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Abstract 

PARSEC1, a text-based and spoken language processing framework based on the Constraint 

Dependency Grammar (CDG) developed by Maruyama [26,27], is discussed. The scope of CDG 

is expanded to allow for the analysis of sentences containing lexically ambiguous words, to allow 

feature analysis in constraints, and to efficiently process multiple sentence candidates that are 

likely to arise in spoken language processing. The benefits of the CDG parsing approach are 

summarized. Additionally, the development CDG grammars using PARSEC grammar writing 

tools and the implementation of the PARSEC parser for word graphs is discussed. 

'Parallel ARchitecture Sentence Constrainer 



1 Introduction 

In this paper, we adapt the constraint dependency grammar (CDG) formalism introduced by 

Maruyama [26, 27, 281 t o  the problem of analyzing spoken language. Constraint dependency 

grammars are more expressive than context-free grammars (CFGs) and more tractable, but less 

expressive, than context-sensitive grammars, and they provide an extremely flexible framework for 

parsing natural language. 

In Section 2 of this paper, the CDG parsing algorithm is described. In the remainder of the 

paper, the following three extensions to  the CDG parsing algorithm are discussed: 

1. Many words in the English language have lexical ambiguity (i.e., more than a single part 

of speech) which can cause correctness and efficiency problems for a parser [6]. A related 

problem is the processing of utterances with multiple word candidates over the same time 

interval. In Section 3.1, we extend the CDG parsing algorithm to  handle lexical ambiguity 

and multiple word candidates in an integrated and efficient manner. 

2. A word can also have ambiguity in the feature information associated with the word, like 

number, person, or case. For example, the noun fish can take a number/person value of third 

person singular or third person plural. Often feature information is useful for disambiguating 

parses for sentences or for eliminating impossible sentence hypotheses; hence, we have also 

added lexical feature analysis to  the CDG parser, as described in Section 3.3. 

3. Maruyama7s CDG parsing algorithm was designed to process single sentences. If a natural 

language processor is used in conjunction with a speech recognizer, the input to  the natural 

language component would typically be a set of sentence hypotheses. However, processing all 

of the sentence hypotheses individually for an utterance provided by a speech recognizer is very 

inefficient since many hypotheses are similar. Furthermore, a list of sentence hypotheses is not 

the most compact representation to provide a natural language parser. A better representation 

is a word graph or lattice of word candidates, which reduces the redundancy and compactly 

represents the set of sentence hypotheses. In section 4, we extend CDG to operate on a 

word lattice rather than single sentences. We also describe the implementation of our word 

graph constraint-based parser, PARSEC (Parallel ARchitecture Sentence Constrainer), and 

the development of constraint-based grammars using PARSEC grammar development tools. 

2 A Description of Maruyama's CDG Parsing 

We begin with the definition of Constraint Dependency Grammar (CDG), discuss Maruyama7s 

CDG parsing algorithm, and then relate the algorithm to other approaches. 



2.1 Elements of a CDG Grammar 

Maruyama defines a CDG grammar as a Ctuple, ( C, R,  L,  C ), where: 

C = a f i n i t e  s e t  of preterminal symbols, or l ex ica l  categories. 
R = a f i n i t e  s e t  of uniquely named ro les  (or role- ids) = {rl ,  . . . , r,). 
L = a f i n i t e  s e t  of labe l s  = (11,. . . , 1 , ) .  
C = a constraint s e t  that an assignment A must s a t i s f y .  

A sentence s = ~ 1 ~ 2 ~ 3 . .  . w, is a string of finite length n and is an element of C*. All of the roles 

in R are associated with every w; of s yielding n * p roles for the entire sentence. The sentence s is 

said to  be generated by the grammar G if there exists an assignment A which maps role values to  

each of the n * p  roles for s such that the constraint set C is satisfied. A role value is an element of 

the set L x {1,2,. . .,n,nil), in other words, it is a tuple consisting of a label from L and a modifiee, 

where a modifiee can be the index of a word in the sentence or nil. Role values will be denoted in 

the examples as label-modifiee. L(G) is the language generated by grammar G iff L(G) is the set 

of all sentences generated by G. Note that the null string 6 has no roles and is always generated 

by any grammar according to definition. 

A constmint set is a logical formula in the form: V xl  x2 . . . x, : role (and P1 P2 . . . P,), 

where the x;s range over all of the roles in s .  Below is the definition of possible components of a 

subformula Pi
2: 

Variables: xl ,  "2, . . . x,. 

Constants: elements and subsets of C U L U R U {nil, 1, 2, . . ., n), where n corresponds to  
the number of words in a sentence. 

Access Functions: 

(pos x) returns the position of the word for variable x. 

(rid x) returns the role-id for variable x. 

(lab x) returns the label for variable x. 

(mod x)  returns the position of the modifiee for variable x. 

(cat i) returns the category (i.e., the element in C) for the word in position i. 

Predicate symbols: 

(eq x y) returns true if x = y, false otherwise. 

(gt x y) returns true if x > y and x, y E Integers, false otherwise4. 

(It x y) returns true if x < y and x, y E Integers, false otherwise. 

(elt x y) returns true if x E y, false otherwise. 

2Maruyama uses an infix notation; whereas, we use a prefix notation throughout this paper. 
3Maruyama uses the access function word rather than cat, though the function accesses the category of the word. 
'For example, (gt 1 nil) is false, because nil is not an integer. 



a Logical Connectives: 

(and  p q) returns true if p and q are true, false otherwise. 

(or p q) returns true if p or q is true, false otherwise. 

(not  p) returns true if p is false, false otherwise. 

Each Pi in C must be of the form (if Antecedent Consequent), where Antecedent and Consequent 

are predicates or predicates joined by the logical connectives. A CDG grammar has two associated 

parameters, degree and arity. The degree of a grammar G is the size of R. The arity of the 

grammar corresponds to the maximum number of variables in the subformulas of C. To simplify 

the examples in this paper, we use grammars with a degree of one, that is, with a single role 

governor. The governor role indicates the function a word fills in a sentence when it is governed 

by its head word. In our implemented grammars (described in section 4.3), we also use several 

needs roles (e.g, needl, need2) t o  make certain that a head word has all of the constituents it needs 

t o  be complete (e.g., a singular count noun needs a determiner t o  be a complete noun phrase). 

Maruyama has proven that a grammar requires a degree and arity of two to be as expressive as a 

CFG. 

To illustrate the use of CDG grammars, consider a very simple example grammar, G1 = ( El, 

R1, L1, C1 ) in Figure 1, which has a degree of one and an arity of two5. A subformula Pi is called a 

unary constraint if it contains one variable and a binary constraint if it contains two. For example, 

U-1, U-2, and U-3 are unary constraints because they contain a single variable, and B-1 is a binary 

constraint because it contains two variables. 

For G1 to  generate the sentence The program runs, there must be an assignment of a role value 

t o  the governor role of each word, and that assignment must simultaneously satisfy each of the 

subformulas in C1. Note that each word is assumed to  have a single lexical category, which is 

determined by dictionary lookup. Figure 2 depicts an assignment for the sentence which satisfies 

C1. This assignment can be interpreted as the parse graph shown in Figure 9. 

2.2 CDG Parsing 

To determine whether a sentence is generated by a grammar, a CDG parser must be able to  assign 

at  least one role value which satisfies the grammar constraints t o  each of the n * p roles, where n 

is sentence length, and p is the number of role-ids. Because the role values for the role are selected 

from the finite set L1 x {1,2,. . .,n,nil), CDG parsing can be viewed as a constraint satisfaction 

problem over a finite domain. Hence, constraint propagation [21,30,5:1] can be used to  develop the 

parse of a sentence. A CDG parser generates all parses for a sentence in a compact representation 

'The constraints in this grammar were chosen for simplicity, not to exemplify constraints for a wide coverage 
grammar. 



El = {det , noun, verb) 
Rl = {governor) 
L1 {DET, SUBJ, ROOT) 
Cl = V z y : role (and 

;; [U-1) A det receives the label DET and rodifies a word to its right. 
(if (eq (cat (pos x)) det) 

(and (eq (lab x) DET) 
(It (pos X) (rod x))) ) 

; ; [U-21 A noun receives the label SUBJ and rodif ies a vord to its right. 
(if (eq (cat (pos x) ) noun) 

(and (eq (lab x) SUBJ) 
(It (pos X )  (rod X) 1)) 

; ; [U-31 A verb receives the label ROOT and rodifies no vord. 
(if (eq (cat (pos x) ) verb) 

(and (eq (lab x) ROOT) 
(eq (rod X )  nil))) 

; ; [B-1] A DET is governed by a SUBJ . 
(if (and (eq (lab x) DET) 

(eq (rod x) (pos y) 1) 
(eq (lab y) SUBJ)) 

1 

Figure 1: GI = (El ,  R1, L1, C1). 

1 2 ( program 1 noun 11 SUB J-3 I 

pos 

1 

1 3 1 runs I verb 11 ROOT-nil 1 

Figure 2: An assignment for The program runs. 
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Sum-dl, SUW-I, SUBJ-2, WBJ-? 

ROOT* MOT-1. ROOT-2, ROOTJ) 

Figure 3: Initialization of roles for the sentence The progmm runs. 

because enumeration of the individual parses for a highly ambiguous sentence is intractable. The 

steps required for parsing the sentence The program runs are provided to  illustrate both the process 

of parsing with constraint propagation and the running time of the algorithm. 

To develop a syntactic analysis for a sentence using CDG, a constraint network (CN) of words is 

created. Each of the n words in a sentence is represented as a node in a CN. Figure 3 illustrates the 

initial configuration of nodes in the CN for The program runs example. Notice that associated with 

each node is its word, category, sentence position, and roles (only one for this example). Each of the 

roles is initialized to  the set of all possible role values (i.e., the domain). Given G1, the domain for 

the example is L1 x {1,2,3,nil) = {DET-nil, DET-1, DET-2, DET-3, SUBJ-nil, SUBJ-1, SUBJ-2, 

SUBJ-3, ROOT-nil, ROOT-1, ROOT-2, ROOT-3). Since there are q * (n  + 1) = O(n) possible 

role values for each of the p * n roles for a sentence (where p, the number of roles per word, and 

q, the number of different labels, are grammatical constants, and n is the number of words in the 

sentence), there are O(p * n * q * (n + 1)) = O(nZ) role values which must be initially generated 

for the CN, requiring O(nZ) time. Appendix A contains pseudocode for this step and all of the 

remaining steps in the CDG parsing algorithm. 

To parse the sentence using GI, the unary and binary constraints in C1 are applied to  the CN 

to  eliminate the role values from the roles of each word which are incompatible with C1. For a 

sentence to  be grammatical, each role in each word node must contain at  least one role value after 

constraint propagation. 

The unary constraints are applied to each of the roles in the sentence to eliminate the role 

values incompatible with each word's role in isolation. To apply the first unary constraint (i.e., 



(DET-2, E T 4 )  (DET+ll, DET-1, DET-?, E T 4 ,  
SUBJ-nil, SUBJ-1, SUBJ-1, SUBJJ, 

ROOT+ll, ROOT-1, ROOT-?, R W T J )  

G noun 

Figure 4: The CN after the propagation of U-1 for the sentence The program runs. 

U-1, shown below) to the network in Figure 3, each role value for every role is examined to ensure 

that it obeys the constraint. 

;; [U-1] A det receives the label DET and modifies a word to its right. 
(if (eq (cat (pos x)) det) 

(and (eq (lab x) DET) 
(It (pos X) (rod x))) 

If a role value causes the antecedent of the constraint to evaluate to TRUE and the consequent to 

evaluate to  FALSE, then that role value is eliminated. Figure 4 shows the remaining role values 

after U-1 has been applied to the CN in Figure 3. 

Maruyama requires that each subformula in a constraint set be evaluated in constant time. 

Because of this restriction, each constraint can only contain access functions and predicates that 

operate in constant time (e.g., access functions and predicates like those defined in Section 2.1). 

So when the unary constraint U-1 is applied to 0(n2)  role values, it requires O(n2) time. 

To further eliminate role values which are incompatible with the categories of the words in the 

example, the remaining unary constraints (i.e., U-2 and U-3) are applied to the CN in Figure 4, 

producing the network in Figure 5. Given that the number of unary constraints in a grammar is 

a grammatical constant denoted as k,, the time required to apply all of the unary constraints in a 

grammar is O(k, * n2). 

The binary constraints determine which pairs of role values can legally coexist. To keep track 

of pairs of role values, arcs connect each role to all other roles in the network, and each arc has an 

associated arc matriz, whose row and column indices are the role values associated with the two 

roles. The elements of an arc matrix can either be a 1 (indicating that the two role values which 

index the element are compatible) or a 0 (indicating that the role values cannot simultaneously 

exist). Initially, all entries in each matrix are set to 1 ,  indicating that the two role values are 

initially compatible. Since there are ("ip) = O(n2) arcs required in the CN, and each arc contains 

a matrix with O((q * (n + I ) ) ~ )  = 0(n 2)  elements, the time to construct the arcs and initialize 



@ yj G noun 

Figure 5: The CN after the propagation of all the unary constraints. 

\ vmrb 1 

Figure 6: The CN after unary constraint propagation and before binary constraint propagation. 

the matrices is O(n4). Figure 6 shows the matrices associated with the arcs before any binary 

constraints are propagated. Unary constraints are usually propagated before preparing the CN for 

binary constraints because they eliminate impossible role values from each role, and hence reduce 

the dimensions of the arc matrices. 

Binary constraints are applied to  the pairs of role values indexing each of the arc matrix entries. 

When a binary constraint is violated by a pair of role values, the entry in the matrix indexed by 

those role values is set to  zero. The binary constraint, B-1, ensures that a DET is governed by a 

SUBJ: 

;; [B-l] A DET is governed by a SUBJ. 
(if (and (eq ( lab x) DET) 

(eq (rod X )  (pos y ) )  
(eq ( lab y) SUBJ))  

After the application of this constraint t o  the network in Figure 6, the element indexed by the role 

values x=DET-3 and y=ROOT-nil for the matrix on the arc connecting the governor roles for the 



8UBJJ 

DET-2 

DETJ 

Figure 7: The CN after B-1 is propagated. 

and runs is set t o  zero, as shown in Figure 7. This is because the must be governed by a word with 

the label SUBJ, not ROOT. Since the constraint must be applied t o  O(n4) pairs of role values, the 

time t o  apply the constraint is O(n4). Given that the number of binary constraints in a grammar 

is a grammatical constant denoted as kb, the time required t o  apply all of the binary constraints 

in a grammar is O(kb t n4). 

Following the propagation of binary constraints, the roles of the CN could still contain role 

values which are incompatible with the parse for the sentence. To determine whether a role value 

is still supported for a role, each of the matrices on the arcs incident t o  the role must be checked 

t o  ensure that  the row (or column) indexed by the role value contains a t  least a single 1. If any 

arc matrix contains a row (or column) of 0s for the role value, then that role value cannot coexist 

with any of the role values for the second role and so is removed from the list of legal role values for 

the first role. Additionally, the rows (or columns) associated with the eliminated role value can be 

removed from the arc matrices attached t o  the role. The process of removing any rows or columns 

containing all zeros from arc matrices and eliminating the associated role values from their roles is 

called filtering. Following binary constraint propagation any of the 0 ( n 2 )  role values may require 

immediate filtering. However, filtering must also be applied iteratively since the elimination of a 

role value from one arc could lead t o  the elimination of a role value from another arc. The most 

efficient filtering algorithm requires O(ea2), where e is the number of arcs, and n is the size of the 

domain [29]. In the case of CDG parsing, e = ( n ; p ) ,  and the domain size is n t q, so the running 

time of the filtering step is O(n4) [26, 271. 

Consider how filtering is applied t o  the CN in Figure 76. The matrix associated with the arc 

60ur implementation of the algorithm determines whether a role value is supported by its arcs by ORing all the 
elements it indexes in an arc matrix and ANDing the results from all of those arc matrices. Hence, if any arc matrix 
fails to support a role value in a role, the result of the AND would be 0 ,  and the role value would be eliminated. 



Figure 8: The CN after filtering. 

connecting the and runs contains a row with a single element which is a zero. Because DET-3 

cannot coexist with the only possible role value for the governor role of runs, it cannot be a legal 

member of the governor role of the and is therefore eliminated as a role value in that role. It is 

also removed from the row it indexes in the matrix associated with the other arc emanating from 

that role. Figure 8 illustrates the resulting CN after filtering the CN from Figure 7. Notice that 

following filtering, there is precisely one role value per role for the example. 

After all the constraints are propagated across the CN and filtering is performed, the CN 

provides a compact representation for all possible parses. Syntactic ambiguity is easy to spot in 

the CN since some of the roles in an ambiguous sentence contain more than a single role value. 

If multiple parses exist, we can propagate additional constraints to  further refine the analysis of 

the ambiguous sentence, or we could just enumerate the parses contained in the CN by using 

backtracking search. For highly ambiguous grammars, the process of enumerating all possible 

parses is intractable, making incremental disambiguation a more attractive option. The parse trees 

in a CN are precedence graphs, which we call parse graphs, and they consist of a compatible set of 

role values (given the arc matrices) for each of the roles in the CN. The modifiees of the role values, 

which point to the words they modify, form the edges of the parse graph. Our example sentence 

has an unambiguous parse graph given GI, shown in Figure 9. 

Below we list the steps in the CDG parsing algorithm and their associated running times: 

1. Constraint Network construction prior to  unary constraint propagation: O(n2) 

2. Unary constraint propagation: O(k, * n2) 

3. Constraint Network construction prior to binary constraint propagation: O(n4) 

4. Binary constraint propagation: O(kb t n4) 



Figure 9: The parse graph for the CN in Figure 8. 

5. Filtering: O(n4) 

Notice that  the time required to  propagate binary constraints is the slowest part of the algorithm. 

2.3 CDG Parsing Compared with Other Approaches 

In this section, the CDG parser is first compared with other constraint-satisfaction problems, and 

then it is compared with more traditional parsing approaches. 

2.3.1 CDG Parsing Compared with Constraint-Satisfaction Problems 

Constraint-satisfaction problems (CSP) have a rich history in Artificial Intelligence [3, 4, 5, 9, 10, 

25, 26, 511 (see [22] for a survey of CSP). If CSP is restricted to  a finite, discrete domain, and only 

constraints over single variables or pairs of variables are allowed, then there is a mapping between 

CDG parsing and CSP. 

In a typical finite-domain CSP problem, the variables (roles) are depicted as circles, and each 

variable is assigned a finite set of possible values. Constraints imposed on the variables are depicted 

along with arcs drawn between the circles (variables) affected by the constraint. Because binary 

constraints involve two variables, a constraint arc is drawn between the two corresponding circles. 

However, because unary constraints involve only single variables, the constraint arc loops from a 

circle t o  itself. Consider the CSP problem on the left-hand side of Figure 10 (this example is based on 

a CSP network discussed in [I]), and notice how it maps t o  the CDG constraint network to  the right. 

In CSP, binary constraints are depicted along with their arcs; whereas, in a CN, the constraints are 
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Figure 10: A CSP network compared to an equivalent CDG constraint; network 

not depicted. Instead, constraints are applied to the CN, which maintains information about which 

role values are consistent with the set of applied constraints. The algorithm for CDG filtering is 

similar to  the most efficient algorithm for maintaining arc consistency for CSP problems designed 

by Mohr and Henderson [29]. In the arc consistency algorithm, arc matrices are used to  detect 

and eliminate values associated with a circle (variable) that are not supported by all of the arcs 

attached to the circle. 

2.3.2 CDG Parsing Compared with Other Parsing Methods 

Researchers have developed and used a variety of parsing paradigms which are based on context- 

free grammars (CFGs) or are equivalent in expressivity to  CFGs. A complete survey of CFG 

parsers is beyond the scope of this paper; however, a comparison of the CDG parser with several 

representative CFG parsers will illustrate their similarities and differences. 

Most of the CFG parsers that are used in computer language applications (e.g., LL and LR 

parsers) compile grammar rules into a table which is then used by a parser driver to  determinis- 

tically parse programs. Though these parsers have been used by the natural language processing 

community, the ambiguity that is common in natural language has caused researchers to  seek alter- 

native methods. A recursive transition network parser [55], which encodes a grammar in a network 

and then searches the network in a top-down fashion, is able to  produce all possible parses for an 

ambiguous sentence. However, if the parser does not cache subresults during that search it can have 

an exponential running time. Definite Clause Grammar parsers [34] use unification and search to  

determine the parses for a sentence. Chart-based parsers [19] use a chart to  build up constituents in 

a bottom-up fashion, and for some ambiguous sentences, can create charts of constituents that are 



exponential in size. Tomita [46] has developed an LR parsing method which creates a parse forest 

of possible parses using an LR table with shift-reduce and reduce-reduce ambiguities. Tomita's 

parse forest also grows exponentially for some highly ambiguous grammars. Early [7] developed a 

parser which provably operates in O(GZn3) time, but the algorithm builds a forest of parses that, 

in some cases, includes impossible parses that must be pruned by checking the consistency of leaf 

nodes in each tree. There are other approaches that improve the average case efficiency of the Early 

parser, but they do not improve the efficiency under worst-case scenarios [38]. 

Below we enumerate the differences between CFG parsers and the CDG parser: 

1. CFG parsers use production rules (or equivalently, recursive transition networks) in a gram- 

mar t o  determine whether or not a string of terminals is in the language. The CDG parser, 

on the other hand, uses sets of constraints. Any type of constraint that can be formulated as 

an if-then rule containing one or two role value variables can be used to  constrain a CN. 

2. CFG parsers that generate all parses for ambiguous grammars use a variety of methods to 

search through the rules for all possible parses. To save time during parsing, grammar rules 

can be preprocessed and sub-results cached and reused. In contrast, the CIIG parser assumes 

anything is possible until constraint propagation is used to  eliminate impossible analyses. 

3. The best serial running time for a CFG parser operating with an ambiguous grammar is 

0 ( G 2  * n33 [7], where n is the number of words in a sentence and G is the size of the CFG 

grammar. On the other hand, the serial running time for the CDG parser of single sentences 

is O(k * n4), where k is the number of constraints in grammar. In practice, we have found 

that k is comparable in size t o  G for grammars with the same coverage. 

4. CFG parsers often build trees for each of the possible parses for a sentence. However, enu- 

merating the trees for highly ambiguous sentences can require exponential time. Hence, some 

CFG parsers construct a parse forest (or similar structure) to  circumvent this problem. The 

CN constructed by the CDG parser is a forest of parse graphs which is pruned during parsing. 

A CN differs from a CFG parse forest in that there are no non-terminals in the graph, only 

links between terminals, which are assigned sets of labels. A packed parse forest generated by 

a CFG parsing algorithm can be mapped to  a syntactic graph [44], which like a CN, compactly 

encodes all parses of ambiguous sentences by using modifier links between a head word and 

its modifiers. Exclusion matrices are associated with the syntactic graph, which, like CDG 

arc matrices, prevent impossible parses from being selected from the graph. However, unlike 

a CN, a syntactic graph is generated by a grammar which is context-free. 

5. The smallest known size for a CFG parse forest is O(GZ * n3) [7], regardless of how many 



parses there are for an ambiguous sentence. In contrast, a CN has the size7 of O(n4), and it 

is the only data structure used during parsing; there is no stack or agenda to  maintain. 

6. When a CFG parser generates a set of ambiguous parses for a sentence, it cannot invoke 

additional production rules to  further prune the analyses. In contrast, in CDG parsing, the 

presence of ambiguity can trigger the propagation of additional constraints to further refine 

the parse for a sentence. A core set of constraints that hold universally can be propagated 

first, and then if ambiguity remains, additional, possibly context dependent, constraints can 

be used. This type of flexibility is easy to achieve, since constraints are not precompiled into 

a table (like in LR parsing) or into a network (like an ATN). 

7. CFG parsing has been parallelized by several researchers. For example, Kosaraju's method 

[20] using cellular automata can parse CFGs in O(n) time using O(n2) processors. However, 

achieving CFG parsing times of less than O(n) has required more powerful and less imple- 

mentable models of parallel computation, as well as significantly more processors. Ruzzo's 

method [37] has a running time of O(Iog2(n)) using a CREW P-RAM model (Concurrent 

Read, Exclusive Write, Parallel Random Access Machine), but requires O(n6) processors to 

achieve that time bound. In contrast, we have devised a parallelization for the single sentence 

CDG parser [13, 151 which uses O(n4) processors to parse in O(k) time for a CRCW P-RAM 

model (Concurrent Read, Concurrent Write, Parallel Random Access Ma,chine), where n is 

the number of words in the sentence and k, the number of constraints, is a grammatical 

constant. Furthermore, this algorithm has been simulated on the MasPar MP-18, using the 

special features of the machine and 0 (n4 )  processors to obtain an O(k +log(n)) running time. 

8. To parse a free-order language like Latin, CFGs require that additional rules containing the 

permutations of the right-hand side of a production be explicitly included in the grammar 

[31]. Unordered CFGs do not have this combinatorial explosion of rules, though the universal 

recognition problem for this class of grammars is NP-complete for an n-character alphabet. A 

free-order language can easily be handled by a CDG parser because order between constituents 

is not a requirement of the grammatical formalism. Furthermore, CDG is capable of efficiently 

analyzing free-order languages because it is does not have to test for all possible orders of 

words. 

9. The set of languages accepted by a CDG grammar is a superset of the set of languages which 

'In natural language processing, n is typically much smaller than G. English sentences usually contain fewer than 
30 words; whereas, hundreds or even thousands of production rules are not uncommon for broad coverage English 
grammars. 

'The MasPar MP-1 is a massively parallel SIMD computer, which supports up to 16K 4-bit processing elements, 
each with 16KB of local memory. 



can be accepted by CFGs. In fact, Maruyama [26, 271 is able to  construct CDG grammars 

with two roles (degree = 2) and two variable constraints (arity = 2) which accept the same 

language as an arbitrary CFG converted to  Griebach Normal form. We have also devised 

an algorithm to  map a set of CFG production rules into a CDG grammar. This algorithm 

does not assume that the rules are in normal form, and the number of constraints created 

is O(G). In addition, CDG can accept languages that CFGs cannot, for example, anbncn 

and ww, (where w is some string of terminal symbols). To illustrate the ease of writing such 

grammars, we have created a grammar which accepts the language anbncn, n 2 0, shown in 

figure 11. This grammar determines whether a string is acceptable by ensuring that there 

is a one-to-one correspondence between each b and a, each c and b, and each a and c, and 

that all a's occur before all b's and all b's occur before all c's. An assignment for the string 

aaabbbccc given Gz is shown in Figure 12. 

Constraint-based parsing has received considerable interest in computational linguistics in re- 

cent years. For example, Covington [2] outlines a constraint-based parser that  uses dependency 

rules t o  set up modifiee links between terminals, as in CDG. Covington's parser differs from CDG 

in that it uses search and unification to  provide dependency graphs for sentences, while CDG uses 

constraint propagation. However, because both approaches use rules limiting dependency links 

between terminals, the dependency rules of Covington7s parser should easily map into CDG con- 

straints. Additionally, both share a capability for handling free order languages. Shieber [45] 

develops a constraint-based approach to  parsing which also uses unification. Shieber's rules con- 

sist of two parts, a CFG phrase-structure portion and a feature analysis portion. The strength 

of Shieber's approach is in his well-defined semantics of feature constraints. CDG differs from 

Shieber's approach in several ways. First, in CDG, all rules are specified as constraints; there is 

no separation between phrase-structure rules and other types of constraints. Second, CDG is not 

limited to  the use of CFG phrase structure rules. 

There has also been considerable interest in the development of parsers for grammars that are 

more expressive than the class of context-free grammars, but less expressive than context-sensitive 

grammars [18, 49, 481. The running time of the CDG parser compares quite favorably to  the 

running times of parsers for languages which are beyond context-free. For example, the parser for 

tree adjoining grammars has a running time
g 

of O(n6). A direct comparison hetween CDG and 

these more expressive grammars is beyond the scope of this paper. 

In summary, CDG is more expressive and flexible than CFGs, making it an attractive alternative 

to  traditional parsers. It is able to  utilize a variety of different knowledge sources in a uniform 

framework t o  incrementally disambiguate a sentence's parse. The algorithm also has the advantage 

'This algorithm has also been pardelized, and operates in linear time with O(n5) processors [32]. 



C2 = {a, b ,  c ) .  
R2 = {governor) 
LZ = {A,B,c) 
C2 = V z y : role (and 

; ;; [U-11 An a receives  t h e  l a b e l  A and modifies an i t e r  t o  its r i g h t .  
( i f  (eq (root-word x) a )  

(and (eq ( l a b  x) A) 
(g t  (rod X)  (pos x ) ) ) )  

; ;; [U-21 A b receives  the  l a b e l  B and modifies an i t e r  t o  its l e f t .  
( i f  (eq (root-word x) b) 

(and (eq ( l a b  x) B) 
( I t  (rod X)  (pas x ) ) ) )  ... ,,, [U-31 A c receives  the  l a b e l  C and modifies an i t e r  t o  its l e f t .  

( i f  (eq ( r o o t a o r d  x) c )  
(and (eq ( l a b  x) C) 

; ; ; [B-11 Every A precedes every 8.  
( i f  (and (eq ( l ab  x)  A) 

(eq ( l ab  y) 8 ) )  
( I t  (pos x) (pos y) 1) 

;;; [B-21 Every B precedes every C.  
( i f  (and (eq ( l a b  x) B) 

(eq ( l a b  y) C)) 
( I t  (pos X)  (pos y) 1) 

; ;; [B-31 I f  an A occurs a f t e r  another A, then it r u s t  
; ; ; rodi f  y something a f t e r  t h a t  A ' s  rodif  i e e .  
( i f  (and (eq ( l a b  x) A) 

(eq ( l a b  y) A) 
(gt  (pos x) (pos y) 1) 

(g t  (rod X)  (rod y))  
; ; ; [B-41 An A r u s t  rodif  y a C .  
( i f  (and (eq ( l ab  x) A) 

(eq (rod x) (pos y ) )  
(eq ( r i d  y) governor)) 

(eq ( l ab  y) C)) 
; ; ; [B-51 I f  a B occurs a f t e r  another 8 ,  then it r u s t  
;;; modify something a f t e r  t h a t  B ' s  r o d i f i e e .  
( i f  (and (eq ( l a b  x) 8) 

(eq ( l a b  y) 8 )  
(g t  (pos x) (pos y ) )  

(gt  (rod X)  (rod y ) ) )  
; ; ; [B-61 A B r u s t  rodi f  y an A .  
( i f  (and (eq ( l ab  x) B) 

(eq (rod X)  (pos y) 
(eq ( r i d  y) governor)) 

(eq ( l ab  y) A)) . . . , , , [B-51 I f  a C occurs a f t e r  another C ,  then it must 
;;; modify something a f t e r  t h a t  C ' s  modifiee. 
( i f  (and (eq ( l a b  x) C) 

(eq ( l ab  y) C) 
(g t  (pos x) (pos y ) ) )  

(g t  (rod X )  (mod y ) ) )  
; ; ; [B-61 A C r u s t  modify a B .  
( i f  (and (eq ( l ab  x) C) 

(eq (rod X )  (pas y ) )  
(eq ( r i d  y) governor)) 

(eq ( l a b  y) B)) 
) 

Figure 11: Gz = (C2,  R2,  L2 ,C2 )  accepts the language anbncn, n > 0 .  



Figure 12: An assignment for aaabbbccc. 
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that is is efficiently parallelizeable. Because CDG parsing differs from traditional parsers in its 

use of constraint propagation, further study of the relationship between CDG and other parsing 

approaches could lead to some useful insights about parsing algorithms in general. 

3 Enhancements of CDG Text-Based Parsing 
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This section describes a number of enhancements we have made to  the CDG parsing algorithm 

for single sentences to increase its usefulness for both text-based and spoken natural language 

processing. First, the algorithm is modified to parse sentences with lexically ambiguous words. 

Next, a table is introduced to lexically restrict the possible labels for a word during CN construction. 

Finally, the parsing algorithm is modified to  allow constraints to test for features such as number 

or person. 

governor role's value 

A- 7 

A-8 

A-9 

B- 1 

B-2 

B-3 

C-4 

C-5 

C-6 

3.1 Lexical Ambiguity 

Many words in the English language have more than a single part of speech. For example, the last 

two words in The program runs can be either nouns or verbs. Maruyama's algorithm requires that a 

word have a single part of speech, which is determined by dictionary lookup prior to  the application 

of the parsing algorithm. Since parsing can be used to  lexically disambiguate a sentence, ideally, a 

parsing algorithm should not require that a part of speech be known prior t o  parsing. In addition, 

lexical ambiguity, if not handled in a reasonable manner, can cause correctness and/or efficiency 

problems for a parser [6]. We examine four strategies for processing lexically ambiguous sentences 

within the CDG framework. 



(MT-dl, DET-1, DET-2, DET-3, 
SUBJ~IU, SUBJ-1, SUBJ-2, SUBJ-3, 

ROOT-nil, ROOT-1, ROOT-2, ROOT-3) 
(noun. 

Figure 13: The initial CN for the second lexical ambiguity strategy. 

The first strategy is to  create and parse a set of CNs which cover all of the possible combinations 

of parts of speech for each word. Because of the combinatorial explosion of CNs, this strategy is 

intractable. 

A second strategy is to  record in each word node all of the applicable parts of speech. For 

example, in the CN for The program runs record that the last two words are both nouns and verbs, 

as shown in Figure 13. The parsing algorithm can now no longer generate a parse for the sentence 

because, given C1, the noun must have the label SUBJ, eliminating role values with label DET 

and ROOT, and at  the same time, the verb must have the label ROOT, eliminating role values 

with label DET and SUBJ. In other words, after applying the constraints, there are no role values 

remaining. 

A third strategy is to  create a word node for each part of speech for a word, as shown in Figure 

14. Using this approach, the maximum size of a constraint network given that each word can have 

w parts of speech is (Wgn) (qn)2, where n is the number of words, p is the number of roles, and q 
2p2q2n4 -wpq 

is the number of labels (simplifying to  wpn(~n-1 )q2n2  = ' 2 '"I). However, this solution 

requires a change in the CDG parsing algorithm, which assumes that a CN is an AND/OR tree 

such that the values assigned to  the roles account for the only OR nodes in the tree, as shown in 

Figure 15. Hence, for a sentence t o  have a parse, every role in the CN must have a least one role 

value after filtering. On the other hand, for the proposed lexically ambiguous network to have a 

solution, only one of the nodes created to  represent the multiple parts of speech for a word needs 

to  be supported. To use this proposed network, we could change the semantics of a constraint 

network to  include an OR node above the level of the role, but this solution requires modification 

of the CDG network construction and filtering algorithms. Furthermore, there is a fourth solution 

which requires requires O(n3) less space than the current strategy, minor modification of the CN 

construction routines, and no modification of the filtering algorithm. 



(DET-nY. DET-1, DET-2, DETq 
SUBJ-nll, SUBJ-1. SUBJ-2, W a c J ,  

ROOT-nll. ROOT-1, ROOT-2, ROOT-3) 

(DET-nll, DET-1, 
WBCnll, SUBJ-1. 

ROOT-nll, ROOT-1, 
-rill, DET-1, DET-2. DET-3, 
IS SUBJ-l,SUBC2, SUBJ-3, 

ROOT4, ROOT-3) 

(DET-nll, DET-1, DET-2, DET-3, (DET-nll, DET-1. DET-2, DET-3, 
WBJ-nll, SUBJ-1.8UBJ-2, SUBM, SUBSnU, SUBJ-1,SUBJ-2, SUBJ-3, 

ROOT-nll. ROOT-1, ROOT-2, ROOT-3) ROOT-nil, ROOT-1, ROOT-?, ROOT-3) 

Figure 14: The initial CN for the third lexical ambiguity strategy. 

Figure 15: The AND/OR tree for the CDG parsing algorithm. 



nam rdo vdms r 
[DET-nY DEr-1. DET-2 DETJ. 

su-M, suw-t ,  WE&% auw-a, 
ROOTI*. ROOT-1. ROOT-2, ROOW) 

nrbrdov. lun3 
(DETM, MT-1, DET-2, DETJ, 

w r d o v a -  SUWM, suw-1, WBJ-z ww-a, 
(DET-nY. DET-1, DET-2. E T 4 ,  ROOT* ROOT-1, ROOT4 ROOTJ) 

navl Id0  V W *  3 

(DETM, DET-1, DET-2 DETJ, 
s u w a  wlu-1, suw-2, auw-a. 

V l b ~ v a r  
(DET* DET-I, DET-2 DETJ. 

suw* wlu-1, suw-2, SUWJ. 
ROOTM, ROOT-1. ROOT3 ROOTJ) 

Figure 16: The initial CN for the fourth lexical ambiguity strategy. 

The fourth strategy is to  allow role values within the same node to  have their own parts of 

speech as shown in Figure 161°. When the CN is constructed, the parts of speech for each word 

are determined by looking the word up in the dictionary. If a word is lexically ambiguous then for 

each part of speech, a set of role values in the domain is created and assigned that part of speech. 

This solution makes use of the fact that, in CDG parsing, no more than one rc~le value for a role 

can occur i.n the same parse graph. This strategy places the disjunction associated with lexical 

ambiguity ikt the level of the role, and hence requires no modification of the filtering algorithm. As 

shown in F'igure 17, the categories are represented as the cis, which are ORed below the level of 

the role; hence, no modification of the CDG filtering algorithm is required. 

Because each role value has its own part of speech, the constraints in GI in Fig-ure 1 are rewritten 

so that the access function cat operates on a role value rather than on a word node addressed by 

its position. For example, U-1 is rewritten as follows: 

;; [U-1] A tiet receives the label  DET and 
;; modifies a word t o  its r ight .  
( i f  (eq (cat x )  det)  

(and (ell ( lab x )  DET) 
( I t  (pos X)  (rod x ) ) ) )  

This modification of CDG parsing requires less space than the previous strategy. Note that the max- 

imum size of this modified constraint network is (Pt) (wqn)l, which simplifies to  -w2q2n2 = 
w 2 2 2 4  " yW2*. Hence, the space requirement for this modified CN is (y))pq2n3 smaller than for 

the previous strategy. 

''~ather than show each role value with its corresponding part of speech in the figures, we show the set of all of 
the role values with a particular part of speech to save space. 
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Role V a l w  

Figure 17: The AND/OR tree for the CDG parsing algorithm with lexical ambiguity. 

SUBJ-3 ROOT-nil 

DCTJ noun role u d u r  = 
m u e m  

vrrb r d .  vrl- = 
(RoOTi'~ll) 

Figure 18: The CN after unary constraint propagation. 

By using the modified CN and constraints, the CDG parsing algorithm, operating on the lex- 

ically ambiguous CN for The program runs, produces the same parse graph as the CN without 

lexical ambiguity for the same sentence from section 2.2. Following the propagation of unary con- 

straints, the labels in the CN in Figure 16 are reduced in number, as shown in Figure 18. Notice 

that all of the role values for the noun runs have been eliminated, therefore, th.e word cannot be 

used as a noun in the sentence given GI. Figure 19 depicts the CN after the propagation of binary 

constraints, and Figure 20 shows the CN after filtering. Also note that the words in the sentence 

have been lexically disambiguated by the parsing process. 

Our ap;proach to  handling lexical ambiguity can easily be extended to handle multiple word 

candidates in the same time interval. In this case, each role value keeps track of its word candidate, 

as well as its lexical category. This extension is a first step toward processing multiple sentence 
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DLTJ 

SUBJJ R007-dI  
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Figure 19: The CN after binary constraint propagation. 

noun role values = 
(SUB J-3) 

v.rb rok v.IU.. = 
dd rok v.lusr = 0 

[ ms 1 noun &;I- = 

Figure 20: The CN after filtering. 



L : 

SUBJ ROOT DET 

noun 

C: verb 

det 

Figure 21: A table of legal labels for word categories in the governor role for G1. 

hypotheses provided by a speech recognizer. In Section 4, we describe the necessary modifications 

of the CDG parsing algorithm for processing general word graphs. 

3.2 An Efficiency Issue: Label Pruning Using a Table 

Given that the role values assigned to  a role for a word in CDG are affected by both the role and 

the parts of speech, it is possible, a t  network construction time, to  restrict the role values assigned 

to  a role for each part of speech for a word to  those that are appropriate for the role and the lexical 

category under consideration. To do so, we add a fifth parameter t o  the CDG grammar tuple, T, 

where T is a table which restricts the possible labels for each role according to  the category of the 

word and its role id. Now a CDG grammar consists of a quintuple, (C, R, L, C, T). Though T 

is not a necessary aspect of the grammar, it does make the analysis of a sentence more efficient 

because the roles are initialized to smaller domains, and many of the unary constraints (i.e., those 

which restrict labels of role values to lexically appropriate values) can be omitted. The table for 

augmenting grammar GI is shown in Figure 21. It shows the legal labels for the governor role 

given the word categories in El. If this table is used during CN construction for the sentence The 

program runs along with the assumption that no word modifies itself, the resulting CN is depicted 

in Figure 22. See Appendix A for the pseudocode for CN initialization using T. 

In practice, the table reduces the number of role values in the initial CN l)y a factor of five 

t o  seven, and eliminates the need to  propagate some unary constraints. Hence, it does affect the 

actual running time of the CDG algorithm, though it does not improve the asymptotic running 

time. 

3.3 Lexical Features in CDG 

Many times, even if a word is not lexically ambiguous, it can have ambiguity in the feature informa- 

tion associa,ted with the word, like number, person, or case. For example, the nown fish can take the 

number/pe:rson feature value of third person singular or third person plural. Lexical features are 



noun r o h  nlun I 

d.1 r o h  v d u n  I 
{D€T*ll, M T I ,  M T 4 )  

{suw-ns, a u w i ,  w w * )  
vnb  r o h  v d u r  I 

{ROOT*ll. ROOT-1. ROOT*) 

noun rd .  v d u n  I 
{SuW*II, SUWI, SUBJ-2) 

V& roh v d u r  - 
"OOT**. ROOT-I. ROOTI] 

Figure 22: The initial CN given the table in Figure 21 

used in many natural language parsers to enforce subject-verb agreement, determiner-head noun 

agreement, and case requirements for pronouns. This information can be very useful for disam- 

biguating parses for sentences or for eliminating impossible sentence hypotheses, hence we have 

also added lexical feature analysis to the CDG parser 

The incorporation of feature tests into CDG parsing requires the same specid care used to in- 

troduce lexical ambiguity into the parsing algorithm. Consider another simple example grammar1' 

G3 = (C3, .R3, L3, C3, T3), shown in Figure 23. 

We will consider how to  add number/person feature tests to CDG to process the sentence *A fish 

eat the worbrn. The grammar should not generate this sentence because it is ungrammatical given 

appropriatt? number/person tests. To add number/person feature tests to CDlG grammars, the 

algorithm for constructing the initial CN must be modified to look up number/person information 

for the wor,d and store this information with the role values. The lexical entrie,s for this example 

follow: 

(a (category det (number 3 s ) ) )  
(eat (category verb (number I s  2s Ip 2p 3p))) 
( f i s h  (category noun (number 3s 3 ~ ) ) )  
(the (category det (number 3s 3 ~ ) ) )  
(vorr (category noun (number 3 s ) ) )  

To simplifj. the example, we assume that fish is not lexically ambiguous. In a.ddition to storing 

number/person information in the lexicon, two agreement constraints must be added to G3 to 

ensure thal; the number of the determiner agrees with the number of the head iloun and that the 

number of the SUBJ agrees with the number of the ROOT. 

"This grammar was designed t o  illustrate feature testing, and is not a general constraint-based grammar. Among 
other things, it  is missing constraints t o  support auxiliary verb structures in the sentences i t  a'ccepts. 



C3 = {det , noun, verb). 
R3 = {governor) 
L~ = {DET, SUBJ, DO, ROOT) 
T3 = see Figure 24. 
C3 = V z y role (and 

; ; [U-1] A DET modif i e s  a word t o  its r igh t .  
( i f  (eq ( lab x) DET) 

( I t  (pos x) (mod x ) ) )  
;; [U-21 A SUBJ modifies a word t o  its r igh t .  
( i f  (eq ( lab x) SUBJ) 

( I t  (pos x) (mod x ) ) )  
; ; [U-31 A DO modif i e s  a word t o  its l e f t .  
( i f  (eq (lab x) DO) 

(gt (pos x) (mod x) ) ) 
; ; [U-41 A ROOT modif i e s  no word. 
( i f  (eq ( lab x) ROOT) 

(eq (mod X )  n i l ) )  
;; [B-1] A DET is governed by a SUBJ or  DO. 
( i f  (and (eq ( lab x) DET) 

(eq (mod X) (pos y ) ) )  
(or (eq ( lab y) SUBJ) 

(eq ( lab y) DO)) 
;; [B-21 A SUBJ and DO a re  governed by a ROOT. 
( i f  (and (or (eq ( lab x) SUBJ) 

(eq ( lab x) DO)) 
(eq (mod X )  (pos y ) ) )  

(eq ( lab y) ROOT))) 
; ; [B-31 A DET t o  the l e f t  of a ROOT must modify a noun t o  the  
;; l e f t  of the ROOT. 
( i f  (and (eq ( lab x) DET)) 

(eq ( lab y) ROOT) 
( I t  (pos x) (pos y ) ) )  

( I t  (mod x) (pos y) ) )  
) 

Figure 23: G3 = (C3, R3, L3,T3,C3). 

C: verb 0 0 1 

det 0 0 0 1 

SUBJ DO ROOT DET 

Figure 24: A table of legal labels for word categories in the governor role for G3. 

noun 1 1 0 0 



rpunm*v~* I *wnb .h ( r . # :  
dol ro* v d r  rrllh I*mbr4r): WBJ4I, SUIJ-1, SURCI. W U 4  

nu-. -4 -1, azr, aw. m-s) 

Figure 25: The initial CN given Gg.  

;; [B-41 A IET which is governed by a noun muat agree in number 
;; with the noun's number. 
(if (and (ecq (lab x) DET) 

(e'q (cat y) noun) 
(eq (mod X) (poa y))) 

(agree (number x) (number y))) 

;; [B-51 A IiUBJ which is governed by a ROOT must agree in number 
;; with the verb's number. 
(if (and (eq (lab x) SUBJ) 

(ecq (lab y) ROOT) 
(eq (mod X) (pos y) 1) 

(agree (number x) (number y))) 

These constraints require the addition of one access function number and a predicate agree. 

The function (number x) returns the number/person information associated with the role value, 

and the predicate (agree (number x) (number y)) returns true only if its two number/person 

arguments agree. We consider two ways to  store number/person information with a role value. 

One way is to  store the entire set of features with each role value. In this case, agree returns 

true iff the intersection of the two number sets is non-empty. The second approach is to  store 

one numbeir/person feature value per role value, and the agree predicate becomes equivalent to  an 

equality teait. 

If the CDG parsing algorithm stores the set of number/person feature values with each role 

value, the (:N depicted in Figure 25 for the sentence *A fish eat the worm is constiructed. Following 

the propagation of unary constraints, the network is as depicted in Figure 26. After the binary 

constraints B-1, B-2, and B-3 are propagated and the network is filtered, the (2N is in the state 

depicted in Figure 27. This figure highlights the matrices corresponding to  the itrcs that are most 

relevant to  the agreement constraints, B-4 and B-5. Now consider the impact of constraints B-4 and 



nam rdm v m h r  wm I*wnb..-(u, rp): 
(SUIJQ, SUBJ-4. SUIJI. Do-1) 

- m* v a  wllh Nwlhm(&): 
{Do-1, Do-a. w-a. Do41 

Figure 26: The CN after the propagation of unary constraints. 

dsi role W r  r)lh lwnhu-pa. ap): 
(DETI) 

Figure 27: The CN after propagating B-1, B-2, and B-3 and filtering. 



B-5 on the network, and notice that the constraints succeed for the CN, despite the fact that the 

sentence is ungrammatical. This occurs because the words are checked pairwise f13r agreement. The 

word a agrees with fish, and the word fish agrees with eat, but the numbers that cause agreement 

on the two arcs are incompatible with each other. Using this approach, the only way to  ensure that 

sets of numbers jointly agree for the determiner, subject, and verb is by propagating an agreement 

constraint over the three role values. This constraint would contain three variables12 as shown 

below: 

;; A DET that is governed by a SUBJ, which is governed by a ROOT 
;; rust agree with the ROOT also. 
(if (and (eq (lab x) DET) 

(eq (lab y)  SUBJ) 
(eq (lab z )  ROOT) 
(eq (rod X) (pos y ) )  
(eq (rod y )  (pos 2 ) ) )  

(agree (number x) (number z))) 

To propagate this constraint requires the addition of arcs linking triples of rolles in the sentence 

and the use of three dimensional arc matrices. Because there are ("iP) = O(n3') arcs required in 

a CN with 3-variable constraints, and each arc contains a matrix with (q * n)3 := O(n3) elements, 

the time t c ~  construct the arcs and initialize the matrices is O(n6), and the time to  propagate a 

three variable constraint is O(n6). This constraint will work for the current exam.ple, but to  handle 

four-way agreement for sentences like *The fish which are eating swims would require constraints 

with an arity of four. Because of cases like these, we have developed another approach to  feature 

testing. 

To correctly utilize number and person features in agreement tests for CDG parsing without 

resorting tcl greater than two-variable constraints, each role value must be assigned a single feature 

value, not a, set of values. If there is more than one feature value, then the role values are duplicated 

for each feature value. Given this modification, the initialization of the CN for *A.  fish eat the worm 

is shown in Figure 28. Figure 29 depicts the CN after unary constraint propagation, and Figure 

30 shows the state of the network after binary constraints B-1, B-2, and B-3 have been propagated 

and the network has been filtered. After applying constraints B-4 and B-5 to  the CN in Figure 30, 

the matrix entries indexed by role values with incompatible feature values are ~ ; e t  to  0 ,  as shown 

in Figure 31. When this network is filtered, there are no remaining role values (see figure 32), and 

so the sentence is not generated by the grammar. 

If there are two feature types (say number/person and case) t o  be used in constraints for a 

grammar, then the role values will have to  be duplicated and assigned feature values from the cross 

product of the features' values. This could easily lead t o  a combinatorial explosion of role values. 

120ne might expect that the illegal parse would be detected during backtracking search, but tlhis assumption would 
be incorrect. The sets of features are unaffected by parsing in this approach, and there is no way to selectively require 
non-empty feature intersection for sets of tree roles. 
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Figure 28: The initial CN given that each role value has one feature value. 
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Figure 29: The CN after the propagation of unary constraints. 
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Figure 30: The CN after propagating B-1, B-2, and B-3 and filtering. 
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Figure 31: The CN after propagating B-4 and B-5. 
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Figure 32: The CN for an ungrammatical sentence after filtering. 

Fortunately, there is an excellent strategy for limiting the number of role values. The basic idea 

is to  store the sets of feature values with a single role value and to  duplicate the role values only 

on demand, when a particular feature type is being tested by a constraint. A grammar writer can 

then order constraints in a constraint file in such a way that role values are reduced by pure phrase 

structure constraints prior to  the feature constraints. Also, feature constraints can be ordered to  

minimize useless role value duplication. When the parser is preparing to  prop,agate a constraint 

with a particular feature test, each of the role values having multiple values for that feature is 

duplicated and assigned one of the feature values. The corresponding feature  constraints should 

then eliminate many of the duplicated role values before other types of feature constraints are 

propagated. 

Consider how the sentence *A fish eat the worm is processed given this strategy, assuming that 

constraints are propagated in the order they appear in our grammar. The initial CN is constructed 

as depicted in Figure 25. Once the non-feature constraints have been propagated and filtering has 

been performed, the CN would be in the state depicted in Figure 27. Note that many of the role 

values have been eliminated by the constraints before the feature constraints are propagated. Now 

in preparation for the propagation of constraints using the number/person feature, the role values 

in Figure 117 must be duplicated for each number/person feature value, giving the CN in Figure 

30. After the feature constraints have been applied (Figure 31) and filtering (Figure 32) has been 

performed, no parse for the sentence remains. 



4 Spoken Language Modification 

CDG has several advantages that make it attractive for use with spoken language understanding 

systems. First, it is able to  handle grammars that are beyond context-free. Second, it uses a 

single representation, the constraint, to encode syntactic rules and feature tests. This uniformity is 

especially compelling for speech understanding because such a system could potentially use lexical, 

syntactic, semantic, prosodic, and contextual rules. Third, CDG is able to  support the use of 

context when determining the meaning of a sentence (especially to  reduce ambiguity). Fourth, the 

flexibility of incremental constraint-based parsing should also be less sensitive than CFG parsers 

to  the synl;actic irregularities common in spontaneous speech. Finally, the algorithm is amenable 

t o  effective parallel implementation. 

One drawback of the CDG parser as defined by Maruyama is that it is only able to process one 

sentence at a time. However, since a speech recognizer can generate multiple sentence hypotheses for 

a given utterance, a one-sentence-at-a-time parser would be very inefficient. Hence, in this section, 

we extend the CDG parser to  process word graphs containing multiple sentence hypotheses. 

In the Section 4.1, we briefly describe current spoken language approaches and motivate the use 

of word graphs for processing the multiple sentence hypotheses provided by a speech recognizer. In 

Section 4.2, we adapt the CDG parsing algorithm to operate directly on a word graph. In Section 

4.3, we describe how the filtering algorithm must be modified to simultaneously process multiple 

sentence hj~potheses. Finally, in Section 4.4, we describe our implementation of th.e spoken language 

parser and the development of two constraint-based grammars. 

4.1 Current Approaches to Speech 

Among the! most successful current speech recognition systems which process continuous speech 

for a limited (1000 word) vocabulary are those which utilize hidden Markov motlels (HMM). Most 

systems utilizing this approach (e.g., [22, 401)) have reduced recognition errors by incorporating 

some language information (syntactic and semantic) directly into the HMM to reduce perplexity, 

but since tlze goal of these systems is recognition, not understanding, no structural analysis of the 

utterance i:; performed. Instead, the output of such systems is an ordered list of the N most likely 

sentence hjrpotheses (where N is a constant usually less than 100) (39, 411. 

Graceful integration of speech recognition and natural language systems remains a difficult 

problem. Early systems [23, 531 grappled with knowledge source interaction and flow of control. 

The trend in recent systems has been to  use stochastic language models [33, 561. However, this 

approach is limited t o  relatively simple cases (e.g., bigram or trigram) in order t.o control network 

size and complexity of training. These techniques have proven promising for some speech recognition 



1. Clear all windows. 
2. Clear windows. 
3. Clear all the windows. 
4. Get all windows. 
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6. Clear all of the windows. 
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9. Give all the windows. 
10. Get all of the windows. 

1 1. Give all of the windows. 

Figure 33: The word graph for the N-best command sentences. 

tasks, but are inadequate for representing the complex linguistic information required to  perform 

speech understanding. Systems that are attempting to  integrate speech recognition processing 

with more traditional natural language processing techniques include CMU's Phoenix, using frame 

based parsing and semantic phrase grammars [52]; CSELT's system, based on firdte-state language 

models [11.:I; MIT's Voyager, using LR parsing [58]; and Seneff's robust parsing 1:42, 431. 

To conritruct a speech understanding system which builds on current recognizers, a researcher 

might pass the N-best sentence hypotheses generated by a recognizer through al natural language 

parser as a first step toward producing meaning representations. However, processing each sentence 

hypothesis provided by a speech recognizer individually is inefficient since the sentence hypotheses 

often diffe~ only slightly from each other. Furthermore, a list of sentence hypotheses is not the 

most compact representation to  provide a natural language parser. A better representation for the 

sentence h;rpotheses is a word graph or lattice of word candidates which contains information on 

the approximate beginning and end point of each word's utterance. 

We have conducted an experiment which demonstrates the compactness of a word graph. For 

this experiment, we selected three sets of N-best sentence hypotheses13 for three different types of 

utterances: a command, a yes-no question, and a wh-question. The list of the N-best sentences 

was converted to  a word graph in which the duration of the node was approximated by using the 

syllable count for the words in the utterance. Figure 33 depicts a set of N-best sentences and the 

word graph our algorithm constructed for those sentences. In figure 34, the size and expressive 

power of tlhe constructed word graphs is compared with N-best sentence lists. The word graphs 

were more expressive than the N-best sentence lists while providing an 83% rediuction in storage. 

I3We thank BBN for providing us with the N-best lists of sentences. 
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Sentence 1 Number of I Number of I Distinct 11 Number of 1 words in 1 sentences in 1 
Type N-Best Sentences N-Best Words N-Best Words Graph Nodes 

Command 11 4 1 7 6 

Yes-No-Q 20 129 17 11 18 

Figure 34: N-best sentences versus word graphs. 

Even though a word graph is a compact representation for the output of a speech recognition 

system, current systems do not provide this type of representation. However, parsers that can 

process the graph representation should more efficiently process all sentence hypotheses. Tomita 

[47] has de~ireloped an LR parsing algorithm capable of processing a word graph. Chart parsers can 

also process a lattice by storing the words in its chart. Though these approaches handle sentences in 

a lattice, the CDG approach to parsing, once extended to operate on a word graph, has advantages 

discussed i;n Section 2.3.2 which make it an even more promising approach for speech processing. 

4.2 Parsing Word Graphs with Constraints 

We have adapted the CDG constraint network to handle the multiple sentence hypotheses stored 

in a word graph, calling it a Spoken Language Constraint Network (SLCN). Figure 35 depicts 

an SLCN derived from a word graph constructed for the sentence hypotheses: *A fish eat and 

* Ofices eats. By representing these hypotheses in a word graph, we are able to process additional 

sentences (i.e., A fish eats and Ofices eat) not present in the list of hypotheses, one of which might 

represent t:he intended utterance. Notice that word nodes contain a list of all word candidates with 

the same beginning and end points, and edges join word nodes that can be adja.cent in a sentence 

hypothesis (see Figure 35). A sentence hypothesis must include one word node from the beginning 

of the utterance, one word node from the end of the utterance, and these two word nodes must be 

connected ley a path of edges. The word nodes along a path can contain multiple! word candidates, 

so the number of sentence hypotheses for a particular path of edges can be quite large. In the SLCN 

of Figure 35, each word node contains information on the beginning and end point of the word's 

utterance, :represented as an integer tuple (b, e), with b < e. The tuple is more expressive than the 

point schenne used for CNs and requires modification of some of the access functions and predicates 

defined for the CN scheme. The access functions (pos x) and (mod x) now return a tuple (b, e) 

which describes the position of the word associated with the role value x. The equality predicate 

must be ex.tended to test for equality of intervals (e.g., (eq (1,2) (1,2)) should return true). The 
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Figure 35: Example of a spoken language constraint network constructed frorn a word graph. 

less-than predicate, (It (bl ,  e l )  (b2, e2)), returns true if e l  < b2, and the greater than predicate, 

(gt (b l ,  el ' )  (b2, e2)), returns true if b l  > e2. 

To parse an SLCN, each word candidate contained in a word node is assigned a set of role values 

for each role, requiring O(n2) time, where n is the number of word candidates in the graph. Unary 

constraints are applied to each of the role values in the network, and like CNs, require O(k, * n2) 

time. The preparation of the SLCN for the propagation of binary constraints is similar to that 

for a CN. ,411 roles within the same word node are joined with an arc as in a CN; however, roles 

in different word nodes are joined with an arc iff they can be members of at  lleast one common 

sentence hypothesis (i.e., they are connected by a path of directed edges). To construct the arcs 

and arc mirtrices for an SLCN, it suffices to traverse the graph from beginning to  end and string 

arcs from each of the current word node's roles to each of the preceding word node's roles (where a 

node precedes a node iff there is a directed edge from the preceding to the current node) and to each 

of the roles that the preceding word nodes' roles have arcs to. For example, there should be an arc 

between the roles for a and fish in Figure 35 because they are located on a path from the beginning 

to the end of the sentence a fish {eats,  eat) .  However, there should not be an arc. between the roles 

for a and ofices since they are not found in any of the same sentence hypotheses (See Appendix A 

for the SLCN arc construction pseudocode). After the arcs for the SLCN are ca~nstructed, the arc 

matrices aIe constructed in the same manner as for a CN. The time required to construct the SLCN 

network in preparation for binary constraint propagation is O(n4) because there may be up O(nZ) 

arcs constructed, each requiring the creation of a matrix with O(n2) elements. Once the SLCN is 

constructed, binary constraints are applied to pairs of role values associated with arc matrix entries 

(in the sanne manner as for the CN), requiring O(kb t n4) time, where n is the number of word 

candidates. 

Filtering in an SLCN is complicated by the fact that the limitation of 0n.e word's function 



Figure 36: A simple SLCN. 

in one sentence hypothesis should not necessarily limit that word's function in another sentence 

hypothesis. For example, consider the SLCN depicted in Figure 36. Even tlhough all the role 

values for are would be disallowed by the singular subject empath, those role values cannot be 

eliminated since they are supported by paths, the subject in a different hypothesis. To demonstrate 

the differences between a single sentence CN and an SLCN, we map the SLCN in Figure 36 to 

the AND/OR tree shown in Figure 37. Because the SLCN is based on a parse graph containing 

multiple word candidates, not all of which can participate in the same sentence hypotheses, an OR 

node is required a t  the top level of the tree to  represent the contribution of v,arious word nodes 

to  the different sentence hypotheses. Though the individual sentence hypotheser; are not indicated 

explicitly i;n the SLCN (this would require exponential space in some cases), the logical presence of 

the OR node must be captured by the filtering algorithm for an SLCN. 

4.3 SLCN Filtering 

The following notational conventions are used to  develop the filtering algorithm. The capital letters 

A ,  B, X, Y, U, V represent roles and the letter r represents a role value. Two roles A and B are 

arc connected if there exists an arc(A,B) connecting the two roles with an assc~ciated arc matrix, 

arc-matrix(A,B).  Note that arc(A,B) and arc(B,A) are the same arc. 

The implicit top level OR node in the SLCN requires significant revision of ,the SLCN filtering 

algorithm. The filtering algorithm can no longer delete a role value when a single arc matrix fails 

to  support it,  because all of the words in another sentence hypothesis might s:upport that value. 

Instead, we must determine how to propagate role value deletion from one arc associated with a 

role to  other arcs associated with the same role. After propagating role value deletion over the 

arcs, if a role value r is supported by at  least one arc matrix associated with an arc emanating 



Figure 37: The AND/OR tree for the SLCN in figure 36. 

from its role, then the role value cannot be eliminated from the role. However, if none of the arc 

matrices a~~sociated with the role's arcs supports the role value, then it should be eliminated from 

the role. Also, if all of the role values in a role for a particular word candidate are eliminated, then 

that word candidate should no longer be a supported word. If all of the word candidates for a 

word node are unsupported, then the word node should also be unsupported. ITurthermore, word 

nodes which are no longer members of a legal sentence hypothesis because the a~nly word they are 

adjacent t c ~  is unsupported should, through filtering, lose support. 

In order to  develop a correct filtering algorithm for SLCN parsing, we must consider how to  

propagate ].ole value deletion from one arc associated with a role to  others associa,ted with the same 

role. Supp'ose role A is connected by arcs to  roles B and X and the arc matrix associated with 

the arc between A and B no longer supports the role value r associated with role A. Should the 

elimination of r E A from the arc between A and B cause the value to  be removed from the arc 

matrix associated with the arc between A and X?  Should it also cause r's removal from the set of 

A's role values? Our basic strategy for developing the filtering algorithm is to  group the arcs of a 

role into classes which will allow us to  efficiently determine which arcs should be affected if a role 

value is disallowed by an arc matrix. We begin by introducing two axioms and some basic classes 

of arcs. 

Filtering Axioms and Elementary Arc Classes: 

Our filtering algorithm was developed given two fundamental axioms. The first axiom is shown 



below: 

Axiom 1 (Modifiee Axiom) If a role value r associated with role A is eliminailed from arc-matrix(A,B) 

and that mle value's modifiee points to the word node containing role B,  then it slzould be eliminated 

from all of the arc matrices associated with arcs attached to the role A. 

The role El has the right to directly eliminate any role values if their modifiees point to B's node 

and none of B 7s  role values support them. If B cannot support the role value, then none of the 

roles assocj.ated with other words should. 

When setting up the classes of arcs (and their associated matrices), we are guided by the second 

axiom: 

Axiom 2 (Arc  Class Axiom) A n  arc-matrix(A,B) should disallow r if r is not legal in  any 

sentence hypotheses that contain arc(A,B), i.e., there exists no path of edges froin a beginning node 

to an ending node such that every role for every node contains at least one role value compatible 

with r. 

This suggersts that we should group arcs into sets of arcs which are in the same sentence hypotheses. 

Because the topology of an SLCN is a directed acyclic graph (DAG), such sets will be recursive 

and hierarchical in nature. Inspection of Figure 38 leads to some initial observations about which 

arcs should be grouped together. Note that the small circles in this figure are roles, the large ovals 

are word nodes, the straight lines with arrows are edges, and the curved lines itre arcs. The first 

class of arcs are intm-arcs, which are arcs that connect two roles belonging to the same word node. 

T h e o r e m  1 (intra-arcs) If an arc(A,B) is an intra-arc and arc-matrix(A,E%) disallows r from 

A ,  then r :should be disallowed by all arcs incident to A and removed from the I-ole A.  

Proof:  The intra-arc arc(A,B) is a member of every sentence hypothesis that contains A's word 

node; therefore, it is a member of every sentence hypothesis that includes the arcs incident to A. 

Hence, by Axiom 2, if r is eliminated by the intra-arc arc-matrix(A,B), it should be removed 

by all of the arc matrices associated with the arcs emanating from A.  Furthermore, r should be 

eliminated from the role A.  

The second class of arcs are iso-arcs. The two arcs, arc(A,B) and arc(A,C),  are said to  be 

iso-arcs if roles B and C are located in the same word node (i.e., they are differeint roles associated 

with the same word node) and are incident on a common role A.  Figure 38 depicts a set of iso-arcs. 

Theo rem 2 (iso-arcs) If arc(A,B) is a member of a set O of iso-arcs incident to A,  and 

arc-mat r i :~(A,B)  disallows r from A ,  then all of the matrices associated wzth the iso-arcs in 

the set O should also eliminate r from A by zeroing the row or column indexed by r. 



intra-arcs 

Figure 38: Illustration of the terms used in this report. 

Proof: Because iso-arcs connect the same two word nodes, they are members o:l exactly the same 

set of sentence hypotheses. Hence, by Axiom 2, if one of them eliminates r from A, they all should. 

If a role value r E A is eliminated by arc-matrix(A,B), depending on the type of roles A and 

B, that role value may be eliminated from all the arc matrices of arcs connected to role A, or it 

may be removed from some but not others. Clearly, not all of the arcs in the netvvork are intra-arcs 

or iso-arcs (of each other. Hence to filter an SLCN as thoroughly as possible, we must also be able 

to determine whether the deletion of a role value in A from arc-matrix(A,B) should affect the 

deletion of the same role value for other matrices corresponding to other types of arcs emanating 

from A. Figure 39 depicts the temporal dependency of arc(A,B') on arc(A,X:') and arc(A,B) 

on arc(A,:Y) in a restricted view of an SLCN. Assume for simplicity that there is only one role 

per word node for this discussion. In Figure 39, arc(A,X) provides local precede arc support 

for the role values of A for arc(A,B) because there exists a directed edge joining the word node 

containing role X to the word node containing role B. Also, arc(A,X9) provides local follow arc 

support far the role values of A for arc(A,BY) because there is a directed edge joining the word 

node containing role B' to the word node containing role X'. Furthermore, arc(A,B) provides 

local follow support for the role values of A for arc(A,X) because of the directed edge between the 

word nodes for roles X and B,  and arc(A,B') provides local precede support for the role values 

of A for arc(A,X') because of the directed edge between the word nodes for roles B' and X'. 



arc(A, X) is a local precede arc for arc(A, X') is a local follow arc for 
arc(A, B) given the directed edge arc(A, B') given the directed edge 

between the word nodes of X and B. between the word nodes of B' and X'. 
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Figure 39: Temporal Dependencies between the arcs for role A,. 

arc(A, B) an'd arc(A,C) both provide arc(A, B') and arc(A,C') both provide 
local follow support for a role value on local precede support for a role value 
arc(A, X) . I-lence, both must remove on arc(A, X'). Hence, both must remove 
support for ia role value in A for that role support for a role value in A for that role 
value to be disallowed by arc(A, X). value to be disallowed by arc(A, X'). 

Figure 40: Temporal Dependencies between the arcs for role A. 

If a rc -~na t r ix (A,B)  no longer supports r E A ,  then arc-matrix(A,X) may no longer have 

reason to  support that role value because of the loss of the local follow support.. If all paths from 

X's word node to  A's word node must include the edge from X's to B's word node, then all of the 

sentence hypotheses containing arc(A,X) must also contain role B ,  and hence, arc(A,B). In this 

case, the role value should be deleted from arc-matrix(A,X) during filtering. However, if there 

exists a path of edges from X's word node to A's word node that does not include the edge from 

X's word node to B's, as in Figure 40, then arc-matrix(A,X) loses some support for r E A if r 

is deleted from arc-matrix(A,B),  but so long as arc-matrix(A,C) supports that role value, it 

cannot be deleted from arc-matrix(A,X). 

Symmetrically, if arc-matrix(A,B') no longer supports r E A ,  then arc-matrix(A,X') may 

no longer have reason to  support that role value. If the edge from the word node of B' to  the 

word node of X' is a required link on all paths of edges from the word node of A to the word 



node of X ' ,  then all of the sentence hypotheses containing arc(A,X')  must also contain role B '  

and arc(A ,B'). Hence, the role value would be deleted from arc-matrix(A,X')  during filtering. 

On the oth.er hand, if the edge from the word node of B '  t o  the word node of X:' is not a required 

link on all paths of edges from the word node of A t o  the word node of X', as in Figure 40, then 

arc-matr ix(A,X')  loses some support for r E A if arc-matrix(A,B')  delete!; r, but so long as 

arc-matr ix(A,  C') supports that  role value, it cannot be deleted from arc-matr ix(A,  X'). 

Local precede arcs and follow arcs provide two additional useful classes of arcs for the filtering 

algorithm, as the following theorem shows: 

Theorem 3 (local p r e c e d e  a n d  follow a rcs )  If a role value r E A for arc (A,B)  is disallowed 

frorn all of arc (A,B)  's local precede arcs with respect to A or all of its local follow arcs with respect 

to A ,  then it should be disallowed by  arc(A,B) .  

Proof :  Ev.ery role value r E A for arc(A,B)  must be allowed by a t  least one of the local follow 

arcs of arc:(A,B) with respect t o  A t o  be a legal role value in a t  least one se:ntence hypothesis. 

Therefore, if all of the local follow arcs of arc(A,B)  with respect t o  A have disallowed r, then r is 

incompatikde with all of arc(A,B)'s sentence hypotheses. A symmetric argument holds for local 

precede arcs. 

In order t o  create a correct algorithm for filtering an SLCN, we must determine which arcs 

temporally support the continued existence of a role value so that  if the  support is removed, the 

role value can be deleted. To utilize the temporal dependencies between arcs, we must associate a 

set of local precede and follow supporters with each role value on an arc. If an arc matrix for an  

arc elimina.tes a role value, then it must remove support for that  role value frorn its local precede 

and follow arcs. If the role value on one of those arcs has that  arc as its on1,y local precede or 

follow supporter, then the role value must be removed from that  arc's matrix and the arc must 

then remove support for the role value from its local precede and follow arcs. On the other hand, 

if the role value on each of those arcs has more than one local precede or follc~w supporter for a 

role value, then the loss of support must be recorded in some way even thouglh the role value is 

not deleted.. In the  next section, we develop the filtering algorithm for SLCNs using the insights 

described in this section. 

The SLClV F i l t e r ing  Algor i thm:  

To implement the filtering algorithm, we must add information t o  the  constrair~t network. A role 

value of a role may not be eliminated until all of its arc's matrices disallow that  va~lue. To determine 

whether the  role values for a role are supported by the network, we keep a count of all of the arcs 

supporting each of the role values for each of the roles. If the support count drops t o  zero, then the 

role value is eliminated since none of its arcs support that  role value. Additionally, the elimination 



of a role value in one arc matrix can cause the elimination of the role value from other arc matrices. 

Below, we enumerate the list of cases for propagating role value elimination to  other arcs matrices. 

1. If a role value, r, associated with the role A is eliminated from the intra-arc arc-matrix(A,B) 

(say between A ,  the governor role for a word node, and B ,  the needs role for the same word 

node), it must be eliminated from all of the arc matrices associated with the arcs emanating 

from the role A.  

2. If a role value, r ,  associated with role A is eliminated from arc -mat r ix (P~ ,B)  and that role 

value's modifiee points to  the word node containing role B ,  then it should be eliminated from 

all of' the arc matrices associated with arcs attached to  the role A.  

3. If a 1,ole value, r, associated with the role A is eliminated from arc-matrix(A,B),  it must 

also 'be eliminated from the arc matrices of its iso-arcs. For example, if B is the governor 

role for a word node, then for all the other roles, X ,  associated with that word node, the role 

value must also be eliminated from the arc matrices associated with the arcs between A and 

X. 

4. If a role value, r, associated with the role A is eliminated from arc-rnatrix(A,B) and 

neither condition 1 nor condition 2 from above holds, then support for that role value should 

be removed for that role value on the arc matrices associated with the locad precede or follow 

arcs of arc(A,B) given A.  To determine whether r should be eliminated by any of these arc 

matrices, we must determine whether they have additional support for r once arc(A,B)'s 

s u p p ~ ~ r t  is removed. 

To keep track of which arcs temporally influence other arcs in the the elimination of role values, 

we must determine for each of the roles on each arc in the SLCN which arcs are local precede and 

follow arcs. Each arc-matrix(A,B) must maintain a list of local precede arcs and a list of local 

follow arcs for each of the role values associated with roles A and B.  

A-precede- support -  The role values associated with role A for arc-matrix(A,B) each 

maintain a list of local precede support arcs with respect to  B containing: 

- All arcs of the form arc(A,X),  where there exists a directed edge from the word node 

containing X t o  the word node containing B.  The directed edge implies X's word node 

precedes B's word node, and so arc(A,X) is a local precede supporter for A's role values 

given B.  

- All arcs of the form arc(A,B),  where there exists a directed edge from the word node 

containing A to  the word node containing B.  The directed edge implies the word node 



for A precedes the word node for B ,  hence arc(A,B) is a local precede supporter for 

its own role values given B. 

- A dummy arc, say arc(B,B), if B's word node is the first word in the sentence. 

A-follow-support- The role values associated with role A for arc-matrix(A,B) each main- 

tain ;% list of local follow support arcs with respect to B containing: 

- All arcs of the form arc(A,X), where there exists a directed edge from the word node 

containing B to  the word node containing X. The directed edge implies X's word node 

follows B's, and so arc(A,X) is a local follow supporter for A's role values. 

- All arcs of the form arc(A,B), where there exists a directed edge from the word node 

containing B to the word node containing A. The directed edge implies A's word node 

follows B's, hence arc(A,B) is a local follow supporter for its own role values. 

- A dummy arc, say arc(B,B), is included in the set if B's word node is the last word in 

the sentence. 

B-precede-support- The role values associated with role B for arc-matrix(A,B) each 

maintain a list of local precede support arcs with respect to  A containing: 

- All arcs of the form arc(B,X), where there exists a directed edge from the word node 

containing X to  the word node containing A. 

- All arcs of the form arc(A,B), where there exists a directed edge from the word node 

containing B to the word node containing A. 

- A dummy arc, say arc(A,A), if A's word node is the first word in the sentence. 

B-follow-support- The role values associated with role B for arc-matrix:(A,B) each main- 

tain a list of local follow support arcs with respect to A containing: 

- All arcs of the form arc(B,X), where there exists a directed edge from the word node 

containing A to the word node containing X. 

- All arcs of the form arc(A,B), where there exists a directed edge from the word node 

containing A to  the word node containing B. 

- A dummy arc, say arc(A,A), if A's word node is the last word in the sentence. 

The algorithm in Figure 41 is used to calculate the local precede and follow arcs for each of 

the roles on each arc. Word nodes in the network are initially assigned an arbitrary index between 

one and n, where n is the number of nodes required to represent the SLCN. The word node for 

an index can be retrieved by using the function get-wordaode(index), which returns the word 



node associiated with the index. Note that the store-support routine duplicates and stores the local 

precede and follow sets for each of the role values associated with a role on an arc matrix. This 

operation I-equires O(n2) time because each set can contain O(n) arcs, which must be copied and 

stored in support of O(n) role values. 

Once the SLCN network is created and local role value arc support is calculated, we can prop- 

agate constraints as described earlier and then filter the network much as for a CN. We must first 

determine which arc matrices disallow a role value; however, when a role value is disallowed by an 

arc matrix, it may or may not be eliminated from all arcs associated with the role. See Appendix 

A for the iull filtering algorithm. This algorithm relies on the two routines in l?igures 42 and 43. 

The first routine is performed if arc-matrix(A,B) deletes r from A.  If a role value is eliminated 

from an arc matrix during filtering, support must also be removed from that role value on all of 

the local precede and follow arcs for that arc matrix. Hence, the first routine invokes the second 

(Figure 43) to  handle the removal of local arc support for a role value. If all of the local precede 

arcs or the local follow arcs for a role value no longer support it,  then it should be eliminated from 

the row or column associated with the role value maintaining the list of suppor.ters in the matrix. 

By using the dummy arc supporters for word nodes at the beginning and end of the sentence, we 

are able to  detect when a role value loses support by examining whether either its local precede or 

follow sets become empty. If a t  any time the local precede or follow arc set o:F support becomes 

empty, then the role value must be deleted from the arc because there is no sentence hypothesis 

which sup1)orts the role value. If the role value is eliminated by the arc matrix, then its support 

for the role value must also be removed from those arcs it locally supports. 

There ,are O(n3) role values indexing rows or columns in arc matrices that can be deleted by 

SLCN filtering, where n is the number of word candidates. Each of the indices may require the 

removal of O(n) arc supporters from their local precede and follow lists before being deleted. Once 

all support, is removed from a role value index, it may need to zero O(n) elements in its arc matrix 

and remove support from O(n) role value indices associated with the other arcs incident to its role. 

Hence, the running time of the SLCN filtering algorithm is O(n4). 

To i l l~~j t ra te  SLCN filtering, we provide a simple example. Consider the local precede and 

follow support sets constructed for the role values in the roles joined by each arc of the simple 

SLCN dep.icted in Figure 44. The support sets were calculated using the c r ea t e -ma t r ix suppor t  

procedure. The reader should keep in mind that arc( l ,2)  and arc(2, l )  are equivalent, so we store 

support arcs with the convention that the lowest index is always first. 

To illustrate how the procedure disallow propagates role value elimination. correctly, we will 

consider two types of role value elimination, one which eliminates a deleted role value from all arcs 

emanating from its role and one which simply removes support of the role value from its local arcs. 



crea termal t r ixsuppor t  - an O(n4) operation. 
P rocedure  create-matrixsupport (){ 

For inderrl = 1 to n - 1 do { 
wl = get-wordnode(index1); 
For I11 = each of the roles in wl do { 

For index2 = indexl+l to n do { 
w2 = get-wordnode(index2); 
For R 2  = each of the roles in w2 do { 

precede-support1 = get-precede-support(Rl,R2); 
precedesupport2 = get-precede-support(R2,Rl); 
follow-support 1 = get-follow-support(R1 ,R2); 
follow-support2 = get-follow-support(R2,Rl); 
/* Store the local precede and follow support for each role value in R1 and R 2  */ 
storesupport(precedesupportl, follow-supportl, R1, arcmatrix(Rl,E;12)); 
storesupport(precede-support2, follow-support2, R 2 ,  arcmatrix(Rl,E;12)))))) 

1 

get-precede-support - an O(n)  operation. 
Funct ion  get-precedesupport(For: role; Given: role){ 

precede-support = {); 
If (edge(word-node-of(For), word-node-of(Given)) exists) then 

Add arc(For,  Given) to precede-support ; 
If (Given is a role for a word node at the beginning of a sentence) then 

Add arc(Given,  Given) to precedesupport; 
/* Loop requires O(n) time */ 
For (each directed edge of the form edge (WORD,  word-node-of(Given)) 

with W O R D  # For) do { 
For X = each of the roles in W O R D  do { 

Add arc(For,  X )  to precede-support)); 
Return(precedesupport); 

1 

get-follow-support - an O(n)  operat ion.  
Funct ion  get-follow-support(For: role; Given: role){ 

follow-support = {) ; 
If (edge(word-node-of(Given), word-node-of(For)) exists) then 

Add arc(For, Given) to follow-support; 
If (Given is a role for a word node a t  the end of a sentence) then 

Add arc(Given,  Given) to follow-support; 
/* Loop requires O(n) time */ 
For (each directed edge of the form edge(word-node-of(Given), W O R D )  

with W O R D  # For) do { 
For X = each of the roles in W O R D  do { 

Add arc(For,  X )  to follow-support)); 
Return(fol1ow-support); 

1 

Figure 41: Local precede and follow support routines. 



Procedure,  disallow(arcmatrix(A,B): arc-matrix; A:  role; r :  role-value){ 
If a r c l n a t r i x ( A , B )  is an intra-arc of A then{ 

/* :Disallow r for all arcs incident to role A. Check all roles 
/* connected to A but not equal to B to see if their role values 

*I 

/* ;ire still supported. If not add them to the tebe-deleted list. 
*I 

For R1 = all roles not equal to role A or B do { 
*I 

/* O(n) iteratiom */ 
remove r from the a r c m a t r i x ( A , R l ) ;  /* O(n) operatioil */ 

For r-index = each of the role values in R1 do { /* O(n) iterations. */ 
if (the role value r-index for role R1 is not /* O(1) operation */ 

supported by a r c m a t r i x ( A , R l ) )  then 
add r-index to  the to-be-deleted-list;)); 

arc.support-count(r ,A) = 0; 
Eliminate r from role A; 
Return(); 

1; 
If the niodifiee of r == the position of B { 

/*  :Disallow r for all arcs incident to role A. Check all roles 
/*  connected to A but not equal to B to see if their role values 

*I 

/*  <Ire still supported. If not add them to the tebe-deleted list. 
*I 

For R1 = all roles not equal to role A or B do { 
*I 

/* O(n) iterations */ 
remove r E A from the a r c a a t r i x ( A , R l ) ;  /* O(n) operatioil */ 
For r-index = each of the role values in R1 do { /* O(n) iterations */ 

if (the role value r-index for role R1 is not /* O(1) operatio11 */ 
supported by a r c m a t r i x ( A , R l ) )  then 

add r-index to the tebe-deleted-list;)); 
arc.support-count(r, A) = 0; 
Eliininate r from role A ;  
Ret,urn(); 

1; 
/*  Remove r from the isearcs of arc(A,B) */ 
For R1 = all roles in A's word node not equal to A do { 

remove r from a r c m a t r i x ( A , R l ) ;  /*  O(n) operatioin */ 
arcsupport-count(r,A) = arcsupport-count(r,A) - 1; 
For r-index = each of the role values in R1 do { /* O(n) iterations */ 

if (the role value r-index for role R1 is not /* O(1) operatioil */ 
supported by a r c m a t r i x ( A , R l ) )  then 

add r-index to the tebe-deleted-list;)); 
arcsupport-count(r ,A) = arcsupport-count(r,A) - 1; 
/*  Eliminate support for the role value r from all local precede and follow arcs */ 
Inform-delete-update(arcmatrix(A,B), A ,  r ) ;  
/* If ncb arc supports the role value r then it is eliminated from the role. */ 
If (arc~lupport-count(r,A) = 0) then eliminate r from A; 

1 

Figure 42: disallow(arc-matrix(A,B), A, r) is invoked whenever r is disallowed for role A by 
arc-matri~x(A,B). 



Procedure inform-delete-update(arcmatrix(U,V): arcmatrix; U: role; r: role-value){ 
precede-list = precede-list-of(r, arcmatr ix(U,V),  U); 
For arc = each of the arcs in precede-list do { 

arc-matrix = the arc matrix associated with arc; 
R1 = get-rolel-of-arc(arc); 
R2 = get-role2-of-arc(arc); 
If (R1  # R 2  && arc # arc(U,V)) then { 

/* Remove arc(U,V) as follow support for r E U on arc-matrix. */ 
Remove-follow-support(arc(U,V), arc-matrix, U ,  r); 
If unsupported(r, arc-matrix) then { 

remove r E U from the arcmatr ix(U,V);  /* O(n) operation */ 
disallow(arcmatrix, U ,  r);)) 

1; 
premcede-list-of(r, arcmatr ix(U,V),  U) = {); 
foll~ow-list = follow-list-of(r, arcmatr ix(U,V),  U); 
For arc = each of the arcs in follow-list do { 

arc-matrix = the arc matrix associated with arc; 
R1 = get-rolel-of-arc(arc); 
R2 = get-role2-of-arc(arc); 
If ( R 1  # R 2  && arc # arc(U,V)) then { 

/* Remove arc(U,V) as precede support for r E U on arc-matrix. */ 
Remove-precede-support(arc(U,V) , arc-matrix, U,  r) ;  
If unsupported(r, arc-rnatrix) then { 

remove r E U from the arcmatr ix(U,V);  /* O(n) operation */ 
disallow(arcmatrix, U,  r);)) 

Figure 43: Update the local and precede arcs for r in role U associated with arc-matrix(U,V). 



arc(l,2) : arc(3,4): 
1 precede : (arc ( 1,2) ) 3 precede: (arc(3,4), arc(2,3) ) 
1 :follow: {arc(l13), arc(1, 4)) 3 follow: (arc(4,4)) 
2 precede : (arc (1,l) ) 4 precede : {arc (2,4) ) 
2 :follow: (arc (l,2) ) 4 follow: (arc (3,4) ) 

arc:(2,3) : arc(l,3) : 
2 precede: (arc(2,3)) 1 precede: (arc(l,2)) 
2 :follow: (arc (2,4) ) 1 follow: (arc(l,4)) 
3 precede : (arc ( 1,3 ) ) 3 precede: (arc(1,l)) 
3 :Eollow: (arc(2,3), arc(3,4)) 3 follow: (arc (2,3) ) 

ar1:(2,4) : arc(l,4) : 
2 precede: {arc(2,4), arc(2,3)) 1 precede: {arc(l,2), arc(l,3)) 
2 follow: (arc (4,4) ) 1 follow: {arc (4,4) ) 
4 precede : (arc ( l,4) ) 4 precede: (arc(1,l)) 
4 follow: {arc(3,4), arc(2,4)) 4 follow: (arc(2,4)) 

Figure 44: Temporal dependencies between the arcs of a simple SILCN. 



Suppose that r is to be deleted from the arc matrix associated with arc( l ,2)  :for role 1.  In this 

case, support must also be removed for r on its local precede and follow arcs. The 1 precede arcs 

for arc(l,i!) include only arc( l ,2)  and so no propagation is required to  other arcs. On the other 

hand, the 1 follow arcs for a rc ( l ,2 )  include arc( l ,3)  and arc(l ,4).  When arc( l ,2)  is deleted 

from the 1 precede support list for r on arc(l ,3),  its local precede list becomes, empty indicating 

that r shortld no longer receive support on the arc. The reason that arc( l ,3)  loses support for the 

role value is that the word node for role 2 must be a member of any path throuj;h the SLCN from 

the word node containing role 1 to the word node containing role 3. Because :r on arc( l ,3)  has 

no remaini:ng 1 precede supporter, it is deleted from arc_matr ix( l ,3) .  Since arc_matr ix( l ,3)  no 

longer has 1 precede support for r, it must remove its support from its local follow arc, arc(l ,4).  

When arcl(l,3) is removed from the 1 precede arcs for r on arc(l ,4),  there is one remaining 

supporter, arc( l ,2) .  However, arc( l ,2)  has not completed removing support for role value r from 

its remaining 1 local follow arc, arc(l,4). When arc( l ,2)  is deleted from the 1 precede support 

list for r on. arc( l ,4) ,  its local precede list becomes empty indicating that r shoulld no longer receive 

support on. the arc. Because arc( l ,4)  has no remaining 1 precede supporter, the role value r is 

deleted for role 1 in arc_rnatrix(l ,4).  Since arc-mat rix(l ,4) no longer has local precede support 

for r, it must also remove its support from its local follow arc, arc(4,4), a dum.my arc. Since the 

arc is a du.mmy, no loss of support is propagated to other arcs. Once the local support removal 

is complete, none of the arcs emanating from role 1 supports r, and so it is deleted from the role 

(because it's arc support count has become 0). 

Now, suppose that r is to be deleted from the arc matrix associated with a;rc(l,3) for role 1. 

In this case, the word node for role 3 provides an optional path through the SLCN from the word 

node containing role 1, and so the role value r should not be deleted from arc(l.,2) and arc(l ,4).  

The 1 precede arcs for r on arc( l ,3)  include only arc(l ,2).  When arc ( l ,3 )  is removed from 

the 1 follow arcs for r on arc(l ,2),  there is one remaining supporter, arc( l ,4) ,  and so r should 

not be deleted from arc-matrix(l ,2).  Furthermore, the 1 follow arcs for r OIL arc( l ,3)  include 

only arc(l ,4).  When arc( l ,3)  is removed from the 1 precede arcs for r on arc(l ,4),  there is one 

remaining supporter, arc(l ,2),  and so r should not be deleted from arc_matrix(l ,2).  Because r 

is supported on role 1 by arc_matr ix( l ,2)  and arc_matr ix( l ,4) ,  it should not be deleted from 

the role. 

The SIICN constraint parsing algorithm requires O(n4) time to parse a network with n word 

candidates. However, by using a CRCW P-RAM model and O(n4) processors, the parse time for 

an SLCN 'can be improved [15]. We are currently implementing the SLCN pairsing algorithm on 

the MasPa,r MP-1. Because of the power of the MasPar and the parallel nature of the algorithm, 

we can ma,ke use of the flexibility and expressivity of CDG grammars to process SLCNs without 



severe performance penalties. 

4.4 An SLCN Parsing Experiment 

We have developed a C++ implementation of a CDG parser, PARSEC, which is capable of parsing 

CNs or SLCNs on a Sun workstation. The software allows users to  specify parameters of the gram- 

mar, to design features, and to write unary and binary constraints. It also checks the constraints 

for correctiless of form given a grammar's parameters. Once a grammar is written and constraints 

are checked for well-formedness, the parser is ready to  parse a sentence. When parsing a sentence, 

it first applies the core set of unary constraints, then it constructs arcs and arc rnatrices and prop- 

agates the core binary constraints. At this point, an X-windows interface for the parser appears 

on the scrt:en. Figure 45 depicts the interface to  the SLCN constructed from ithe word graph in 

Figure 33. Once the window is present, the user can choose from several menu options. Among the 

options avi~ilable are: perform a single step of filtering, filter completely, view the arcs joining the 

roles of two word nodes, apply constraints from a file, print node information to a file, and print 

arc informaation to  a file. The user can also view the state of the parse. This interface allows the 

remaining role values for each word candidate's roles to be viewed by clicking on the word in the 

word node For example, the role values for the three roles for the word windows over the interval 

(3,5) in Figure 45 are viewed by clicking on that word. This interface also allows viewing of the 

matrices sl,ored on each of the arcs in the network. The arcs joining the roles of two words are 

displayed  hen a user selects the appropriate menu item along with two word nodes. Figure 46 

shows the arcs joining the roles for the words of and the. The matrix associated with each of the 

arcs can then be viewed by clicking on its arc. Figure 47 shows the matrix for Ithe arc joining the 

governor roles of the two words. This implementation of the SLCN parser provides useful tools for 

developing and testing constraint-based grammars. 

In order to  demonstrate the effectiveness of our SLCN parser, we have developed two grammars. 

The first grammar was designed to  parse sets of sentences in the Resource Management database 

[36] The second grammar covered sentences in the ATIS database [16, 351 (Air Travel Information 

System). 

The Resource Management database grammar contains 3 roles, 11 catego~ies, 70 labels, 100 

unary conj.traints, and 200 binary constraints, capable of parsing statements, yes-no questions, 

commands, and wh-questions [57]. The constraints consist of phrase structure rules and features 

tests. The feature tests include subject-verb agreement, determiner-head-noun agreement, and 

case restrictions on pronouns. Additionally, the subcategorization feature is used to  make certain 

that a verl) has the appropriate set of objects and complements to  be complete. The lexicon used 

along with this grammar contains many lexically ambiguous words, and its word entries contain 



(1. 2) 
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caw: mmon 
Gender: 
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Root uord: u i h  
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Figure 45: The X-windows interface t o  the SLCN for the N-best comtmands. 



Figure 46: The X-window interface to the arcs connecting the roles of of and the 
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Figure 47: The X-window interface to the arc matrix for the governor roles of of and the. 



Figure 48: N-best versus word graph sentence parses. 

Sentence 

Type 

Command 

Yes-No-Q 

Wh- Q 

the necessary feature information to  support our feature value constraints. 

To denionstrate the effectiveness of CDG parsing for eliminating sentence :hypotheses from a 

...,, a ",,,1-. ..., ,,-..,,t,a tl., ...,, a n,,..Ln a,",,:I.,a :- c,-.,t:,.. A 1 : m t ,  CT  C l h T . .  ,..a n-.rrma tb,-.- 
W W I U  b l a p 1 . 1 ,  w c  L W L ~ V C L ~ C U  ~ L I C  W W L U  ~ L ~ ~ L L J  UCJLIIUCU 111 L ) C L ~ L W I ~  -.I I L I ~ W  L ) U V A Y ; )  a 1 1 u  p a l n c u  GLICLII 

using the first grammar. More grammatical sentences were parsed in the SLCN than were available 

in the original sets of sentences, as can be seen in Figure 48; however, all of the additional parses 

had similar meanings t o  one of the original grammatical N-best sentences. For example, the SLCN 

depicted ~ I L  Figure 45, constructed from the word graph in Figure 33, contains three verbs: clear, 

give, and get. Each is the main verb in 5 minor variations of the same sentence. 

Syntactic constraints are effective at  pruning a word graph of many ungrammatical sentence 

hypotheses and limiting the possible parses for the remaining sentences. However, it is often the 

case that syntactic information alone is insufficient for selecting a single sentence hypothesis from a 

word graph. Effective use of multiple knowledge sources plays a key role in human spoken language 

understanding. It is, therefore, likely that advances in spoken language underst;~nding will require 

effective u1;ilization of higher level knowledge. 

To demonstrate the flexibility of constraint-based parsing for utilizing a variety of knowledge 

sources, we have incorporated semantic constraints into our parser. To do so, we developed a second 

grammar ior sentences in the ATIS database (Air Travel Information System), which was chosen 

because of its semantic richness. First, syntactic constraints were added t o  the Resource Manage- 

ment grammar to  demonstrate the ease of adding additional grammar constrai:nts to  a previously 

developed grammar. Then semantic constraints were constructed to  further lirnit ambiguity [12]. 

Semantic constraints were relatively easy to  create and incorporate into our parser because they 

were based on feature testing for certain syntactic configurations. For example, some constraints 

limited the semantic type associated with a prepositional phrase based on the semantic type of its 

object, ant1 others limited the cites of attachment for a prepositional phrase based on semantic type 

compatibility. We then conducted a simple experiment to  compare the effectiveness of syntactic 

and semantic constraints for reducing the ambiguity of word networks constructed from sets of 

BBN's N-best sentence hypotheses [41] from the ATIS database. 

Number Grammatical 

Sentences in N-best 

11 

8 

7 

Number Grammatical 

Sentences in SLCN 

15 

12 

16 



For this experiment, we selected twenty sets of 10-best sentence hypotheses for three different 

types of utterances: a command, a yes-no question, and a wh-question. The lists of the N-best 

sentences were converted to  +word graphs using syllable count, as described in Section 4.1. These 

word graphs were then converted t o  SLCNs and parsed with the constraints. We determined 

for each eliminated word candidate whether a syntactic constraint or a semantic constraint was 

responsible for the deletion. Syntactic and semantic constraints together werle very effective at  

reducing the number of parses for sentences in the SLCN when compared with syntactic constraints 

alone. However, syntactic constraints alone played the major role in pruning illappropriate word 

candidates from the network. On the average, syntactic constraints alone eliminated 3.11 word 

candidates per SLCN; whereas, semantic constraints, when applied after syntactic constraints, 

eliminated an average of .66 additional word candidates per SLCN'~.  

SLCN parsing has several advantages that make it attractive for speech. First, it is able t o  handle 

grammars that  are beyond context-free. Second, it provides a flexible uniform framework for 

using lexical, syntactic, semantic, prosodic, and contextual constraints to  incrementally reduce 

the ambiguity found in a word graph provided by a speech recognition system (We have already 

developed lexical, syntactic, and semantic constraints for our parser (see Section 4.4) and are 

currently cleveloping prosodic constraints). Third, the parser is able to  support the use of context 

when determining the meaning of a sentence. Fourth, the flexibility of increment id constraint-based 

parsing should allow us to  develop strategies for reducing sensitivity t o  the syntactic irregularities 

common i11 spontaneous speech. Current spoken language recognition systems alre not as accurate 

as humans, in part, because they do not utilize the wide range of information that people do when 

understanding speech. Hence, we believe that further investigations along these lines will result in 

more effective processing of speech. 

The filtering algorithm developed in this paper is useful, not only for processing speech, but 

also for other CSP problems. Up t o  this time, CSP arc consistency has always assumed perfect 

segmentation of input. Speech recognition is only one area where segmenting the signal into higher- 

level chunlrs is problematic. Vision systems and handwriting analysis systems lnave a comparable 

problem. 

"Since most semantic rules use some syntactic information, it makes sense to propagate tht: syntactic constraints 
before the semantic constraints. When we propagate the semantic constraints first, no word candidates are typically 
eliminated because of the high ambiguity in the CN without syntactic constraints. 
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A Appendix: CDG Parsing Pseudocode for CNs artd SLCNs 

The pseudocode for each of the steps of the CN and the SLCN parsing algorithms is listed in this 

appendix. 

Initial Network Construction for CNs and SLCNs- O(n2) operation. 
{ 

For index = 1 to n do { /* n iterations */ 
w = get-wordnode(index); 
For r = w's roles 1 to p do { /* p iterations */ 

For 1 = each of the labels in L do { /* q iterations */ 
add role value (1,nil) to the role r for w; 
For node = 1 to n do { /* n iterations */ 

pos = get-tuple(node); 
add role value (1,pos) the role r for w)))) 

Initial Network Construction with TABLE- O(n2) operation 
I 

For index = 1 to n do { /* n iterations */ 
w = get-wordnode(index); 
parts = getparts-ofspeech(w); 
For part = each part of speech in parts do { /* O ( M ~ Z ~ , , , ~ ~ )  iterations */ 

R3r r = each of w's roles 1 to p do { /* p iterations */ 
11 = getlabels(part,r); 
For 1 = the labels in 11 do { /* O ( M ~ Z ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ )  iterations */ 

add role value (1,nil) to the role r with p part of speech; 
For node = 1 to indez - 1 and indez + 1 to n do { /* n iterations */ 

pos = get-tuple(node); 
add role value (1,pos) the role r))))) 

Unary Co:nstraint Propagation on a CN or an SLCN- an O(k, * n2) operation. 
I 

For index = 1 to n do { /* n iterations */ 
w = get-wordnode(index); 
For r = w's roles 1 to p do { /* p iterati'ons */ 

rv = get~ole-values(r); 
P3r r-index = each of the role values in rv do { /* O(n) iterations */ 

For c = each unary constraint do { /* k, iterations */ 
apply get-constraint(c) to the role value r-index)))) 

CN Arc C!onstruction- an O(n4) operation. 
{ 

/* Create arc matrices for arcs joining roles within the word- a (P2) * O(n3) operation. */ 
For index = 1 to n do { /* n iterations */ 



w = ,get-wordnode(index); 
For r l  = w's roles 1 t o p - 1  do { 

rv 1 = get_role-values(r 1); 
For r2 = w's roles ( r l  + 1) to  p do { /* (;)iterations */ 

rv2 = get~ole-values(r2); 
create arc joining r l  to r2; 
assign arc a matrix of size lrvll x lrv21 with entries /* O(n2) operation*/ 

initialized to  1 and indices from rvl  and rv2))); 
/* Create arc matrices for arcs joining roles in different words- an ("iP) * O(n2) operation. */ 
For indenl = 1 to n - 1 do { 

w l  = get-wordnode(index1); 
For r l  = wl's roles 1 to p do { 

rk.1 = get_role-values(r 1) 
For index2 = indexl+l to  n do { 

w2 = get-wordnode(index2); 
For r2 = w2's roles 1 t o p  do { 

rv2 = get_role-values(r2); 
create arc joining r l  to  r2; 
assign arc a matrix of size Irvl( x lrv21 with entries 

initialized t o  1 and indices from rvl  and rv2)))) 

/*  ("2+P) iterations */ 

S L C N  Arc: Cons t ruc t ion-  an O(n4)  operation. 

/* Create arc matrices for arcs joining roles within the word- a (;) * O(n3) operation. */ 
For index = 1 to  n do { /* n iterations */ 

w = get-wordnode(index); 
For r l  = w's roles 1 t o p -  1 do { 

rvl  = get_role-values(r 1); 
R3r r2 = w's roles ( r l  + 1) to  p do { /* (;) iterations */ 

rv2 = get_role_values(r2); 
create arc joining r l  t o  r2; 
assign arc a matrix of size Jrvll x Jrv21 with entries /* O(n2) operationt/ 

initialized t o  1 and indices from rvl and rv2))); 
/* Create arc matrices for arcs joining roles in different words that can be in */ 
/* a t  least one common sentence hypothesis - an ("ip) * O(n2) operation. */ 
sortedmodes = nodes sorted in increasing order by beginning point; 
For w l  := each word node in sortedmodes do { 

For 11 = wl's roles 1 t o p  do { 
rv 1 = getxole-values(r 1); 

Get the list of word nodes that have a directed edge to w l  */ 
p-recmodes = get-preceding-nodes(wl); 
connected-roles = 0; 
FIX  w2 = each word node in prec-nodes do { 

For r2 = w2's roles 1 to  p do { 
connected-roles = connected-roles U {r2) U get-arc-connected-roles(r2:); 
/* get-arc-connected-roles returns the list of roles r2 is arc-connected to  */ 
1) 

For r2 = all roles in connected-roles do { 
create arc joining r l  to  r2; 
rv2 = get~ole-values(r2); 
assign arc a matrix of size Jrvll  x lrv2( with 

entries initialized to  1 and indices from rvl  and rv2))) 
createnlatrixsupport(); /* See the algorithm in Section 4.3 */ 



Bina ry  Cons t ra in t  P ropaga t ion  on a C N  or an SLCN- an O(kb * n4) operat ion.  

{ 
/* Propagate constraints over elements of intra-arc matrices - a (;) * kb * O(n3) operation. */ 
For index = 1 to n do { /* n iterations */ 

w = ,get-wordmode(index); 
For r l  = w's roles 1 to p - 1 do { 

rv 1 = get-role-values(r1); 
For r2 = w's roles ( r l  + 1) to p do { /* (;) iterations */ 

rv2 = get~ole-values(r2); 
For r-index1 = each of the role values in rvl do { /* O(n) iterations */ 

For r-index2 = each of the role values in rv2 do { /* O(n) iterations */ 
For c = 1 to  kb do { /* kb iterations */ 

apply get-constraint(c) to the role values /* O(1) operation */ 
X = r-index1 and Y = r-index2; 

apply get-constraint(c) to the role values /* O(1) operation */ 
Y = r-index1 and X = r-index2)))))); 

/* Propirgate constraints over elements of the other matrices - a (";P) * kb * O(n2) operation. */ 
For index1 = 1 to n - 1 do { 

w 1 =: get-wordmode(index1); 
Fo r r l  = wl'sroles 1 t o p d o  { 

rs.1 = get~ole-values(r1); 
For index2 = indexl+l to  n do { 

w2 = get-wordmode(index2); 
For r2 = w2's roles 1 to p do { /* (n;P) iterations */ 

rv2 = get-role-values(r2); 
For r-index1 = each of the role values in rvl do { /* O(n) iterations */ 

For r-index2 = each of the role values in rv2 do { /* O(n) iterations */ 
For c = 1 to kb do { /* kb iterations */ 

apply get-constraint(c) to  the role values /* O(1) operation */ 
X = r-index1 and Y = r-index2; 

apply get-constraint(c) to  the role values /* O(1) operation */ 
Y = r-index1 and X = r-index2))))))) 

C N  Filtering-  an O(n4)  operat ion.  

{ 
/* Prep1:ocess- an O(n3) operation */ 
/* Get ],ole values to be deleted from arc matrices for arcs 
/* joining roles within a word- a (;) * O(n2) operation. 
For index = 1 to  n do { 

w = get-wordnode(index); 
For 11 = w's roles 1 t o p-  1 do { 

rvl = get-role-values(r1); 
For r2 = w's roles ( r l  + 1) to  p do { 

rv2 = get-role-values(r2); 
For r-index1 = each of the role values in rvl { 

if (the role value r-index1 for role r l  is not 
supported in the matrix corresponding to 

*/ 
*I 
/* n iterations */ 

/* (Pz) iteraitions */ 

/* O(n) iterations */ 
/* O(1) operation */ 



the arc of role r l  and role r2) { 
add (r-indexl, r l )  to the to-be deleted list)); 

For r-index2 = each of the role values in rv2 { 
if (the role value r-index2 for role r2 is not 

supported in the matrix corresponding to 
the arc of role r l  and role r2) { 

add (r-index2, r2) to the to-be deleted list))))) 
/* Get role values to  be deleted from arc matrices for arcs 
/* joining roles across words- an ("2+P) * O(n) operation. 

* / 
For index1 = 1 to n - 1 do { 

* / 
w l  = get-wordnode(index1); 
For r l  = wl's roles 1 to  p do { 

rv l  = get-role-values(r1); 
For index2 = indexl+l to n do { 

w2 = get-wordnode(index2); 
For r2 = w2's roles 1 to p do { 

rv2 = get-role-values(r2) 
For r-index1 = each of the role values in rvl { /* O(n) iterations */ 

if (the role value r-index1 for role r l  is not /* O(1) operation */ 
supported in the matrix corresponding to 
the arc of role r l  and role r2) { 

add (r-indexl, r1)to the to-be deleted list)); 
For r-index2 = each of the role values in rv2 { /* O(n) iterations */ 

if (the role value r-index2 for role r2 is not /* O(1) opt:ration */ 
supported in the matrix corresponding to 
the arc of role r l  and role r2) { 

add (r-index2, r2) to the to-be deleted list)))))) 
/* Loop until there are no more to be deleted - an O(n4) operation */ 
Loop until to-be-deleted-list is empty { /* O(n2) iterations */ 

pair := pop(to-be-deleted-list); 
rvl  == the role value from the pair; 
r l  = the role from the pair; 
remove rvl from role r l ;  
For r2 = all roles not equal to r l  do { 

remove the role value rvl from the arcmatrix(rl'r2); 
rv2 = get-role-values(r2); 
E x  r-index2 = each of the role values in rv2 { 

if (the role value r-index2 for role r2 is not 
supported in the matrix corresponding to 
the arc of role r l  and role r2) { 

add r-index2 to the to-be-deleted-list)))) 
1 

/* O(n) iterations */ 
/* O(1) operation */ 

/* ("iP) iterations */ 

/* O(n) iterations */ 
/* O(n) operation */ 

/* O(n) iterations */ 
/* O(1) operation */ 

SLCN Filtering- an O(n4) operation. 
{ 

/* Prepi-ocess- an O(n3) operation */ 
/* Get role values to be deleted from arc matrices for arcs joining 
/* roles within a word- a (;) * O(n2) operation. 

* / 
For index = 1 to n do { 

* / 
/* O(n) iterations */ 

w = get-wordnode(index); 
For11 = w'sroles 1 t o p - 1  do { 

rirl = get-role-values(r1); 
For r2 = w's roles ( r l  + 1) to p do { 

rv2 = get-role-values(r2); 
/* (;) iterations */ 



For r-index1 = each of the role values in rvl { /* O(n) iterations */ 
if (the role value r-index1 for role r l  is not /* O(1) operation */ 

supported in the matrix corresponding to 
the arc of role r l  and role r2) { 

add (r-indexl, r l ,  r2) to the to-be deleted list)); 
For r-index2 = each of the role values in rv2 { /* O(n) iterations */ 

if (the role value r-index2 for role r2 is not /* O(1) operation */ 
supported in the matrix corresponding to 
the arc of role r l  and role r2) { 

add (r-index2, r2, r l )  to the to-be deleted list))))) 
/* Get role values to be deleted from arc matrices for arcs joining 
/* roles across words- an (n;P) * O(n) operation. 

*/ 

For index1 = 1 to n - 1 do { 
* / 

wl  = get-wordnode(index1); 
For r l  = wl's roles 1 to p do { 

r1.l = get~ole-values(r 1); 
For index2 = indexl+l to  n do { /* ("ip) iterations */ 

w2 = get-wordmode(index2); 
For r2 = w2's roles 1 t o p  do { 

rv2 = get~ole-values(r2) 
For r-index1 = each of the role values in rvl  { /* O(n) iterations */ 

if (the role value r-index1 for role r l  is not /* O(1) operation */ 
supported in the matrix corresponding to 
the arc of role r l  and role r2) { 

add (r-indexl, r l ,  r2) to the to-be deleted list)); 
For r-index2 = each of the role values in rv2 { /* O(n) iterations */  

if (the role value r-index2 for role r2 is not /* O(1) op'eration */ 
supported in the matrix corresponding to 
the arc of role r l  and role r2) { 

add (r-index2, r2, r l )  to the to-be deleted list)))))) 
/* Loop until there are no more to be deleted - an O(n4) operation */ 
Loop until to-be-deleted-list is empty { 

item = pop(to-be-deleted-list); 
r = the role value from item to delete; 
rA = the role from item to delete r from; 
rB = the role from item joined to  rA with the arc we are deleting from; 
/* Epch role value can only remove support once from its precede and next arcs */ 
if (th.e precede and follow lists for r in rA for arcmatrix(rA, rB) are non-empty) then 

disallow (arc(rA, rB),rA, r); /* See the algorithm in Section 4.3 */ 
1 

1 
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