2,330 research outputs found

    Critical Path Scheduling Parallel Programs on an Unbounded Number of Processors

    No full text
    International audienceIn this paper we present an efficient algorithm for compile-time scheduling and clustering of parallel programs onto parallel processing systems with distributed memory, which is called The Dynamic Critical Path Scheduling DCPS. The DCPS is superior to several other algorithms from the literature in terms of computational complexity, processors consumption and solution quality. DCPS has a time complexity of O (e + v\log v), as opposed to DSC algorithm O((e + v)\log v) which is the best known algorithm. Experimental results demonstrate the superiority of DCPS over the DSC algorithm

    Mapping and Scheduling of Directed Acyclic Graphs on An FPFA Tile

    Get PDF
    An architecture for a hand-held multimedia device requires components that are energy-efficient, flexible, and provide high performance. In the CHAMELEON [4] project we develop a coarse grained reconfigurable device for DSP-like algorithms, the so-called Field Programmable Function Array (FPFA). The FPFA devices are reminiscent to FPGAs, but with a matrix of Processing Parts (PP) instead of CLBs. The design of the FPFA focuses on: (1) Keeping each PP small to maximize the number of PPs that can fit on a chip; (2) providing sufficient flexibility; (3) Low energy consumption; (4) Exploiting the maximum amount of parallelism; (5) A strong support tool for FPFA-based applications. The challenge in providing compiler support for the FPFA-based design stems from the flexibility of the FPFA structure. If we do not use the characteristics of the FPFA structure properly, the advantages of an FPFA may become its disadvantages. The GECKO1project focuses on this problem. In this paper, we present a mapping and scheduling scheme for applications running on one FPFA tile. Applications are written in C and C code is translated to a Directed Acyclic Graphs (DAG) [4]. This scheme can map a DAG directly onto the reconfigurable PPs of an FPFA tile. It tries to achieve low power consumption by exploiting locality of reference and high performance by exploiting maximum parallelism

    Hardware schemes for early register release

    Get PDF
    Register files are becoming one of the critical components of current out-of-order processors in terms of delay and power consumption, since their potential to exploit instruction-level parallelism is quite related to the size and number of ports of the register file. In conventional register renaming schemes, register releasing is conservatively done only after the instruction that redefines the same register is committed. Instead, we propose a scheme that releases registers as soon as the processor knows that there will be no further use of them. We present two early releasing hardware implementations with different performance/complexity trade-offs. Detailed cycle-level simulations show either a significant speedup for a given register file size, or a reduction in register file size for a given performance level.Peer ReviewedPostprint (published version

    CASCH: a tool for computer-aided scheduling

    Get PDF
    A software tool called Computer-Aided Scheduling (CASCH) for parallel processing on distributed-memory multiprocessors in a complete parallel programming environment is presented. A compiler automatically converts sequential applications into parallel codes to perform program parallelization. The parallel code that executes on a target machine is optimized by CASCH through proper scheduling and mapping.published_or_final_versio

    Parallelizing with BDSC, a resource-constrained scheduling algorithm for shared and distributed memory systems

    No full text
    International audienceWe introduce a new parallelization framework for scientific computing based on BDSC, an efficient automatic scheduling algorithm for parallel programs in the presence of resource constraints on the number of processors and their local memory size. BDSC extends Yang and Gerasoulis's Dominant Sequence Clus-tering (DSC) algorithm; it uses sophisticated cost models and addresses both shared and distributed parallel memory architectures. We describe BDSC, its integration within the PIPS compiler infrastructure and its application to the parallelization of four well-known scientific applications: Harris, ABF, equake and IS. Our experiments suggest that BDSC's focus on efficient resource man-agement leads to significant parallelization speedups on both shared and dis-tributed memory systems, improving upon DSC results, as shown by the com-parison of the sequential and parallelized versions of these four applications running on both OpenMP and MPI frameworks

    Grain-size optimization and scheduling for distributed memory architectures

    Get PDF
    The problem of scheduling parallel programs for execution on distributed memory parallel architectures has become the subject of intense research in recent, years. Because of the high inter-processor communication overhead in existing parallel machines, a crucial step in scheduling is task clustering, the process of coalescing heavily communicating fine grain tasks into coarser ones in order to reduce the communication overhead so that the overall execution time is minimized. The thesis of this research is that the task of exposing the parallelism in a given application should be left to the algorithm designer. On the other hand, the task of limiting the parallelism in a chosen parallel algorithm is best handled by the compiler or operating system for the target parallel machine. Toward this end, we have developed CASS (for Clustering And Scheduling System), a. task management system that provides facilities for automatic granularity optimization and task scheduling of parallel programs on distributed memory parallel architectures. In CASS, a task graph generated by a profiler is used by the clustering module to find the best granularity al which to execute the program so that the overall execution time is minimized. The scheduling module maps the clusters onto a. fixed number of processors and determines the order of execution of tasks in each processor. The output of scheduling module is then used by a code generator to generate machine instructions. CASS employs two efficient heuristic algorithms for clustering static task graphs: CASS-I for clustering with task duplication, and CASS-II for clustering without task duplication. It is shown that the clustering algorithms used by CASS outperform the best known algorithms reported in the literature. For the scheduling module in CASS, a heuristic algorithm based on load balancing is used to merge clusters such that the number of clusters matches the number of available physical processors. We also investigate task clustering algorithms for dynamic task graphs and show that it is inherently more difficult than the static case

    On exploiting task duplication in parallel program scheduling

    Get PDF
    One of the main obstacles in obtaining high performance from message-passing multicomputer systems is the inevitable communication overhead which is incurred when tasks executing on different processors exchange data. Given a task graph, duplication-based scheduling can mitigate this overhead by allocating some of the tasks redundantly on more than one processor. In this paper, we focus on the problem of using duplication in static scheduling of task graphs on parallel and distributed systems. We discuss five previously proposed algorithms and examine their merits and demerits. We describe some of the essential principles for exploiting duplication in a more useful manner and, based on these principles, propose an algorithm which outperforms the previous algorithms. The proposed algorithm generates optimal solutions for a number of task graphs. The algorithm assumes an unbounded number of processors. For scheduling on a bounded number of processors, we propose a second algorithm which controls the degree of duplication according to the number of available processors. The proposed algorithms are analytically and experimentally evaluated and are also compared with the previous algorithms. © 1998 IEEE.published_or_final_versio
    corecore