time parallel parser for tree
adjoining languages. SIAM Journal & Computing, 19:1-31, 1990.

[33] D. B. Paul. An efficient A* stack decoder algorithm for continuous speech recognition with
a stochastic language model. In IEEE Int. Conf. Acoustics, Speech, and Signal Processing,
March 1992.

[34] F. C. N. Pereira and D. H. D. Warren. Definite clause grammars for language analysis— A
survey of the formalism and a comparison with augmented transition networks. Artificial
Intelligence, 13(3):231-278, 1980.

[35] P. J. L3rice. Evaluation of spoken language systems: The ATIS domain. In Proceedings d the
DARPA Workshop on Speech and Natural Language, pages 91-95, 1990.

57

[36] P. J. Price, W. Fischer, J. Bernstein, and D. Pallett. A database for continuous speech recog-
nition in a 1000-word domain. In Proceedings o the International Conference on Acoustics,

Speeck, and Signal Processing, 1988.

[37] W. Ruzzo. Tree-size bounded alternation. Journal & Computers and System Sciences, 21:218—
235, 1980.

[38] Y. Schabes. Polynomial time and space shift-reduce parsing of arbitrary context-freegrammars.
In The Proceedings o the Annual Meeting o ACL, 1991.

[39] R. Schwartz and S. Austin. A comparison of several approximatealgorithmsfor finding multiple
N-best sentence hypotheses. In IEEE Int. Conf. Acoustics, Speech, and Signal Processing, May
1991.

[40] R. Schwartz, Y. Chow, O. Kimball, S. Roucos, M. Krasner, and J. Miskhoul. Context-
dependent modeling for acoustic-phonetic recognition of continuous speech. In IEEE Int.
Conf. Acoustics, Speech, and Signal Processing, March 1985.

[41] R. Schwartz and Y-L. Chow. The N-best algorithm: An efficient and exact procedure for
finding; the N most likely sentence hypotheses. In IEEE Int. Conf. Acoustics, Speech, and
Signal Processing, April 1990.

[42] S. Seneff. Robust parsing for spoken language systems. In IEEE Int. Conf. Acoustics, Speech,
and Signal Processing, March 1992,

[43] S. Seneff. TINA: A natural language system for spoken language applications. American
Journal o Computational Linguistics, 18:61-86, 1992.

[44] J. Seo and R. F. Simmons. Syntactic graphs: A representation for the union of all ambiguous
parse srees, Computational Linguistics, 15:19-32, 1989.

[45] S. M. Shieber. Constraint-based Gmmmar Formalisms. MIT Press, Cambridge, MA, 1992.

[46] M. Tomita. Efficient Parsing for Natuml Language. Kluwer Academic Publishers, Boston,
MA, 1985.

[47] M. Tomita. An efficient word lattice parsing algorithm for continuous speech recognition. In
IEEE Int. Conf. Acoustics, Speech, and Signal Processing, April 1986.

[48] K. Vijayashanker and A. K. Joshi. Some computational properties of tree adjoining grammars.
In Proceedings d the 24th Annual Meeting d the Associationfor Computational Linguistics,
1986.

58

[49]

[50]

(51]

[52]

[53]

[54]

[55]

(56]

[57]

K. Vijayshanker, D.J. Weir, and A. K. Joshi. Characterizing structural descriptions produced
by various grammatical formalisms. In Proceedings o the 25th Annual Meeting o the Associ-
ation jor Computational Linguistics, 1987.

M. Villain and H. Kautz. Constraint-propagation algorithmsfor temporal reasoning. In Pro-
ceedings o the Fifth National Conference on Artificial Intelligence, pages 377-382,1986.

D. L. Waltz. Understanding line drawings of scenes with shadows. In P.H. Winston, editor,
The Psychology & Computer Vision. McGraw Hill, New York, 1975.

W. Ward. Understanding spontaneous speech: The Phoenix system. In IEEE Int. Conf.
Acoustics, Speech, and Signal Processing, May 1991.

J. J. Wolf and W. A. Woods. The HWIM speech understanding system. In W. A. Lea, editor,
Trends in Speech Recognition, pages 316-339. Speech Science Publications, .Apple Valey, MN,
1986.

W. A. Woods. Transition network grammars for natural language analysis. Communications
d the ACM, 13:591-606, 1970.

W. A. Woods, M. Bates, G. Brown, B Bruce, C. Cook, J. Klovstad, J Makhoul, B. Nash-
Webber, R. Schwartz, J. Wolf, and V. Zue. Speech understanding systems: Final technical
progress report. Technica Report 3438, Bolt, Beranek, and Newman, Inc., Cambridge, MA,
1976.

J.H. Wright. LR parsing of probabilistic grammars with input uncertainty for speech recogni-
tion. Computer Speech and Language, 4:298-323, 1990.

C. B. Zoltowski, M. P. Harper, L. H. Jamieson, and R. A. Helzerman. PARSEC: A constraint-
based framework for spoken language understanding. In Proceedings o the International Con-
ference on Spoken Language Understanding, October 1992.

[58] V. Zue, J. Glass, D. Goodine, H. Leung, M. Phillips, J. Polifroni, and S. Seneff. Integration

of speech recognition and natural language processing in the MIT Voyager system. In |EEE
Int. Conf. Acoustics, Speech, and Signal Processing, May 1991.

59

A Appendix: CDG Parsing Pseudocode for CNs and SL.CNs

The pseudocode for each of the steps of the CN and the SLCN parsing algorithms is listed in this
appendix.

Initial Network Construction for CNs and SL CNs- O(n?) operation.

{
For index = 1 to n do { /* niterations */
w = get_word_node(index);
For r = w's roles 1 to p do { /* piterations */
For 1 = each of thelabelsin L do { /* q iterations */
add role value (1,nil) to the roler for w;
For node = 1to ndo { /* n iterations */

pos = get_tuple(node);
add role value (1,pos) the role r for w))))

Initial Network Construction with TABLE- O(n?) oper ation

For index = 1 to n do { /* n iterations */
w = get_word_node(index);
parts = get_parts_of_speech(w);

For part = each part of speech in parts do { /* O(Mazyar,) iterations */
For r = each of w's roles1topdo { /* piterations
1 = get_labels(part,r);
For 1 = the labelsin 11 do { /* O(Mazigsels fparts) iterations */
add role value (1,nil) to the role r with p part of speech;
For node = 1toindez— 1 and indezt 1to n do { /* niterations */

pos = get_tuple(node);
add role value (1,pos) the roler)))))

Unary Constraint Propagation on a CN or an SLCN- an O(k, * n?) operation.

For index = 1ton do { /* n iterations */
w = get_word_node(index);
Forr = w's roles 1 to p do { /* p iterations */
rv = get_role_values(r);
For r-index = each of the role valuesin rv do { /* O(n) iterations */
For ¢ = each unary constraint do { /* ky iterations */

apply get_constraint(c) to the role value r-index))))

CN Arc Construction— an O(n*) operation.

{

/* Create arc matricesfor arcs joining roles within the word- a (%) * O(n®) operation. */
For index = 1 to n do { /* n iterations */

60

w = get_word_node(index);
Forrl =w'srolesltop— 1do {
rv1 = get_role_values(r1);
For r2 = w's roles (rl * 1) to p do { /* ()iterations */
rv2 = get_role_values(r2);
create arc joining rl to r2;
assign arc a matrix of size |rvl| X |rv2| with entries /* O(n?) operation*/
initialized to 1 and indices from rvl and rv2}}};
/* Create arc matricesfor arcs joining roles in different words- an (*;?) * O(n?) operation. */
For indexl = 1ton—-1do {
wl = get_word_node(index1);
For rl = wl’sroles1top do {
1vl = get_role_values(rl)
For index2 = index1+1 to n do { /* ("3F) iterations */
w2 = get-wordnode(index2);
For r2 = w2’s roles1topdo {
rv2 = get_role_values(r2);
create arc joining rl tor2;
assign arc a matrix of size [rvl| x |rv2| with entries /* O(n?) operation*/
initialized to 1 and indices from rvl and rv2}}}}

SLCN Arc: Construction— an O(n*) operation.

/* Creatle arc matrices for arcs joining roles within the word- a (g) * O(n3) operation. */
For index = 1ton do{ /* n iterations */
w = get_word node(index);
Forrl =w'srolesltop—1do{
rvl = get_role_values(rl);
For r2 = w's roles (rl + 1) top do { /* (8) iterations */
rv2 = get_role_values(r2);
create arc joining rl to r2;
assign arc a matrix of size |rvl| x |rv2| with entries /* O(n?) operation*/
initialized to 1 and indices from rvl and rv2}}};
/* Creatie arc matrices for arcs joining roles in different words that can be in */
/* at least one common sentence hypothesis — an (";P) * O(n?) operation. */
sortedmodes = nodes sorted in increasing order by beginning point;
For wl = each word node in sortedmodes do {
For r1 = wl's rolesltopdo {
rvl = get_role_values(rl);
/* Get the list of word nodes that have a directed edge to w */
prec_nodes = get_preceding_nodes(wl);
connected-roles = O;
For w2 = each word node in prec_nodes do {
For r2 = w2’s roles1top do {
connected-roles = connected-roles U {r2} U get-arc-connected-roles(r2:);
/* get-arc-connected-roles returns the list of roles r2 is arc-connected t.o */
H
For r2 = all roles in connected-roles do {
create arc joining rl to r2;
rv2 = get_role_values(r2);
assign arc a matrix of size |rvl| x |rv2| with
entries initialized to 1 and indices from rvl and rv2}}}
create_matrix_support(); /* See the algorithm in Section 4.3 */

61

Binary Constraint Propagationon a CN or an SLCN- an O(k, * n%) operation.
{
/* Propagate constraints over elements of intra-arc matrices - a (5) *ky ¥ O(n3) operation. */
For index = 1 to n do { /* n iterations */
w = get_word-node(index);
Forrl = wsrolesltop—1do{
vl = get_role_values(rl);

For r2 = w's roles (rl + 1) top do { /* () iterations */
rv2 = get_role_values(r2);

For r-index1 = each of the role valuesin rvl do { /*O(n) iterations */
For r-index2 = each of the role values in rv2 do { /* O(n) iterations */

For c = 1to ky do { /* ky iterations */
apply get_constraint(c) to the role values /* O(1) operation */

X = r-index1 and Y = r-index2;

apply get_constraint(c) to the role values /* O(1) operation */

Y = r-index1 and X = r-index2}}}}}};
/* Propagate constraints over elements of the other matrices - a (*;?) *ky ¥ O(n?) operation. */
For indexl = 1ton—1do{
w1 =: get_word_node(index1);
Forrl = wl’s roles 1 to p do {
rvl = get_role_values(rl);
For index2 = index1+1 to n do {
w2 = get-wordmode(index2);

For r2 = w2’s roles1 top do { /* ("3P) iterations */
rv2 = get_role_values(r2);
For r-index1 = each of the role valuesin rvl do { /* O(n) iterations */
For r-index2 = each of the role valuesin rv2 do { /* O(n) iterations */
For ¢ = 1to kp do { /* ky, iterations */
apply get_constraint(c) to the role values /* O(1) operation */
X = r-index1l and Y = r-index2;
apply get_constraint(c) to the role values /* O(1) operation */

Y = r-index1 and X = r-index2}}}}}}}

CN Filtering— an O(n*) operation.

{
/* Preprocess— an O(n3) operation */
/* Get role values to be deleted from arc matrices for arcs */
/* joining roles within a word- a (%) * O(n2) operation. */
; — ; ; *
For index = 1to n do { /* n iterations */

w = get_word_node(index);
Forrl =w'srolesltop—1do{
rvl = get_role_values(rl);

For r2 = w's roles (rl + 1) top do { /* (5) iterations */
rv2 = get_role_values(r2);
For r-index1 = each of the role valuesin rvl { /* O(n) iterations */
if (therole value r-index1 for rolerl is not /* O(1) operation */

supported in the matrix corresponding to

62

the arc of rolerl and role r2) {
add (r-indexl, rl) to the to-be deleted list));
For r-index2 = each of the role valuesin rv2 {
if (therole value r-index2 for role r2 is not
supported in the matrix corresponding to
the arc of role rl and role r2) {
add (r-index2, r2) to the to-be deleted list)))))
/* Get role values to be deleted from arc matrices for arcs
/* joining roles across words- an (";?) * O(n) operation.
For indexl =1ton—1do{
wl = get.word_node(index1);
For rl = wl’s roles1top do {
rvl = get_role_values(rl);
For index2 = index1+1 to n do {
w2 = get-wordnode(index2);
For r2 = w2’s roles 1 top do {
rv2 = get_role_values(r2)
For r-index1 = each of the role valuesin rvl {
if (the role value r-index1 for rolerl is not
supported in the matrix corresponding to
the arc of role rl and role r2) {
add (r-index|, r1)to the to-be deleted list));
For r-index2 = each of the role values in rv2 {
if (the role value r-index2 for role r2 is not
supported in the matrix corresponding to
the arc of roler| and role r2) {

add (r-index2, r2) to the to-be deleted list))))
/* Loop until there are no more to be deleted - an O(n%) operation *

Loop until to-be-deleted-list is empty {
pair := pop(to-be-deleted-list);
rvl =: the role value from the pair;
rl = the role from the pair;
remove rvl fromrolerl;
For r2 = all roles not equal torl do {
remove the role value rvl from the arc_matrix(rl,r2);
rv2 = get_role_values(r2);
For r-index2 = each of the role valuesin rv2 {
if (the role value r-index2 for role r2 is not
supported in the matrix corresponding to
the arc of rolerl and role r2) {
add r-index2 to the to-be-deleted-list))))

SLCN Filtering- an O(n*) operation.
{
/* Preprocess— an O(n2) operation */
/* Get role values to be deleted from arc matrices for arcs joining
/* roles within a word- a (%) * O(n?) operation.
For index = 1 ton do{
w = get_word node(index);
Forll= w'sroles 1top— 1do {
rvl = get_role_values(r1);
For r2 = w's roles (r| + 1) top do {
rv2 = get_role_values(r2);

63

/* O(n) iterations */
/* O(1) operation */

*/

/* ("37) iterations */

/* O(n) iterations */
/* O(1) operation */

/* O(n) iterations */
/* O(1) operation */

/* O(n?) iterations */

/* O(n) iterations */
/* O(n) operation */

/* O(n) iterations */
/* O(1) operation */

*/

*/
/* O(n) iterations */

: : *
/* (8) iterations */

For r-index1 = each of the role valuesin rvl { /* O(n) iterations */
if (the role value r-index1 for role rl is not /* O(1) operation */
supported in the matrix corresponding to
the arc of rolerl and role r2) {
add (r-index!, rl, r2) to the to-be deleted list));
For r-index2 = each of the role valuesin rv2 { /* O(n) iterations */
if (the role value r-index2 for roler2 is not /* O(1) operation */
supported in the matrix corresponding to
the arc of rolerl and role r2) {
add (r-index2, r2, rl) to the to-be deleted list)))))
/* Get role values to be deleted from arc matrices for arcs joining */
/* roles across words- an ("3?) * O(n) operation. */
For index] = 1ton—1do{
wl = get_word_node(index1);
For rl = wl'sroles1topdo{
rvl = get_role_values(rl);
For index2 = index1+1 to n do { /* (*27) iterations */
w2 = get-wordmode(index?2);
For r2 = w2’s roles1topdo {
rv2 = get_role_values(r2)
For t-index1 = each of the role valuesin rvl { /* O(n) iterations */
if (the role value r-index1 for rolerl is not /* O(1) operation */
supported in the matrix corresponding to
the arc of roler| and role r2) {
add (r-indexI, rl, r2) to the to-be deleted list));
For r-index2 = each o the role valuesin rv2 { /* O(n) iterations */
if (the role value r-index2 for role r2 is not /¥ O(1) operation */
supported in the matrix corresponding to
the arc of roler!| and role r2) {
add (r-index2, r2, rl) to the to-be deleted Iist)z)/)))
/* Loop until there are no more to be deleted — an O(n*) operation
Loop until to-be-deleted-list is empty {
item = pop(to-be-deleted-list);
r = the role value from item to delete;
rA = therole from item to delete r from;
rB = the role from item joined to rA with the arc we are deleting from;
/* Each role value can only remove support once from its precede and next arcs */
if (the precede and follow listsfor r in rA for arc_matrix(rA, rB) are non-empty) then
disallow (arc(rA, rB)rA, r); /* Seethe algorithm in Section 4.3*/

64

	Purdue University
	Purdue e-Pubs
	8-25-1993

	PARSEC: A Constraint-Based Parser for Spoken Language Processing
	Mary P. Harper
	Randall A. Helzerman

