
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

8-25-1993

PARSEC: A Constraint-Based Parser for Spoken
Language Processing
Mary P. Harper
Purdue University School of Electrical Engineering

Randall A. Helzerman
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Harper, Mary P. and Helzerman, Randall A., "PARSEC: A Constraint-Based Parser for Spoken Language Processing" (1993). ECE
Technical Reports. Paper 237.
http://docs.lib.purdue.edu/ecetr/237

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F237&utm_medium=PDF&utm_campaign=PDFCoverPages

PARSEC: A CONSTRAINT-BASED
PARSER FOR SPOKEN LANGUAGE

PROCESSING

TR-EE 93-28
AUGUST 1993

PARSEC: A Constraint-Based Parser for Spoken Language

Processing

Mary P. Harper and Randall A. Helzerman

School of Electrical Engineering

Purdue University

West Lafayette, IN 47907

August 25, 1993

Abstract

PARSEC1, a text-based and spoken language processing framework based on the Constraint

Dependency Grammar (CDG) developed by Maruyama [26,27], is discussed. The scope of CDG

is expanded to allow for the analysis of sentences containing lexically ambiguous words, to allow

feature analysis in constraints, and to efficiently process multiple sentence candidates that are

likely to arise in spoken language processing. The benefits of the CDG parsing approach are

summarized. Additionally, the development CDG grammars using PARSEC grammar writing

tools and the implementation of the PARSEC parser for word graphs is discussed.

'Parallel ARchitecture Sentence Constrainer

1 Introduction

In this paper, we adapt the constraint dependency grammar (CDG) formalism introduced by

Maruyama [26, 27, 281 t o the problem of analyzing spoken language. Constraint dependency

grammars are more expressive than context-free grammars (CFGs) and more tractable, but less

expressive, than context-sensitive grammars, and they provide an extremely flexible framework for

parsing natural language.

In Section 2 of this paper, the CDG parsing algorithm is described. In the remainder of the

paper, the following three extensions to the CDG parsing algorithm are discussed:

1. Many words in the English language have lexical ambiguity (i.e., more than a single part

of speech) which can cause correctness and efficiency problems for a parser [6]. A related

problem is the processing of utterances with multiple word candidates over the same time

interval. In Section 3.1, we extend the CDG parsing algorithm to handle lexical ambiguity

and multiple word candidates in an integrated and efficient manner.

2. A word can also have ambiguity in the feature information associated with the word, like

number, person, or case. For example, the noun fish can take a number/person value of third

person singular or third person plural. Often feature information is useful for disambiguating

parses for sentences or for eliminating impossible sentence hypotheses; hence, we have also

added lexical feature analysis to the CDG parser, as described in Section 3.3.

3. Maruyama7s CDG parsing algorithm was designed to process single sentences. If a natural

language processor is used in conjunction with a speech recognizer, the input to the natural

language component would typically be a set of sentence hypotheses. However, processing all

of the sentence hypotheses individually for an utterance provided by a speech recognizer is very

inefficient since many hypotheses are similar. Furthermore, a list of sentence hypotheses is not

the most compact representation to provide a natural language parser. A better representation

is a word graph or lattice of word candidates, which reduces the redundancy and compactly

represents the set of sentence hypotheses. In section 4, we extend CDG to operate on a

word lattice rather than single sentences. We also describe the implementation of our word

graph constraint-based parser, PARSEC (Parallel ARchitecture Sentence Constrainer), and

the development of constraint-based grammars using PARSEC grammar development tools.

2 A Description of Maruyama's CDG Parsing

We begin with the definition of Constraint Dependency Grammar (CDG), discuss Maruyama7s

CDG parsing algorithm, and then relate the algorithm to other approaches.

2.1 Elements of a CDG Grammar

Maruyama defines a CDG grammar as a Ctuple, (C, R, L, C), where:

C = a f i n i t e s e t of preterminal symbols, or l ex ica l categories.
R = a f i n i t e s e t of uniquely named ro les (or role- ids) = {rl , . . . , r,).
L = a f i n i t e s e t of labe l s = (11,. . . , 1 ,) .
C = a constraint s e t that an assignment A must s a t i s f y .

A sentence s = ~ 1 ~ 2 ~ 3 . . . w, is a string of finite length n and is an element of C*. All of the roles

in R are associated with every w; of s yielding n * p roles for the entire sentence. The sentence s is

said to be generated by the grammar G if there exists an assignment A which maps role values to

each of the n * p roles for s such that the constraint set C is satisfied. A role value is an element of

the set L x {1,2,. . .,n,nil), in other words, it is a tuple consisting of a label from L and a modifiee,

where a modifiee can be the index of a word in the sentence or nil. Role values will be denoted in

the examples as label-modifiee. L(G) is the language generated by grammar G iff L(G) is the set

of all sentences generated by G. Note that the null string 6 has no roles and is always generated

by any grammar according to definition.

A constmint set is a logical formula in the form: V xl x2 . . . x, : role (and P1 P2 . . . P,),

where the x;s range over all of the roles in s . Below is the definition of possible components of a

subformula Pi
2:

Variables: xl , "2, . . . x,.

Constants: elements and subsets of C U L U R U {nil, 1, 2, . . ., n), where n corresponds to
the number of words in a sentence.

Access Functions:

(pos x) returns the position of the word for variable x.

(rid x) returns the role-id for variable x.

(lab x) returns the label for variable x.

(mod x) returns the position of the modifiee for variable x.

(cat i) returns the category (i.e., the element in C) for the word in position i.

Predicate symbols:

(eq x y) returns true if x = y, false otherwise.

(gt x y) returns true if x > y and x, y E Integers, false otherwise4.

(It x y) returns true if x < y and x, y E Integers, false otherwise.

(elt x y) returns true if x E y, false otherwise.

2Maruyama uses an infix notation; whereas, we use a prefix notation throughout this paper.
3Maruyama uses the access function word rather than cat, though the function accesses the category of the word.
'For example, (gt 1 nil) is false, because nil is not an integer.

a Logical Connectives:

(and p q) returns true if p and q are true, false otherwise.

(or p q) returns true if p or q is true, false otherwise.

(not p) returns true if p is false, false otherwise.

Each Pi in C must be of the form (if Antecedent Consequent), where Antecedent and Consequent

are predicates or predicates joined by the logical connectives. A CDG grammar has two associated

parameters, degree and arity. The degree of a grammar G is the size of R. The arity of the

grammar corresponds to the maximum number of variables in the subformulas of C. To simplify

the examples in this paper, we use grammars with a degree of one, that is, with a single role

governor. The governor role indicates the function a word fills in a sentence when it is governed

by its head word. In our implemented grammars (described in section 4.3), we also use several

needs roles (e.g, needl, need2) t o make certain that a head word has all of the constituents it needs

t o be complete (e.g., a singular count noun needs a determiner t o be a complete noun phrase).

Maruyama has proven that a grammar requires a degree and arity of two to be as expressive as a

CFG.

To illustrate the use of CDG grammars, consider a very simple example grammar, G1 = (El,

R1, L1, C1) in Figure 1, which has a degree of one and an arity of two5. A subformula Pi is called a

unary constraint if it contains one variable and a binary constraint if it contains two. For example,

U-1, U-2, and U-3 are unary constraints because they contain a single variable, and B-1 is a binary

constraint because it contains two variables.

For G1 to generate the sentence The program runs, there must be an assignment of a role value

t o the governor role of each word, and that assignment must simultaneously satisfy each of the

subformulas in C1. Note that each word is assumed to have a single lexical category, which is

determined by dictionary lookup. Figure 2 depicts an assignment for the sentence which satisfies

C1. This assignment can be interpreted as the parse graph shown in Figure 9.

2.2 CDG Parsing

To determine whether a sentence is generated by a grammar, a CDG parser must be able to assign

at least one role value which satisfies the grammar constraints t o each of the n * p roles, where n

is sentence length, and p is the number of role-ids. Because the role values for the role are selected

from the finite set L1 x {1,2,. . .,n,nil), CDG parsing can be viewed as a constraint satisfaction

problem over a finite domain. Hence, constraint propagation [21,30,5:1] can be used to develop the

parse of a sentence. A CDG parser generates all parses for a sentence in a compact representation

'The constraints in this grammar were chosen for simplicity, not to exemplify constraints for a wide coverage
grammar.

El = {det , noun, verb)
Rl = {governor)
L1 {DET, SUBJ, ROOT)
Cl = V z y : role (and

;; [U-1) A det receives the label DET and rodifies a word to its right.
(if (eq (cat (pos x)) det)

(and (eq (lab x) DET)
(It (pos X) (rod x))))

; ; [U-21 A noun receives the label SUBJ and rodif ies a vord to its right.
(if (eq (cat (pos x)) noun)

(and (eq (lab x) SUBJ)
(It (pos X) (rod X) 1))

; ; [U-31 A verb receives the label ROOT and rodifies no vord.
(if (eq (cat (pos x)) verb)

(and (eq (lab x) ROOT)
(eq (rod X) nil)))

; ; [B-1] A DET is governed by a SUBJ .
(if (and (eq (lab x) DET)

(eq (rod x) (pos y) 1)
(eq (lab y) SUBJ))

1

Figure 1: GI = (El , R1, L1, C1).

1 2 (program 1 noun 11 SUB J-3 I

pos

1

1 3 1 runs I verb 11 ROOT-nil 1

Figure 2: An assignment for The program runs.

word

the

cat

det

governor role's value

DET-2

node
I

{DETA. DET-1. DET-2, D l 3 4
sum+a, w w- I , suw-2, sum-?

ROOTd. ROOT-1, ROOT-?, ROOT-3)

word a 1
position ategOw$F

G noun Y J
role 1

(DET* DET-1. MT-2, D l 3 4
Sum-dl, SUW-I, SUBJ-2, WBJ-?

ROOT* MOT-1. ROOT-2, ROOTJ)

Figure 3: Initialization of roles for the sentence The progmm runs.

because enumeration of the individual parses for a highly ambiguous sentence is intractable. The

steps required for parsing the sentence The program runs are provided to illustrate both the process

of parsing with constraint propagation and the running time of the algorithm.

To develop a syntactic analysis for a sentence using CDG, a constraint network (CN) of words is

created. Each of the n words in a sentence is represented as a node in a CN. Figure 3 illustrates the

initial configuration of nodes in the CN for The program runs example. Notice that associated with

each node is its word, category, sentence position, and roles (only one for this example). Each of the

roles is initialized to the set of all possible role values (i.e., the domain). Given G1, the domain for

the example is L1 x {1,2,3,nil) = {DET-nil, DET-1, DET-2, DET-3, SUBJ-nil, SUBJ-1, SUBJ-2,

SUBJ-3, ROOT-nil, ROOT-1, ROOT-2, ROOT-3). Since there are q * (n + 1) = O(n) possible

role values for each of the p * n roles for a sentence (where p, the number of roles per word, and

q, the number of different labels, are grammatical constants, and n is the number of words in the

sentence), there are O(p * n * q * (n + 1)) = O(nZ) role values which must be initially generated

for the CN, requiring O(nZ) time. Appendix A contains pseudocode for this step and all of the

remaining steps in the CDG parsing algorithm.

To parse the sentence using GI, the unary and binary constraints in C1 are applied to the CN

to eliminate the role values from the roles of each word which are incompatible with C1. For a

sentence to be grammatical, each role in each word node must contain at least one role value after

constraint propagation.

The unary constraints are applied to each of the roles in the sentence to eliminate the role

values incompatible with each word's role in isolation. To apply the first unary constraint (i.e.,

(DET-2, E T 4) (DET+ll, DET-1, DET-?, E T 4 ,
SUBJ-nil, SUBJ-1, SUBJ-1, SUBJJ,

ROOT+ll, ROOT-1, ROOT-?, R W T J)

G noun

Figure 4: The CN after the propagation of U-1 for the sentence The program runs.

U-1, shown below) to the network in Figure 3, each role value for every role is examined to ensure

that it obeys the constraint.

;; [U-1] A det receives the label DET and modifies a word to its right.
(if (eq (cat (pos x)) det)

(and (eq (lab x) DET)
(It (pos X) (rod x)))

If a role value causes the antecedent of the constraint to evaluate to TRUE and the consequent to

evaluate to FALSE, then that role value is eliminated. Figure 4 shows the remaining role values

after U-1 has been applied to the CN in Figure 3.

Maruyama requires that each subformula in a constraint set be evaluated in constant time.

Because of this restriction, each constraint can only contain access functions and predicates that

operate in constant time (e.g., access functions and predicates like those defined in Section 2.1).

So when the unary constraint U-1 is applied to 0(n2) role values, it requires O(n2) time.

To further eliminate role values which are incompatible with the categories of the words in the

example, the remaining unary constraints (i.e., U-2 and U-3) are applied to the CN in Figure 4,

producing the network in Figure 5. Given that the number of unary constraints in a grammar is

a grammatical constant denoted as k,, the time required to apply all of the unary constraints in a

grammar is O(k, * n2).

The binary constraints determine which pairs of role values can legally coexist. To keep track

of pairs of role values, arcs connect each role to all other roles in the network, and each arc has an

associated arc matriz, whose row and column indices are the role values associated with the two

roles. The elements of an arc matrix can either be a 1 (indicating that the two role values which

index the element are compatible) or a 0 (indicating that the role values cannot simultaneously

exist). Initially, all entries in each matrix are set to 1 , indicating that the two role values are

initially compatible. Since there are ("ip) = O(n2) arcs required in the CN, and each arc contains

a matrix with O((q * (n + I)) ~) = 0(n 2) elements, the time to construct the arcs and initialize

@ yj G noun

Figure 5: The CN after the propagation of all the unary constraints.

\ vmrb 1

Figure 6: The CN after unary constraint propagation and before binary constraint propagation.

the matrices is O(n4). Figure 6 shows the matrices associated with the arcs before any binary

constraints are propagated. Unary constraints are usually propagated before preparing the CN for

binary constraints because they eliminate impossible role values from each role, and hence reduce

the dimensions of the arc matrices.

Binary constraints are applied to the pairs of role values indexing each of the arc matrix entries.

When a binary constraint is violated by a pair of role values, the entry in the matrix indexed by

those role values is set to zero. The binary constraint, B-1, ensures that a DET is governed by a

SUBJ:

;; [B-l] A DET is governed by a SUBJ.
(if (and (eq (lab x) DET)

(eq (rod X) (pos y))
(eq (lab y) SUBJ))

After the application of this constraint t o the network in Figure 6, the element indexed by the role

values x=DET-3 and y=ROOT-nil for the matrix on the arc connecting the governor roles for the

8UBJJ

DET-2

DETJ

Figure 7: The CN after B-1 is propagated.

and runs is set t o zero, as shown in Figure 7. This is because the must be governed by a word with

the label SUBJ, not ROOT. Since the constraint must be applied t o O(n4) pairs of role values, the

time t o apply the constraint is O(n4). Given that the number of binary constraints in a grammar

is a grammatical constant denoted as kb, the time required t o apply all of the binary constraints

in a grammar is O(kb t n4).

Following the propagation of binary constraints, the roles of the CN could still contain role

values which are incompatible with the parse for the sentence. To determine whether a role value

is still supported for a role, each of the matrices on the arcs incident t o the role must be checked

t o ensure that the row (or column) indexed by the role value contains a t least a single 1. If any

arc matrix contains a row (or column) of 0s for the role value, then that role value cannot coexist

with any of the role values for the second role and so is removed from the list of legal role values for

the first role. Additionally, the rows (or columns) associated with the eliminated role value can be

removed from the arc matrices attached t o the role. The process of removing any rows or columns

containing all zeros from arc matrices and eliminating the associated role values from their roles is

called filtering. Following binary constraint propagation any of the 0 (n 2) role values may require

immediate filtering. However, filtering must also be applied iteratively since the elimination of a

role value from one arc could lead t o the elimination of a role value from another arc. The most

efficient filtering algorithm requires O(ea2), where e is the number of arcs, and n is the size of the

domain [29]. In the case of CDG parsing, e = (n ; p) , and the domain size is n t q, so the running

time of the filtering step is O(n4) [26, 271.

Consider how filtering is applied t o the CN in Figure 76. The matrix associated with the arc

60ur implementation of the algorithm determines whether a role value is supported by its arcs by ORing all the
elements it indexes in an arc matrix and ANDing the results from all of those arc matrices. Hence, if any arc matrix
fails to support a role value in a role, the result of the AND would be 0 , and the role value would be eliminated.

Figure 8: The CN after filtering.

connecting the and runs contains a row with a single element which is a zero. Because DET-3

cannot coexist with the only possible role value for the governor role of runs, it cannot be a legal

member of the governor role of the and is therefore eliminated as a role value in that role. It is

also removed from the row it indexes in the matrix associated with the other arc emanating from

that role. Figure 8 illustrates the resulting CN after filtering the CN from Figure 7. Notice that

following filtering, there is precisely one role value per role for the example.

After all the constraints are propagated across the CN and filtering is performed, the CN

provides a compact representation for all possible parses. Syntactic ambiguity is easy to spot in

the CN since some of the roles in an ambiguous sentence contain more than a single role value.

If multiple parses exist, we can propagate additional constraints to further refine the analysis of

the ambiguous sentence, or we could just enumerate the parses contained in the CN by using

backtracking search. For highly ambiguous grammars, the process of enumerating all possible

parses is intractable, making incremental disambiguation a more attractive option. The parse trees

in a CN are precedence graphs, which we call parse graphs, and they consist of a compatible set of

role values (given the arc matrices) for each of the roles in the CN. The modifiees of the role values,

which point to the words they modify, form the edges of the parse graph. Our example sentence

has an unambiguous parse graph given GI, shown in Figure 9.

Below we list the steps in the CDG parsing algorithm and their associated running times:

1. Constraint Network construction prior to unary constraint propagation: O(n2)

2. Unary constraint propagation: O(k, * n2)

3. Constraint Network construction prior to binary constraint propagation: O(n4)

4. Binary constraint propagation: O(kb t n4)

Figure 9: The parse graph for the CN in Figure 8.

5. Filtering: O(n4)

Notice that the time required to propagate binary constraints is the slowest part of the algorithm.

2.3 CDG Parsing Compared with Other Approaches

In this section, the CDG parser is first compared with other constraint-satisfaction problems, and

then it is compared with more traditional parsing approaches.

2.3.1 CDG Parsing Compared with Constraint-Satisfaction Problems

Constraint-satisfaction problems (CSP) have a rich history in Artificial Intelligence [3, 4, 5, 9, 10,

25, 26, 511 (see [22] for a survey of CSP). If CSP is restricted to a finite, discrete domain, and only

constraints over single variables or pairs of variables are allowed, then there is a mapping between

CDG parsing and CSP.

In a typical finite-domain CSP problem, the variables (roles) are depicted as circles, and each

variable is assigned a finite set of possible values. Constraints imposed on the variables are depicted

along with arcs drawn between the circles (variables) affected by the constraint. Because binary

constraints involve two variables, a constraint arc is drawn between the two corresponding circles.

However, because unary constraints involve only single variables, the constraint arc loops from a

circle t o itself. Consider the CSP problem on the left-hand side of Figure 10 (this example is based on

a CSP network discussed in [I]), and notice how it maps t o the CDG constraint network to the right.

In CSP, binary constraints are depicted along with their arcs; whereas, in a CN, the constraints are

T r d l t h a l CSP Network CDG Constraint Network

cm-t 4
V a l V . r l

A J
A K
C J

CmMln(1:
V a l V a 2

A D
A B C (Im

Figure 10: A CSP network compared to an equivalent CDG constraint; network

not depicted. Instead, constraints are applied to the CN, which maintains information about which

role values are consistent with the set of applied constraints. The algorithm for CDG filtering is

similar to the most efficient algorithm for maintaining arc consistency for CSP problems designed

by Mohr and Henderson [29]. In the arc consistency algorithm, arc matrices are used to detect

and eliminate values associated with a circle (variable) that are not supported by all of the arcs

attached to the circle.

2.3.2 CDG Parsing Compared with Other Parsing Methods

Researchers have developed and used a variety of parsing paradigms which are based on context-

free grammars (CFGs) or are equivalent in expressivity to CFGs. A complete survey of CFG

parsers is beyond the scope of this paper; however, a comparison of the CDG parser with several

representative CFG parsers will illustrate their similarities and differences.

Most of the CFG parsers that are used in computer language applications (e.g., LL and LR

parsers) compile grammar rules into a table which is then used by a parser driver to determinis-

tically parse programs. Though these parsers have been used by the natural language processing

community, the ambiguity that is common in natural language has caused researchers to seek alter-

native methods. A recursive transition network parser [55], which encodes a grammar in a network

and then searches the network in a top-down fashion, is able to produce all possible parses for an

ambiguous sentence. However, if the parser does not cache subresults during that search it can have

an exponential running time. Definite Clause Grammar parsers [34] use unification and search to

determine the parses for a sentence. Chart-based parsers [19] use a chart to build up constituents in

a bottom-up fashion, and for some ambiguous sentences, can create charts of constituents that are

exponential in size. Tomita [46] has developed an LR parsing method which creates a parse forest

of possible parses using an LR table with shift-reduce and reduce-reduce ambiguities. Tomita's

parse forest also grows exponentially for some highly ambiguous grammars. Early [7] developed a

parser which provably operates in O(GZn3) time, but the algorithm builds a forest of parses that,

in some cases, includes impossible parses that must be pruned by checking the consistency of leaf

nodes in each tree. There are other approaches that improve the average case efficiency of the Early

parser, but they do not improve the efficiency under worst-case scenarios [38].

Below we enumerate the differences between CFG parsers and the CDG parser:

1. CFG parsers use production rules (or equivalently, recursive transition networks) in a gram-

mar t o determine whether or not a string of terminals is in the language. The CDG parser,

on the other hand, uses sets of constraints. Any type of constraint that can be formulated as

an if-then rule containing one or two role value variables can be used to constrain a CN.

2. CFG parsers that generate all parses for ambiguous grammars use a variety of methods to

search through the rules for all possible parses. To save time during parsing, grammar rules

can be preprocessed and sub-results cached and reused. In contrast, the CIIG parser assumes

anything is possible until constraint propagation is used to eliminate impossible analyses.

3. The best serial running time for a CFG parser operating with an ambiguous grammar is

0 (G 2 * n33 [7], where n is the number of words in a sentence and G is the size of the CFG

grammar. On the other hand, the serial running time for the CDG parser of single sentences

is O(k * n4), where k is the number of constraints in grammar. In practice, we have found

that k is comparable in size t o G for grammars with the same coverage.

4. CFG parsers often build trees for each of the possible parses for a sentence. However, enu-

merating the trees for highly ambiguous sentences can require exponential time. Hence, some

CFG parsers construct a parse forest (or similar structure) to circumvent this problem. The

CN constructed by the CDG parser is a forest of parse graphs which is pruned during parsing.

A CN differs from a CFG parse forest in that there are no non-terminals in the graph, only

links between terminals, which are assigned sets of labels. A packed parse forest generated by

a CFG parsing algorithm can be mapped to a syntactic graph [44], which like a CN, compactly

encodes all parses of ambiguous sentences by using modifier links between a head word and

its modifiers. Exclusion matrices are associated with the syntactic graph, which, like CDG

arc matrices, prevent impossible parses from being selected from the graph. However, unlike

a CN, a syntactic graph is generated by a grammar which is context-free.

5. The smallest known size for a CFG parse forest is O(GZ * n3) [7], regardless of how many

parses there are for an ambiguous sentence. In contrast, a CN has the size7 of O(n4), and it

is the only data structure used during parsing; there is no stack or agenda to maintain.

6. When a CFG parser generates a set of ambiguous parses for a sentence, it cannot invoke

additional production rules to further prune the analyses. In contrast, in CDG parsing, the

presence of ambiguity can trigger the propagation of additional constraints to further refine

the parse for a sentence. A core set of constraints that hold universally can be propagated

first, and then if ambiguity remains, additional, possibly context dependent, constraints can

be used. This type of flexibility is easy to achieve, since constraints are not precompiled into

a table (like in LR parsing) or into a network (like an ATN).

7. CFG parsing has been parallelized by several researchers. For example, Kosaraju's method

[20] using cellular automata can parse CFGs in O(n) time using O(n2) processors. However,

achieving CFG parsing times of less than O(n) has required more powerful and less imple-

mentable models of parallel computation, as well as significantly more processors. Ruzzo's

method [37] has a running time of O(Iog2(n)) using a CREW P-RAM model (Concurrent

Read, Exclusive Write, Parallel Random Access Machine), but requires O(n6) processors to

achieve that time bound. In contrast, we have devised a parallelization for the single sentence

CDG parser [13, 151 which uses O(n4) processors to parse in O(k) time for a CRCW P-RAM

model (Concurrent Read, Concurrent Write, Parallel Random Access Ma,chine), where n is

the number of words in the sentence and k, the number of constraints, is a grammatical

constant. Furthermore, this algorithm has been simulated on the MasPar MP-18, using the

special features of the machine and 0 (n4) processors to obtain an O(k +log(n)) running time.

8. To parse a free-order language like Latin, CFGs require that additional rules containing the

permutations of the right-hand side of a production be explicitly included in the grammar

[31]. Unordered CFGs do not have this combinatorial explosion of rules, though the universal

recognition problem for this class of grammars is NP-complete for an n-character alphabet. A

free-order language can easily be handled by a CDG parser because order between constituents

is not a requirement of the grammatical formalism. Furthermore, CDG is capable of efficiently

analyzing free-order languages because it is does not have to test for all possible orders of

words.

9. The set of languages accepted by a CDG grammar is a superset of the set of languages which

'In natural language processing, n is typically much smaller than G. English sentences usually contain fewer than
30 words; whereas, hundreds or even thousands of production rules are not uncommon for broad coverage English
grammars.

'The MasPar MP-1 is a massively parallel SIMD computer, which supports up to 16K 4-bit processing elements,
each with 16KB of local memory.

can be accepted by CFGs. In fact, Maruyama [26, 271 is able to construct CDG grammars

with two roles (degree = 2) and two variable constraints (arity = 2) which accept the same

language as an arbitrary CFG converted to Griebach Normal form. We have also devised

an algorithm to map a set of CFG production rules into a CDG grammar. This algorithm

does not assume that the rules are in normal form, and the number of constraints created

is O(G). In addition, CDG can accept languages that CFGs cannot, for example, anbncn

and ww, (where w is some string of terminal symbols). To illustrate the ease of writing such

grammars, we have created a grammar which accepts the language anbncn, n 2 0, shown in

figure 11. This grammar determines whether a string is acceptable by ensuring that there

is a one-to-one correspondence between each b and a, each c and b, and each a and c, and

that all a's occur before all b's and all b's occur before all c's. An assignment for the string

aaabbbccc given Gz is shown in Figure 12.

Constraint-based parsing has received considerable interest in computational linguistics in re-

cent years. For example, Covington [2] outlines a constraint-based parser that uses dependency

rules t o set up modifiee links between terminals, as in CDG. Covington's parser differs from CDG

in that it uses search and unification to provide dependency graphs for sentences, while CDG uses

constraint propagation. However, because both approaches use rules limiting dependency links

between terminals, the dependency rules of Covington7s parser should easily map into CDG con-

straints. Additionally, both share a capability for handling free order languages. Shieber [45]

develops a constraint-based approach to parsing which also uses unification. Shieber's rules con-

sist of two parts, a CFG phrase-structure portion and a feature analysis portion. The strength

of Shieber's approach is in his well-defined semantics of feature constraints. CDG differs from

Shieber's approach in several ways. First, in CDG, all rules are specified as constraints; there is

no separation between phrase-structure rules and other types of constraints. Second, CDG is not

limited to the use of CFG phrase structure rules.

There has also been considerable interest in the development of parsers for grammars that are

more expressive than the class of context-free grammars, but less expressive than context-sensitive

grammars [18, 49, 481. The running time of the CDG parser compares quite favorably to the

running times of parsers for languages which are beyond context-free. For example, the parser for

tree adjoining grammars has a running time
g

of O(n6). A direct comparison hetween CDG and

these more expressive grammars is beyond the scope of this paper.

In summary, CDG is more expressive and flexible than CFGs, making it an attractive alternative

to traditional parsers. It is able to utilize a variety of different knowledge sources in a uniform

framework t o incrementally disambiguate a sentence's parse. The algorithm also has the advantage

'This algorithm has also been pardelized, and operates in linear time with O(n5) processors [32].

C2 = {a, b , c) .
R2 = {governor)
LZ = {A,B,c)
C2 = V z y : role (and

; ;; [U-11 An a receives t h e l a b e l A and modifies an i t e r t o its r i g h t .
(i f (eq (root-word x) a)

(and (eq (l a b x) A)
(g t (rod X) (pos x))))

; ;; [U-21 A b receives the l a b e l B and modifies an i t e r t o its l e f t .
(i f (eq (root-word x) b)

(and (eq (l a b x) B)
(I t (rod X) (pas x)))) ... ,,, [U-31 A c receives the l a b e l C and modifies an i t e r t o its l e f t .

(i f (eq (r o o t a o r d x) c)
(and (eq (l a b x) C)

; ; ; [B-11 Every A precedes every 8.
(i f (and (eq (l ab x) A)

(eq (l ab y) 8))
(I t (pos x) (pos y) 1)

;;; [B-21 Every B precedes every C.
(i f (and (eq (l a b x) B)

(eq (l a b y) C))
(I t (pos X) (pos y) 1)

; ;; [B-31 I f an A occurs a f t e r another A, then it r u s t
; ; ; rodi f y something a f t e r t h a t A ' s rodif i e e .
(i f (and (eq (l a b x) A)

(eq (l a b y) A)
(gt (pos x) (pos y) 1)

(g t (rod X) (rod y))
; ; ; [B-41 An A r u s t rodif y a C .
(i f (and (eq (l ab x) A)

(eq (rod x) (pos y))
(eq (r i d y) governor))

(eq (l ab y) C))
; ; ; [B-51 I f a B occurs a f t e r another 8 , then it r u s t
;;; modify something a f t e r t h a t B ' s r o d i f i e e .
(i f (and (eq (l a b x) 8)

(eq (l a b y) 8)
(g t (pos x) (pos y))

(gt (rod X) (rod y)))
; ; ; [B-61 A B r u s t rodi f y an A .
(i f (and (eq (l ab x) B)

(eq (rod X) (pos y)
(eq (r i d y) governor))

(eq (l ab y) A)) . . . , , , [B-51 I f a C occurs a f t e r another C , then it must
;;; modify something a f t e r t h a t C ' s modifiee.
(i f (and (eq (l a b x) C)

(eq (l ab y) C)
(g t (pos x) (pos y)))

(g t (rod X) (mod y)))
; ; ; [B-61 A C r u s t modify a B .
(i f (and (eq (l ab x) C)

(eq (rod X) (pas y))
(eq (r i d y) governor))

(eq (l a b y) B))
)

Figure 11: Gz = (C2, R2, L2 ,C2) accepts the language anbncn, n > 0 .

Figure 12: An assignment for aaabbbccc.

pos

1

2

3

4

5

6

7

8

9

that is is efficiently parallelizeable. Because CDG parsing differs from traditional parsers in its

use of constraint propagation, further study of the relationship between CDG and other parsing

approaches could lead to some useful insights about parsing algorithms in general.

3 Enhancements of CDG Text-Based Parsing

word

a

a

a

b

b

b

C

c

c

This section describes a number of enhancements we have made to the CDG parsing algorithm

for single sentences to increase its usefulness for both text-based and spoken natural language

processing. First, the algorithm is modified to parse sentences with lexically ambiguous words.

Next, a table is introduced to lexically restrict the possible labels for a word during CN construction.

Finally, the parsing algorithm is modified to allow constraints to test for features such as number

or person.

governor role's value

A- 7

A-8

A-9

B- 1

B-2

B-3

C-4

C-5

C-6

3.1 Lexical Ambiguity

Many words in the English language have more than a single part of speech. For example, the last

two words in The program runs can be either nouns or verbs. Maruyama's algorithm requires that a

word have a single part of speech, which is determined by dictionary lookup prior to the application

of the parsing algorithm. Since parsing can be used to lexically disambiguate a sentence, ideally, a

parsing algorithm should not require that a part of speech be known prior t o parsing. In addition,

lexical ambiguity, if not handled in a reasonable manner, can cause correctness and/or efficiency

problems for a parser [6]. We examine four strategies for processing lexically ambiguous sentences

within the CDG framework.

(MT-dl, DET-1, DET-2, DET-3,
SUBJ~IU, SUBJ-1, SUBJ-2, SUBJ-3,

ROOT-nil, ROOT-1, ROOT-2, ROOT-3)
(noun.

Figure 13: The initial CN for the second lexical ambiguity strategy.

The first strategy is to create and parse a set of CNs which cover all of the possible combinations

of parts of speech for each word. Because of the combinatorial explosion of CNs, this strategy is

intractable.

A second strategy is to record in each word node all of the applicable parts of speech. For

example, in the CN for The program runs record that the last two words are both nouns and verbs,

as shown in Figure 13. The parsing algorithm can now no longer generate a parse for the sentence

because, given C1, the noun must have the label SUBJ, eliminating role values with label DET

and ROOT, and at the same time, the verb must have the label ROOT, eliminating role values

with label DET and SUBJ. In other words, after applying the constraints, there are no role values

remaining.

A third strategy is to create a word node for each part of speech for a word, as shown in Figure

14. Using this approach, the maximum size of a constraint network given that each word can have

w parts of speech is (Wgn) (qn)2, where n is the number of words, p is the number of roles, and q
2p2q2n4 -wpq

is the number of labels (simplifying to wpn(~n-1)q2n2 = ' 2 '"I). However, this solution

requires a change in the CDG parsing algorithm, which assumes that a CN is an AND/OR tree

such that the values assigned to the roles account for the only OR nodes in the tree, as shown in

Figure 15. Hence, for a sentence t o have a parse, every role in the CN must have a least one role

value after filtering. On the other hand, for the proposed lexically ambiguous network to have a

solution, only one of the nodes created to represent the multiple parts of speech for a word needs

to be supported. To use this proposed network, we could change the semantics of a constraint

network to include an OR node above the level of the role, but this solution requires modification

of the CDG network construction and filtering algorithms. Furthermore, there is a fourth solution

which requires requires O(n3) less space than the current strategy, minor modification of the CN

construction routines, and no modification of the filtering algorithm.

(DET-nY. DET-1, DET-2, DETq
SUBJ-nll, SUBJ-1. SUBJ-2, W a c J ,

ROOT-nll. ROOT-1, ROOT-2, ROOT-3)

(DET-nll, DET-1,
WBCnll, SUBJ-1.

ROOT-nll, ROOT-1,
-rill, DET-1, DET-2. DET-3,
IS SUBJ-l,SUBC2, SUBJ-3,

ROOT4, ROOT-3)

(DET-nll, DET-1, DET-2, DET-3, (DET-nll, DET-1. DET-2, DET-3,
WBJ-nll, SUBJ-1.8UBJ-2, SUBM, SUBSnU, SUBJ-1,SUBJ-2, SUBJ-3,

ROOT-nll. ROOT-1, ROOT-2, ROOT-3) ROOT-nil, ROOT-1, ROOT-?, ROOT-3)

Figure 14: The initial CN for the third lexical ambiguity strategy.

Figure 15: The AND/OR tree for the CDG parsing algorithm.

nam rdo vdms r
[DET-nY DEr-1. DET-2 DETJ.

su-M, suw-t , WE&% auw-a,
ROOTI*. ROOT-1. ROOT-2, ROOW)

nrbrdov. lun3
(DETM, MT-1, DET-2, DETJ,

w r d o v a - SUWM, suw-1, WBJ-z ww-a,
(DET-nY. DET-1, DET-2. E T 4 , ROOT* ROOT-1, ROOT4 ROOTJ)

navl Id0 V W * 3

(DETM, DET-1, DET-2 DETJ,
s u w a wlu-1, suw-2, auw-a.

V l b ~ v a r
(DET* DET-I, DET-2 DETJ.

suw* wlu-1, suw-2, SUWJ.
ROOTM, ROOT-1. ROOT3 ROOTJ)

Figure 16: The initial CN for the fourth lexical ambiguity strategy.

The fourth strategy is to allow role values within the same node to have their own parts of

speech as shown in Figure 161°. When the CN is constructed, the parts of speech for each word

are determined by looking the word up in the dictionary. If a word is lexically ambiguous then for

each part of speech, a set of role values in the domain is created and assigned that part of speech.

This solution makes use of the fact that, in CDG parsing, no more than one rc~le value for a role

can occur i.n the same parse graph. This strategy places the disjunction associated with lexical

ambiguity ikt the level of the role, and hence requires no modification of the filtering algorithm. As

shown in F'igure 17, the categories are represented as the cis, which are ORed below the level of

the role; hence, no modification of the CDG filtering algorithm is required.

Because each role value has its own part of speech, the constraints in GI in Fig-ure 1 are rewritten

so that the access function cat operates on a role value rather than on a word node addressed by

its position. For example, U-1 is rewritten as follows:

;; [U-1] A tiet receives the label DET and
;; modifies a word t o its r ight .
(i f (eq (cat x) det)

(and (ell (lab x) DET)
(I t (pos X) (rod x))))

This modification of CDG parsing requires less space than the previous strategy. Note that the max-

imum size of this modified constraint network is (Pt) (wqn)l, which simplifies to -w2q2n2 =
w 2 2 2 4 " yW2*. Hence, the space requirement for this modified CN is (y))pq2n3 smaller than for

the previous strategy.

''~ather than show each role value with its corresponding part of speech in the figures, we show the set of all of
the role values with a particular part of speech to save space.

I
Role V a l w

Figure 17: The AND/OR tree for the CDG parsing algorithm with lexical ambiguity.

SUBJ-3 ROOT-nil

DCTJ noun role u d u r =
m u e m

vrrb r d . vrl- =
(RoOTi'~ll)

Figure 18: The CN after unary constraint propagation.

By using the modified CN and constraints, the CDG parsing algorithm, operating on the lex-

ically ambiguous CN for The program runs, produces the same parse graph as the CN without

lexical ambiguity for the same sentence from section 2.2. Following the propagation of unary con-

straints, the labels in the CN in Figure 16 are reduced in number, as shown in Figure 18. Notice

that all of the role values for the noun runs have been eliminated, therefore, th.e word cannot be

used as a noun in the sentence given GI. Figure 19 depicts the CN after the propagation of binary

constraints, and Figure 20 shows the CN after filtering. Also note that the words in the sentence

have been lexically disambiguated by the parsing process.

Our ap;proach to handling lexical ambiguity can easily be extended to handle multiple word

candidates in the same time interval. In this case, each role value keeps track of its word candidate,

as well as its lexical category. This extension is a first step toward processing multiple sentence

Dm-2

DLTJ

SUBJJ R007-dI

DLTJ noun rok v d u r r
mu-)

Figure 19: The CN after binary constraint propagation.

noun role values =
(SUB J-3)

v.rb rok v.IU.. =
dd rok v.lusr = 0

[ms 1 noun &;I- =

Figure 20: The CN after filtering.

L :

SUBJ ROOT DET

noun

C: verb

det

Figure 21: A table of legal labels for word categories in the governor role for G1.

hypotheses provided by a speech recognizer. In Section 4, we describe the necessary modifications

of the CDG parsing algorithm for processing general word graphs.

3.2 An Efficiency Issue: Label Pruning Using a Table

Given that the role values assigned to a role for a word in CDG are affected by both the role and

the parts of speech, it is possible, a t network construction time, to restrict the role values assigned

to a role for each part of speech for a word to those that are appropriate for the role and the lexical

category under consideration. To do so, we add a fifth parameter t o the CDG grammar tuple, T,

where T is a table which restricts the possible labels for each role according to the category of the

word and its role id. Now a CDG grammar consists of a quintuple, (C, R, L, C, T). Though T

is not a necessary aspect of the grammar, it does make the analysis of a sentence more efficient

because the roles are initialized to smaller domains, and many of the unary constraints (i.e., those

which restrict labels of role values to lexically appropriate values) can be omitted. The table for

augmenting grammar GI is shown in Figure 21. It shows the legal labels for the governor role

given the word categories in El. If this table is used during CN construction for the sentence The

program runs along with the assumption that no word modifies itself, the resulting CN is depicted

in Figure 22. See Appendix A for the pseudocode for CN initialization using T.

In practice, the table reduces the number of role values in the initial CN l)y a factor of five

t o seven, and eliminates the need to propagate some unary constraints. Hence, it does affect the

actual running time of the CDG algorithm, though it does not improve the asymptotic running

time.

3.3 Lexical Features in CDG

Many times, even if a word is not lexically ambiguous, it can have ambiguity in the feature informa-

tion associa,ted with the word, like number, person, or case. For example, the nown fish can take the

number/pe:rson feature value of third person singular or third person plural. Lexical features are

noun r o h nlun I

d.1 r o h v d u n I
{D€T*ll, M T I , M T 4)

{suw-ns, a u w i , w w *)
vnb r o h v d u r I

{ROOT*ll. ROOT-1. ROOT*)

noun rd . v d u n I
{SuW*II, SUWI, SUBJ-2)

V& roh v d u r -
"OOT**. ROOT-I. ROOTI]

Figure 22: The initial CN given the table in Figure 21

used in many natural language parsers to enforce subject-verb agreement, determiner-head noun

agreement, and case requirements for pronouns. This information can be very useful for disam-

biguating parses for sentences or for eliminating impossible sentence hypotheses, hence we have

also added lexical feature analysis to the CDG parser

The incorporation of feature tests into CDG parsing requires the same specid care used to in-

troduce lexical ambiguity into the parsing algorithm. Consider another simple example grammar1'

G3 = (C3, .R3, L3, C3, T3), shown in Figure 23.

We will consider how to add number/person feature tests to CDG to process the sentence *A fish

eat the worbrn. The grammar should not generate this sentence because it is ungrammatical given

appropriatt? number/person tests. To add number/person feature tests to CDlG grammars, the

algorithm for constructing the initial CN must be modified to look up number/person information

for the wor,d and store this information with the role values. The lexical entrie,s for this example

follow:

(a (category det (number 3 s)))
(eat (category verb (number I s 2s Ip 2p 3p)))
(f i s h (category noun (number 3s 3 ~)))
(the (category det (number 3s 3 ~)))
(vorr (category noun (number 3 s)))

To simplifj. the example, we assume that fish is not lexically ambiguous. In a.ddition to storing

number/person information in the lexicon, two agreement constraints must be added to G3 to

ensure thal; the number of the determiner agrees with the number of the head iloun and that the

number of the SUBJ agrees with the number of the ROOT.

"This grammar was designed t o illustrate feature testing, and is not a general constraint-based grammar. Among
other things, it is missing constraints t o support auxiliary verb structures in the sentences i t a'ccepts.

C3 = {det , noun, verb).
R3 = {governor)
L~ = {DET, SUBJ, DO, ROOT)
T3 = see Figure 24.
C3 = V z y role (and

; ; [U-1] A DET modif i e s a word t o its r igh t .
(i f (eq (lab x) DET)

(I t (pos x) (mod x)))
;; [U-21 A SUBJ modifies a word t o its r igh t .
(i f (eq (lab x) SUBJ)

(I t (pos x) (mod x)))
; ; [U-31 A DO modif i e s a word t o its l e f t .
(i f (eq (lab x) DO)

(gt (pos x) (mod x)))
; ; [U-41 A ROOT modif i e s no word.
(i f (eq (lab x) ROOT)

(eq (mod X) n i l))
;; [B-1] A DET is governed by a SUBJ or DO.
(i f (and (eq (lab x) DET)

(eq (mod X) (pos y)))
(or (eq (lab y) SUBJ)

(eq (lab y) DO))
;; [B-21 A SUBJ and DO a re governed by a ROOT.
(i f (and (or (eq (lab x) SUBJ)

(eq (lab x) DO))
(eq (mod X) (pos y)))

(eq (lab y) ROOT)))
; ; [B-31 A DET t o the l e f t of a ROOT must modify a noun t o the
;; l e f t of the ROOT.
(i f (and (eq (lab x) DET))

(eq (lab y) ROOT)
(I t (pos x) (pos y)))

(I t (mod x) (pos y)))
)

Figure 23: G3 = (C3, R3, L3,T3,C3).

C: verb 0 0 1

det 0 0 0 1

SUBJ DO ROOT DET

Figure 24: A table of legal labels for word categories in the governor role for G3.

noun 1 1 0 0

rpunm*v~* I *wnb .h (r . # :
dol ro* v d r rrllh I*mbr4r): WBJ4I, SUIJ-1, SURCI. W U 4

nu-. -4 -1, azr, aw. m-s)

Figure 25: The initial CN given Gg.

;; [B-41 A IET which is governed by a noun muat agree in number
;; with the noun's number.
(if (and (ecq (lab x) DET)

(e'q (cat y) noun)
(eq (mod X) (poa y)))

(agree (number x) (number y)))

;; [B-51 A IiUBJ which is governed by a ROOT must agree in number
;; with the verb's number.
(if (and (eq (lab x) SUBJ)

(ecq (lab y) ROOT)
(eq (mod X) (pos y) 1)

(agree (number x) (number y)))

These constraints require the addition of one access function number and a predicate agree.

The function (number x) returns the number/person information associated with the role value,

and the predicate (agree (number x) (number y)) returns true only if its two number/person

arguments agree. We consider two ways to store number/person information with a role value.

One way is to store the entire set of features with each role value. In this case, agree returns

true iff the intersection of the two number sets is non-empty. The second approach is to store

one numbeir/person feature value per role value, and the agree predicate becomes equivalent to an

equality teait.

If the CDG parsing algorithm stores the set of number/person feature values with each role

value, the (:N depicted in Figure 25 for the sentence *A fish eat the worm is constiructed. Following

the propagation of unary constraints, the network is as depicted in Figure 26. After the binary

constraints B-1, B-2, and B-3 are propagated and the network is filtered, the (2N is in the state

depicted in Figure 27. This figure highlights the matrices corresponding to the itrcs that are most

relevant to the agreement constraints, B-4 and B-5. Now consider the impact of constraints B-4 and

nam rdm v m h r wm I*wnb..-(u, rp):
(SUIJQ, SUBJ-4. SUIJI. Do-1)

- m* v a wllh Nwlhm(&):
{Do-1, Do-a. w-a. Do41

Figure 26: The CN after the propagation of unary constraints.

dsi role W r r)lh lwnhu-pa. ap):
(DETI)

Figure 27: The CN after propagating B-1, B-2, and B-3 and filtering.

B-5 on the network, and notice that the constraints succeed for the CN, despite the fact that the

sentence is ungrammatical. This occurs because the words are checked pairwise f13r agreement. The

word a agrees with fish, and the word fish agrees with eat, but the numbers that cause agreement

on the two arcs are incompatible with each other. Using this approach, the only way to ensure that

sets of numbers jointly agree for the determiner, subject, and verb is by propagating an agreement

constraint over the three role values. This constraint would contain three variables12 as shown

below:

;; A DET that is governed by a SUBJ, which is governed by a ROOT
;; rust agree with the ROOT also.
(if (and (eq (lab x) DET)

(eq (lab y) SUBJ)
(eq (lab z) ROOT)
(eq (rod X) (pos y))
(eq (rod y) (pos 2)))

(agree (number x) (number z)))

To propagate this constraint requires the addition of arcs linking triples of rolles in the sentence

and the use of three dimensional arc matrices. Because there are ("iP) = O(n3') arcs required in

a CN with 3-variable constraints, and each arc contains a matrix with (q * n)3 := O(n3) elements,

the time t c ~ construct the arcs and initialize the matrices is O(n6), and the time to propagate a

three variable constraint is O(n6). This constraint will work for the current exam.ple, but to handle

four-way agreement for sentences like *The fish which are eating swims would require constraints

with an arity of four. Because of cases like these, we have developed another approach to feature

testing.

To correctly utilize number and person features in agreement tests for CDG parsing without

resorting tcl greater than two-variable constraints, each role value must be assigned a single feature

value, not a, set of values. If there is more than one feature value, then the role values are duplicated

for each feature value. Given this modification, the initialization of the CN for *A. fish eat the worm

is shown in Figure 28. Figure 29 depicts the CN after unary constraint propagation, and Figure

30 shows the state of the network after binary constraints B-1, B-2, and B-3 have been propagated

and the network has been filtered. After applying constraints B-4 and B-5 to the CN in Figure 30,

the matrix entries indexed by role values with incompatible feature values are ~ ; e t to 0 , as shown

in Figure 31. When this network is filtered, there are no remaining role values (see figure 32), and

so the sentence is not generated by the grammar.

If there are two feature types (say number/person and case) t o be used in constraints for a

grammar, then the role values will have to be duplicated and assigned feature values from the cross

product of the features' values. This could easily lead t o a combinatorial explosion of role values.

120ne might expect that the illegal parse would be detected during backtracking search, but tlhis assumption would
be incorrect. The sets of features are unaffected by parsing in this approach, and there is no way to selectively require
non-empty feature intersection for sets of tree roles.

mur r o b v h WWI
IaWJd. WW-1. WU-1. W W 4

W W I , #)s lM . -1. DDI. DO* DOII
noun r o b v h r m kmbudp:

CUIL17* WW-1.Wkl-S. W W 4

(RKn*, ROQT-1, RKn-a. m4, m 4)
*rbm*n~*.wm- W W 4 DDnY, -1. -2, DDI,

(RKnd. ROOT-1. RKn-2. m4, m T 4)
*rb r o b n ~ r r m ~ ~ m b . h l p

(-14, ROOT-1. IDQI-2, ROOT4 R K n 4)
rbrobnL.rYIhmbwdp

(m*, ROOT-1. m - 2 , m 4 . IDQII)
nrbrobnL*.rm WunbrrJp

(md, ROOT-1. RKn-2, m 4 . m 4)
dM r o b v h wllh bmbuda:

(DETslM. DLT-1, DET4, DEr-1, D L T q
dat r o b n b ~ ~ rm knbudp:

(mslr, DLT-I. m-l, DET-a, DLTI)

Figure 28: The initial CN given that each role value has one feature value.

mur r o b nLr w l h l h I W
l W W 6 . S u m 4 S W 4 . -1)

dM r o b nL*. w l h l h I m b r a mur r o b nC*. w l h kmbudp:
(DLT-2, m-a. DE~+ #TI) (c u ~ s , s w ~ r sw4. -1)

&t r o b nL*. w l h)*unbrJa:
m*)

d d r o b v h wllk I*mbwg:
m*

Figure 29: The CN after the propagation of unary constraints.

(ROOT4
v a b r d o v h r l h l

(Roc
V a b I d r n V h I

(I
vab Id. v*

(ROOT*
vab rd.vh-l~---O LL'

Figure 30: The CN after propagating B-1, B-2, and B-3 and filtering.

n o n rob v . l w rrllh N m l w J . :
(SUBU)

nov, rob v.lur rrllh NvnbrJp:

dml r o b v d u r w*l W u n b r J . :
(SUBU)

(M-2)
38 *

WlJ-3 SUBU

M u m M . :
1

(m i l o
v r b rob vdua rlk I(-1p

t m * m I I
vab rob rlk W L *

(I I W * Y)
V U b r o * ~ r r l k W w n b . h f p

(-*o

d d r o b v d u a r (h N u m M . :
m 4)

dd rob V h rlk I#-q:
m a)

Figure 31: The CN after propagating B-4 and B-5.

noun rol* nlu* w l h Numb.r.3m:
0

noun role nlua w l h Mumb.r.3p:
0

vmk m b v m h w l h Wumb.nlm
0

vmk rd. v m h w l h Wumb.n?.
0

v * k rob v m h w l h Wumb.nlp
n

vmh m b vmlun w i h Numb.nlp
0

vmk robvmlumm w l h Wumkrdp
0

dd rob v m h w l h Wu-
0

dd rdm v d u r wlth Nu-:
0

Figure 32: The CN for an ungrammatical sentence after filtering.

Fortunately, there is an excellent strategy for limiting the number of role values. The basic idea

is to store the sets of feature values with a single role value and to duplicate the role values only

on demand, when a particular feature type is being tested by a constraint. A grammar writer can

then order constraints in a constraint file in such a way that role values are reduced by pure phrase

structure constraints prior to the feature constraints. Also, feature constraints can be ordered to

minimize useless role value duplication. When the parser is preparing to prop,agate a constraint

with a particular feature test, each of the role values having multiple values for that feature is

duplicated and assigned one of the feature values. The corresponding feature constraints should

then eliminate many of the duplicated role values before other types of feature constraints are

propagated.

Consider how the sentence *A fish eat the worm is processed given this strategy, assuming that

constraints are propagated in the order they appear in our grammar. The initial CN is constructed

as depicted in Figure 25. Once the non-feature constraints have been propagated and filtering has

been performed, the CN would be in the state depicted in Figure 27. Note that many of the role

values have been eliminated by the constraints before the feature constraints are propagated. Now

in preparation for the propagation of constraints using the number/person feature, the role values

in Figure 117 must be duplicated for each number/person feature value, giving the CN in Figure

30. After the feature constraints have been applied (Figure 31) and filtering (Figure 32) has been

performed, no parse for the sentence remains.

4 Spoken Language Modification

CDG has several advantages that make it attractive for use with spoken language understanding

systems. First, it is able to handle grammars that are beyond context-free. Second, it uses a

single representation, the constraint, to encode syntactic rules and feature tests. This uniformity is

especially compelling for speech understanding because such a system could potentially use lexical,

syntactic, semantic, prosodic, and contextual rules. Third, CDG is able to support the use of

context when determining the meaning of a sentence (especially to reduce ambiguity). Fourth, the

flexibility of incremental constraint-based parsing should also be less sensitive than CFG parsers

to the synl;actic irregularities common in spontaneous speech. Finally, the algorithm is amenable

t o effective parallel implementation.

One drawback of the CDG parser as defined by Maruyama is that it is only able to process one

sentence at a time. However, since a speech recognizer can generate multiple sentence hypotheses for

a given utterance, a one-sentence-at-a-time parser would be very inefficient. Hence, in this section,

we extend the CDG parser to process word graphs containing multiple sentence hypotheses.

In the Section 4.1, we briefly describe current spoken language approaches and motivate the use

of word graphs for processing the multiple sentence hypotheses provided by a speech recognizer. In

Section 4.2, we adapt the CDG parsing algorithm to operate directly on a word graph. In Section

4.3, we describe how the filtering algorithm must be modified to simultaneously process multiple

sentence hj~potheses. Finally, in Section 4.4, we describe our implementation of th.e spoken language

parser and the development of two constraint-based grammars.

4.1 Current Approaches to Speech

Among the! most successful current speech recognition systems which process continuous speech

for a limited (1000 word) vocabulary are those which utilize hidden Markov motlels (HMM). Most

systems utilizing this approach (e.g., [22, 401)) have reduced recognition errors by incorporating

some language information (syntactic and semantic) directly into the HMM to reduce perplexity,

but since tlze goal of these systems is recognition, not understanding, no structural analysis of the

utterance i:; performed. Instead, the output of such systems is an ordered list of the N most likely

sentence hjrpotheses (where N is a constant usually less than 100) (39, 411.

Graceful integration of speech recognition and natural language systems remains a difficult

problem. Early systems [23, 531 grappled with knowledge source interaction and flow of control.

The trend in recent systems has been to use stochastic language models [33, 561. However, this

approach is limited t o relatively simple cases (e.g., bigram or trigram) in order t.o control network

size and complexity of training. These techniques have proven promising for some speech recognition

1. Clear all windows.
2. Clear windows.
3. Clear all the windows.
4. Get all windows.
5. Give all windows.

6. Clear all of the windows.
7. Clear the windows.
8. Get all the windows.

9. Give all the windows.
10. Get all of the windows.

1 1. Give all of the windows.

Figure 33: The word graph for the N-best command sentences.

tasks, but are inadequate for representing the complex linguistic information required to perform

speech understanding. Systems that are attempting to integrate speech recognition processing

with more traditional natural language processing techniques include CMU's Phoenix, using frame

based parsing and semantic phrase grammars [52]; CSELT's system, based on firdte-state language

models [11.:I; MIT's Voyager, using LR parsing [58]; and Seneff's robust parsing 1:42, 431.

To conritruct a speech understanding system which builds on current recognizers, a researcher

might pass the N-best sentence hypotheses generated by a recognizer through al natural language

parser as a first step toward producing meaning representations. However, processing each sentence

hypothesis provided by a speech recognizer individually is inefficient since the sentence hypotheses

often diffe~ only slightly from each other. Furthermore, a list of sentence hypotheses is not the

most compact representation to provide a natural language parser. A better representation for the

sentence h;rpotheses is a word graph or lattice of word candidates which contains information on

the approximate beginning and end point of each word's utterance.

We have conducted an experiment which demonstrates the compactness of a word graph. For

this experiment, we selected three sets of N-best sentence hypotheses13 for three different types of

utterances: a command, a yes-no question, and a wh-question. The list of the N-best sentences

was converted to a word graph in which the duration of the node was approximated by using the

syllable count for the words in the utterance. Figure 33 depicts a set of N-best sentences and the

word graph our algorithm constructed for those sentences. In figure 34, the size and expressive

power of tlhe constructed word graphs is compared with N-best sentence lists. The word graphs

were more expressive than the N-best sentence lists while providing an 83% rediuction in storage.

I3We thank BBN for providing us with the N-best lists of sentences.

33

Sentence 1 Number of I Number of I Distinct 11 Number of 1 words in 1 sentences in 1
Type N-Best Sentences N-Best Words N-Best Words Graph Nodes

Command 11 4 1 7 6

Yes-No-Q 20 129 17 11 18

Figure 34: N-best sentences versus word graphs.

Even though a word graph is a compact representation for the output of a speech recognition

system, current systems do not provide this type of representation. However, parsers that can

process the graph representation should more efficiently process all sentence hypotheses. Tomita

[47] has de~ireloped an LR parsing algorithm capable of processing a word graph. Chart parsers can

also process a lattice by storing the words in its chart. Though these approaches handle sentences in

a lattice, the CDG approach to parsing, once extended to operate on a word graph, has advantages

discussed i;n Section 2.3.2 which make it an even more promising approach for speech processing.

4.2 Parsing Word Graphs with Constraints

We have adapted the CDG constraint network to handle the multiple sentence hypotheses stored

in a word graph, calling it a Spoken Language Constraint Network (SLCN). Figure 35 depicts

an SLCN derived from a word graph constructed for the sentence hypotheses: *A fish eat and

* Ofices eats. By representing these hypotheses in a word graph, we are able to process additional

sentences (i.e., A fish eats and Ofices eat) not present in the list of hypotheses, one of which might

represent t:he intended utterance. Notice that word nodes contain a list of all word candidates with

the same beginning and end points, and edges join word nodes that can be adja.cent in a sentence

hypothesis (see Figure 35). A sentence hypothesis must include one word node from the beginning

of the utterance, one word node from the end of the utterance, and these two word nodes must be

connected ley a path of edges. The word nodes along a path can contain multiple! word candidates,

so the number of sentence hypotheses for a particular path of edges can be quite large. In the SLCN

of Figure 35, each word node contains information on the beginning and end point of the word's

utterance, :represented as an integer tuple (b, e), with b < e. The tuple is more expressive than the

point schenne used for CNs and requires modification of some of the access functions and predicates

defined for the CN scheme. The access functions (pos x) and (mod x) now return a tuple (b, e)

which describes the position of the word associated with the role value x. The equality predicate

must be ex.tended to test for equality of intervals (e.g., (eq (1,2) (1,2)) should return true). The

YL Y L . Y L Y L . Y L Y L . Y L ..L.

ISUBT-"11.
SUBT-13.4ll

Figure 35: Example of a spoken language constraint network constructed frorn a word graph.

less-than predicate, (It (bl , e l) (b2, e2)), returns true if e l < b2, and the greater than predicate,

(gt (b l , el ') (b2, e2)), returns true if b l > e2.

To parse an SLCN, each word candidate contained in a word node is assigned a set of role values

for each role, requiring O(n2) time, where n is the number of word candidates in the graph. Unary

constraints are applied to each of the role values in the network, and like CNs, require O(k, * n2)

time. The preparation of the SLCN for the propagation of binary constraints is similar to that

for a CN. ,411 roles within the same word node are joined with an arc as in a CN; however, roles

in different word nodes are joined with an arc iff they can be members of at lleast one common

sentence hypothesis (i.e., they are connected by a path of directed edges). To construct the arcs

and arc mirtrices for an SLCN, it suffices to traverse the graph from beginning to end and string

arcs from each of the current word node's roles to each of the preceding word node's roles (where a

node precedes a node iff there is a directed edge from the preceding to the current node) and to each

of the roles that the preceding word nodes' roles have arcs to. For example, there should be an arc

between the roles for a and fish in Figure 35 because they are located on a path from the beginning

to the end of the sentence a fish {eats, eat) . However, there should not be an arc. between the roles

for a and ofices since they are not found in any of the same sentence hypotheses (See Appendix A

for the SLCN arc construction pseudocode). After the arcs for the SLCN are ca~nstructed, the arc

matrices aIe constructed in the same manner as for a CN. The time required to construct the SLCN

network in preparation for binary constraint propagation is O(n4) because there may be up O(nZ)

arcs constructed, each requiring the creation of a matrix with O(n2) elements. Once the SLCN is

constructed, binary constraints are applied to pairs of role values associated with arc matrix entries

(in the sanne manner as for the CN), requiring O(kb t n4) time, where n is the number of word

candidates.

Filtering in an SLCN is complicated by the fact that the limitation of 0n.e word's function

Figure 36: A simple SLCN.

in one sentence hypothesis should not necessarily limit that word's function in another sentence

hypothesis. For example, consider the SLCN depicted in Figure 36. Even tlhough all the role

values for are would be disallowed by the singular subject empath, those role values cannot be

eliminated since they are supported by paths, the subject in a different hypothesis. To demonstrate

the differences between a single sentence CN and an SLCN, we map the SLCN in Figure 36 to

the AND/OR tree shown in Figure 37. Because the SLCN is based on a parse graph containing

multiple word candidates, not all of which can participate in the same sentence hypotheses, an OR

node is required a t the top level of the tree to represent the contribution of v,arious word nodes

to the different sentence hypotheses. Though the individual sentence hypotheser; are not indicated

explicitly i;n the SLCN (this would require exponential space in some cases), the logical presence of

the OR node must be captured by the filtering algorithm for an SLCN.

4.3 SLCN Filtering

The following notational conventions are used to develop the filtering algorithm. The capital letters

A , B, X, Y, U, V represent roles and the letter r represents a role value. Two roles A and B are

arc connected if there exists an arc(A,B) connecting the two roles with an assc~ciated arc matrix,

arc-matrix(A,B). Note that arc(A,B) and arc(B,A) are the same arc.

The implicit top level OR node in the SLCN requires significant revision of ,the SLCN filtering

algorithm. The filtering algorithm can no longer delete a role value when a single arc matrix fails

to support it, because all of the words in another sentence hypothesis might s:upport that value.

Instead, we must determine how to propagate role value deletion from one arc associated with a

role to other arcs associated with the same role. After propagating role value deletion over the

arcs, if a role value r is supported by at least one arc matrix associated with an arc emanating

Figure 37: The AND/OR tree for the SLCN in figure 36.

from its role, then the role value cannot be eliminated from the role. However, if none of the arc

matrices a~~sociated with the role's arcs supports the role value, then it should be eliminated from

the role. Also, if all of the role values in a role for a particular word candidate are eliminated, then

that word candidate should no longer be a supported word. If all of the word candidates for a

word node are unsupported, then the word node should also be unsupported. ITurthermore, word

nodes which are no longer members of a legal sentence hypothesis because the a~nly word they are

adjacent t c ~ is unsupported should, through filtering, lose support.

In order to develop a correct filtering algorithm for SLCN parsing, we must consider how to

propagate].ole value deletion from one arc associated with a role to others associa,ted with the same

role. Supp'ose role A is connected by arcs to roles B and X and the arc matrix associated with

the arc between A and B no longer supports the role value r associated with role A. Should the

elimination of r E A from the arc between A and B cause the value to be removed from the arc

matrix associated with the arc between A and X? Should it also cause r's removal from the set of

A's role values? Our basic strategy for developing the filtering algorithm is to group the arcs of a

role into classes which will allow us to efficiently determine which arcs should be affected if a role

value is disallowed by an arc matrix. We begin by introducing two axioms and some basic classes

of arcs.

Filtering Axioms and Elementary Arc Classes:

Our filtering algorithm was developed given two fundamental axioms. The first axiom is shown

below:

Axiom 1 (Modifiee Axiom) If a role value r associated with role A is eliminailed from arc-matrix(A,B)

and that mle value's modifiee points to the word node containing role B, then it slzould be eliminated

from all of the arc matrices associated with arcs attached to the role A.

The role El has the right to directly eliminate any role values if their modifiees point to B's node

and none of B 7s role values support them. If B cannot support the role value, then none of the

roles assocj.ated with other words should.

When setting up the classes of arcs (and their associated matrices), we are guided by the second

axiom:

Axiom 2 (Arc Class Axiom) A n arc-matrix(A,B) should disallow r if r is not legal in any

sentence hypotheses that contain arc(A,B), i.e., there exists no path of edges froin a beginning node

to an ending node such that every role for every node contains at least one role value compatible

with r.

This suggersts that we should group arcs into sets of arcs which are in the same sentence hypotheses.

Because the topology of an SLCN is a directed acyclic graph (DAG), such sets will be recursive

and hierarchical in nature. Inspection of Figure 38 leads to some initial observations about which

arcs should be grouped together. Note that the small circles in this figure are roles, the large ovals

are word nodes, the straight lines with arrows are edges, and the curved lines itre arcs. The first

class of arcs are intm-arcs, which are arcs that connect two roles belonging to the same word node.

T h e o r e m 1 (intra-arcs) If an arc(A,B) is an intra-arc and arc-matrix(A,E%) disallows r from

A , then r :should be disallowed by all arcs incident to A and removed from the I-ole A.

Proof: The intra-arc arc(A,B) is a member of every sentence hypothesis that contains A's word

node; therefore, it is a member of every sentence hypothesis that includes the arcs incident to A.

Hence, by Axiom 2, if r is eliminated by the intra-arc arc-matrix(A,B), it should be removed

by all of the arc matrices associated with the arcs emanating from A. Furthermore, r should be

eliminated from the role A.

The second class of arcs are iso-arcs. The two arcs, arc(A,B) and arc(A,C), are said to be

iso-arcs if roles B and C are located in the same word node (i.e., they are differeint roles associated

with the same word node) and are incident on a common role A. Figure 38 depicts a set of iso-arcs.

Theo rem 2 (iso-arcs) If arc(A,B) is a member of a set O of iso-arcs incident to A, and

arc-mat r i :~(A,B) disallows r from A , then all of the matrices associated wzth the iso-arcs in

the set O should also eliminate r from A by zeroing the row or column indexed by r.

intra-arcs

Figure 38: Illustration of the terms used in this report.

Proof: Because iso-arcs connect the same two word nodes, they are members o:l exactly the same

set of sentence hypotheses. Hence, by Axiom 2, if one of them eliminates r from A, they all should.

If a role value r E A is eliminated by arc-matrix(A,B), depending on the type of roles A and

B, that role value may be eliminated from all the arc matrices of arcs connected to role A, or it

may be removed from some but not others. Clearly, not all of the arcs in the netvvork are intra-arcs

or iso-arcs (of each other. Hence to filter an SLCN as thoroughly as possible, we must also be able

to determine whether the deletion of a role value in A from arc-matrix(A,B) should affect the

deletion of the same role value for other matrices corresponding to other types of arcs emanating

from A. Figure 39 depicts the temporal dependency of arc(A,B') on arc(A,X:') and arc(A,B)

on arc(A,:Y) in a restricted view of an SLCN. Assume for simplicity that there is only one role

per word node for this discussion. In Figure 39, arc(A,X) provides local precede arc support

for the role values of A for arc(A,B) because there exists a directed edge joining the word node

containing role X to the word node containing role B. Also, arc(A,X9) provides local follow arc

support far the role values of A for arc(A,BY) because there is a directed edge joining the word

node containing role B' to the word node containing role X'. Furthermore, arc(A,B) provides

local follow support for the role values of A for arc(A,X) because of the directed edge between the

word nodes for roles X and B, and arc(A,B') provides local precede support for the role values

of A for arc(A,X') because of the directed edge between the word nodes for roles B' and X'.

arc(A, X) is a local precede arc for arc(A, X') is a local follow arc for
arc(A, B) given the directed edge arc(A, B') given the directed edge

between the word nodes of X and B. between the word nodes of B' and X'.

8 8 II

Figure 39: Temporal Dependencies between the arcs for role A,.

arc(A, B) an'd arc(A,C) both provide arc(A, B') and arc(A,C') both provide
local follow support for a role value on local precede support for a role value
arc(A, X) . I-lence, both must remove on arc(A, X'). Hence, both must remove
support for ia role value in A for that role support for a role value in A for that role
value to be disallowed by arc(A, X). value to be disallowed by arc(A, X').

Figure 40: Temporal Dependencies between the arcs for role A.

If a rc -~na t r ix (A,B) no longer supports r E A , then arc-matrix(A,X) may no longer have

reason to support that role value because of the loss of the local follow support.. If all paths from

X's word node to A's word node must include the edge from X's to B's word node, then all of the

sentence hypotheses containing arc(A,X) must also contain role B , and hence, arc(A,B). In this

case, the role value should be deleted from arc-matrix(A,X) during filtering. However, if there

exists a path of edges from X's word node to A's word node that does not include the edge from

X's word node to B's, as in Figure 40, then arc-matrix(A,X) loses some support for r E A if r

is deleted from arc-matrix(A,B), but so long as arc-matrix(A,C) supports that role value, it

cannot be deleted from arc-matrix(A,X).

Symmetrically, if arc-matrix(A,B') no longer supports r E A , then arc-matrix(A,X') may

no longer have reason to support that role value. If the edge from the word node of B' to the

word node of X' is a required link on all paths of edges from the word node of A to the word

node of X ' , then all of the sentence hypotheses containing arc(A,X') must also contain role B '

and arc(A ,B'). Hence, the role value would be deleted from arc-matrix(A,X') during filtering.

On the oth.er hand, if the edge from the word node of B ' t o the word node of X:' is not a required

link on all paths of edges from the word node of A t o the word node of X', as in Figure 40, then

arc-matr ix(A,X') loses some support for r E A if arc-matrix(A,B') delete!; r, but so long as

arc-matr ix(A, C') supports that role value, it cannot be deleted from arc-matr ix(A, X').

Local precede arcs and follow arcs provide two additional useful classes of arcs for the filtering

algorithm, as the following theorem shows:

Theorem 3 (local p r e c e d e a n d follow a rcs) If a role value r E A for arc (A,B) is disallowed

frorn all of arc (A,B) 's local precede arcs with respect to A or all of its local follow arcs with respect

to A , then it should be disallowed by arc(A,B) .

Proof : Ev.ery role value r E A for arc(A,B) must be allowed by a t least one of the local follow

arcs of arc:(A,B) with respect t o A t o be a legal role value in a t least one se:ntence hypothesis.

Therefore, if all of the local follow arcs of arc(A,B) with respect t o A have disallowed r, then r is

incompatikde with all of arc(A,B)'s sentence hypotheses. A symmetric argument holds for local

precede arcs.

In order t o create a correct algorithm for filtering an SLCN, we must determine which arcs

temporally support the continued existence of a role value so that if the support is removed, the

role value can be deleted. To utilize the temporal dependencies between arcs, we must associate a

set of local precede and follow supporters with each role value on an arc. If an arc matrix for an

arc elimina.tes a role value, then it must remove support for that role value frorn its local precede

and follow arcs. If the role value on one of those arcs has that arc as its on1,y local precede or

follow supporter, then the role value must be removed from that arc's matrix and the arc must

then remove support for the role value from its local precede and follow arcs. On the other hand,

if the role value on each of those arcs has more than one local precede or follc~w supporter for a

role value, then the loss of support must be recorded in some way even thouglh the role value is

not deleted.. In the next section, we develop the filtering algorithm for SLCNs using the insights

described in this section.

The SLClV F i l t e r ing Algor i thm:

To implement the filtering algorithm, we must add information t o the constrair~t network. A role

value of a role may not be eliminated until all of its arc's matrices disallow that va~lue. To determine

whether the role values for a role are supported by the network, we keep a count of all of the arcs

supporting each of the role values for each of the roles. If the support count drops t o zero, then the

role value is eliminated since none of its arcs support that role value. Additionally, the elimination

of a role value in one arc matrix can cause the elimination of the role value from other arc matrices.

Below, we enumerate the list of cases for propagating role value elimination to other arcs matrices.

1. If a role value, r, associated with the role A is eliminated from the intra-arc arc-matrix(A,B)

(say between A , the governor role for a word node, and B , the needs role for the same word

node), it must be eliminated from all of the arc matrices associated with the arcs emanating

from the role A.

2. If a role value, r , associated with role A is eliminated from arc -mat r ix (P~ ,B) and that role

value's modifiee points to the word node containing role B , then it should be eliminated from

all of' the arc matrices associated with arcs attached to the role A.

3. If a 1,ole value, r, associated with the role A is eliminated from arc-matrix(A,B), it must

also 'be eliminated from the arc matrices of its iso-arcs. For example, if B is the governor

role for a word node, then for all the other roles, X , associated with that word node, the role

value must also be eliminated from the arc matrices associated with the arcs between A and

X.

4. If a role value, r, associated with the role A is eliminated from arc-rnatrix(A,B) and

neither condition 1 nor condition 2 from above holds, then support for that role value should

be removed for that role value on the arc matrices associated with the locad precede or follow

arcs of arc(A,B) given A. To determine whether r should be eliminated by any of these arc

matrices, we must determine whether they have additional support for r once arc(A,B)'s

s u p p ~ ~ r t is removed.

To keep track of which arcs temporally influence other arcs in the the elimination of role values,

we must determine for each of the roles on each arc in the SLCN which arcs are local precede and

follow arcs. Each arc-matrix(A,B) must maintain a list of local precede arcs and a list of local

follow arcs for each of the role values associated with roles A and B.

A-precede- support - The role values associated with role A for arc-matrix(A,B) each

maintain a list of local precede support arcs with respect to B containing:

- All arcs of the form arc(A,X), where there exists a directed edge from the word node

containing X t o the word node containing B. The directed edge implies X's word node

precedes B's word node, and so arc(A,X) is a local precede supporter for A's role values

given B.

- All arcs of the form arc(A,B), where there exists a directed edge from the word node

containing A to the word node containing B. The directed edge implies the word node

for A precedes the word node for B , hence arc(A,B) is a local precede supporter for

its own role values given B.

- A dummy arc, say arc(B,B), if B's word node is the first word in the sentence.

A-follow-support- The role values associated with role A for arc-matrix(A,B) each main-

tain ;% list of local follow support arcs with respect to B containing:

- All arcs of the form arc(A,X), where there exists a directed edge from the word node

containing B to the word node containing X. The directed edge implies X's word node

follows B's, and so arc(A,X) is a local follow supporter for A's role values.

- All arcs of the form arc(A,B), where there exists a directed edge from the word node

containing B to the word node containing A. The directed edge implies A's word node

follows B's, hence arc(A,B) is a local follow supporter for its own role values.

- A dummy arc, say arc(B,B), is included in the set if B's word node is the last word in

the sentence.

B-precede-support- The role values associated with role B for arc-matrix(A,B) each

maintain a list of local precede support arcs with respect to A containing:

- All arcs of the form arc(B,X), where there exists a directed edge from the word node

containing X to the word node containing A.

- All arcs of the form arc(A,B), where there exists a directed edge from the word node

containing B to the word node containing A.

- A dummy arc, say arc(A,A), if A's word node is the first word in the sentence.

B-follow-support- The role values associated with role B for arc-matrix:(A,B) each main-

tain a list of local follow support arcs with respect to A containing:

- All arcs of the form arc(B,X), where there exists a directed edge from the word node

containing A to the word node containing X.

- All arcs of the form arc(A,B), where there exists a directed edge from the word node

containing A to the word node containing B.

- A dummy arc, say arc(A,A), if A's word node is the last word in the sentence.

The algorithm in Figure 41 is used to calculate the local precede and follow arcs for each of

the roles on each arc. Word nodes in the network are initially assigned an arbitrary index between

one and n, where n is the number of nodes required to represent the SLCN. The word node for

an index can be retrieved by using the function get-wordaode(index), which returns the word

node associiated with the index. Note that the store-support routine duplicates and stores the local

precede and follow sets for each of the role values associated with a role on an arc matrix. This

operation I-equires O(n2) time because each set can contain O(n) arcs, which must be copied and

stored in support of O(n) role values.

Once the SLCN network is created and local role value arc support is calculated, we can prop-

agate constraints as described earlier and then filter the network much as for a CN. We must first

determine which arc matrices disallow a role value; however, when a role value is disallowed by an

arc matrix, it may or may not be eliminated from all arcs associated with the role. See Appendix

A for the iull filtering algorithm. This algorithm relies on the two routines in l?igures 42 and 43.

The first routine is performed if arc-matrix(A,B) deletes r from A. If a role value is eliminated

from an arc matrix during filtering, support must also be removed from that role value on all of

the local precede and follow arcs for that arc matrix. Hence, the first routine invokes the second

(Figure 43) to handle the removal of local arc support for a role value. If all of the local precede

arcs or the local follow arcs for a role value no longer support it, then it should be eliminated from

the row or column associated with the role value maintaining the list of suppor.ters in the matrix.

By using the dummy arc supporters for word nodes at the beginning and end of the sentence, we

are able to detect when a role value loses support by examining whether either its local precede or

follow sets become empty. If a t any time the local precede or follow arc set o:F support becomes

empty, then the role value must be deleted from the arc because there is no sentence hypothesis

which sup1)orts the role value. If the role value is eliminated by the arc matrix, then its support

for the role value must also be removed from those arcs it locally supports.

There ,are O(n3) role values indexing rows or columns in arc matrices that can be deleted by

SLCN filtering, where n is the number of word candidates. Each of the indices may require the

removal of O(n) arc supporters from their local precede and follow lists before being deleted. Once

all support, is removed from a role value index, it may need to zero O(n) elements in its arc matrix

and remove support from O(n) role value indices associated with the other arcs incident to its role.

Hence, the running time of the SLCN filtering algorithm is O(n4).

To i l l~~j t ra te SLCN filtering, we provide a simple example. Consider the local precede and

follow support sets constructed for the role values in the roles joined by each arc of the simple

SLCN dep.icted in Figure 44. The support sets were calculated using the c r ea t e -ma t r ix suppor t

procedure. The reader should keep in mind that arc(l ,2) and arc(2, l) are equivalent, so we store

support arcs with the convention that the lowest index is always first.

To illustrate how the procedure disallow propagates role value elimination. correctly, we will

consider two types of role value elimination, one which eliminates a deleted role value from all arcs

emanating from its role and one which simply removes support of the role value from its local arcs.

crea termal t r ixsuppor t - an O(n4) operation.
P rocedure create-matrixsupport (){

For inderrl = 1 to n - 1 do {
wl = get-wordnode(index1);
For I11 = each of the roles in wl do {

For index2 = indexl+l to n do {
w2 = get-wordnode(index2);
For R 2 = each of the roles in w2 do {

precede-support1 = get-precede-support(Rl,R2);
precedesupport2 = get-precede-support(R2,Rl);
follow-support 1 = get-follow-support(R1 ,R2);
follow-support2 = get-follow-support(R2,Rl);
/* Store the local precede and follow support for each role value in R1 and R 2 */
storesupport(precedesupportl, follow-supportl, R1, arcmatrix(Rl,E;12));
storesupport(precede-support2, follow-support2, R 2 , arcmatrix(Rl,E;12))))))

1

get-precede-support - an O(n) operation.
Funct ion get-precedesupport(For: role; Given: role){

precede-support = {);
If (edge(word-node-of(For), word-node-of(Given)) exists) then

Add arc(For, Given) to precede-support ;
If (Given is a role for a word node at the beginning of a sentence) then

Add arc(Given, Given) to precedesupport;
/* Loop requires O(n) time */
For (each directed edge of the form edge (WORD, word-node-of(Given))

with W O R D # For) do {
For X = each of the roles in W O R D do {

Add arc(For, X) to precede-support));
Return(precedesupport);

1

get-follow-support - an O(n) operat ion.
Funct ion get-follow-support(For: role; Given: role){

follow-support = {) ;
If (edge(word-node-of(Given), word-node-of(For)) exists) then

Add arc(For, Given) to follow-support;
If (Given is a role for a word node a t the end of a sentence) then

Add arc(Given, Given) to follow-support;
/* Loop requires O(n) time */
For (each directed edge of the form edge(word-node-of(Given), W O R D)

with W O R D # For) do {
For X = each of the roles in W O R D do {

Add arc(For, X) to follow-support));
Return(fol1ow-support);

1

Figure 41: Local precede and follow support routines.

Procedure, disallow(arcmatrix(A,B): arc-matrix; A: role; r : role-value){
If a r c l n a t r i x (A , B) is an intra-arc of A then{

/* :Disallow r for all arcs incident to role A. Check all roles
/* connected to A but not equal to B to see if their role values

*I

/* ;ire still supported. If not add them to the tebe-deleted list.
*I

For R1 = all roles not equal to role A or B do {
*I

/* O(n) iteratiom */
remove r from the a r c m a t r i x (A , R l) ; /* O(n) operatioil */

For r-index = each of the role values in R1 do { /* O(n) iterations. */
if (the role value r-index for role R1 is not /* O(1) operation */

supported by a r c m a t r i x (A , R l)) then
add r-index to the to-be-deleted-list;));

arc.support-count(r ,A) = 0;
Eliminate r from role A;
Return();

1;
If the niodifiee of r == the position of B {

/* :Disallow r for all arcs incident to role A. Check all roles
/* connected to A but not equal to B to see if their role values

*I

/* <Ire still supported. If not add them to the tebe-deleted list.
*I

For R1 = all roles not equal to role A or B do {
*I

/* O(n) iterations */
remove r E A from the a r c a a t r i x (A , R l) ; /* O(n) operatioil */
For r-index = each of the role values in R1 do { /* O(n) iterations */

if (the role value r-index for role R1 is not /* O(1) operatio11 */
supported by a r c m a t r i x (A , R l)) then

add r-index to the tebe-deleted-list;));
arc.support-count(r, A) = 0;
Eliininate r from role A ;
Ret,urn();

1;
/* Remove r from the isearcs of arc(A,B) */
For R1 = all roles in A's word node not equal to A do {

remove r from a r c m a t r i x (A , R l) ; /* O(n) operatioin */
arcsupport-count(r,A) = arcsupport-count(r,A) - 1;
For r-index = each of the role values in R1 do { /* O(n) iterations */

if (the role value r-index for role R1 is not /* O(1) operatioil */
supported by a r c m a t r i x (A , R l)) then

add r-index to the tebe-deleted-list;));
arcsupport-count(r ,A) = arcsupport-count(r,A) - 1;
/* Eliminate support for the role value r from all local precede and follow arcs */
Inform-delete-update(arcmatrix(A,B), A , r) ;
/* If ncb arc supports the role value r then it is eliminated from the role. */
If (arc~lupport-count(r,A) = 0) then eliminate r from A;

1

Figure 42: disallow(arc-matrix(A,B), A, r) is invoked whenever r is disallowed for role A by
arc-matri~x(A,B).

Procedure inform-delete-update(arcmatrix(U,V): arcmatrix; U: role; r: role-value){
precede-list = precede-list-of(r, arcmatr ix(U,V), U);
For arc = each of the arcs in precede-list do {

arc-matrix = the arc matrix associated with arc;
R1 = get-rolel-of-arc(arc);
R2 = get-role2-of-arc(arc);
If (R1 # R 2 && arc # arc(U,V)) then {

/* Remove arc(U,V) as follow support for r E U on arc-matrix. */
Remove-follow-support(arc(U,V), arc-matrix, U , r);
If unsupported(r, arc-matrix) then {

remove r E U from the arcmatr ix(U,V); /* O(n) operation */
disallow(arcmatrix, U , r);))

1;
premcede-list-of(r, arcmatr ix(U,V), U) = {);
foll~ow-list = follow-list-of(r, arcmatr ix(U,V), U);
For arc = each of the arcs in follow-list do {

arc-matrix = the arc matrix associated with arc;
R1 = get-rolel-of-arc(arc);
R2 = get-role2-of-arc(arc);
If (R 1 # R 2 && arc # arc(U,V)) then {

/* Remove arc(U,V) as precede support for r E U on arc-matrix. */
Remove-precede-support(arc(U,V) , arc-matrix, U, r) ;
If unsupported(r, arc-rnatrix) then {

remove r E U from the arcmatr ix(U,V); /* O(n) operation */
disallow(arcmatrix, U, r);))

Figure 43: Update the local and precede arcs for r in role U associated with arc-matrix(U,V).

arc(l,2) : arc(3,4):
1 precede : (arc (1,2)) 3 precede: (arc(3,4), arc(2,3))
1 :follow: {arc(l13), arc(1, 4)) 3 follow: (arc(4,4))
2 precede : (arc (1,l)) 4 precede : {arc (2,4))
2 :follow: (arc (l,2)) 4 follow: (arc (3,4))

arc:(2,3) : arc(l,3) :
2 precede: (arc(2,3)) 1 precede: (arc(l,2))
2 :follow: (arc (2,4)) 1 follow: (arc(l,4))
3 precede : (arc (1,3)) 3 precede: (arc(1,l))
3 :Eollow: (arc(2,3), arc(3,4)) 3 follow: (arc (2,3))

ar1:(2,4) : arc(l,4) :
2 precede: {arc(2,4), arc(2,3)) 1 precede: {arc(l,2), arc(l,3))
2 follow: (arc (4,4)) 1 follow: {arc (4,4))
4 precede : (arc (l,4)) 4 precede: (arc(1,l))
4 follow: {arc(3,4), arc(2,4)) 4 follow: (arc(2,4))

Figure 44: Temporal dependencies between the arcs of a simple SILCN.

Suppose that r is to be deleted from the arc matrix associated with arc(l ,2) :for role 1. In this

case, support must also be removed for r on its local precede and follow arcs. The 1 precede arcs

for arc(l,i!) include only arc(l ,2) and so no propagation is required to other arcs. On the other

hand, the 1 follow arcs for a rc (l ,2) include arc(l ,3) and arc(l ,4). When arc(l ,2) is deleted

from the 1 precede support list for r on arc(l ,3), its local precede list becomes, empty indicating

that r shortld no longer receive support on the arc. The reason that arc(l ,3) loses support for the

role value is that the word node for role 2 must be a member of any path throuj;h the SLCN from

the word node containing role 1 to the word node containing role 3. Because :r on arc(l ,3) has

no remaini:ng 1 precede supporter, it is deleted from arc_matr ix(l ,3) . Since arc_matr ix(l ,3) no

longer has 1 precede support for r, it must remove its support from its local follow arc, arc(l ,4).

When arcl(l,3) is removed from the 1 precede arcs for r on arc(l ,4), there is one remaining

supporter, arc(l ,2) . However, arc(l ,2) has not completed removing support for role value r from

its remaining 1 local follow arc, arc(l,4). When arc(l ,2) is deleted from the 1 precede support

list for r on. arc(l ,4) , its local precede list becomes empty indicating that r shoulld no longer receive

support on. the arc. Because arc(l ,4) has no remaining 1 precede supporter, the role value r is

deleted for role 1 in arc_rnatrix(l ,4). Since arc-mat rix(l ,4) no longer has local precede support

for r, it must also remove its support from its local follow arc, arc(4,4), a dum.my arc. Since the

arc is a du.mmy, no loss of support is propagated to other arcs. Once the local support removal

is complete, none of the arcs emanating from role 1 supports r, and so it is deleted from the role

(because it's arc support count has become 0).

Now, suppose that r is to be deleted from the arc matrix associated with a;rc(l,3) for role 1.

In this case, the word node for role 3 provides an optional path through the SLCN from the word

node containing role 1, and so the role value r should not be deleted from arc(l.,2) and arc(l ,4).

The 1 precede arcs for r on arc(l ,3) include only arc(l ,2). When arc (l ,3) is removed from

the 1 follow arcs for r on arc(l ,2), there is one remaining supporter, arc(l ,4) , and so r should

not be deleted from arc-matrix(l ,2). Furthermore, the 1 follow arcs for r OIL arc(l ,3) include

only arc(l ,4). When arc(l ,3) is removed from the 1 precede arcs for r on arc(l ,4), there is one

remaining supporter, arc(l ,2), and so r should not be deleted from arc_matrix(l ,2). Because r

is supported on role 1 by arc_matr ix(l ,2) and arc_matr ix(l ,4) , it should not be deleted from

the role.

The SIICN constraint parsing algorithm requires O(n4) time to parse a network with n word

candidates. However, by using a CRCW P-RAM model and O(n4) processors, the parse time for

an SLCN 'can be improved [15]. We are currently implementing the SLCN pairsing algorithm on

the MasPa,r MP-1. Because of the power of the MasPar and the parallel nature of the algorithm,

we can ma,ke use of the flexibility and expressivity of CDG grammars to process SLCNs without

severe performance penalties.

4.4 An SLCN Parsing Experiment

We have developed a C++ implementation of a CDG parser, PARSEC, which is capable of parsing

CNs or SLCNs on a Sun workstation. The software allows users to specify parameters of the gram-

mar, to design features, and to write unary and binary constraints. It also checks the constraints

for correctiless of form given a grammar's parameters. Once a grammar is written and constraints

are checked for well-formedness, the parser is ready to parse a sentence. When parsing a sentence,

it first applies the core set of unary constraints, then it constructs arcs and arc rnatrices and prop-

agates the core binary constraints. At this point, an X-windows interface for the parser appears

on the scrt:en. Figure 45 depicts the interface to the SLCN constructed from ithe word graph in

Figure 33. Once the window is present, the user can choose from several menu options. Among the

options avi~ilable are: perform a single step of filtering, filter completely, view the arcs joining the

roles of two word nodes, apply constraints from a file, print node information to a file, and print

arc informaation to a file. The user can also view the state of the parse. This interface allows the

remaining role values for each word candidate's roles to be viewed by clicking on the word in the

word node For example, the role values for the three roles for the word windows over the interval

(3,5) in Figure 45 are viewed by clicking on that word. This interface also allows viewing of the

matrices sl,ored on each of the arcs in the network. The arcs joining the roles of two words are

displayed hen a user selects the appropriate menu item along with two word nodes. Figure 46

shows the arcs joining the roles for the words of and the. The matrix associated with each of the

arcs can then be viewed by clicking on its arc. Figure 47 shows the matrix for Ithe arc joining the

governor roles of the two words. This implementation of the SLCN parser provides useful tools for

developing and testing constraint-based grammars.

In order to demonstrate the effectiveness of our SLCN parser, we have developed two grammars.

The first grammar was designed to parse sets of sentences in the Resource Management database

[36] The second grammar covered sentences in the ATIS database [16, 351 (Air Travel Information

System).

The Resource Management database grammar contains 3 roles, 11 catego~ies, 70 labels, 100

unary conj.traints, and 200 binary constraints, capable of parsing statements, yes-no questions,

commands, and wh-questions [57]. The constraints consist of phrase structure rules and features

tests. The feature tests include subject-verb agreement, determiner-head-noun agreement, and

case restrictions on pronouns. Additionally, the subcategorization feature is used to make certain

that a verl) has the appropriate set of objects and complements to be complete. The lexicon used

along with this grammar contains many lexically ambiguous words, and its word entries contain

(1. 2)
c l s r

Role

Role

caw: mmon
Gender:
Bduuior:
Root uord: u i h
! h m t i c T w : UaJc

values f a needs role =
E m m u n , (0.0)> 3

valum for rscondnead role
E <BUYK. (O*O)> 3

Figure 45: The X-windows interface t o the SLCN for the N-best comtmands.

Figure 46: The X-window interface to the arcs connecting the roles of of and the

QUIT

*

Arc Natrin connecting ~ovsrnor r o l e of node 3 and govsrmr r o l e o f mck 4,

<m, (5.7))
I <DET, (5,7)>
I I <ET, i5,7)>
I I I <OET, i5,7)>
X l X X

t x x x x I x a-PP, i1,2)>
t X X X X 1 X a,PP, i2,3)>
c x 1 x x I 1 fl-PP, i1,2)>
C X X X X 1 X fl-PP, i2,3)>
C X X X X 1 X aT,PP, i1,2)>
C X 1 X X I 1 aET,PP, i2,3)>

Figure 47: The X-window interface to the arc matrix for the governor roles of of and the.

Figure 48: N-best versus word graph sentence parses.

Sentence

Type

Command

Yes-No-Q

Wh- Q

the necessary feature information to support our feature value constraints.

To denionstrate the effectiveness of CDG parsing for eliminating sentence :hypotheses from a

...,, a ",,,1-. ..., ,,-..,,t,a tl., ...,, a n,,..Ln a,",,:I.,a :- c,-.,t:,.. A 1 : m t , CT C l h T . . ,..a n-.rrma tb,-.-
W W I U b l a p 1 . 1 , w c L W L ~ V C L ~ C U ~ L I C W W L U ~ L ~ ~ L L J UCJLIIUCU 111 L) C L ~ L W I ~ -.I I L I ~ W L) U V A Y ;) a 1 1 u p a l n c u GLICLII

using the first grammar. More grammatical sentences were parsed in the SLCN than were available

in the original sets of sentences, as can be seen in Figure 48; however, all of the additional parses

had similar meanings t o one of the original grammatical N-best sentences. For example, the SLCN

depicted ~ I L Figure 45, constructed from the word graph in Figure 33, contains three verbs: clear,

give, and get. Each is the main verb in 5 minor variations of the same sentence.

Syntactic constraints are effective at pruning a word graph of many ungrammatical sentence

hypotheses and limiting the possible parses for the remaining sentences. However, it is often the

case that syntactic information alone is insufficient for selecting a single sentence hypothesis from a

word graph. Effective use of multiple knowledge sources plays a key role in human spoken language

understanding. It is, therefore, likely that advances in spoken language underst;~nding will require

effective u1;ilization of higher level knowledge.

To demonstrate the flexibility of constraint-based parsing for utilizing a variety of knowledge

sources, we have incorporated semantic constraints into our parser. To do so, we developed a second

grammar ior sentences in the ATIS database (Air Travel Information System), which was chosen

because of its semantic richness. First, syntactic constraints were added t o the Resource Manage-

ment grammar to demonstrate the ease of adding additional grammar constrai:nts to a previously

developed grammar. Then semantic constraints were constructed to further lirnit ambiguity [12].

Semantic constraints were relatively easy to create and incorporate into our parser because they

were based on feature testing for certain syntactic configurations. For example, some constraints

limited the semantic type associated with a prepositional phrase based on the semantic type of its

object, ant1 others limited the cites of attachment for a prepositional phrase based on semantic type

compatibility. We then conducted a simple experiment to compare the effectiveness of syntactic

and semantic constraints for reducing the ambiguity of word networks constructed from sets of

BBN's N-best sentence hypotheses [41] from the ATIS database.

Number Grammatical

Sentences in N-best

11

8

7

Number Grammatical

Sentences in SLCN

15

12

16

For this experiment, we selected twenty sets of 10-best sentence hypotheses for three different

types of utterances: a command, a yes-no question, and a wh-question. The lists of the N-best

sentences were converted to +word graphs using syllable count, as described in Section 4.1. These

word graphs were then converted t o SLCNs and parsed with the constraints. We determined

for each eliminated word candidate whether a syntactic constraint or a semantic constraint was

responsible for the deletion. Syntactic and semantic constraints together werle very effective at

reducing the number of parses for sentences in the SLCN when compared with syntactic constraints

alone. However, syntactic constraints alone played the major role in pruning illappropriate word

candidates from the network. On the average, syntactic constraints alone eliminated 3.11 word

candidates per SLCN; whereas, semantic constraints, when applied after syntactic constraints,

eliminated an average of .66 additional word candidates per SLCN'~.

SLCN parsing has several advantages that make it attractive for speech. First, it is able t o handle

grammars that are beyond context-free. Second, it provides a flexible uniform framework for

using lexical, syntactic, semantic, prosodic, and contextual constraints to incrementally reduce

the ambiguity found in a word graph provided by a speech recognition system (We have already

developed lexical, syntactic, and semantic constraints for our parser (see Section 4.4) and are

currently cleveloping prosodic constraints). Third, the parser is able to support the use of context

when determining the meaning of a sentence. Fourth, the flexibility of increment id constraint-based

parsing should allow us to develop strategies for reducing sensitivity t o the syntactic irregularities

common i11 spontaneous speech. Current spoken language recognition systems alre not as accurate

as humans, in part, because they do not utilize the wide range of information that people do when

understanding speech. Hence, we believe that further investigations along these lines will result in

more effective processing of speech.

The filtering algorithm developed in this paper is useful, not only for processing speech, but

also for other CSP problems. Up t o this time, CSP arc consistency has always assumed perfect

segmentation of input. Speech recognition is only one area where segmenting the signal into higher-

level chunlrs is problematic. Vision systems and handwriting analysis systems lnave a comparable

problem.

"Since most semantic rules use some syntactic information, it makes sense to propagate tht: syntactic constraints
before the semantic constraints. When we propagate the semantic constraints first, no word candidates are typically
eliminated because of the high ambiguity in the CN without syntactic constraints.

6 Acknowledgments

This work was supported in part by Purdue Research Foundation, NSF grant nuimber IRI-9011179,

and NSF Parallel Infrastructure Grant CDA-9015696. We thank BBN for providing us with the

N-best listti of sentences. We would especially like to thank those students who were involved in the

implementation of PARSEC: Yin Chan, Mark Rowland, Todd Stewart, Christopher White, Boon

Lock Yeo, and Carla Zoltowski. We would also like to thank Carl Mitchell, Carla Zoltowski, and

Leah Jamieson for their encouragement and comments on various drafts of this paper.

References

[I] J. M. Conrad and D. P. Agrawal. A graph partitioning-based load balancing strategy for a

distributed memory machine. In Proceedings of the Sixth International Con.ference on Parallel

Proce:wing, August 1992.

[2] M. A. Covington. A parsing algorithm that extends phrases. Computational Linguistics,

4:234--236, 1990.

[3] A. L. Davis and A. Rosenfeld. Cooperating processes for low-level vision: A survey. Artificial

Intellrgence, 17:245-263, 1981.

[4] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence,

34:l-38, 1988.

[5] R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction problems. Arti-

ficial Intelligence, 34:l-38, 1988.

[6] P. De,y and B. R. Bryant. Lexical ambiguity in tree adjoining grammars. Information Pro-

cessing Letters, 34:65-69, 1990.

[7] J. Early. An efficient context-free parsing algorithm. Communications of the ACM, 13:94-102,

1970.

[8] L. D. Erman and V. R. Lesser. The Hearsay-I1 speech understanding system: A tutorial. In

W. A. Lea, editor, Trends in Speech Recognition, pages 361-381. Speech Science Publications,

Apple Valley, MN, 1986.

[9] E. Freuder. Partial constraint satisfaction. In Proceedings of the Internationcll Joint Conference

on Artificial Intelligence, pages 278-283, 1989.

[lo] E. Freuder. Complexity of K-tree-structured constraint-satisfaction problems. In Proceedings

of the Eighth National Confemnce on Artificial Intelligence, pages 4-9, 1990.

[Ill E. P. Giachin. Automatic training of stochastic finite-state language models; for speech under-

standing. In IEEE Int. Conf. Acoustics, Speech, and Signal Processing, March 1992.

[12] M. P. Harper, L. H. Jamieson, C. B. Zoltowski, and R. A. Helzerman. Semantics and constraint

parsing of word graphs. In Proceedings of the International Conference on Acoustics, Speech,

and Signal Processing, volume 11, pages 63-66, April 1992.

[13] R. A. Helzerman. PARSEC: A framework for parallel natural language understanding. Master's

thesis,, Purdue University, School of Electrical Engineering, West Lafayette, IN, 1993.

[14] R. A. Helzerman and M. P. Harper. Log time parsing on the MasPar MP-1. In Proceedings of

the Sixth International Conference on Parallel Processing, August 1992.

[15] R. A. Helzerman, M. P. Harper, and C. B. Zoltowski. Parallel parsing of spoken language.

In Pnxeedings of the Fourth Symposium on the Frontiers of Massively Parallel Computation,

October 1992.

[16] C. T. Hemphill, J . J. Godfrey, and G. R. Doddington. The ATIS spoken language systems

pilot corpus. Technical Report NTIS PB91-505354, 1990. NIST Speech Disc 5-1.1.

[17] F. Jeljnek. Self-organized language modeling for speech recognition. In Alex 'Waibel and Kai-Fu

Lee, editors, Readings in Speech Recognition. Morgan Kaufman Publishers, Inc., San Mateo,

CA, 1990.

[18] A. K. Joshi, L.S. Levy, and M. Takahashi. Tree adjunct grammars. Journal of Computer and

System Sciences, 10:136-163, 1975.

[19] M. Ki~y. The MIND system. In R. Rustin, editor, Natuml Language Processing. Algorithmics

Press, New York, 1973.

[20] S. R. Kosaraju. Speed of recognition of context-free languages by array automata. SIAM

Journal of Computing, 4(3) :331-340, September 1975.

[21] V. Ku.mar. Algorithms for constraint-satisfaction problems: A survey. A I hlagazine, 13(1):32-

44, 1992.

[22] K. F. Lee, H. W. Hon, and R. Reddy. An overview of the SPHINX speech recognition system.

In IEEE Tmnsactions on Acoustic, Speech, Signal Processing, pages 35-45, January 1990.

[23] V. R. Lesser, R. D. Fennell, L. D. Erman, and D.R. Reddy. Organization of the Hearsay-I1

speech understanding system. IEEE Tmns. Acoust., Speech, Signal Processing, ASSP-23:ll-

23, 1975.

[24] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8(1):99-118,

1977.

[25] A. K. Mackworth and E. Freuder. The complexity of some polynomial network-consistency

algorii,hms for constraint-satisfaction problems. Artificial Intelligence, 25:6!j-74, 1985.

[26] H. Ma~ruyama. Constraint dependency grammar. Technical Report #RT0044, IBM, Tokyo,

Japan, 1990.

[27] H. Maxuyama. Constraint dependency grammar and its weak generative capacity. Computer

Softwcire, 1990.

[28] H. Mamyama. Structural disambiguation with constraint propagation. In 'The Proceedings of

the A~znual Meeting of ACL, 1990.

[29] R. Mc~hr and T . Henderson. Arc and path consistency revisited. Artificial Intelligence, 28,

1986.

[30] U. Montanari. Networks of constraints: Fundamental properties and applications t o picture

processing. Information Science, 1976.

[3:1.] M. D. Moshier and W. C. Rounds. On the succinctness properties of unordered context-free

grammars. In Proceedings of the 25th Annual Meeting of the Association ,for Computational

L ingu:istics, 1987.

[32] M. A. Palis, S. Shende, and D. S. L. Wei. An optimal linear-time parallel parser for tree

adjoining languages. SIAM Journal of Computing, 19:l-31, 1990.

[33] D. B. Paul. An efficient A* stack decoder algorithm for continuous speech recognition with

a stochastic language model. In IEEE Int. Conf. Acoustics, Speech, and Signal Processing,

March 1992.

[34] F . C. N. Pereira and D. H. D. Warren. Definite clause grammars for lan,guage analysis- A

survey of the formalism and a comparison with augmented transition networks. Artificial

Intelligence, 13(3):231-278, 1980.

[35] P. J . 13rice. Evaluation of spoken language systems: The ATIS domain. In Proceedings of the

DAR13A Workshop on Speech and Natural Language, pages 91-95, 1990.

[36] P. J . E'rice, W. Fischer, J. Bernstein, and D. Pallett. A database for continiious speech recog-

nition in a 1000-word domain. In Proceedings of the International Confemnce on Acoustics,

Speech,, and Signal Processing, 1988.

[37] W. Ruzzo. Tree-size bounded alternation. Journal of Computers and Systemi Sciences, 21:218-

235, 1!380.

[38] Y. Schabes. Polynomial time and space shift-reduce parsing of arbitrary context-free grammars.

In The Proceedings of the Annual Meeting of A CL, 1991.

[39] R. Schwartz and S. Austin. A comparison of several approximate algorithms for finding multiple

N-best sentence hypotheses. In IEEE Int. Conf. Acoustics, Speech, and Signal Processing, May

1991.

[40] R. Scllwartz, Y. Chow, 0. Kimball, S. Roucos, M. Krasner, and J. Miskhoul. Context-

dependent modeling for acoustic-phonetic recognition of continuous speech. In IEEE Int.

Conf. Acoustics, Speech, and Signal Processing, March 1985.

[41.] R. Schwartz and Y-L. Chow. The N-best algorithm: An efficient and exact procedure for

finding; the N most likely sentence hypotheses. In IEEE Int. Conf. Acoustics, Speech, and

Signal Processing, April 1990.

[42] S. Sen'eff. Robust parsing for spoken language systems. In IEEE Int. Conf. Acoustics, Speech,

and Sl'gnal Processing, March 1992.

[43] S. Seneff. TINA: A natural language system for spoken language applicittions. American

Journczl of Computational Linguistics, 18:61-86, 1992.

[44] J. Seo and R. F. Simmons. Syntactic graphs: A representation for the union of all ambiguous

parse 1;rees. Computational Linguistics, 15:19-32, 1989.

[45] S. M. Shieber. Constraint-based Gmmmar Formalisms. MIT Press, Cambridge, MA, 1992.

[46] M. Tomita. Eflcient Parsing for Natuml Language. Kluwer Academic P-ublishers, Boston,

MA, 1985.

[47] M. To.mita. An efficient word lattice parsing algorithm for continuous spee'ch recognition. In

IEEE Int. Conf. Acoustics, Speech, and Signal Processing, April 1986.

[48] K. Vijayashanker and A. K. Joshi. Some computational properties of tree ad.joining grammars.

In Proceedings of the 24th Annual Meeting of the Association for Computational Linguistics,

1986.

[49] K. Vij,ayshanker, D.J. Weir, and A. K. Joshi. Characterizing structural descriptions produced

by various grammatical formalisms. In Proceedings of the 25th Annual Mee,ting of the Associ-

ation ,ror Computational Linguistics, 1987.

[50] M. Villain and H. Kautz. Constraint-propagation algorithms for temporal l-easoning. In Pro-

ceedin,gs of the Fifth National Conference on Artificial Intelligence, pages 3'77-382, 1986.

[51] D. L. Waltz. Understanding line drawings of scenes with shadows. In P.H. Winston, editor,

The Psychology of Computer Vision. McGraw Hill, New York, 1975.

1521 W. Ward. Understanding spontaneous speech: The Phoenix system. In IEEE Int. Conf.

Acous;tics, Speech, and Signal Processing, May 1991.

1531 J . J . VVolf and W. A. Woods. The HWIM speech understanding system. In W. A. Lea, editor,

Trend.s in Speech Recognition, pages 316-339. Speech Science Publications, .Apple Valley, MN,

1986.

1541 W. A. Woods. Transition network grammars for natural language analysis. Communications

of the ACM, 13:591-606,1970.

[55] W. A. Woods, M. Bates, G. Brown, B Bruce, C. Cook, J. Klovstad, J Makhoul, B. Nash-

Webber, R. Schwartz, J. Wolf, and V. Zue. Speech understanding systern.~: Final technical

progress report. Technical Report 3438, Bolt, Beranek, and Newman, Inc., Cambridge, MA,

1976.

[56] J.H. Wright. LR parsing of probabilistic grammars with input uncertainty for speech recogni-

tion. computer Speech and Language, 4:298-323, 1990.

[57] C. B. Zoltowski, M. P. Harper, L. H. Jamieson, and R. A. Helzerman. PARSEC: A constraint-

based framework for spoken language understanding. In Proceedings of the .7nternational Con-

ference on Spoken Language Understanding, October 1992.

[58] V. Zue, J. Glass, D. Goodine, H. Leung, M. Phillips, J . Polifroni, and S. Seneff. Integration

of speech recognition and natural language processing in the MIT Voyage]: system. In IEEE

Int. Cronf. Acoustics, Speech, and Signal Processing, May 1991.

A Appendix: CDG Parsing Pseudocode for CNs artd SLCNs

The pseudocode for each of the steps of the CN and the SLCN parsing algorithms is listed in this

appendix.

Initial Network Construction for CNs and SLCNs- O(n2) operation.
{

For index = 1 to n do { /* n iterations */
w = get-wordnode(index);
For r = w's roles 1 to p do { /* p iterations */

For 1 = each of the labels in L do { /* q iterations */
add role value (1,nil) to the role r for w;
For node = 1 to n do { /* n iterations */

pos = get-tuple(node);
add role value (1,pos) the role r for w))))

Initial Network Construction with TABLE- O(n2) operation
I

For index = 1 to n do { /* n iterations */
w = get-wordnode(index);
parts = getparts-ofspeech(w);
For part = each part of speech in parts do { /* O (M ~ Z ~ , , , ~ ~) iterations */

R3r r = each of w's roles 1 to p do { /* p iterations */
11 = getlabels(part,r);
For 1 = the labels in 11 do { /* O (M ~ Z ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~) iterations */

add role value (1,nil) to the role r with p part of speech;
For node = 1 to indez - 1 and indez + 1 to n do { /* n iterations */

pos = get-tuple(node);
add role value (1,pos) the role r)))))

Unary Co:nstraint Propagation on a CN or an SLCN- an O(k, * n2) operation.
I

For index = 1 to n do { /* n iterations */
w = get-wordnode(index);
For r = w's roles 1 to p do { /* p iterati'ons */

rv = get~ole-values(r);
P3r r-index = each of the role values in rv do { /* O(n) iterations */

For c = each unary constraint do { /* k, iterations */
apply get-constraint(c) to the role value r-index))))

CN Arc C!onstruction- an O(n4) operation.
{

/* Create arc matrices for arcs joining roles within the word- a (P2) * O(n3) operation. */
For index = 1 to n do { /* n iterations */

w = ,get-wordnode(index);
For r l = w's roles 1 t o p - 1 do {

rv 1 = get_role-values(r 1);
For r2 = w's roles (r l + 1) to p do { /* (;)iterations */

rv2 = get~ole-values(r2);
create arc joining r l to r2;
assign arc a matrix of size lrvll x lrv21 with entries /* O(n2) operation*/

initialized to 1 and indices from rvl and rv2)));
/* Create arc matrices for arcs joining roles in different words- an ("iP) * O(n2) operation. */
For indenl = 1 to n - 1 do {

w l = get-wordnode(index1);
For r l = wl's roles 1 to p do {

rk.1 = get_role-values(r 1)
For index2 = indexl+l to n do {

w2 = get-wordnode(index2);
For r2 = w2's roles 1 t o p do {

rv2 = get_role-values(r2);
create arc joining r l to r2;
assign arc a matrix of size Irvl(x lrv21 with entries

initialized t o 1 and indices from rvl and rv2))))

/* ("2+P) iterations */

S L C N Arc: Cons t ruc t ion- an O(n4) operation.

/* Create arc matrices for arcs joining roles within the word- a (;) * O(n3) operation. */
For index = 1 to n do { /* n iterations */

w = get-wordnode(index);
For r l = w's roles 1 t o p - 1 do {

rvl = get_role-values(r 1);
R3r r2 = w's roles (r l + 1) to p do { /* (;) iterations */

rv2 = get_role_values(r2);
create arc joining r l t o r2;
assign arc a matrix of size Jrvll x Jrv21 with entries /* O(n2) operationt/

initialized t o 1 and indices from rvl and rv2)));
/* Create arc matrices for arcs joining roles in different words that can be in */
/* a t least one common sentence hypothesis - an ("ip) * O(n2) operation. */
sortedmodes = nodes sorted in increasing order by beginning point;
For w l := each word node in sortedmodes do {

For 11 = wl's roles 1 t o p do {
rv 1 = getxole-values(r 1);

Get the list of word nodes that have a directed edge to w l */
p-recmodes = get-preceding-nodes(wl);
connected-roles = 0;
FIX w2 = each word node in prec-nodes do {

For r2 = w2's roles 1 to p do {
connected-roles = connected-roles U {r2) U get-arc-connected-roles(r2:);
/* get-arc-connected-roles returns the list of roles r2 is arc-connected to */
1)

For r2 = all roles in connected-roles do {
create arc joining r l to r2;
rv2 = get~ole-values(r2);
assign arc a matrix of size Jrvll x lrv2(with

entries initialized to 1 and indices from rvl and rv2)))
createnlatrixsupport(); /* See the algorithm in Section 4.3 */

Bina ry Cons t ra in t P ropaga t ion on a C N or an SLCN- an O(kb * n4) operat ion.

{
/* Propagate constraints over elements of intra-arc matrices - a (;) * kb * O(n3) operation. */
For index = 1 to n do { /* n iterations */

w = ,get-wordmode(index);
For r l = w's roles 1 to p - 1 do {

rv 1 = get-role-values(r1);
For r2 = w's roles (r l + 1) to p do { /* (;) iterations */

rv2 = get~ole-values(r2);
For r-index1 = each of the role values in rvl do { /* O(n) iterations */

For r-index2 = each of the role values in rv2 do { /* O(n) iterations */
For c = 1 to kb do { /* kb iterations */

apply get-constraint(c) to the role values /* O(1) operation */
X = r-index1 and Y = r-index2;

apply get-constraint(c) to the role values /* O(1) operation */
Y = r-index1 and X = r-index2))))));

/* Propirgate constraints over elements of the other matrices - a (";P) * kb * O(n2) operation. */
For index1 = 1 to n - 1 do {

w 1 =: get-wordmode(index1);
Fo r r l = wl'sroles 1 t o p d o {

rs.1 = get~ole-values(r1);
For index2 = indexl+l to n do {

w2 = get-wordmode(index2);
For r2 = w2's roles 1 to p do { /* (n;P) iterations */

rv2 = get-role-values(r2);
For r-index1 = each of the role values in rvl do { /* O(n) iterations */

For r-index2 = each of the role values in rv2 do { /* O(n) iterations */
For c = 1 to kb do { /* kb iterations */

apply get-constraint(c) to the role values /* O(1) operation */
X = r-index1 and Y = r-index2;

apply get-constraint(c) to the role values /* O(1) operation */
Y = r-index1 and X = r-index2)))))))

C N Filtering- an O(n4) operat ion.

{
/* Prep1:ocess- an O(n3) operation */
/* Get],ole values to be deleted from arc matrices for arcs
/* joining roles within a word- a (;) * O(n2) operation.
For index = 1 to n do {

w = get-wordnode(index);
For 11 = w's roles 1 t o p- 1 do {

rvl = get-role-values(r1);
For r2 = w's roles (r l + 1) to p do {

rv2 = get-role-values(r2);
For r-index1 = each of the role values in rvl {

if (the role value r-index1 for role r l is not
supported in the matrix corresponding to

*/
*I
/* n iterations */

/* (Pz) iteraitions */

/* O(n) iterations */
/* O(1) operation */

the arc of role r l and role r2) {
add (r-indexl, r l) to the to-be deleted list));

For r-index2 = each of the role values in rv2 {
if (the role value r-index2 for role r2 is not

supported in the matrix corresponding to
the arc of role r l and role r2) {

add (r-index2, r2) to the to-be deleted list)))))
/* Get role values to be deleted from arc matrices for arcs
/* joining roles across words- an ("2+P) * O(n) operation.

* /
For index1 = 1 to n - 1 do {

* /
w l = get-wordnode(index1);
For r l = wl's roles 1 to p do {

rv l = get-role-values(r1);
For index2 = indexl+l to n do {

w2 = get-wordnode(index2);
For r2 = w2's roles 1 to p do {

rv2 = get-role-values(r2)
For r-index1 = each of the role values in rvl { /* O(n) iterations */

if (the role value r-index1 for role r l is not /* O(1) operation */
supported in the matrix corresponding to
the arc of role r l and role r2) {

add (r-indexl, r1)to the to-be deleted list));
For r-index2 = each of the role values in rv2 { /* O(n) iterations */

if (the role value r-index2 for role r2 is not /* O(1) opt:ration */
supported in the matrix corresponding to
the arc of role r l and role r2) {

add (r-index2, r2) to the to-be deleted list))))))
/* Loop until there are no more to be deleted - an O(n4) operation */
Loop until to-be-deleted-list is empty { /* O(n2) iterations */

pair := pop(to-be-deleted-list);
rvl == the role value from the pair;
r l = the role from the pair;
remove rvl from role r l ;
For r2 = all roles not equal to r l do {

remove the role value rvl from the arcmatrix(rl'r2);
rv2 = get-role-values(r2);
E x r-index2 = each of the role values in rv2 {

if (the role value r-index2 for role r2 is not
supported in the matrix corresponding to
the arc of role r l and role r2) {

add r-index2 to the to-be-deleted-list))))
1

/* O(n) iterations */
/* O(1) operation */

/* ("iP) iterations */

/* O(n) iterations */
/* O(n) operation */

/* O(n) iterations */
/* O(1) operation */

SLCN Filtering- an O(n4) operation.
{

/* Prepi-ocess- an O(n3) operation */
/* Get role values to be deleted from arc matrices for arcs joining
/* roles within a word- a (;) * O(n2) operation.

* /
For index = 1 to n do {

* /
/* O(n) iterations */

w = get-wordnode(index);
For11 = w'sroles 1 t o p - 1 do {

rirl = get-role-values(r1);
For r2 = w's roles (r l + 1) to p do {

rv2 = get-role-values(r2);
/* (;) iterations */

For r-index1 = each of the role values in rvl { /* O(n) iterations */
if (the role value r-index1 for role r l is not /* O(1) operation */

supported in the matrix corresponding to
the arc of role r l and role r2) {

add (r-indexl, r l , r2) to the to-be deleted list));
For r-index2 = each of the role values in rv2 { /* O(n) iterations */

if (the role value r-index2 for role r2 is not /* O(1) operation */
supported in the matrix corresponding to
the arc of role r l and role r2) {

add (r-index2, r2, r l) to the to-be deleted list)))))
/* Get role values to be deleted from arc matrices for arcs joining
/* roles across words- an (n;P) * O(n) operation.

*/

For index1 = 1 to n - 1 do {
* /

wl = get-wordnode(index1);
For r l = wl's roles 1 to p do {

r1.l = get~ole-values(r 1);
For index2 = indexl+l to n do { /* ("ip) iterations */

w2 = get-wordmode(index2);
For r2 = w2's roles 1 t o p do {

rv2 = get~ole-values(r2)
For r-index1 = each of the role values in rvl { /* O(n) iterations */

if (the role value r-index1 for role r l is not /* O(1) operation */
supported in the matrix corresponding to
the arc of role r l and role r2) {

add (r-indexl, r l , r2) to the to-be deleted list));
For r-index2 = each of the role values in rv2 { /* O(n) iterations */

if (the role value r-index2 for role r2 is not /* O(1) op'eration */
supported in the matrix corresponding to
the arc of role r l and role r2) {

add (r-index2, r2, r l) to the to-be deleted list))))))
/* Loop until there are no more to be deleted - an O(n4) operation */
Loop until to-be-deleted-list is empty {

item = pop(to-be-deleted-list);
r = the role value from item to delete;
rA = the role from item to delete r from;
rB = the role from item joined to rA with the arc we are deleting from;
/* Epch role value can only remove support once from its precede and next arcs */
if (th.e precede and follow lists for r in rA for arcmatrix(rA, rB) are non-empty) then

disallow (arc(rA, rB),rA, r); /* See the algorithm in Section 4.3 */
1

1

	Purdue University
	Purdue e-Pubs
	8-25-1993

	PARSEC: A Constraint-Based Parser for Spoken Language Processing
	Mary P. Harper
	Randall A. Helzerman

