Hardware Schemes for Early Register Release

Teresa MonrealT, Victor ViﬁalsT, Antonio Gonzalez* and Mateo Valero*

TDepartamento de Informatica e Ing. de Sistemas
Universidad de Zaragoza

e-mail: {tmonreal,victor}@posta.unizar.es

Abstract

Register files are becoming one of the critical components
of current out-of-order processors in terms of delay and
power consumption, since their potential to exploit
instruction-level parallelism is quite related to the size and
number of ports of the register file. In conventional register
renaming schemes, register releasing is conservatively
done only after the instruction that redefines the same
register is committed. Instead, we propose a scheme that
releases registers as soon as the processor knows that there
will be no further use of them. We present two early-
releasing hardware implementations with different
performance/complexity trade-offs. Detailed cycle-level
simulations show either a significant speedup for a given
register file size, or a reduction in register file size for a
given performance level.

1. Introduction

Dynamic scheduling, also known as out-of-order execution,
allows instructions to be executed as soon as their operands
are ready bypassing prior instructions in the sequential
program order. This is achieved by means of register
renaming [11][21], which remove false register-
dependences (output and anti dependences) creating a new
register version for each register destination. Register
versions are written only once, and read as many times as
needed to satisfy flow dependences. Among the versions of
a given register kept inside the processor, all but the oldest
one are speculative and could become useless if an
exception or a branch misprediction occurs.

Register versions can either be centralized in a single file,
or distributed among different data structures. In this work,
we are interested in improving the utilization of merged
register files [21]. That is, register files that merge together
committed and non-committed versions, as happens in
processors such as MIPS R10K [25]. To differentiate ISA
registers from rename registers (holding versions), they are
called logical and physical registers, respectively.

To keep pace with the general processor trend
(increasing number of in-flight instructions and functional
units), register files are required to offer more registers, to
be reachable in a single cycle and from more ports [18][19].
All of this, should be done ideally without compromising

*Departarnent d’Arquitectura de Computadors
Universitat Politécnica de Catalunya

e-mail: {antonio,mateo}@ac.upc.es

the growing frequencies of the out-of-order execution core,
and further consuming a reasonable amount of power [26].
In fact, Simultaneous Multithreading, a feasible path for
such future processors, can only achieve all its performance
potential with large register files able to keep values from
several threads [23].

Many works assume that the register file can impact on
the processor cycle time [1][5][6][7] and is one of the most
power-consuming structures [26]. Its size (P registers) and
number of ports (7 read and write ports) determine silicon
area, power consumption and access time [20]. Therefore, a
direct way to reduce register file delay is reducing P, T, or
both. To do that, common approaches trade off IPC
decrease against IPS (instructions per second) increase.

A first approach address the internal file organization
basically without modifying the interface with the
functional units. Some examples are the Minimally-Ported
Banked register file [1] or the two-level register hierarchy
managed in an inclusive [5] or exclusive [1] way.

A second approach suggest clustered microarchitectures,
where the register file is sliced in banks, each bank directly
feeding a functional unit cluster. Many of these solutions
have been targeted to decentralize several critical structures,
not only the register file. One example is the Dependence-
Based architecture [18], where each bank is a complete
copy of the register file as in the Alpha 21264 two-cluster
case [12]. Other examples are the Multicluster architecture
[7] (each bank is assigned a subset of the ISA registers) and
related optimizations on assignment heuristics [2][4], or the
Energy-Efficient Multicluster architecture [26] (each bank
contains a subset of physical registers).

Finally, a third approach aims to act on the mechanism
that controls the allocation or release of physical registers,
trying to reduce the average number of required registers. In
general, after applying some control improvement, a
reduction in P is enabled without any IPC loss. Some works
suggest delaying the allocation of registers until the
functional units supply the results, either in a restricted form
(dynamic result renaming [24]) or in a more flexible way
(virtual registers [16]).

It is known that the conventional way of releasing is
inefficient since registers are retained longer than strictly
needed [17][6]. A previous approach to release registers
early was suggested by Moudgill et al. in [17]. Their

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

implementation is based on counters of pending reads but
does not support precise exceptions. Afterward, Farkas et
al. measured the gains of an imprecise early release policy,
but no implementation was proposed [6].

Our contribution is to introduce and evaluate, hardware-
only mechanisms devoted to release physical registers
earlier, which take into account branch speculation and
enable precise exception recovery. Our proposals can be
applied to reduce the register file size, and so its access time,
at the expense of introducing overhead structures that are
not on critical timing paths. Alternatively, for register files
that are already small enough to fit in the cycle time we can
maintain P and use early release to increase IPC.

The paper is structured as follows: Section 2 presents the
background for building the mechanisms and evaluates
their potential gain. Section 3 focuses on a simple but
limited mechanism, and Section 4 extends it taking into
account control speculation. Methodology and results are
presented in Section 5. We discuss related work in Section
6 and offer concluding remarks in Section 7.

2. Conventional Release Policy

First, we point out that register files can be dimensioned
either in a loose or in a tight way. Next, we review the
conventional policy for allocating and releasing registers
and then, we give experimental evidence of its low
efficiency.

To exemplify, we show four processors with merged
register files, namely MIPS R10/12K [25][8], Alpha 21264
[12], and Intel P4 [9]. Table 1 shows their number of
physical registers (P) and ports (7). It also shows the size
(N) and name of the structure that reorders the uncommitted
instructions.

Table 1. Out-of-order processors with merged register files.

MIPS | MIPS | ALPHA | INTEL
R10K | R12K 21264 P4
P =# of Phys. Registers in Int File 64 2x 80 128
T'=# of Read and Write Ports TR 3W 2x (4R 6W)? n.a.
P =# of Phys. Registers in FP File 64 72 128
T'=# of Read and Write Ports SR 3W 6R 4W n.a.
N = Reorder Structure Size 3? 4$ 89 126 pops
Reorder Structure N Active | Active In-Flight Reorder
uctare fame List List | Window | Buffer

a. The integer register file has been replicated because a single file with 14 ports (8
read plus 6 write) could not be implemented without compromising performance.

MIPS RI10K supports up to N=32 uncommitted
instructions in its Active List. Since MIPS ISA has L=32
logical integer registers and P=64 physical registers, this
processor never stalls because of the lack of physical
registers (P = L + N). By contrast, in MIPS R12K and Alpha
21264 a long enough instruction sequence without branches
and stores can stall decoding (P <L + N). If this situation

arises IPC may temporarily drop. We say that a loose
register file has P~ L + N. On the other hand, we call the
second alternative a tight register file because a sequence
with less than N instructions writing P-L registers runs out
of physical registers, forcing the processor to stop filling the
issue window. Intel P4 has a loose register file (128 phys.
8 logical + 126 uncomm.) unless the inflight flag registers
were renamed using physical registers. In this case the file
could become very tight.

Loose designs exploit all the ILP attainable by allowing
the whole instruction window to be filled under any
condition, whereas tight designs may contribute to reduce
processor cycle time if the register file is located in a critical
timing path.

We assume a renaming mechanism similar to that of
processors in Table 1. Figure 1 shows the involved
components: Map Table, Reorder Structure, Free List, and
In-Order Map Table. The Map Table (MT) keeps the logical
to physical mapping [11]. The destination physical register
identifiers (pd) are supplied by the Free List.

Free List

Instr MapTable

In-Order

fetch MapTable

Reorder
Structure

rd = rs1op rs2 | | old_pd| rd| pd| |

current-version
physical register
identifier

previous-version
physical register
identifier

logical register
identifier

Figure 1. Allocate/release mechanism. Detail of a ROS entry.

The Reorder Structure (ROS) keeps information about
all uncommitted instructions in program order. We assume
a FIFO behavior implemented with SRAM and read/write
pointers. Therefore, a ROS address can be used as a unique
instruction identifier.

While instructions are decoded, three fields are written
into the ROS bottom entry: <old_pd, rd, pd>. The identifier
of the physical register containing the previous version
(old_pd) is read from MT. The logical and physical
identifiers of the destination register (the current version)
are, respectively, rd and pd!.

As instructions commit, the pd and rd entries are used for
updating the In-Order Map Table (IOMT), and the old_pd
identifier is added to the Free List. This is the way
conventional release acts [17]. The IOMT keeps the logical
to physical architectural mapping. When an exception has

1. Each ROS entry stores the result identifier, as in an indirect Reorder
Buffer. But it also has the previous-version identifier, as in an indirect
History Buffer [22]. So we adopt ROS as a more general term.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

to be serviced, the IOMT avoids rolling back the ROS to
recover the architectural state. In Intel P4, the IOMT is called
Retirement Register Alias Table [9].

Physical registers can be Free or Allocated, and
Allocated registers can be either Empty, Ready, or Idle
according to the usefulness of their content (Figure 2a). We
say a physical register is Empty from the moment it is
allocated until it is actually written. We say a register is Idle
from the commit of the instruction using that register for the
last time, until the commit of the instruction producing the
next version. An Allocated register is Ready when it is
neither Empty nor Idle.

Figure 2b shows the execution of a program sample,
where the physical register p7 experiences every state.
Instruction 7 writes logical register r1, which is renamed to
physical register p7. Later on, instruction LU (last-use)
reads rl for the last time. Finally, instruction NV (next-
version) rewrites rl. As Figure 2b shows, p7 will not be
released until instruction NV commits, being it Allocated
and Idle from LU commit to NV commit.

Empty
instruction decode |

(b) '

Free Allocated Ready
)

I value computed

I last-use commit
next-version commit *

Idle

p7 state_ FREE ALLOCATED X FREE
. EMPTY READY IDLE |
E— j
iiorl=.. _IE]______ : :
r1 renamed ! |
(a) top7 ! !
LU 13=12+r1 __EL _______ !
T no use '
ofr '

v

NV:rl=.. - ——— - — JE[________
p7is

released

Figure 2. Breakdown of the ALLOCATED state and example of
state evolution of the physical register p7.
This policy performs poorly because of two reasons:

* Registers are allocated too early. Empty registers do not
contain information. Mechanisms which delay
allocation try to remove this state [24][16].

* Registers are released too late. Idle registers are useless.
Section 3 and Section 4 focus on mechanisms directed to
release registers entering the Idle state quickly. Precise
recovery will be covered in detail in Section 4.3.

Figure 3 shows the average number of Allocated registers
being either in Empty, Ready or Idle states in conventional
renaming for a SPEC 95 subset. We assume a processor
with a tight register file with 96 physical registers (L=32,
P=96int + 96FP, N=128). We consider only integer
registers for integer programs and FP registers for FP

Allocated

100 7 Eempty Oready Midle

* |

LT

comp gce

number of integer registers

perl Amean
integer
100 7
80

60 7

40

number of FP registers

20 7

mgri tomc appl swim hydr Amean
floating point

Figure 3. Number of Allocated registers being either in Empty,
Ready, or Idle states in a conventional renaming.

programs. The experimental framework is detailed in
Section 5.

On average, for our workload, the late release policy of
conventional renaming increases the number of used
registers (empty + ready) by 45.8% for integer programs,
and by 16.8% for FP programs, as shown by the idle bar in
Figure 3.

3. Basic Mechanism

Figure 4.a shows an example where LU instruction reads for
the last time rl. Figure 4.b shows the less frequent case
where LU instruction writes r3 without further use until the
NV instruction comes.

The basic idea is to tie up the physical register release
with the commit of the instruction using it for the last time
in program order. To do so, first we identify the LU
instruction (when decoding the NV instruction) and second,
an early release of the physical register is scheduled for the
LU instruction commit. Note that, if the LU instruction is
already committed when decoding its NV pair, the
corresponding physical register can be released
immediately.

If a speculative NV instruction has to be squashed we
need to undo its scheduling. Here, two distinct cases arise:

*Case 1. There are no pending branches between
instructions LU and NV. This occurs if both LU and NV
instructions belong to the same basic block. It can also
occur if LU and NV instructions are in different basic
blocks but all the intervening branches are already
executed and their conditions and target addresses
verified at NV decode time.

* Case 2. When decoding the NV instruction, there are
still pending branches between it and its previous LU
instruction pair.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

i: rl = ; rl renamed to p7 LU: r3 = r5 + r9;13 renamed to p7
LU: r3 = r2 + rl no use
Inouse of 13
of rl NV: x3 = ...
NV: rl = ...

(@) (b)
Figure 4. Two examples where the physical register p7 can be
released when the LU instruction commits.

This Section introduces an implementation of a basic
mechanism dealing only with the first case. Later on,
Section 4 extends it to cover also the second case.

The basic mechanism will only schedule early releases if
an LU-NV instruction pair is safely recognized when the
NV instruction is decoded (Case 1). In the remaining cases,
the conventional releasing policy outlined in Section 2 is
applied. To implement the basic mechanism any instruction
should have the ability to release its physical source (Figure
4.a) and destination (Figure 4.b) registers at commit time.
The ability to disconnect the (conventional) release of the
previous-version register is also needed, in case such
register is going to be released early.

3.1. Hardware Resources

Figure 5 shows an implementation based on adding fields to
the Reorder Structure (ROS) and Map Table (MT). The
extended ROS has now the following fields:

*r1,r2,rd: logical register identifiers.

* p1, p2, pd: physical register identifiers.

eold_pd: physical identifier of the previous-version
destination register.

erel_old: previous-version release bit. If reset at
commit time, old_pd will not be released.

s rel1, rel2, reld: early-release bits for p1, p2, and pd,
respectively. When set at commit time, they force the
corresponding physical register release.

At decode/rename time the previous-version release bit
is set and all the early-release bits are reset.

The MT extension is better described as a separate
structure called Last-Uses Table (LUs Table). LUs Table
identifies instructions using a given register for the last
time. Every entry has the following fields:

*ROSid: for each logical register, it keeps the
identifier of the instruction using it for the last time, that
is, the LU instruction.

* Kind: kind of register use: srcl, src2, dst.

*C: reports whether the LU instruction is still in
the pipeline (C=0) or has already been committed (C=1).

Once this table supplies the ROS identifier of an LU
instruction, an early release can be scheduled by setting the
corresponding early-release bit. As is the case for MT, we
assume that an LUs Table copy is made at each branch
prediction, so that a branch misprediction recovery can
retrieve the proper copy [10].

Map Table Last Uses Table

logic ROSid of LU instr. | src/dst | commit

reg. #

ROSid | Kind| C

Extended ROS

2 Logical Register id.

opaef | | [1 |
rel_old <= I I I I]
commit p
p2 Physical Register id.
pd
rel1 <=
rel2 4E— 1 ly-rel bits I

reld

Figure 5. Basic mechanism. The shaded areas highlight the
fields added to extend the ROS.

3.2. Control

Control steps are located at decode, rename and commit
stages. We describe them in reverse order.

Commit: C bit update and register release. When
instruction i commits, its logical register identifiers are
available in the ROS head. We index LUs Table with these
identifiers and read the ROSid fields comparing them with
the 7 identifier and, where a match is found, the commit bit
is set (C=1).

So, we record that a potential LU instruction has been
committed’. Note that this action on bit C has to be
extended to all LUs Table copies to achieve a proper branch
misprediction recovery.

In parallel, the release bits drive physical register release.
Up to four identifiers can be supplied to Free List: p1, p2,
pd (early release) and old_pd (conventional release).

Renaming 1: LUs Table update. To record register uses
properly, up to three LUs table entries have to be updated for
each renamed instruction. The instruction ROS address is
kept in ROSid, the register role is kept in Kind (srcl, src2 or
dst), and the C bit is reset. So, the identity of the instruction
using a given logical register for the last time is recorded in
program order. Figure 6.a shows an example of this step.

Renaming 2: release scheduling or register reuse. For
each instruction having a destination register -a NV
instruction-, this step ends either scheduling an early release
or reusing the previous-version physical register.

To do so, the logical destination register of NV is used to
look up the LUs Table. Let’s call LU the found instruction,
and LUid its ROS address. Next, if there are no branches
pending verification between the NV and LU instructions,
we proceed as follows:

2. Alternatively, we can access associatively to all ROSid fields with the
i identifier, setting bits C in the entries where a match is found. With this
support, the r1 and r2 fields in the ROS would no longer be needed.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

(r9 last-use) LU: r3 = r5 + r9 ———» p8 = p3 + p7
rename

(r9 next-version) NV: r9 = ...
LUid NVid
5
ROSid Kind C 9 ROS
3 r9
Luid [0 |0 [T [[Jer] oldpd
- T T T3]
Lud | 1 |0 & commit rel_old
p3
LUid 2 0
p7 physical regs.
p8
Map LUs Table
Table :::;:::‘I#:‘:’: early-release bits
reld &°
(a) | (b)

Figure 6. a) Map Table and LUs Table after renaming
instruction LU. b) Decoding of instruction NV: the LUs Table is
looked up, NV disables itself p7 release by resetting rel_old,
and an early release of p7 is scheduled for instruction LU.

« If LU instruction is still in the pipeline (C=0), we set in
ROS the suitable early-release bit: relx[LUid]=1, where
x is 1, 2 or d. We also reset the previous-version release
bit for NV: rel_old[NVid]=0. Figure 6.b illustrates this
step.

* Otherwise, if LU instruction is already committed (C=1)
we can release immediately the physical register
indicated in the Map Table, resetting as before the
rel_old release bit. In fact, we can reuse the same
physical register leaving the mapping untouched and not
reclaiming any new register.

3.3. Performance

The basic mechanism is simple but its ability to release
register earlier is limited. Its performance is noticeable with
tight register files. With 64int+64FP and 48int+48FP
physical registers, it achieves an average speedup over
conventional release of around 3% and 6%, respectively, for
numerical programs. For integer programs, the average
speedup is negligible. However, processors with very tight
register files benefit from early release in both application
types: a 40int+40FP register configuration experiences 5%
speedup for integer codes, and 9% for floating-point.
Simulation details are shown in Section 5.

4. Extended mechanism

In the basic mechanism any time a register redefinition is
decoded with some previous unresolved branch, the early-
release opportunity is lost. We show next an extended
mechanism that overcomes this problem by handling
conditional releases. The idea is quite similar to that of a
branch stack of Map Table copies used to recover from
branch misprediction. The proposed implementation
definitively disconnects the register release from the

commit of the NV instruction. This saves the storage
required for the old_pd and rel_old fields in the ROS.

4.1. Hardware resources

Figure 7 shows all the components making up the extended
mechanism. From the basic mechanism, we maintain the
Physical Register Identifiers and the Early-Release bit
array, calling them PRid and RwCO (Release when
Commit), respectively.

The key structure is a Release Queue (RelQue). In the
vertical dimension this queue acts as a FIFO with as many
levels occupied as branches pending confirmation are.
Therefore, it has to be sized with as many levels as pending
branches the processor supports.

A given RelQue level keeps schedulings of conditional
releases. A release is conditional whenever the originating
NV instruction is speculative. Level number n keeps the
schedulings depending on the validation of the n oldest
pending branches. Each level in the RelQue comprises two
structures: a bit-vector RWNSx (RwWNS1, RwNS2, ...) and a
3-bit array RwCx (RwC1, RwC2, ...).

RwNSx (Release when Non-Speculative), keeps the
conditional releases for the already committed LU
instructions in a decodified form (1 physical reg. = 1 bit).

RwCx (Release when Commit), keeps the conditional
releases to be synchronized with the commit of LU
instructions still in the pipeline. The identity of the physical
register to be released is kept codified in PRid. To deal with
the in-order commit requirement, all the RwCx structures
have to support right to left shift operation in the horizontal
dimension, as the ROS has.

| ROS size |
I |

L PRid

p2 ooo

pd Physical Register identifiers
commit
rell rel2 reld

Mz
B4—F RwCO early-release bits:i:ﬁ

L e e e e e e e i 1

: i — 11 [RwCl !

| RwNS1 1 fixed
- i Y E— HEAD

I I

, RWNS2 RwC2 |

1 commit coe <=

1 | TAIL

| I 1T 1 [T RwC 1

1 RwNSmax W max 7N 1

| i |

1 1

Phys. Regs. bits

RELEASE QUEUE

Figure 7. Extended mechanism.

4.2. Control

The basic idea is to stack up a new level in the RelQue each
time a branch is decoded. The NV instructions which are
decoded after that branch look up the LUs table, identifying
LU instructions and scheduling releases, in RWNSx if the

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

LU instruction is already committed, otherwise in RwCx. As
branch predictions are confirmed, the conditional releases
on both RWNSx and RwCx move towards RwCO. In a
misprediction the corresponding entry in the RelQue and all
the younger ones are cleared, squashing the conditional
releases previously scheduled by the mispredicted path.
Next we show in detail the control steps needed to
manage the RelQue and release registers. We assume
branches can be verified out of order. For the sake of clarity,
we assume that the RelQue FIFO head is at a fixed location,
marking the last occupied level with the pointer TAIL.

+ Step 1. Branch instruction decode. A new level with all
its bits reset is appended to the RelQue by simply
increasing the TAIL pointer.

Step 2. Speculative NV instruction decode. The
RelQue level pointed by TAIL is marked with a
conditional release for a given physical register p. Two
cases can arise for an NV instruction with n pending
branches in front of it: first, if the LU instruction is
already committed, the bit vector RwWNSn is marked
(RWNSn[p]=1). Second, the bit array RwCn is marked
(RwCnl[LUid]relx=1, where x =1, 2 or d).

Step 3. Branch misprediction. The prediction for the
branch number n was wrong. All levels in the RelQue
from n to TAIL are cleared. Therefore, TAIL is left
pointing to the n-1 level.

Step 4. Branch confirmation. The prediction for the
pending branch number # is found to be correct. All the
releases located between the entries n and TAIL are
moved towards RwCO (see example in Figure 8.a). At
the same time entry n is ored with entry n-/. There is
some additional work to case n=1 which will be dealt

with later on.

Step 5. Commit effects in the Release Queue. The
RelQue, also needs a FIFO right-to-left management in
the RwCx structures. So, all the bits of every level in the
RwCx bit arrays have to be shifted left any cycle as many
positions as instructions are committing.

An LU instruction can commit before its NV instruction
pair becomes non-speculative. In this case, all
schedulings of committing instructions are moved from
the commit head of RwCx to RwNSx because the branch
prediction could still be confirmed (see Mark in Figure
8.b). This movement requires decoding the register
identifiers located at the ROS head.

Step 6. Physical register releasing. Putting all the
previous steps together, registers can be released at the
commit stage of LU instructions and each time the oldest
branch is confirmed.

In the first case, the registers scheduled in the RwCO
entries of the committing instructions are released (see
Commit Release in Figure 8.b). In the second case, the
registers scheduled in RwNS1 are released when the

t:‘:‘: RwC0 :ﬁ:‘
_____________________ branch
r —— number 2
o s T —
: RWNSI i RwCl N :1svcnﬁcd
Il
o H O 1 or *l
[~]b E=F rva2 oy ™)
[[T 1
b e ft '
| |)
1 eee
b e e e e e e e e e e e e e e e e e e e = - o
(a) RELEASE QUEU! T
committing
instructions
PRid
RwCO ==
——————— 1
[}
RwCl E==|
I 1
=
I 1
==
1
L el e e e e T o
(b) RELEASE QUEUE
PRid
Branch-Confirm oldest
Release ﬁ:’: RwC0 :ﬁ:‘ branch
is verified
L | el e e e e @)= = = 4
e e M
| RwNsi]mov £ h
 —— 1T [T T mov
RwC2 I :‘:‘:‘
I RwNS2]Lﬁ & !
| e [amovy |
|
1 eee
L e e e e e e == == 3
(© RELEASE QUEUE Tam.

Figure 8. a) The second oldest branch is confirmed, b) RwNSx
marking and Commit Release, c) oldest branch confirmation
triggers a branch-confirm release.

oldest branch prediction is confirmed (see Branch-

Confirm Release in Figure 8.c). This is the additional

work we mentioned for n=1 in Step 4.

With regard to non-speculative NV instruction decoding,
the same rules as in he basic mechanism apply: if the LU
instruction found is already committed, then releasing
proceeds immediately, otherwise the release is scheduled in
the RwCO level.

Finally, note that the total number of set bits in the whole
RelQue is bound by the ROS size. Indeed, there are exactly
as many bits set as non-committed instructions with
destination registers are. Therefore, if we implement the
RelQue as a true two-dimension shift register, most of the
time the shifted values are zeroes. This is because when
estimating the consumption of the mechanism we can safely
neglect the RelQue contribution (Section 4.4).

4.3. Precise exceptions

Between the last-use of a logical register » (LU instr.) and
its closest redefinition (NV instr.), an exception can appear
once the current version of 7 has been lost by an early
release action.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

The exception handler saves the PC of the instruction to
execute (or re-execute) it later. It also saves all the logical
registers into the Process Control Block if the exception
requires a context switch. In doing this, the handler could
store for » a value that may be different from the last value
stored in that logical register. Later on, when context is
restored the same -incorrect- value is stored back in ». The
point here is that the value attached to » does not really
matter because the early releasing hardware only discards a
version if it is guaranteed that the first use of r is a write.
Therefore, we can conclude that our system does not strictly
hold the usual condition to be precise:

“An interrupt is precise if the saved process state
corresponds with a sequential model of program execution
where one instruction completes before the next begins”
[22].

However, this definition of precise exceptions is
sufficient but not necessary to guarantee a proper recovery.
The optimization we propose is safe in that these incorrect
values are guaranteed not to be used by the program. Similar
optimizations in software were proposed elsewhere [13].

4.4. Implementation remarks

The key structure of the Extended mechanism is the LUs
Table. It can be implemented as a heavily ported SRAM,
requiring 32 read and 24 write ports for an 8-way
superscalar processor (P=32 entries, 7=56 ports, word size=
9 bits). To assess its impact on cycle time and consumption,
we use the delay and power model of Rixner et al. for a
0.18um technology [20]. Figure 9 shows the access time
and energy for the LUs Table. The same figures are also
computed for the integer and FP register files considered for
the aggressive processor evaluated in the next Section (77,
=44, T;,=50), varying P from 40 to 160 physical registers.

As can be seen, the LUs Table delay is clearly below any
register size. In particular, it is a 26% less than that of the
smaller integer file. With regard to consumption, the LUs
Table requires only a 20% of the least demanding file.

We can use early release as a means to reduce register
file requirements for a given performance level. For

5000

(a) 4500

193,2pJ

08 0
PR ESOS P PP L DD E G
number of registers.

Figure 9. Access time and energy consumption of LUs Table
and register file vs number of registers.

\\\\\\\

example, we can move from a 64int+791fp to a 56int+72fp
configuration while maintaining IPC (see next Section).
When comparing the energy consumption of these two
alternatives, we have the following:

Econy (RFg4intRF795,) = 3850p],
and for early release:

Ecarly (RF5gintRF725,+2xLUsTable) = 3851pl.
Therefore, the energy balance is neutral. Regarding storage
cost, it is quite affordable in the context of a high-
performance microprocessor. As an example, an Alpha
21264 will need about 1.22 KBytes to support the extended
mechanism (ROSsize = 80, physical identifier = 8bits, # of
physical regs. = 80+72 = 152, # of pending branches = 20).
The int+fp LUs Tables will further add around 128B.

5. Evaluation and results

Early register releasing has been evaluated by using
SimpleScalar v3.0 [3]. The out-of-order simulator has been
modified to include physical register files (integer and FP)
which are handled by the considered release policies. The
main parameters of the microarchitecture are in Table 2.

Table 2. Processor parameters.

Parameter Value
Fetch width 8 instructions (up to 2 taken branches)
L1 I-cache 32 KB, 2-way set-associative, 32 byte lines, 1 cycle hit time
Branch prediction 18-bit gshare, speculative updates, up to 20 pending branches
ROS size 128 entries
Functional Units 8 Simple int (1); 4 int mult (7); 6 simple FP (4); 4 FP mult
(latency) (4); 4 FP div (16); 4 load/store

Load/Store Queue |64 entries with store-load forwarding

out-of-order issue. Loads are executed when all previously
store addresses are known

40-160 int / 40-160 FP (32 int / 32 FP logical)

Issue mechanism

Physical Registers

L1 D-cache 32 KB, 2-way set-associative, 64 byte lines, 1 cycle hit time
L2 Unified Cache 1 MB, 2-way set-associative, 64 byte lines, 12 cycles hit time
Main Memory unbounded size, 50 cycles access time

Commit width 8 instructions

Ten randomly-chosen benchmarks from the Spec95 suite
are used: five integer and five FP programs. All programs
were simulated to completion (by changing the reference
inputs) excepting tomcatv, for which the initial part reading
a huge input file was skipped. Table 3 lists the programs,
inputs, and the number of executed instructions.

Table 3. Used benchmarks. We ran Compaq/Alpha Fortran
and C compilers with -O5 for Fortran and -O4 -migrate for C.

Application Inputs exec inst (M)
compress 40000 e 2231 170
gcc genrecog.i 145
int go 99 146
li 7 queens 243
perl scrabbl.in 47
mgrid [test, replacing two first lines to 5 and 18 169
tomcatv |test 191
FP applu train, changing dt=1.5¢-03 and nx=ny=nz=13 398
swim train 431
hydro2d [test (replacing ISTEP=1) 472

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

Integer
2,8

2,6
2,4 A
2,2 A
2,
1,8 1
1,6 1
1,4 1
1,2 A
1,

IPC

comp gcc go li perl Hm
2,87
267 FP
2,4
2,21

2
1,8
1,6
1,4
1,2

1 -

Oconv
Hbasic
M extended

IPC

mgr tomc appl swim hydr Hm

Figure 10. IPC of early releasing (basic and extended
mechanisms) vs. conventional (conv) for 48+48 register file.

5.1. Results

First, we observe the performance impact of early releasing
in a processor with very tight register files of 48int + 48FP
registers. Figure 10 shows the average number of
instructions committed per cycle (IPC) for each benchmark,
as well as the harmonic mean (Hm) for integer and FP
programs. Conventional releasing (conv) is compared with
our basic and extended mechanisms (basic and extended,
respectively).

The performance gains with early releasing for FP codes
are much more significant than for integer programs. Basic
provides an average speedup over conv of 6% for FP codes,
whereas for integer benchmarks the speedup is negligible.
However, extended provides an average speedup over conv
of 8% and 5% for FP and integer codes, respectively.

These are expected results, since in general FP programs
have a much higher register pressure and integer programs
are branch-intensive. Remember that branches limit the
effectiveness of early releases by delaying their effects until
the corresponding verification is done.

Next, we will show how early release performs under
different conditions of register pressure. We consider a
wide range of register file sizes, plotting the achieved IPC
for all policies in Figure 11.

A first remarkable point is the low register pressure in
integer codes. For them, a loose register file has no sense,
with or without early release.

Excluding loose designs, early release always has a
performance advantage, being the difference more
sustained for FP codes. Moreover, when comparing basic

Integer FP

28 28

26 26

24 24

22 22

IPC
~
IPC
~

—e—conv
16 —a—basic 1,6
—a—extended

22BINE8BL8ITRES 40 48 56 64 72 80 88 96 104 112 120 128 160

number of registers number of registers

Figure 11. IPC harmonic mean vs number of physical
registers for conv, basic, and extended.

with extended, we can realize that extended is specially well
suited for integer codes, whereas for FP codes both
mechanisms behave similarly.

FP codes experience significant gains with tight register
files between 40 and 104 registers. In this range, extended
gives a speedup smoothly decreasing from 10% to 2%
(from 9% to 1% in basic). However, programs with high
register pressure can experience much larger figures with
extended;, for instance hydro2d gets 12% with 40 registers
and fomcatv gets (16%, 12%, 8%) with (40, 56, 88)
registers, respectively.

Integer codes benefit from early release, but only for very
tight register files, roughly between 40 and 64 registers.
Within this range, extended gives a speedup decreasing
from 11% to 2% (from 5% to 0% in basic).

Alternatively, we can use early release as a means to
reduce register requirements for a given performance level.
Table 4 shows several register configurations giving the
same IPC, along with the saved storage.

Table 4. Register file sizes giving equal IPC.

FP codes int codes
conv extended saved % conv extended saved %
69 64 7.2% 64 56 12.5%
79 72 8.9% 72 64 11.1%
6. Related Work

Another approach intended to release registers early was
suggested by Moudgill et al. in [17]. In that work, they
suggest releasing physical registers eagerly, as soon as LU
instructions complete out of order. Last-use tracking is
based on counters which record the number of pending
reads for every physical register. This initial proposal does
not support precise exceptions since counters are not
correctly recovered when instructions are squashed, and
was not evaluated. Later on in the same paper, they present

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

the simplified approach which we are referring to all the
time as “conventional release”.

Farkas et al. compare an imprecise early release model to
the conventional one [6]. They propose conditions to free
registers that are quite similar to the ones we use for the
basic mechanism. However, they are imprecise because the
register release is done when the LU instruction completes
execution, instead of waiting for its commit. Besides, no
implementation was proposed for this model.

Lozano and Gao [14] suggest an extension to register
renaming in which the compiler identifies some LU
instructions. So, their mechanism prevents register versions
from updating the register file if they have short lifetimes.
The compiler identifies such last-uses and the mechanism
allows a register file traffic reduction, but the concepts are
not applied to register releasing. Moreover, they apply their
solutions only inside basic blocks.

Other researchers also use the compiler to detect LU
instructions in order to release physical registers [13][15].
The compiler can identify registers containing dead values
and inform the hardware. To do this, a change in the ISA is
required, either defining extra instruction bits or adding new
instructions, so that the compiler can schedule releases.
Besides, the compiler has a limited knowledge of the
dynamic control flow, and the release scheduling must be
conservative. By contrast, hardware solutions have the
potential to dynamically change a LU identification,
releasing more registers early.

7. Conclusions

Current register renaming schemes release physical
registers in a conservative way, which unnecessarily
increases the register requirements of out-of-order
processors. We envision early release as another design tool
to either shrink the register file and adjust its access time to
the cycle time (both for tight and loose systems), or increase
IPC while maintaining size (for tight systems).

We have introduced two mechanisms of increasing
complexity and performance in order to release registers
early. Such mechanisms support precise exception recovery
and are out of critical timing paths.

Our evaluation shows promising speedups, especially in
numerical codes, for a wide size range of tight register files.
On average, these speedups vary from 10% to 2% as register
file size is increased until reaching the loose status and, in
some programs, a speedup of up to 16% is attained for tight
register files. In integer codes our proposal is only effective
for very tight register files, where speedups of up to 11%
can be obtained.

Alternatively, we can use early release to tighten the
register file while maintaining IPC. As regards typical
microarchitectures we have found that register file sizes can
be reduced by 12.5% and 8.9%, respectively for integer and

FP codes, without reducing IPC. This is an important point,
since register file reduction translates directly to lower
access time.

8. Acknowledgments

Work supported by CICYT TIC01-0995 grant and by the
computing resources of CEPBA. We would like to thank
Elena Castrillo for her contributions in editing this paper.

9. References

[1] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi. “Reducing
the Complexity of the Register File in Dynamic Superscalar Proces-
sors”, MICRO-34, Dec. 2001.

[2] A.Baniasadi and A. Moshovos. “Instruction Distribution Heuristics
for Quad-Cluster, Dinamically Scheduled, Superscalar Processors”,
MICRO-33, pp. 337-347, Dec. 2000.

[3] D. Burger and T.M. Austin. “The Simplescalar Tool Set v2.0”, TR
1342, U. of Wisconsin-Madison, CS Department, June 1997.

[4] R.Canal,J.M. Parcerisa,and A. Gonzalez. “Dynamic Cluster Assign-
ment Mechanisms”, HPCA-6, Jan. 2000.

[5] J.Cruz, A. Gonzélez, M. Valero, and N.m Topham. “Multiple-Banked
Register File Architectures”, 27th ISCA, pp. 316-325, June 2000.

[6] K. Farkas, N. Jouppi, and P. Chow. “Register File Considerations in
Dynamically Scheduled Processors”, HPCA-2, pp. 40-51, 1996.

[7]1 K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. “The Multicluster
Architecture: Reducing Cycle Time Through Partitioning”, MICRO-
30, pp. 149-159, Dec. 1997.

[8] L. Gwennap. “MIPS R12000 to Hit 300 MHz”, Microprocessor
Report, Micro Design Resources, 11(13):1-4 Oct, 1997.

[9] G Hinton et al. “The Microarchitecture of the Pentium 4 Processor”,
Intel Technology Journal 01,2001.

[10] W.W. Hwu and Y.N. Patt. “Checkpoint Repair for Out-of-order Exe-
cution Machines”, /4th ISCA, pp. 18-26, June 1987.

[11] R.M. Keller. “Look-Ahead processors”, ACM Computing Surveys,
7(4):177-195, Dec 1975.

[12]R.E. Kessler. “The Alpha 21264 Microprocessor”, IEEE Micro,
19(2):24-36, March-April 1999.

[13]J.L. Lo, S. S. Parekh, S.J. Eggers, H. M. Levy, and D.M. Tullsen.
“Software-Directed Register Deallocation for Simultaneous Multi-
threaded Processors”, IEEE T. on PDS, 10(9):922-933, Sept 1999.

[14] L.A. Lozano and GR. Gao. “Exploiting Short-Lived Variables in
Superscalar Processors”, MICRO-28, pp. 292-302, Nov. 1995.

[15] M.M. Martin, A. Roth, and C.N. Fischer. “Exploiting Dead Value
Information”, MICRO-30, pp. 125-135, Dec. 1997.

[16] T. Monreal, A. Gonzalez, M. Valero, J. Gonzalez, and V. Vifials.
“Delaying Physical Register Allocation Through Virtual-Physical
Registers”, MICRO-32, pp. 186-192, Nov. 1999.

[17] M. Moudgill, K. Pingali, and S. Vassiliadis. “Register Renaming and
Dynamic Speculation: an Alternative Approach”, MICRO-26, pp.
202-213, Nov. 1993.

[18] S. Palacharla, N. Jouppi, and J. Smith. “Complexity-Effective Super-
scalar Processors*, 24th. ISCA, pp. 206-218, June 1997.

[19]Y. Patt, S. Patel, M. Evers, D. Friendly, and J. Stark., “One Billion
Transistors, One Uniprocessor, One Chip”, IEEE Computer,
30(9):51-57, Sept. 1997.

[20] S. Rixner, W. J. Dally, B. Khailany, P. Mattson, U.J. Kapasi and J. D.
Owens. “Register Organization for Media Processing”, HPCA-6, pp.
375-386, January 2000.

[21]1D. Sima. “The Design Space of Register Renaming Techniques”,
IEEE Micro, 20(5):70-83, Sept-Oct 2000.

[22] J. E. Smith and A.R. Pleszkun. “Implementation of Precise Interrupts
in Pipelined Processors”, 12th. ISCA, pp. 36-44, 1985.

[23] D. Tullsen, S. Eggers, and H. Levy. “Simultaneous Multithreading:
Maximizing On-Chip Parallelism”, 22th. ISCA, pp. 392-403, June
1995.

[24] S. Wallace, N. Bagherzadeh. “A Scalable Register File Architecture
for Dinamically Scheduled Processors”, PACT-5, pp. 179-184, Oct.
1996.

[25] K.C. Yeager. “The MIPS R10000 Superscalar Microprocessor”,
IEEE Micro, 16(2):28-40, 1996.

[26] V.V. Zyuban and P.M. Kogge. “Inherently Lower-Power High-Per-
formance Superscalar Architectures”, IEEE T. on C., 50(3):268-285,
March 2001.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the International Conference on Parallel Processing (ICPP’02)
0-7695-1677-7/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

