
New Jersey Institute of Technology
Digital Commons @ NJIT

Dissertations Theses and Dissertations

Spring 1995

Grain-size optimization and scheduling for
distributed memory architectures
Jing-Chiou Liou
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/dissertations

Part of the Electrical and Electronics Commons

This Dissertation is brought to you for free and open access by the Theses and Dissertations at Digital Commons @ NJIT. It has been accepted for
inclusion in Dissertations by an authorized administrator of Digital Commons @ NJIT. For more information, please contact
digitalcommons@njit.edu.

Recommended Citation
Liou, Jing-Chiou, "Grain-size optimization and scheduling for distributed memory architectures" (1995). Dissertations. 1121.
https://digitalcommons.njit.edu/dissertations/1121

https://digitalcommons.njit.edu?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/etd?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/dissertations/1121?utm_source=digitalcommons.njit.edu%2Fdissertations%2F1121&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleed through, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

A Bell & Howell Information Company
300 North Z eeb Road. Ann Arbor. Ml 48106-1346 USA

313/761-4700 800/521-0600

UMI Number: 9539584

Copyright 1995 by
Liou, Jing-Chiou
All rights reserved.

UMI Microform 9539584
Copyright 1995, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

A B ST R A C T

G R A IN -SIZ E O P T IM IZ A T IO N A N D SC H E D U L IN G
FO R D IS T R IB U T E D M EM O R Y A R C H IT E C T U R E S

by
Jing-C hiou Liou

The problem of scheduling parallel programs for execution on distr ibuted

memory parallel architectures has become the subject of intense research in recent

years. Because of the high inter-processor communication overhead in existing

parallel machines, a crucial step in scheduling is task clustering, the process of

coalescing heavily communicating line grain tasks into coarser ones in order to

reduce the communication overhead so that the overall execution time is minimized.

The thesis of this research is th a t the task of exposing the parallelism in a given

application should be left to the algorithm designer. On the other hand, the task of

l im i t in g the parallelism in a chosen parallel algorithm is best handled by the compiler

or operating system for the target parallel machine. Toward this end, we have

developed CASS (for Clustering And Scheduling System), a. task management system

th a t provides facilities for au tom atic granularity optimization and task scheduling of

parallel programs on distr ibuted memory parallel architectures.

In CASS, a task graph generated by a profiler is used by the clustering m odule

to find the best granularity a t which to execute the program so tha t the overall

execution tim e is minimized. The scheduling module maps the clusters onto a

fixed num ber of processors and determines the order of execution of tasks in each

processor. The output of scheduling module is then used by a code generator to

generate machine instructions.

CASS employs two efficient heuristic algorithms for clustering s ta t ic task

graphs: CASS-1 for clustering with task duplication, and CASS-11 for clustering

without task duplication. It is shown that the clustering algorithms used by CASS

outperform the best known algorithms reported in the literature. For the scheduling

m odule in CASS, a heuristic algorithm based on load balancing is used, to merge

clusters such th a t the num ber of clusters matches the num ber of available physical

processors.

We also investigate task clustering algorithms for dynam ic task graphs and

show th a t it is inherently more difficult than the static case.

G R A IN -SIZ E O P T IM IZ A T IO N A N D SC H E D U L IN G
FO R D IS T R IB U T E D M EM O R Y A R C H IT E C T U R E S

byJing-C hiou Liou

A D issertation
S u b m itted to th e Faculty of

N ew Jersey In stitu te of Technology
in P artial Fulfillm ent o f the R equirem ents for th e D egree of

D octor o f P hilosophy

D ep artm en t o f E lectrical and C om puter E ngineering

M ay 1995

Copyright © 1995 by Jing-Chiou Liou

ALL RIGHTS RESERVED

APPROVAL PAGE

GRAIN-SIZE OPTIMIZATION AND SCHEDULING
FOR DISTRIBUTED MEMORY ARCHITECTURES

Jing-Chiou Liou

Dr. Michael A. Pali , Diss rtation Advisor 	 Date
Associate Professor of 	ctrical and Computer Engineering, NJIT

John Carpinelli. Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering
and Director of Computer Engineering
and Acting Associate Chairperson of Electrical
and Computer Engineering, NJIT

Dr. Edwin Hou. Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. David Nassimi. Committee Member 	 Date
Associate Professor of Computer and Information Science. NJIT

Dr. David Wei. Committee Member 	 Date
Associate Professor of School of Computer Science
and Engineering. University of Aizu. Japan

BIOGRAPHICAL SKETCH

Author: Jing-Chiou Liou

Degree: Doctor of Philosophy

Date: May 1995

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,
New Jersey Institute of Technology,
Newark, New Jersey, 1995

• Master of Science in Electrical Engineering,
New Jersey Institute of Technology,
Newark, New Jersey, 1993

• Bachelor of Science in Electronic Engineering,
National Taiwan Institute of Technology,
Taipei, Taiwan, ROC, 1983

Major: Electrical Engineering

Presentations and Publications:

M. A. Palis, J.-C. Liou and D. S. Wei, "A Greedy Task Clustering Heuristic That
is Provably Good." Proc. 1994 International Symposium on Parallel Archi-
tectures, Algorithms and Networks, Kanazawa, Japan, December 1994.

M. A. Palis, J.-C. Liou and D. S. Wei, "Task Clustering and Scheduling for
Distributed Memory Parallel Architectures." To appear in IEEE Transactions
on Parallel and Distributed Systems.

M. A. Palis, J.-C. Liou, S. Rajasekaran, S. Shende and D. S. Wei, "Online Scheduling
of Dynamic Trees." Submitted to Parallel Processing Letters. Special Issue on
Partition and Scheduling for Distributed Memory Architectures.

iv

is dissertation is dedicated to
my wife and my parents

A C K N O W L E D G M E N T

I wish t.o express my sincere gratitude to my advisor, Professor Michael A.

Palis, for his guidance, friendship, and always being (here for me throughout this

research. His spiritual advice had a. m ajor impact on my development as a, researcher

and as an individual. I would also like to thank the other members of my dissertation

com m ittee Professors John Carpinelli, Edwin Hou, and David Nassimi for their time,

support and valuable comments.

Special thanks to Professor David Wei for his being in my dissertation

com m ittee and also for helping me in various ways during my research, and Professors

Sotirios Ziavras and Edwin Cohen for their help during my graduate work.

I also like to thank my friends who helped me in different ways during my stay

a t New Jersey Insti tu te of Technology: Zhijian Zhu, Adrienne Walker, Anna Thomas

and many others.

And finally, a deep appreciation goes to my wife, Su-Chiou Tsay, for her love

and support,. She provided various comments on my thesis work, shared my typing

load and helped me in analyzing the experimental results.

This work was partially support by New Jersey Institu te of Technology

G raduate Eellowship, by NSE Grant IRI-9296249, by SBR Grants 421690 and

211665 from the New Jersey Institute of Technology, and by a Group Research

Development G rant from the University of Aizu, Japan.

TA BLE OF C O N T E N T S

C hapter P age

1 I N T R O D U C T I O N .. 1

1.1 Thesis M o tiv a t io n .. I

1.2 Research G o a l s .. 2

1.3 Originality and Significance of the Research .. 5

1.4 Sum mary of Research C o n tr ib u t io n s .. 6

1.4.1 CASS Clustering M o d u le .. 6

1.4.2 CASS Scheduling M odule .. 8

1.4.3 Dynamic Task G r a p h s .. 9

1.5 Thesis Organization .. 10

2 B A C K G R O U N D ... 12

2.1 Parallel A r c h i t e c tu r e s .. 12

2.2 The Issue of Grain Size O p t im iz a t io n ... 13

2.3 Grain Size Optimization Via Task C lus te r ing .. 1G

2.4 Previous Work on Task Clustering and S chedu ling 20

2.4.1 Clustering with Task D u p l ic a t io n .. 22

2.4.2 Clustering without Task D up lica t ion .. 23

2.4.3 Dynamic S c h e d u l in g ... 25

3 CLUSTERING STATIC TASK GRAPHS W ITH D U P L I C A T IO N 27

3.1 CASS-I Algorithm ... 27

3.1.1 Com puting the e V a l u e ... 28

3.1.2 Constructing the S c h e d u le ... 31

3.2 Performance Bounds for C A S S -l .. 33

3.3 Complexity Analysis of C A S S - I .. 37

3.4 Special C a s e s .. 40

vii

C hapter Page

3.4.1 Coarse Grain DAGs .. 40

3.4.2 T r e e s .. 44

3.5 S u m m a r y ... 45

4 CLU STERIN G STATIC TASK GRAPHS W ITH O U T DUPLICATION . . . 47

4.1 CASS-II A lg o r i th m .. 48

4.2 Complexity A n a ly s is ... 54

4.3 Special C a s e s ... 56

4.4 S u m m a r y ... 58

5 PE R F O R M A N C E COMPARISON AND EXPERIM ENTAL RESULTS . . 60

5.1 Clustering with Task D u p l ic a t io n .. 60

5.2 Clustering without Task D up lica tion ... 64

5.3 S u m m a r y ... 67

6 SCHEDULING O F CLUSTERS ON PHYSICAL P R O C E S S O R S 68

6.1 Cluster M e rg in g ... 68

6.2 Processor Assignment and Local S c h e d u l in g .. 70

6.3 Experim ental R e s u l t s .. 72

6.4 S u m m a r y ... 78

7 CLUSTERING DYNAMIC TASK GRAPHS .. 80

7.1 Online Scheduling of Dynamic T r e e s .. 80

7.2 Com petitive Analysis .. 81

7.3 Sum m ary of R e s u l t s ... 81

7.4 The Lower B o u n d .. 82

7.5 A Deterministic Algorithm ... 88

7.6 Coarse-Grain T r e e s ... 90

7.7 S u m m a r y ... 92

8 CONCLUSIONS ... 93

R E FER E N C E S .. 96

LIST OF TABLES

T able P age

5.1 A comparison of clustering algorithms with task duplication, n = no. of
tasks, e = no. of edges, p = no. of processors... 61

5.2 Experim ental results for CASS-I and PY run on a 386PC* and a DEC5900. 61

5.3 Experim ental results for CASS-I and PY run on a Sun Sparc workstation. 63

5.4 The average makespan ratio and average runtime ratio of PY over CASS-I. 64

5.5 A comparison of s tatic clustering algorithms without task duplication, n
= no. of tasks, e = no. of edges... 65

5.6 Experim ental results of CASS-II and DSC algorithm run on a Sun Sparc
workstation.. 66

6.1 Average makespan ratios of cluster merging algorithms (relative to CASS-
II) for two-phase and one-phase m ethods... 74

6.2 Experim ental results for sample DAGs G1 and G2.. 76

6.3 Relative performance of cluster merging algorithm s.. 76

6.4 Runtim e of cluster merging algorithms run on a Sun Sparc workstation
(in m sec).. 78

LIST OF F IG U R E S

Figure Page

1.1 The functional modules of CASS.. 3

2.1 A parallel architecture with n processors and n memory u n its 12

2.2 Definition of the task graph granularity ... 15

2.3 (a) A fork DAG; (b) optimal clustering without task duplication; (c)
optim al clustering with task duplication... 17

2.4 An exam ple of D A G.. 17

2.5 An optim al clustering with duplication for the DAG of Figure 2.4.............. 19

2.6 An optim al clustering without duplication for the DAG of Figure 2.4. . . 20

3.1 The e values and clusters for the DAG of Figure 2.4... 32

3.2 Com puting the e value of node 10; critical arcs are in bold.............................. 33

3.3 The set of critical arcs forms a tree T with root v ... 34

3.4 A clustering and schedule for the DAG of Figure 2.4.. 37

3.5 The 2-3 tree T ... 40

3.6 Updating a node with (a) two ehildren;(b) three children............................... 41

4.1 An example of computing the / values of current nodes.................................. 50

4.2 The stra tegy of edge zeroing... 51

4.3 The clustering of the DAG in Figure 1.1... 52

4.4 The / values and clusters for the DAG of Figure 2.4.. 55

4.5 CASS-11 clustering steps for a fork DAG... 57

5.1 Average makespan ratio of PY and CASS-I over the lower bound on
optim al m akespan... 65

6.1 The cluster merging of the clustering in Figure 3.4... 70

6.2 The cluster merging of the clustering in Figure 4.4(1)....................................... 71

6.3 An exam ple of processor assignment... 72

6.4 Experim ental set-up for the cluster merging algorithms................................... 73

x

Figure P age

7.1 Ti •ee T constructed by the adversary... 83

7.2 Tree T for the case d = 3 and k = 8 ... 84

7.3 An example schedule.. 87

xi

C H A P T E R 1

IN T R O D U C T IO N

1.1 T hesis M otivation

In the last decade, massively parallel processing (M P P) has become consensus

approach to high-performance computing. M PP vendors have leveraged the small

size, low cost, and high performance of commodity microprocessors to build large-

scale parallel machines with hundreds or even thousands of nodes. These powerful

machines are now capable of performing billions of floating-point operations per

second (gigaflops) and are expected to reach the tera.flop level (1000 gigaflops) by

the year 2000.

Although the peak performance of M PP machines are impressive, they are

rarely achieved in practice. A typical application program running on an M PP

m achine distributes its tasks and da ta among the processing nodes and relies

on message-passing to transfer da ta between tasks or to synchronize the tasks

operations. At the physical level, the resultant inter-node communication causes

some nodes to sit idle waiting for data. In existing M P P machines, this com m uni­

cation overhead can be large, typically in excess of 500 instruction cycles [11], As

a result, the actual performance of an application often falls short of its theoretical

performance, except for a few “embarrassingly parallel” applications th a t do not

require inter-task communication.

A parallel program can be viewed abstractly as a collection of tasks, where each

task consists of a sequence of instructions and input and ou tpu t parameters. A task

s ta r ts execution only after all of its input parameters are available; ou tput param eters

are sent out to other tasks only after task completion. This notion of a task is

called the “macro-dataflow model” by Sarkar [415] and is used by other researchers

1

[42, 16, 27, 40, 49, 51]. Loosely speaking, the granu lar ity (or grain size) of a task is

the ratio of its execution time vs. the overhead incurred when communicating with

o ther tasks. The granularity of a parallel program is the m inimum granularity of its

constituent tasks. (A more precise definition of granularity will be given later.)

The high communication overhead in existing M PP machines imposes a

m inim um threshold on task granularity below which performance degrades signifi­

cantly. Consequently, to obtain m axim um performance, afine-grain parallel program

(i.e., a program with small granularity) may have to be restructured to produce an

equivalent coarse-grain program by coalescing many fine-grain tasks into a single

task. M anual “fine-tuning” of a parallel program is, unfortunately, too excessive a

burden to place on the shoulders of an algorithm designer, be (s)he novice or expert.

Not only does (s)he have to deal with the difficult problem of exposing the paral­

lelism in a given application, bu t (s)he also needs to worry about the equally difficult

problem of l im i t in g the parallelism in the algorithm to minimize communication

overhead. Moreover, the latter problem requires of the designer deep knowledge

of the characteristics of the target M PP machine, e.g., the number of processing

nodes, C PU speed, local memory size, message transfer rate, and network topology.

Finally, the fine-tuned program, while it would run with maximum performance

on the chosen machine, would in all likelihood perform poorly on another machine

with different architectural characteristics. The designer would have to rewrite the

program to tune it to the new machine.

1.2 R esearch Goals

The thesis of this research is tha t the task of exposing the parallelism in a given appli­

cation should be left to the algorithm designer, who has in tim ate knowledge of the

application characteristics. On the other hand, the task of l im i t in g the parallelism

3

CASS

Architecture
ParametersClustering

Code Generator

Parallel Program

Scheduling

Task Graph

Scheduled
Task Graph

Profiler

Parallel Code

Clustered
Task Graph

F igure 1.1 The functional modules of CASS.

in a chosen parallel algorithm is best, handled by the compiler or operating system for

the target M PP machine. Toward this end, we have developed C A S S (for Clustering

/ lnd Scheduling System), a task management system tha t provides facilities for

au tom atic granularity optimization and task scheduling of parallel programs on

d istr ibu ted memory parallel architectures.

The main functional modules of C A S S are shown in Figure 1.1. Given a

parallel program and a target parallel machine, a profiler generates a task graph

specifying the dependencies among the tasks of the program, the task execution

times and the inter-task communication delays. The task graph is used by the

clustering module to find the best granularity at which to execute the program so

th a t the overall execution tim e is minimized. The ou tpu t of the clustering module is

a clustered task graph, in which each cluster represents a collection of tasks th a t are

to be m apped to the same processor. The scheduling module maps the clusters onto

a fixed num ber of processors and determines the order of execution of tasks in each

processor. The output of the scheduling module is then used by the code generator

to generate machine instructions and to insert communication and synchronization

primitives at appropriate [joints in the generated code.

T he clustering module identifies the optimal num ber of processing nodes that

the program will require to obtain maximum performance on the target parallel

machine. Our approach is to decouple the clustering algorithm from the scheduling

algorithm th a t actually maps the clusters to the physical processors. There are

several reasons for adopting this approach. Firstly, it facilitates scalability analysis

of the parallel program, i.e., how program performance is affected as the num ber of

physical processors is increased or decreased. In C A S S , the user may specify a prior

desired num ber of processors on which the program is to be run, and a compile-time

scheduler will generate code for the appropriate number of processors by merging

clusters. (Of course, if the num ber of processors is more than the number of clusters,

no cluster merging is needed.) This two-phase method - task clustering and cluster

merging - is more efficient than the one-phase m ethod tha t performs partitioning

and scheduling in the same algorithm. In the former, re-scaling the program so

th a t it runs in a new num ber of physical processors only requires re-running the

cluster merging step, which examines a smaller data set (the clusters), while the

la tte r requires re-executing the entire partitioning and scheduling algorithm on the

original fine-grain task graph.

Another motivation for adopting the two-phase method is th a t in m ultipro­

gram m ing environm ents where the physical machine is shared by m any users, the

number of available processors may not be known till run time. In general, a run ­

tim e scheduler incurs significant scheduling overhead, proportional to the number

of scheduled tasks, th a t can degrade the performance of the parallel program. The

advantage of our approach is that task clustering dramatically reduces the number

of tasks to be scheduled a t run time, thereby minimizing the effect of scheduling

overhead on program performance.

1.3 O riginality and S ignificance o f th e R esearch

Previous work on compilers for parallel machines have focused largely on “para l­

lelizing” or “vectorizing” compilers that automatically extract parallelism from

existing sequential programs (e.g., “dusty-deck” FORTRAN programs). While such

compilers have their niche of applications, there is a greater and more pressing need

to develop compilers for parallel programming languages tha t incorporate language

constructs for explicitly expressing concurrency in programs.

Many existing compilers for parallel programming languages do not perform

granularity optim ization, and if at all, make use of very simple algorithms.

For example, the Connection Machine compiler maps “virtual processors” (the

6

processors used by the program) to physical processors by distributing the virtual

processors equally among the physical processors without regard to communication

usage patterns. In some compilers, more sophisticated techniques lor granularity

optim ization are used, but they can only be applied to certain segments of the

parallel code. For example, loop spreading and loop coalescing are commonly

used for granularity optimization: loop spreading distributes iterations of a FO R

loop across different processors, while loop coalescing combines several loops into

a single loop for execution by the same processor. However, these techniques are

only applicable at the loop level and can not be used to optimize the granularity of

program segments th a t exist within loops or are outside of loops.

Our research addresses the granularity optimization problem in a more general

context by using a parallel program representation (the task graph) th a t is essentially

language independent. Moreover, unlike previous work which focuses on optimization

for sp e c i f ic architectures (as is the case for most commercial compilers), our inves­

tigation uses a parameterized parallel machine model, thus allowing us to develop

granularity optimization techniques tha t are applicable to a wide range of parallel

architectures. Consequently, we will not only be able to assess the effectiveness

of to d ay ’s parallel machines in solving M PP applications, bu t we will also be able

to determ ine the key architectural features required by these applications, whether

these features exist in current machines, and how future M PP machines should be

built in order to solve M PP applications much more efficiently and cost-effectively.

1.4 Sum m ary o f R esearch C ontributions

1.4.1 C A SS C lustering M odule

Finding a clustering of a task graph that results in minimum overall execution

t im e is an A / J-hard problem [7, 40, 43]. Consequently, practical algorithms must

7

sacrifice optim ality for the sake of efficiency. We have investigated two versions of the

problem: clustering without task duplication and clustering with task duplication.

In clustering without task duplication, the tasks are partitioned into disjoint clusters

and exactly one copy of each task is scheduled. In clustering with task duplication,

a task may have several copies in different clusters, each of which is independently

scheduled. In general, clustering with task duplication produces shorter schedules

than the ones produced by clustering without, task duplication. We have developed

efficient heuristic algorithms for these two problems, established theoretical bounds

on the quality of solutions they generate, and validated the theoretical performance

empirically.

W hen task duplication is allowed, we have an algorithm (CASS-1) which for

a task graph with arbitrary granularity, produces a schedule whose makespan is at

most twice optimal. Indeed, the quality of the schedule improves as the granularity

of the task graph becomes larger. For example, if the granularity is at least the

m akespan of the schedule is at most | times optimal. For a task graph with If7! tasks

and |i?| inter-task communication constraints, CASS-1 runs in 0 (|F | (| I '7]/</1V'| + \ E |))

t ime, which is | l 7| times faster than the current known algorithm for this problem

[40].

We have validated the performance of CASS-I experimentally. Our empirical

results dem onstra te that CASS-I outperforms the currently best known algorithm in

term s of both speed and solution quality.

We have also shown tha t CASS-I can be used to solve the clustering problem

for tree-structured task graphs with no task duplication. The algorithm produces a

schedule whose makespan is at most twice optimal. This result is interesting because

it is known th a t clustering without task duplication remains AfP -hard even when

restricted to trees [7],

8

Unfortunately, we are unable to find a provably good clustering algorithm with

no task duplication for general task graphs. This problem appears to be very difficult

because it is known th a t for general task graphs, clustering with no task duplication

remains TV/Miard even when the solution quality is relaxed to be within twice the

optimal solution [40], Consequently, we directed our efforts to develop an algorithm

(CASS-II) which has fast time complexity of 0 (\E \ T |V'|/f7 |U |) and good empirical

performance.

We compared CASS-II with the DSC algorithm of [18], which is empirically

the best known algorithm for clustering without, task duplication. Our experimental

results indicate th a t CASS-II outperforms DSC in terms of speed (3 to 5 times

faster). Moreover, in terms of solution quality, CASS-II is very competitive: it is

be tter than DSC for grain sizes less or equal to 0.6, and its superiority increases as the

DAG becomes increasingly fine grain. On the other hand, for task graph with grain

size 0.6 or greater, DSC becomes competitive and in some cases even outperforms

CASS-II, bu t by no more than 3%.

1.4.2 C A SS Scheduling M odule

The scheduling module maps the task clusters produced by the clustering module

onto a fixed num ber of processors. If the num ber of task clusters is greater than the

num ber of processors, a clustering merging step is performed. We investigated three

approaches for cluster merging. Load Balancing maps the clusters onto processors

so that the processors have equal workload (i.e., sum of task execution times).

Communication Traffic Minimizing maps the clusters onto processors so tha t the

total am ount of inter-processor communication is minimized. Finally, Random, maps

the clusters onto processors in a random fashion.

Our experim ental results show th a t when task clustering is performed prior

to scheduling, load balancing (LB) is the preferred approach for cluster merging.

9

LB is fast, easy to implement, and produces significantly better final schedules than

Communication Traffic Minimizing (CTM). While C'TM outperforms LB for fine

grain task graphs, such a situation never arises in the two-phase method of CASS

because the task clustering phase produces coarse grain task graphs, for which LB

is clearly superior to CTM.

We have also compared the two-phase m ethod with the one-phase m ethod of

scheduling. In the one-phase method, the num ber of the physical processors is used

as one of the param eters and those three approaches for cluster merging are applied

to task graphs directly. On the contrary, in the two-phase method (which is used

by CASS), the clustering module determines the best clustering for the task graph

according to its granularity, and the scheduling module matches the num ber of the

clusters to the num ber of the physical processors. The empirical results show tha t

the two-phase m ethod is superior to the one-phase m ethod in terms of both speed

and solution quality, regardless of the cluster merging heuristic used. Indeed, our

experimental results indicate th a t it is not necessary to utilize all processors in the

system to obtain a “good” schedule. In other words, the clustering module in the two-

phase m ethod can find a near-optimal clustering whose the num ber of the clusters is

less than the num ber of the physical processors, then the utilization of all processors

in the one-phase m ethod may produce a schedule worse than the previous one.

1.4 .3 D ynam ic Task G raphs

CASS-I and CASS-II are applicable only to parallel programs th a t can be charac­

terized by sialic, task graphs. Such a program consists of a fixed collection of tasks

whose execution times and inter-task dependencies and communication delays can

be es tim ated at compile time. On the other hand, m any parallel programs give rise

to d y n a m ic task graphs. In such programs, the num ber of tasks changes dynam ­

ically a t runtime. A currently executing task can spawn new tasks which in turn

10

can com m unicate with other executing tasks and spawn other tasks. Therefore,

the task execution times and inter-task dependencies cannot be known in advance.

Programs with dynamic task graphs arise in a variety of applications such as particle

simulations, adaptive multigrid algorithms, n-body simulations, and combinational

optimization [15].

Because the complete task graph is not known in advance, clustering algorithms

based on global critical path analysis are not applicable. This m ethod relies 011 global

information about the longest path in the task graph to determine the clustering.

It is the m ethod employed by most algorithms for scheduling static task graphs,

including our CASS-I and CASS-II algorithms.

For dynamic task graphs, clustering must be performed onlinc\ i.e., scheduling

decisions m ust be made solely on the basis of the portion of the task graph revealed

so far, and not on future tasks. The competitive ratio is used for the performance

analysis of online scheduling algorithms. Roughly speaking, the competitive ratio

is the ratio between the makespan of the schedule produced by an optimal o f f l i n e

scheduling algorithm (that, knows the entire task graph in advance) and the makespan

of the schedule generated by an online scheduling algorithm. In this research, we

have found a. lower bound 011 competitive ratio of any randomized dynamic tree

scheduling and a deterministic online algorithm tha t matches the bound. We show

th a t any online tree scheduling algorithm, even a randomized one, has competitive

ratio log(i{jj)) for trees with granularity at most g < 1 and degree d.

1.5 T hesis O rganization

The rest of the thesis is organized as follows. In Chapter 2, we address the impact

of program partitioning and granularity on scheduling for parallel architectures, and

also discuss some existing clustering and scheduling approaches. In Chapter 3, a fast

s ta tic clustering algorithm (CASS-I) allowing task duplication is presented, and the

performance bounds and complexity of CASS-1 arc shown. In Chapter 4, we present

another static clustering algorithm that allows no task duplication. In C hapter 5,

we present performance comparison and experimental results for task clustering

algorithms to show th a t the clustering algorithms used by CASS outperform the best

known algorithms reported in the literature. In Chapter 6, we describe algorithms for

mapping clustered tasks onto physical processors, and present some experiments to

show th a t a load balancing heuristic outperforms the o ther algorithms. In C hapter 7,

we extend our scope from static task graphs to dynamic ones. We adopt a framework

of analyzing online scheduling algorithms and based on th a t we derive a lower bound

and a deterministic algorithm tha t matches tha t bound. In Chapter 8, we summarize

the research work and discuss future work.

C H A P T E R 2

B A C K G R O U N D

2.1 P a r a l l e l A r c h i t e c t u r e s

A parallel architecture is a computer system with two or more processors connected

by an interconnection network as shown in Figure 2.1.

Mem. MemMem Mem,

PEPE PE,PE

Interconnection Network

F i g u r e 2.1 A parallel architecture with n processors and n memory units.

Most modern parallel architectures can be categorized as S1MD or MIMD.

In SIMD machines (single instruction stream, multiple d a ta stream), processors

are synchronized and execute a single sequence of instructions emanating from a.

single control unit, possibly on different data. Examples of SIMD machines are

ICL DAP, Goodyear M PP, Connection Machine CM-2, and M asPar MP-1216. In

MIM D machines (multiple instruction stream, multiple da ta s tream), processors have

independent, control units and thus can execute different programs on different data.

T he majority of existing parallel machines are MIMD; examples are the

Sequent Symmetry, Encore M ultiMax, Alliant FX /8, nCUBE, Intel iPSC/860, Intel

Delta, and Connection Machine CM-5. Parallel architectures can also be classified

according to their memory organization. In a shared memory architecture, memory

is globally shared by all processors. Typically, this is accomplished by connecting

the processors to the memory modules using a high-speed bus. Some examples are

12

13

Sequent Symmetry, Encore MultiMax, Alliant FX /8. The advantage of the shared

memory architecture is tha t each processor has equal-time access to all shared

memory locations. Therefore, d a ta placement is not an im portant issue. However,

this kind of architecture does not scale past, a small number of processors (on the

order of 50). In a d istributed memory architecture, each processor is combined with a

memory unit into a single node; nodes are connected using a scalable interconnect,ion

network (e.g., a ring, a mesh, or a hypercube) and communicate via message-passing.

Some examples are Intel iPSC/860, nCUBE, Intel Delta, Connection Machine C'M-5.

The architecture is scalable to a very large number of processors (current machines

contain thousands of processors). But, a disadvantage of the architecture is the

processor’s non-uniform access to data (i.e., remote memory accesses take much

longer than local memory accesses).

Distributed memory MIMD architectures are emerging as the consensus

approach to scalable general-purpose parallel processing. A MIMD machine offers

greater flexibility than a SIMD machine because it can execute different, programs

on different nodes, or it can execute different tasks of a single program on different

nodes (the la tte r is sometimes referred to as SPMD or single program, multiple

data). In addition, the distributed memory organization allows parallel machines

to be built from off-the-shelf microprocessors and memory chips and to be scaled

up to a large num ber of processors. However, programming distributed memory

machines is more difficult than for shared memory machines. In this thesis we focus

on distr ibuted mem ory MIMD architectures.

2.2 T he Issue o f Grain Size O ptim ization

An im portan t factor th a t determines program performance on a distributed memory

parallel machine is the speed at which computation and communication can be

14

performed. Over the last decade, processor speeds have increased at the dram atic

rate of 50% a year. On the other hand, communication speeds have not kept pace.

To be sure, the bandw idth of interconnection networks has improved by employing

be tte r routing algorithms (e.g., wormhole routing), by using bette r packaging of

parallel processors, or by simply increasing the num ber of wires in the links th a t make

up the interconnection network. However, the cost of routing a message depends not

only on its transport t ime (the time tha t it stays in the network) but also on the

overhead spent in executing the operating system routines for sending and receiving

the message. On contem porary machines, this software overhead is so large th a t it

often dominates the transport time, even for messages traveling very long distances

in the network. Typically, the message overhead is of the order of hundreds to a few

thousands of processor clock cycles.

A parallel program can be viewed abstractly as a collection of tasks, where

each task consists of a sequence of instructions and input and outpu t parameters.

A task starts execution only after all of its input parameters are available; ou tpu t

param eters are sent to o ther tasks only after the task completes execution. This

notion of a task is called the “macro-dataflow model” by Sarkar [43] and is used by

other researchers [42, 16, 27, 40, 49, 51]. In the macro-dataflow model, a parallel

program is represented as a weighted directed acyclic graph (DAG) G — (V', E , //,, A),

where each v 6 V represents a task whose execution tim e is p(u) and each directed

edge (or arc) (u ,v) 6 E representes tim e constraint tha t task u should complete

its execution before task v can be started. In addition, u communicates d a ta to v

upon its completion; the delay incurred by this da ta transfer is A(u ,v) if u and v

reside in different processors and zero otherwise. In other words, task v cannot begin

execution until all of its predecessor tasks have completed and it has received all

da ta from these tasks.

15

The granularity of a task graph is an im portant param eter which we take into

account when analyzing the performance of our algorithms. Basically there are t wo

d istinct strategies for scheduling: parallelizing tasks or secpientializing tasks. The

trade-off point between parallelization and sequentialization is closely related to the

granularity value: the ratio between the task execution tim e and communication

time. If communication cost is too high, parallelization is not encouraged.

um

w l w2 wn

Figure 2.2 Definition of the task graph granularity.

YVe adopt the definition of granularity given in [18]. Let G = (V, E, /i, \) be a

'weighted DAG. for a node v £ V'" as shown in Figure 2.2, let

</i(e) = m in { /i (u) |(u ,n) £ Z?}/max{A(u,u)|(tf,v) £ E } and

<j2 {v) =min{/i(tw)|(t>, w) £ E}/max{A(v, iv)j(v, w) £ E } .

T he grain-size of v is defined as min {;/< () , <y2() } • The granular i ty of DAG G is

given by g(G) =min{(/(t>)|i> £ V} . One can verify th a t for the DAG G of Figure 2.4,

flr(G) = i.

The high communication overhead in existing distributed memory parallel

machines imposes a m inim um threshold on program granularity below which

performance degrades significantly. To avoid performance degradation, one solution

would be to coalesce several fine grain tasks into single coarser grain tasks. This

16

reduces the communication overhead but increases the execution tim e of the (now

coarser grain) tasks. Because of this inherent tradeoff, the goal is to determine' the

program granularity th a t results in the fastest total parallel execution time. 'Phis

problem is called grain size optimization.

2.3 G rain Size O ptim ization V ia Task C lustering

Grain size optim ization can be viewed as the problem of scheduling the tasks of the

program on the processors of the parallel machine such tha t the finish tim e of the

last task (or “makespan of the schedule”) is minimized. Much of the early work in

scheduling algorithms considered only the task execution times and assumed zero

communication times between interacting tasks. The survey papers by Coffman [9],

Graham , et al. [2 0], and Lawler et al. [29] give excellent summaries of work in this

area.

More recent work in scheduling algorithms explicitly consider inter-task

communication times. The basic idea behind most of these algorithms is “task

clustering” , i.e., scheduling several communicating tasks in the same processor so

tha t the communications between these tasks are realized as local memory accesses

within the processor, instead of message transmissions across the interconnection

network. In o ther words, the communication time between two tasks becomes zero

when these tasks are mapped to the same processor. The result is a reduction in the

message overhead, and hence total parallel execution time.

Researchers have investigated two types of task clustering algorithms, depending

on whether or not task duplication (or recomputation) is allowed. In task clustering

without duplication, the tasks are partitioned into disjoint sets or clusters and

exactly one copy of each task is scheduled. In task clustering with duplication,

a task may have several copies belonging to different clusters, each of which are

17

independently scheduled. In general, for the same DAG, task clustering with dupli­

cation produces a schedule with a smaller makespan (i.e., total execution time) than

when task duplication is not allowed.

For example, for the fork DAG shown in Figure 2.3(a), the optimal makespan

without task duplication is 16 while that with task duplication is 11. Note th a t when

two communicating tasks are mapped to the same processor, the communication

delay becomes zero because the da ta transfer is effectively a local mem ory write

followed by a local memory read.

MAKESPAN = 17 MAKESPAN = 16

®

©

©

©

0

0

d)
(a) (b)

MAKESPAN = 11

(c)

F i g u r e 2 .3 (a) A fork DAG; (b) optimal clustering without task duplication; (c ̂
optim al clustering with task duplication.

5 IT2

T8 (?) T9 © T10

F i g u r e 2.4 An example of DAG.

Figure 2.4 gives an example of DAG; the node weights denote the task execution

times and the arc weights denote the communication delays. Thus, assuming tha t

each task resides in a separate processor, the earliest time tha t task T4 can be s tar ted

18

is 19, which is the tim e it needs to wait until the da ta from task T2 arrives (the data

from task T l arrives earlier, at time 10). The makespan of the schedule is the length

of the critical path , i.e., the path with the maximum sum of node and arc weights.

In Figure 2.4, the critical path is indicated by the bold arcs; its length, and hence

the m akespan of the schedule, is 52.

A clustering of G is the m apping of the nodes in V onto clusters, where each

cluster is a subset of V. If the clusters form a. partition of V (i.e., they are pairwise

disjoint) then the clustering is said to be without duplication. Similarly, if a node

is m apped to more than one cluster (i.e., it has more than one copy) then the

clustering is said to be with duplication. For example, for the DAG of Figure 2.4,

the clustering = {{T), 7f|, TV, T9 }, {7^, T-j, Tr„ T(i, Ts , T\o}} is without duplication,

while the clustering <I>2 = {{Tx}, {T2, 71,, 7}„ Tr, T9}, {T2, Ta, T5, Te, Ts, Z\0}} is with

duplication; in the latter, nodes 7 2 and Ts each have two copies.

A schedule for a clustering maps the clusters of <I> to processors and assigns

to each node v a s ta r t time s (v ,p) on every processor p to which v is mapped. The

schedule should satisfy the following condition for every node v: if 0 is mapped to

processor p then, for every im m ediate predecessor u of u, there is some processor q

to which u is m apped such th a t s(v , p) > s(u, q) ■+ g(ti) + A'(u, u), where A' — A(u, v)

if P 7^ (l • s (v) =niin{.s(u,7?)|u is mapped to processor p}. The makespan of the

schedule is given by max{s(i>) + /i(u)l'y is a siuk node}.

A schedule S is optimal for a clustering $ if for every other schedule

S' for 4>, it is the case tha t m a k e s p a n (S) < m a k e s p a n (S ’). We define the

makespan of a clustering <I> as the makespan of its optimal schedule S. A

clustering <I> is optimal for a DAG G if for every other clustering <!>' for 6',

m a k e s p a n ($>) < makespan(fy ') . Figure 2.5 gives a schedule for the clustering

$ 2 = { { r , }, {72, T u ? 5 , 7V, r 9}, {T2, T3, 7s, 7c„ 7s, Tw }} defined earlier. In the

schedule, the three clusters are m apped to distinct processors; the value s,- beside the

19

s6 -
s7 - 16

s9 = 20

s i 0 = 2 0

F i g u r e 2 .5 An optim al clustering with duplication for the DAG of Figure 2.4.

node denotes the s ta r t time of task T, on the designated processor. The makespan

of this schedule is 26. It turns out that this schedule is optimal for clustering <1>2. If

also turns out th a t 4>2 is an optimal clustering for the DAG of Figure 2.4. Therefore,

the shortest, possible execution time for the DAG is 26.

Similar to the Figure 2.5 which gives an optimal schedule for clustering with

task duplication, Figure 2 . 6 shows an optimal schedule for clustering without dupli­

cation for the exam ple DAG in Figure 2.4. The clustering 4>3 = {{7\ }, {72,7',|, 7’5, T7,

7T,}, {7’3, T’g, 7s, 7\o}} are mapped to three different processors. The makespan of this

schedule is 26.

20

s i = 0

sl0 = 21

MAKESPAN = 26

F i g u r e 2 .6 An optimal clustering without duplication for the DAG of Figure 2.4.

2 .4 P r e v io u s W o r k on T a s k C lu s te r in g a n d S c h e d u l in g

In this section, we discuss existing heuristic algorithms for the task clustering and

scheduling problem. Task clustering - with or without task duplication - is an

N P-hard problem [7, 40, 43]. Consequently, practical solutions will have to sacrifice

optim ality for the sake of efficiency. Nonetheless, task clustering heuristic algorithms

have a num ber of properties in common when they try to achieve the goal of finding

an optim al clustering for a DAG G. They all perform a sequence of clustering

refinements s ta rting with an initial clustering (initially each task is assumed to be

in a cluster). Each step performs a refinement of the previous clustering so that

the final clustering satisfies or “near” to the original goals. The algorithms are non­

21

backtracking, i.e.. once the clusters are merged in a refinement step, they cannot be

unmerged afterwards.

A typical refinement step is to merge two clusters and zero the edge tha t

connect them. Zeroing the communication cost on the edge between two clusters

is necessary for reducing the makespan (or parallel time) of the schedule. The

m ak e sp a n is determ ined by the longest path in the scheduled graph. In o ther words,

the makespan of a given schedule is equal to the tim e of the last task has been

completely executed.

There are two im portan t parameters in performing the refinement steps: the

critical path of a task graph G and the earliest s ta r t time of each node v 6 V. 'The

critical path (CP) is the longest path in the task graph. In [18], Gerasoulis and

Yang use dominant sequence (DS) instead of CP to represent the longest path of the

scheduled task graph or the path whose length equals the actual makespan of the

schedule. Nonetheless, the CP is so im portan t th a t the heuristic algorithms rely on

it for a global information of the task graph to guarantee the reduction of makespan

in each refinement steps. We will show later the necessity of critical path as a global

information. On the o ther hand, the earliest s ta r t tim e of a node v E V is the earliest

t im e th a t node v can s ta r t execution for any clustering. If the execution of every

node in G is s tar ted at its earliest s tart time, then the schedule must be optimal.

Assuming there is a list of available nodes (or tasks) ready for clustering at

certain refinement step, heuristic algorithms have to make decisions on: (1) which

node to take from the list; (2) where to put it. Usually the decisions are made

according to cost functions and objectives of clustering heuristics. If the objective

of clustering heuristic is to execute every node as early as possible, the cost function

will then be the earliest s ta r t time and the strategy of allocation is to put the node

into a cluster where the node can start execution as early as possible. However, if

the objective is to minimize the makespan, then the critical path will be adopted as

22

the cost function and the node is put into a cluster that causes the minimum critical

path.

We distinguish between two classes of task scheduling algorithms. The two-

phase m ethod performs a clustering first, under the assumption th a t there is an

unbounded num ber of fully connected processors. When two tasks are assigned to the

same cluster, they are executed in the same processor. At the second phase, clusters

are merged and scheduled on the p physical processors if the num ber of clusters in

is larger than p. Examples of clustering algorithms using the two-phase method

are Sarkar [43], the DSC algorithm of Gerasoulis and Yang [18], Papadim itriou and

Yannakakis [40], and Chung and Ranka [8], On the other hand, the one-phase method

schedules a task graph directly on the p physical processors. Scheduling algorithms in

this class include the MCP algorithm of Wu and Gajski [50], and Kwok and Ahmad

[28]. Kim and Browne [24, 25] have experimented with the two-phase m ethod and

the one-phase method. They found tha t the two-phase m ethod results in significantly

be tte r schedules than the one-phase method.

2.4 .1 C lu sterin g w ith Task D up lica tion

For task clustering with duplication, Papadimitriou and Yannakakis [40] have

developed a polynomial-time algorithm for arbitrary DAGs th a t generates a schedule

whose makespan is a t most twice optimal. O ther algorithms th a t allow duplication,

such as those given in Kruatrachue and Lewis [26], Chung and Ranka [8], and Kwok

and A hm ad [28], do not give theoretical guarantees on performance as does the PY

algorithm. Moreover, in terms of speed, the PY algorithm is also the fastest.

P Y ’s a lgorithm

We consider the PY algorithm as a clustering heuristic based on earliest start, tim e

criterion. They use e values in their algorithm as the cost function. The basic idea

of the PY algorithm is to minimize the start time of each node without considering

23

load balance. The way it constructs the clustering is tha t each node i> £ V is pu t into

cluster C along with the nodes in the subset of v's ancestors that actually determ ine

the e(v). The algorithm can be described as follows:

1. For each node v £ V consider the set of node u ’s ancestors, and for each such

ancestors u compute the cost function f (u) = e{u) + fi[u) + \ (v , v) .

2. Sort the ancestors in decreasing order: / : f (u y) > ./(u2) > ■ • • >

3. Consider an integer j and suppose tha t f{i ik) > j > f i u k+1)-

• Let Nj{ v) be the subdag of G consisting of all nodes u,, i < k.

• Find Lj = maxfL, [e(i>;) + /'(''/)] such tha t j > L j . Then t (v) = j .

4. The nodes of are executed by the processor of v.

In [40], page 326, the authors have shown tha t the makespan of the schedule

produced by the PY algorithm is at most twice optimal. In terms of the quality of

solutions generated, the PY algorithm is theoretically the best known polynomial­

tim e algorithm for task clustering with duplication. However, its tim e complexity is

quite high: 0(|V''|2 (| l /r|/</|V’| + |f?|)) time for a DAG with | | nodes (or tasks) and

|E | arcs. The main source of complexity in the algorithm is the method used to find,

for each node v, the cluster tha t allows v to be executed as early as possible. To find

this cluster, the algorithm keeps track of as many as |F | candidate clusters, each of

which takes 0 (|V''|/^/1V| + |/?|) time to process.

2.4 .2 C lu sterin g w ith ou t Task D uplication

For task clustering without duplication, several polynomial-time algorithms have

been proposed. Broadly speaking, these algorithms are based on three different

heuristics: (1) critical path analysis [18, 24, 43, 50]; (2) priority-based list scheduling

[2, 22, 30, 42]; and (3) graph decomposition [33]. Recently in [34], the empirical

performance of these algorithms were compared based on ten DAGs tha t model

the struc tu re of several practical application. Nonetheless, none of the algorithms

have provable guarantees an upper bound on the quality of schedules they generate,

relative to an optimal schedule. Some algorithms are guaranteed to work well for

special DAGs. For coarse grain DAGs (i.e., DAGs whose task execution times are

larger than the inter-task communication times), the DSC (Dominant Sequence

Clustering) algorithm of [18] has been shown by the authors to give a schedule

whose makespan is at most twice optimal, under the assumption tha t the number

of processors is unbounded. The E T F (Earliest Task First) algorithm of [22] gives a

schedule whose makespan is at most (2 — 1 / n) M opt + C , where M opt is the optimal

makespan on n processors without considering communication delays and C is the

m axim um communication delay along any chain of nodes in the DAG.

D SC algorithm

Gerasoulis and Yang [18] presented a clustering algorithm based on the reduction of

the critical path. At each stage in their clustering algorithm, they define tha t the

set of nodes which are in the longest path of scheduled task graph at tha t stage is

called the Dominant, Sequence (DS). The dominant sequence, however, reduces to

the critical path for linear clustering.

The basic idea of the DSC is to identify the DS at each step and then zero

edges in th a t DS. It is based on the following observations:

e Zeroing one edge in the CP will change CP in the next stage.

• Reducing DS a t each step locally will let DS be computed incrementally without

having to traverse the entire graph again.

Let t l eve l{n) be the length of the longest path from a source node to n in the

scheduled DAG (excluding /t(n)) and blevel(n) be the length of the longest path from

n to a sink node (including /i(7?)). DSC can then be described as follows:

25

1 . Com pute cost function blevel for each node and set t.level = 0 for each f r e e

node.

‘2. For each DS in an examined task graph C *:

• Apply edge zeroing operation on DS tha t result in the largest possible

decrease of makespan.

o If no zeroing is accepted, node remains in a unit cluster. Apply edge

zeroing recursively to the subDS (next longest path).

3. Update the DS, repeat step 2 until all edges are examined.

By localizing the zeroing, the algorithm computes DS incrementally and

eventually has a complexity of 0((|J3 | + |V|)/<7 |Vr|) which is faster than any o ther

clustering algorithms in this problem. In [51, 16, 17], the authors have compared

their DSC algorithm with o ther algorithms for task clustering without duplication

and shown tha t the DSC algorithm outperforms the o ther algorithms in terms of

speed and (empirical) solution quality.

2.4 .3 D ynam ic Scheduling

All the heuristics mentioned previously are modeled as static task graphs. On

the o ther hand, scheduling algorithms for dynamic task graphs have received

little a tten tion although programs for an increasing number of scientific application

naturally fall into this class. There are some basic approaches to dynamic scheduling:

(1) Unconstrained FIFO; (2) Balance-constrained; (3) Cost-constrained; (4) Hybrids

scheduling.

The most elem entary approach to dynamic scheduling assumes no a priori

knowledge of the parallel program. In Unconstrained FIFO scheduling p + 1

26

processors are used: one PE runs a schedule tha t dispatches tasks on a first-in-first-

out (PTFO) basis to all o ther p PEs. The schedule produced by this heuristic is often

far from optim al.

A balanced-constrained heuristic a ttem pts to rebalance the loads on all

processors by periodically shifting waiting tasks from one waiting queue to another.

In d istr ibuted m em ory architectures, this could involve many realignments. It is not

guaranteed to always find the minimum time. A cost-constrained heuristic works as

follows. It performs the balance-constrained heuristic locally to identify candidate

tasks to be moved. These tasks are then checked for communication costs to see if

it is greater than the decrease in execution time before they are moved.

A hybrid scheduling which is a combination of static and dynamic schedulers

can be used in the case of loop-back and branch. In this type of problem, we might

know the probabilities of a branch or loop estimated by profiling the program on

a num ber of actual runs. Then we can perform a static scheduling on these graph

and encode them into a dynamic scheduler table, and apply the appropriate static

schedule at run time.

C H A P T E R 3

C L U ST E R IN G STATIC TASK G R A P H S W IT H D U P L IC A T IO N

For task clustering with duplication, the Papadimitriou and Yannakakis’ algorithm

is theoretically the best known polynomial-time algorithm in terms of the quality of

solutions generated. It has been shown by the authors th a t their algorithm generates

a schedule whose makespan is a t most twice optimal. In this chapter, we present a

be tte r algorithm for this problem which, for a task graph with arbitrary granularity

g, produces a schedule whose makespan is at most (1 + 1 / (1 + g)) times optimal.

Therefore, the quality of the schedule improves as the granularity of the task graph

becomes larger. For example, if the granularity is at least 1/2, the makespan of the

schedule is at most 5 /3 times optimal. For a task graph with | V\ tasks and \E\ in ter­

task communication constraints, the algorithm runs in 0 (|V '|(|F |/g |Vr| + |E |)) time,

which is \ V\ times faster than the PY algorithm for this problem. Similar algorithms

are developed tha t produce: (1) optimal schedules for coarse grain graphs; (2) 2 -

optimal schedules for trees with no task duplication; and (3) optimal schedules for

coarse grain trees with no task duplication.

3.1 C A SS-I A lgorithm

This section presents a greedy algorithm th a t finds a clustering for a given DAG

G = (F, £,//., A). We prove tha t the clustering 4>((7) produced by the algorithm is

“good” in the following sense: If g(G) > (J — s) j e for some 0 < e < 1, then the

makespan of $(G') is a t most (1 + s) times the makespan of the optimal clustering

for G. As a corollary, for a DAG with arbitrary granularity (i.e., g{G) > 0), the

clustering produced by the algorithm has a makespan which is at most twice optim al,

thus matching the bound of the PY algorithm [40], However, as g(G) increases, the

27

28

bound gets better. For example, if g(G) > the makespan of the clustering is at

most | t im es optimal.

T he basic idea behind the algorithm is similar to the PY algorithm. For each

v E V, we first compute a lower bound e(r>) on the earliest possible s ta r t tim e of

v. This is accomplished by finding a cluster C(v) containing v tha t allows v to be

s tar ted as early as possible when all the nodes in C(r>) are executed on the same

processor and all o ther nodes in V — C(v) are executed on o ther processors. This

cluster can be determined using a simple greedy algorithm which (unlike the PY

algorithm) grows the cluster one node at a time. Once the clusters are determined,

they are m apped to processors in a simple way, and we show th a t this mapping has a

schedule whose makespan is “good” in the sense described in the previous paragraph.

3 .1 .1 C om p u tin g the e Value

T he c. values are computed in topological order of the nodes of G. For a source node,

its e value is equal to zero. For any other nodes, its e value is com puted after all of

its ancestors have been assigned e values. Consider a node v all of whose ancestors

have been assigned e values, and suppose we wish to com pute e(v). Since e(v) is a

lower bound on the s ta r t time of v, it suffices to look at clusters C consisting of v and

a subset of its ancestors. If a cluster C' contains a node w which is not an ancestor of

v, removing w from C' results in a cluster in which v can be started possibly sooner,

but never later, than u ’s s tart tim e in C .

Let C be a cluster consisting of node v and a subset of its ancestors {</j , . . ., Uk).

We wish to find a lower bound ec{v) on the earliest s tart time of v assuming tha t all

nodes in C are executed on the same processor. Ignore for the m om ent the arcs that

cross C, i.e., those tha t connect nodes outside of C to nodes inside of C. W hat is the

earliest t im e th a t v can be scheduled? Clearly, the answer is the makespan of the

optim al schedule for the one-processor scheduling problem with release times for the

29

instance { u j , «*} with e-(u,) and /<(«,-) being the release time and execution time,

respectively, of task u,-. This problem is solved optimally by the greedy algorithm

th a t executes the tasks in nondecreasing order of release times. Therefore, for the

cluster C,

ec {v) > G R E E D Y - S C H E D U L E R - {c}) (3.1)

where GREEDY-SCHEDULE(«) returns the makespan of the one-processor schedule

for the set of tasks specified by its argument.

Next consider the set of arcs that cross C. For such an arc (u ,w) , define its c

value as c(u,iu) — e(u) + f i (u) + \ (u , w) . Node v cannot be scheduled before time

c(u, w) because there is a path from u to v through node w. Therefore,

ec(v) > M A X - C - V A L U E (C) (3.2)

where MAX-C-VALUE(C) is the maximum c value among the arcs tha t cross C.

From (3.1) and (3.2), it follows that for a given cluster C,

, . . . G R E E D Y - S C H E D U L E I C - {v})
e c M > m « < (U A X - C - V A W E (C)

and

e(v) > m m{ec (r)} (3.3)

The problem is to find the cluster C for which ec{v) is minimum. We show tha t

this cluster can be found using a simple greed}' algorithm. S tarting with node v, the

algorithm “grows” the cluster a node at a time and checks if the new cluster can

potentially decrease the current estim ate for the e value of r . If growing the cluster

can only increase the e value, the algorithm stops and ret urns the minimum c value

obtained.

Suppose we have found a candidate cluster C; hence ec(v) satisfies Equation (3.3).

We have the following two cases:

Case I: MAX-C-VALUE(C) > G REED Y-SCIIEDU LE(C - {v}). Let («, »;) be an

arc th a t crosses C such tha t c (u ,w) = MAX-C-VALUE(C). Since cc{v) > c[u,w),

an e value less than ec{v) cannot be obtained as long as node u is outside of the

cluster C . Therefore, C must be grown to include node u.

Case 2: G R EED Y-SCH EDU LE(C - {»>}) > MAX-C-VALUE(C). Since ec (e) >

G R EED Y -SCIIED U LE(C — {e}), then adding any new node x to C cannot

decrease the e value because GREEDY-SCIIEDULE(C U {.r} - {u}) > GREEDY-

SC IIED U LE(C - {e}).

Case 1 gives the criterion for growing the candidate cluster while case 2 gives the

stopping criterion. The complete algorithm for computing e(e) is given as Algorithm

CO M PUTE-E-VA LU E below. For the DAG of Figure 2.4, Figure 3.1 shows the c

values com puted by the algorithm. Figure 3.2 illustrates how the e value of node 1 0

is computed.

1 . A lgorith m C O M PU TE-E-V A LU ER, G)

2. beg in

3. if v is a source node th en return (0);

31

6 . c <- MAX-C-VALUE(C);

7. c <— c;

8 . w h i le m < c do

9. Ie t(u , w) be an arc such tha t u $ C , w G C, and c = c(u,iv);

10. C <— C U { «};

1 1 . m <- GREEDY-SCH EDU LE(C - {■<>});

12. c <- MAX-C-VALUE(C');

13. e <—min{e,max{m ,c}};

14. e n d w h i le ;

15. r e t u r n (e);

16. e n d COM PUTE-E-VALUE.

3 .1 .2 C o n s t r u c t i n g t h e S c h e d u le

Algorithm CO M PUTE-E-VA LU E (e ,C) can be easily modified so tha t it returns, in

addition to e(e), the corresponding cluster C (e). We now describe how to construct a

clustering (h(G') for G whose makespan is at. most (1 +e)-optim aI if g(G) > (1 —s)/e .

$(G') is constructed by visiting the nodes of G in reverse topological order (i.e.,

from sink nodes to source nodes). Initially, ^(G') = 0 and the sink nodes of G are

“m arked” . The following steps are then performed until there are no more marked

nodes:

1. Pick a m arked node v and add C(v) to <&(G’).

2. Unmark v and mark all nodes u for which there is an arc {u ,w) such that

u C (u) and w G C(v) .

32

JL

el =0

T1

(©) t 2

e2 = 0

e7 = 14

e3 = 8 e4 = 8

/
e8 = 14 e9 = 18

/ s

(D T1 \\ T1

—
©

J

T2

N

—
0

©) T2 ®)
i

T2 © T5

?
V J

T3 © T4
e5 = 5

1
©

V)

T2

T3

T6

e6= 12

e l0 = 14

T2

T5

T3

T6

T 10

F i g u r e 3 .1 The e values and clusters for the DAG of Figure 2.4.

To schedule $((.?), we m ap each cluster in d>(G') to a distinct processor and

execute the nodes mapped to the same processor in nondecreasing order of their e

values. If node w is mapped to processor p, we let s (w ,p) denote the start tim e of

w in p. Note tha t each processor p holds exactly one cluster and tha t this cluster is

C(v) for some marked node v. Moreover, v is the last node executed in this cluster.

33

e5=5 cl= 0 e2=0

m=0, c=22
e=22

c5=5
e3=l

e6=12

m=14, c=21
e=21

cl=0

e5=5

cf>=12

c2=0

el= 0

c3=!

ni=14, c=15

c2=0

cl= 0

e5=5

ef>=12

m=14, c=l 1

e=17

e=15 e=14

F i g u r e 3 .2 Com puting the e value of node 1 0 ; critical arcs are in bold.

3 .2 P e r f o r m a n c e B o u n d s fo r C A S S - I

Let u be a non-source node. In the algorithm, each iteration of the w h i le loop

chooses an arc in step 9 for inclusion in the candidate cluster C. Call such arcs

critical. Clearly, the set of critical arcs forms a tree T with root v, as illustrated in

Figure 3.3. It follows tha t , for any cluster of nodes tha t includes v bu t excludes some

o ther nodes in T, there is at least one critical arc tha t crosses it. Let ???., and c, be

the in and c values, respectively, that are computed in lines 11 and 1 2 a t iteration i

34

of the w h i le loop, and let ???o and c0 be the initial values before entering the loop.

Furthermore, let e, = max{??7.,-, c.}. Finally, let t be the last iteration of the loop.

Figure 3.3 The set of critical arcs forms a tree T with root v.

The following fact is obvious.

Fact 1. For 0 < ? < t, ???.,■ < c,-; and m t > ct.

Let A: be the least integer such that a- = min0 <t-<i{e,-} = e(e). From Fact 1,

if follows that for 0 < i < /, e, = max{m,-,c,-} = e, > e*. Similarly, m t =

nia.v{ni t, c, } = ct > e*. Therefore, we have

F a c t 2. For 0 < i < i,C{ > e(v) ; and rnt > e(n).

We are now ready to prove the following.

T h eorem 1 Algorithm C O M P U T E - E - V A L U E (v ,G) returns a lower bound e(v) on

the earliest start t ime o f node v.

P roof. The proof is by induction on the depth of node v . The theorem is obviously

true for source nodes. So let v be a non-source node and assume that the theorem

holds for all of ids ancestors. Suppose tha t the algorithm returns e(v) = e .̂, the e

value computed at iteration A: of the w hile loop. Let C* be the cluster of nodes

constructed a t this iteration. Suppose to the contrary tha t there is another cluster

C' containing v in which v can be executed a t tim e e' < eu — e(u). Then all nodes

in Ck must be in C . If not, there is some critical arc that lies inside C\- bu t crosses

35

C . The c value of this critical arc is c,- for some 7 , 0 < i < k < /.. Therefore, c' > c.j

which by Fact 2 implies e' > c* = c(u), a contradiction. Therefore, C\ C C . Next

consider the following two cases:

Case 1 : k = t. Since C' includes all nodes in C t then e' > vnt. But by fact 1 ,

rtit = ma.x{r7?.(, C t} = e,-; hence e' > e t — e(v), which is a contradiction.

Case 2 : k < t. Let (u , w) be an arc tha t crosses C* whose c value equals c/t. Then

C m ust contain (u , w). If not, then (u , w) must cross C (since w 6 C). But this

implies th a t e’ > c* = m a x {777*, ĉ .} = ejt = c(v), which is a contradiction. Now

suppose (u , w) is in C 1. Then all nodes in C-t must be in C . Otherwise, there will

be a critical arc tha t crosses C' whose c value is cj for some k < j < t. But then

c' T Cj > e<,. = e(v) (by Fact 2), which is again a contradiction. Finally, if C' includes

all nodes in C t, we arrive at the contradiction that e' > rn(> e^ = e„ (using Fact 2).

We now prove the following.

L e m m a 1 Let v be a marked node such that C(v) is mapped to processor p. I f

jr/(C/) > (1 — e) / e fo r some 0 < c < 1 , then s (v ,p) < (1 + e)c((;).

P r o o f . The proof is by induction on the depth of marked node v. The theorem is

true for all marked nodes v th a t do not have ancestors which are also marked nodes

because in this case s(u ,p) = e(rO- Now consider a marked node v and suppose tha t

the theorem holds for all of its ancestors tha t are also marked nodes. For each node

w G C(v) , let (u ,w) be an arc with the maximum c value among all arcs tha t cross

C(v) and ends a t w. Thus u is a marked node. It follows th a t w can be started at

time

s{w,p) < (1 + e)e(u) + p(u) + \ (u , w).

since u is a predecessor of w, e(w) > e(u) + p(u). Therefore,

s (w ,p) < e(iu) + se(u) + \ (u , w).

36

Now p (u) / \ (u , w) > (1 — e)/e ; thus, e[g(u) + A(u,iu)] > \ (u , w) . It follows tha t

s (w ,p) < e(w) + c[e(u) + p(u) + A(u, «;)].

< e(w) -f ec(t’),

because e(i>) > e{u) + p(u) + \ (u , w) . The last inequality implies tha t every node in

C(v) can be started a t its e value plus a delay of at, most e-e(u). Therefore, v can be

s tar ted at tim e s (v ,p) <G R EED Y -SC H E D U LE(C — {u}) + £,e(u) < (1 + e)e(u).

T h e o r e m 2 / / (j{G) > (1 — e) /e f o r some 0 < c < 1 . then the make span o / $ (G) is

at most (1 + e) t imes the makespan of an optimal clustering for G.

P r o o f . Let M opt be the makespan of an optimal clustering for G. Then M opt > m a,x{c(r)+

p{v)} , over all sink nodes v of C. Since every sink node v is a marked node, then by

Lem ma 1,

makespaii(<&(G))<mcLx{{ I + e)c{v) + p{v)}

< m ax{(l + e)[e(u) + p,{v)}}

= (1 + e)max{e(u) + /<(?;)}

< (1 + s) M opt.

Figure 3.4 shows the clustering constructed by the procedure for the DAG G of

Figure 2.4. The figure also shows the start times of the nodes when the clusters are

m apped to distinct processors. The makespan of the clustering is 27. On the other

hand, the makespan of an optimal clustering is at least e(Tg) + p{rJ\) = 18 + 6 = 24.

The granularity of G is g(G) = T Setting \ = (1 — e) /e gives e = Thus,

27 < (1 + g) * 24 = 45 as predicted by Theorem 2 . Note tha t while 24 is a lower

bound on the optim al makespan, the optimal makespan is 26, as shown in Figure 2.5.

Therefore, the clustering produced by the algorithm is actually closer to optimal than

predicted.

37

PI P2

5)s2=0

2) s5=5

5) s2=0

s2=0

s 3 = l l 6)s4=10

s6=15

6)s9=21

M A K E S P A N = 27

F i g u r e 3.4 A clustering and schedule for the DAG of Figure 2.4.

3 .3 C o m p l e x i ty A n a ly s is o f C A S S - I

In this section, we describe the implementation details and derive the time complexity

of the algorithm. The runtime of Algorithm COM PUTE-E-VALUE depends on how

the functions MAX-C-VALUE and GREEDY-SCHEDULE are computed. MAX-

C-VALUE(C) is computed as follows: we maintain a Fibonacci heap //[10] whose

elements are the nodes of the DAG. For each node u we associate a. value key[u\ which

equals the maximum c value among all arcs that cross cluster C and emanate from

38

u. (If no such arc exists, key[u\ = —oo). The following operations are performed 011

I I .

• E X T R A C T -M A X (//) : deletes from I I the node with largest key.

• IN C R EA SE-K EY (//,a : , k): increases the key of node x in I I to the value k.

The algorithm grows the cluster C by adding a node u from which em anates

an arc with the maximum c value tha t crosses C. This node u is obtained by

performing EXTRAC'T-M AX(/7). Now, adding u to C reveals new arcs (x , u) that

cross C'. Therefore, heap I I is updated by performing INCREASE-KEY(/ / , .r, c(x, u))

for each such arc (,r,it).

E X TR A C T-M A X is executed at most \V\ times. INCREASE-KEY is called

once for each new arc th a t crosses C and hence is executed at most \E\ times.

For a Fibonacci heap with |K| elements, an EXTRACT-M AX operation can be

performed in 0 (lg \ V \) amortized time and an INCREASE-KEY operation in 0 (1)

amortized time. Therefore, excluding the calls to function GREEDY-SCIIEDULE,

the algorithm runs in 0 (|V | /g |K | -f |£ |) time.

Next consider the implementation of function GREEDY-SCIIEDULE. In the

algorithm, each subsequent call to GREEDY-SCHEDULE adds a single node (task)

to the argum ent set. Moreover, the makespan of the greedy schedule is obtained by

executing the tasks in the set in nondecreasing order of e values. Therefore, if the

tasks are initially sorted, a new task can be inserted in the sorted list using binary

search. However, although insertion can be done in 0(lg \V \) time, com puting the

makespan of the schedule for the new list will take 0 (|V’|) time.

By using a 2-3 tree T [1], we can reduce the time to compute the makespan to

0 (lg \V \) . In 7 ’, every internal node has either two or three children and all leaves

are at the same distance from the root.. Given a set of tasks and their e values,

we store the tasks in the leaves of T in sorted order, i.e., arranged from left to

39

right in nondecreasing order of e values. We say tha t node a “owns” the sublist

of tasks stored in the subtree rooted at o. Node a contains the following pieces of

information:

o e[cr]: T he maximum e value among all tasks owned by a .

• s[o], / [a] : If the tasks owned by a are scheduled greedily, then s[n] is the

s ta r t tim e of the first task executed and /[o] is the finish tim e of the last task

executed. (Note the f[a] is also the makespan of the greedy schedule for this

sublist of tasks.)

• d[a]: The idle tim e in the greedy schedule for the sublist tasks owned by o;

i.e., the number of t im e units between .s[o] and /[cv] during which no task is

being executed.

Figure 3.5 illustrates how the 2-3 tree T evolves for the given sec|uence of tasks.

To insert a new task x, we traverse the tree downward from the root to locate the

point of insertion, insert a new leaf corresponding to task .r, then traverse the tree

upward towards the root to upda te the information of the nodes affected by the

insertion. Observe th a t an insertion may cause some nodes along the traversed path

to have four children, in which case the node is split into two nodes, each with two

children. The details of insertion and node splitting can be found in [1],

Figure 3.6 shows how a node’s key values are updated, given the key values of

its children. The proof of correctness is straightforward and is om itted here. Note

th a t only the nodes along the root-to-leaf path are updated and tha t an update takes

constant time.

Since T has at most |F | leaves, its depth is 0(Uj\V\) and hence insertion takes

0{Uj\V\) time. Moreover, the makespan of the greedy schedule for the tasks currently

stored in T can be found in 0 (1) time as it is simply f[rool(T)} . It follows tha t

the calls to GREED Y-SCIIEDU LE in Algorithm CO M PUTE-E-VALUE contribute

40

TASK e u

1 2 5
2 15 6
3 8 I
4 6 2

5 14 4

- — /

d

INSERT 1

INSERTS

INSERT 3

F ig u r e 3.5 The 2-3 tree T.

0 (\V \ lg \V \) to the total runtime. Therefore, Algorithm CO M PUTE-E-VALUE runs

in 0(|V|/«jf|V| + 1/^1). Since the algorithm is called |U| times, computing the e values

of all nodes takes 0 (|U|(|V|/<7 |U| + l^ l)) time.

Finally, once the e values are computed, the clustering can be constructed

in 0 (|V | + |A’|) time. Therefore, the entire task clustering algorithm takes

0 (\V \ (\V \ lg \V \ + \ E \)) t \ m e .

3.4 S p e c ia l C a se s

3 .4 .1 C o a r s e G r a i n D A G s

A DAG G is coarse grain if g(G) > 1; otherwise it is fine grain. For coarse grain

DAGs, the task clustering algorithm of the previous section produces a clustering

41

e = e2
s = s 1
f = 12+mnx(0,fl-(s2+d2))
d = d l+ m ax(0 .(s2+d2)-fl)

c = c3
s = si
r = f2+ma.\{0,fl-(s2+d2)j
d ' = d l+ m ax(0 ,(s2+ d2)-fl)
f= r3+max{0,f'-(s3+d3) (
d = d ’+max) 0 ,(s3 + d 3)-f)

(a) (b)

F igure 3.6 Updating a node with (a) two children;(b) three children.

whose makespan is at most 1.5 times optimal. We show that by slightly modifying

the algorithm an optimal clustering can be obtained. Before showing this result, we

prove some properties of coarse grain DAGs.

Let G — (V , E , p , A) be a coarse grain DAG. For v £ V, let e(v) be the c

value returned by Algorithm COM PUTE-E-VALUE(u, G) and let C(v) be the corre­

sponding cluster. For nodes u , t ; ,£ V, call u a critical predecessor of v if and only if

c (u ,v) = m a x {c (w , c)|(ic, v) £ E) .

L em m a 2 I f u is a critical predecessor of v, then e(v) > m a x { e (u) + f i (u) ,m a x { c (w , v)

E and w f u }}.

P roof. The claim obviously holds if e(u) + //,(») > m ax {c (w , v) G E and

w ^ c} because c(v) > c(u) + p.(u) (u is a predecessor of v). So assume to the

contrary tha t c (r) < c (x , v) for some ,r ^ u. (Note tha t c(u ,v) > c(x ,v) .) Then

x and u m ust both be executed on the same j^rocessor as v. Therefore, e(u) >

G R EED Y -SCH ED IJLE(u ,.t) . We have two cases:

Case 1 : c(u) >e(x). Then

e(u) > rnax{e(u) + p(u) , e(x) + p{x) + p{u)}

42

> e{x) + fi(x) + /«(»)

> e(x) + [j,(x) + \ (x , v) , since g{v) > 1

= c(.r,e)

> e(i>), a. contradiction.

Case 2 : e(x) >e{a). Then

e(e) > m a x { e (x) + y(u) , e (u) + /<(u) + //,(;r)}

> e(u) + f/.(u) + / i (x)

> e (u) + fi.(u) + X(w, i>), since </(n) > 1

= c(u, v)

> c (x ,v)

> e{v), a contradiction.

A cluster of nodes C — ui , . . . ,Uk is called a critical chain if and only if for

1 < i < k, rtt+i is a critical predecessor of The head of the chain is U\ and the

tail is iik-

L e m m a 3 For every node v 6 V, C(w) is a critical chain.

P r o o f . T he proof is by induction on the number of iterations of the w h i le loop of

Algorithm COM PUTE-E-VALUE(u, Cl). Let C,- be the cluster a t iteration i of the

loop. Clearly, C\ is a critical chain since it consists of v and its critical predecessor.

Suppose th a t for some k > 1, the clusters (1 < i < k) are critical chains. Let C^ be

{n, w u ..., Wk}. Therefore, ?7U.=GREEDY-SCIIEDULE {{iv\ , . .., Wk]) and ca-=MAX-

C-VALUE({u, iv\, ...,Wk}). If mb > c* then the loop is term inated and the algorithm

returns a cluster Cj, j < k , which is a critical chain. Thus the claim holds.

Suppose tha t m-k < c^. Then the algorithm executes iteration k + 1 . We show

th a t Cfc+1 is also a critical chain. Let (x, ivj) be an arc with maximum c value tha t

crosses C7.+1 ; thus c. (x,Wj) = ĉ . and j £ If j = k then x is a critical

predecessor of wj. Therefore Cf.+ \ — U {x} is a critical chain, and the claim holds.

43

So suppose th a t j < k . It follows tha t m k < c(x , n>j) < c(teJ+i, lUj) (since is a

critical predecessor of wj). But:

m k > e{wJ+1) + n(wj+1) + n(wj)

> e(t oj + i) + + \ { i u j + l , Wj) , since g (w j+i) > 1

= c { w j + U tVj)

> m k, a contradiction.

Therefore, x must be a critical predecessor of w k and hence C k + \ ' s a critical chain.

Consider two critical chains C \ and C2 such that l a i . l { C \) = /mad(C2). We

define C \ © C 2 as the critical chain th a t results when t a i l { C \) is replaced by C2.

Finally, for v G V’, let (7*(v) be the critical chain returned by the following steps:

r e p e a t

let t v — l a i l { C { v)) \

C { v) <- C(e) © C M ;

u n t i l C (w) = {w}.

To construct a clustering for G, we proceed as before: i.e., we begin by

computing the c values and the clusters of the nodes of G using Algorithm

COM PUTE-E-VALUE. Next, we com pute $ (G) except th a t now we add C ’ to

$ (G) (instead of C (v)) . We now prove the following.

T h e o r e m 3 L e t v b e m a p p e d t o p r o c e s s o r p a n d l e t i t s s t a r t t i m e o n p b e s (v , p) .

T h e n s (v , p) = e (v) .

P r o o f . The theorem is trivially true for all source nodes. Let v be a non-source

node and assume tha t all of its im m ediate predecessors have s ta r t times equal to

their e values. Suppose tha t v resides in critical chain C " . We have two cases:

C a s e 1 : v ^ t a i l (C *) . Let u be the critical predecessor of v in C*. Then

44

,s(v, p)= m nx{e (u) -j- g(u). iriax{c(w, v)\(iu, i>) £ E and w (f C ' } } < e(o).

Case 2 : v = £a?7(C*). By definition of C*, it should be the case that C(v) = {n}.

Hence, s (v ,p) =max{c(iu, u) £ E] = e(i>).

3 .4 .2 T re e s

An in tree is a directed rooted tree in which every arc is directed from a node to

its parent. An outtree is similar except tha t every arc is directed from a node to

its children. If duplication is allowed, the task clustering problem for outtrees can

be solved optimally using the following simple algorithm [7]: map every root,-to-lea.f

pa th to a processor and execute each node as its e value. If duplication is not allowed,

the task clustering problem for outtrees is A^P-complete [7], For the case of intrees,

it was shown in [7] th a t the task clustering problem with no task duplication is also

A^P-complete. Moreover, allowing duplication does not help because duplication

tasks can always be removed without increasing the makespan.

An interesting question is whether there are good approximation algorithms

for scheduling intrees and outtrees when no duplication is allowed. The answer is

affirmative: our greedy algorithm can be construct 2 -optimal schedules for both

intrees and outtrees.

C o r o l l a r y 1 When duplication is not allowed, there is a polynomial-time algorithm

that constructs a clustering fo r an intree with granularity at least (1 — e) je whose

makespan is at most, (1 + e) times the makespan o f an optimal clustering.

P r o o f . L et v be a node in a DAG G. It is easy to verify tha t for the clustering

produced by our algorithm, a necessary condition for v to have duplicates is tha t

it has two descendants u t and u2 such that one of these nodes, say ;q, is reachable

from v via some path th a t does not contain u 2. If G is an intree, this condition is

never true. Thus, the clustering produced by our algorithm contains no duplicate

nodes and the result follows.

45

C orollary 2 W h e n d u p l i c a t i o n i s n o t a l l o w e d , t h e r e i s a p o l y n o m i a l - t i m e a l g o r i t h m

t h a t c o n s t r u c t s a c l u s t e r i n g f o r a n o u t t r e e w i t h g r a n u l a r i t y a t l e a s t (1 — s) / s w h o s e

m a k e s p a n i s a t m o s t (1 + e) t i m e s t h e m a k e s p a n o f a n o p t i m a l c l u s t e r i n g .

P roof. Let, T be an outtree. T can be converted into an intree T " by reversing the

direction of every arc in T . Moreover, the granularities of T and T ' are equal. Given

a schedule S ' for T ’ (with no task duplication), a schedule S for T with the same

m akespan can be derived by defining the s ta r t time of node v in S as makespan(S ')-

finish tim e of v in S ' [7], A similar transformation can be m ade from any schedule for

T to a schedule for T'. Therefore, for an outtree with granularity at least (1 — e) /e , a

(1 + e)-op tim al can be obtained by first converting it into an intree T ', then computing

a (1 + e)-optimal clustering for T'.

C orollary 3 W h e n d u p l i c a t i o n i s n o t a l l o w e d , t h e r e a r e p o l y n o m i a l - t i m e a l g o r i t h m s

t h a t c o n s t r u c t o p t i m a l c l u s t e r i n g s f o r coarse grain i n t r e e s a n d o u t t r e e s .

P roof. Follows from the fact th a t our greedy algorithm, when applied to coarse

grain DAGs, produces schedules with optimal makespans.

3.5 Sum m ary

In this chapter, we present a new task clustering algorithm th a t runs |V'| times faster

than the PY algorithm. Unlike the PY algorithm, the new algorithm uses a simple

greedy s tra tegy to find the best cluster for a node v : it m aintains only one candidate

cluster and “grows” the cluster a node at a tim e if doing so can potentially decrease

the s ta r t t im e of v . In addition, we prove a be tte r performance guarantee by explicitly

taking into account the g r a n u l a r i t y of the DAG. We show th a t if g (G) > (1 — e) / e

for some 0 < e < 1 , our algorithm produces a schedule whose makespan is at most

(1 + f) times the optimal makespan. As a corollary, for a DAG with a r b i t r a r y

46

granularity (i.e., g(G) > 0), the algorithm produces a schedule th a t is at most twice

optimal, thus matching the bound of the PY algorithm. However, as g (G) increases,

the bound gets better. For example, if g(G) > | the makespan is a t most | times

optimal.

For coarse grain DAGs (i.e., DAGs whose granularity is a t least 1), the task

clustering algorithm gives 1.5-optimal schedules. We improve this result by giving a

slightly different algorithm tha t produces optimal schedules for coarse grain DAGs.

Finally, we show th a t the algorithm can be used to solve the task clustering

problem with no task duplication for directed rooted trees. In particular, we exhibit:

(1) 2 -optimal schedules for general directed rooted trees; and (2) optim al schedules

for coarse grain directed rooted trees. These results are interesting because it is

known tha t task clustering with no duplication is A^P-hard even when restricted to

directed rooted trees [7].

C H A P T E R 4

C L U S T E R IN G STATIC TA SK G R A P H S W IT H O U T D U P L IC A T IO N

For task clustering with no duplication, the DSC algorithm of Gerasoulis and Yang

is empirically the best known algorithm to date in terms of both speed and solution

quality. The DSC algorithm is based on the critical path method. At each refinement

step, it computes the critical path of the clustered DAG constructed so far, i.e., the

longest path from a source node to a sink node. (The length of a path is the sum of

the node weights and edge weights along the path.) It then zeroes out an edge along

the critical path if doing so will decrease the critical path length. The main source

of complexity in the DSC algorithm is the computation of the critical path, which is

done a t each refinement step. On the o ther hand, the use of critical path information

is also the reason why DSC performs very well compared to o ther algorithms.

In this chapter, we present an algorithm called CASS-11 for task clustering

with no duplication which is competitive to DSC in term s of both speed and solution

quality. W ith respect to speed, CASS-II is better than DSC: it has a time complexity

o f O (|£ | + |F | lg |F |) , as opposed to D SC’s O ((|^71 + 1 |) lg |V{). Indeed, experimental

results (described later in C hapter 5) show that CASS-II is between 3 to 5 times faster

than DSC. (It is worth pointing out th a t we used the C code for DSC developed by

the authors of the DSC algorithm. The C code for CASS-II was developed by the

au thor of this thesis.) W ith respect, to solution quality, experimental results show

th a t CASS-II is virtually as good as DSC and, in fact, even outperforms DSC for

very fine grain DAGs (granularity less than 0.1).

47

48

4.1 C A SS-II A lgorithm

CASS-II employs a two-step approach. Let G = (V, E , / i , A) be a weighted DAG. In

the first step, CASS-II computes for each node v a value s(u), which is the length of

a longest path from a source node to v (excluding the execution tim e of v). Thus,

s (v) is the s ta r t tim e of v prior to any clustering of G . The s values are computed

in node topological order of G . The s value of every source node is zero. Let v be a.

node all of whose im m ediate predecessors have been assigned s values. Then,

s { v) = max{s(«) + //(«) + A(w, t’)|(w,, t>) e E) (4.1)

The second step is the clustering step. Jus t like DSC, it consists of a sequence

of refinement steps, where each refinement step creates a new cluster or “grows”

an existing cluster. Unlike DSC, CASS-II constructs the clusters bottom -up, i.e.,

starting from the sink nodes. To construct the clusters, the algorithm computes for

each node v , a value f (v) , which is the longest pa th from v to a sink node in the

current partially clustered DAG. Let l (v) = s (v) + f { v) . The algorithm uses l (v) to

determ ine w hether the node v can be considered for clustering at current refinement

step.

More precisely, the algorithm begins by placing every sink node v in its own

cluster and by setting f (v) = f i (v) (hence, l (v) — s(e) + n { v)) . The algorithm

then goes through a sequence of iterations, where at each iteration it considers for

clustering every node u all of whose im m ediate successors have been clustered (and

hence been assigned j values). Call such a node current.. For every current node m,

its / value is computed as

f { u) - max{/((«) + A (a, v) + f { v) \ (u , v) 6 E j (4.2)

49

T he im m ediate successor v which determines f (u) is defined as the d o m i n a n t ,

s u c c e s s o r of current node u . In general, two or more current nodes may share the

same dom inant successor. Figure 4.1 illustrates the com putation of the / values of

current nodes. In Figure 4.1, nodes u | and U2 are current nodes, but u 3 is not since

one of its im m ediate successors, u 2 , has not been assigned an / value. Since tq is the

only im m ediate successor of iq, f (u 1) = f i (u i) + A(?/1, iq) + / (r q) - 32, and tq is the

dom inant successor of u \ . On the other hand, current node u 2 has two im m ediate

successors iq and iq. Thus, f (u 2) = max{;t(ix2) + \ { u 2 , v \) + / (rq) , n (u 2) + X (u 2 , iq) +

. f (v 4) } = 26; the dom inant successor of u 2 is v \ . Thus, current nodes tq and u 2 have

the same dom inant successor, tq. Note that /(tq) = -s(tq) + f (i i \) = 18 + 32 = 50

and l (u 2) = s (u2) + f (u 2) = 2 1 + 26 = 47. Finally, we define the f value of a cluster

as the f value of the first node in the cluster. For example, in Figure 4.1, assuming

th a t node tq is the first node in the cluster C 1 , then f (C 1) - ./*(t> 1) = 17.

Once the / values of all current nodes have been computed, one of them will be

placed in a cluster during the current iteration. The current nodes are considered for

clustering in nondecreasing order of their I values. For a given current node u, let v

be its dom inant successor and let C v be the cluster containing v. Then, u is included

in the cluster Cv if doing so does not increase both f (u) and f { C v). Otherwise, u is

placed in a new cluster all to itself.

Figure 4.2 illustrates the method that could be used for including a current

node Ui in a cluster C. In the figum, it is assumed th a t Vj is the first node in C

and <.’3 is the first im m ediate successor of ?/,i in C (with respect to the sequential

ordering). Then u\ is included in C by placing it either: (1) immediately before u,,

or (2) immediately before t>3. Note if ui is inserted before tq, f [u \) may increase

bu t the / values of the o ther nodes in C would not change. On the o ther hand,

if i/. 1 is inserted before u3, f (u \) may decrease but f (v \) and f (v 2) may increase.

50

s=10
s=21
f=26 s=18

f=32

s=33
f=17

f=8

C2 Cl
F i g u r e 4.1 An example of computing the / values of current nodes.

In the second case, updating the f (v \) and J (v 2) will increase the time complexity.

Therefore, only the first case is used by CASS-II. Note th a t we also do not update

the I and s values for the nodes in the cluster. If the placement is not acceptable

(tha t is, reduce the / values of neither the current node nor the cluster), the current

node is placed in a new cluster all to itself.

Figure 4.3 shows the result of applying the clustering strategy to Figure 4.1.

Curren t node ti\ will be considered first since it has a higher I value than current

node u2. If Ui were included in the cluster Cj containing its dom inant successor Ui,

/ (■ M i) would be reduced from 32 to 25 and / (C i) would not be changed. (For C 1 ,

its / value would be determined by node vj, whose / value would remain 17 but

whose s value would now be s (u 2) + p{u2) + A(u2, i'i) = 2 1 + 5 + 4 = 30. Hence,

51

current node

c
F igure 4.2 The strategy of edge zeroing.

l (v i) = 47.) Thus, the clustering is acceptable and current node Ui is included in

cluster C\. Next, current node u2 is considered. One can check tha t clustering u 2

with Ci increases f (i i 2) ; hence u2 is placed in a new cluster all to itself.

T he complete algorithm is given as Algorithm CASS-11 below. The algorithm

m aintains a priority queue 5 consisting of items of the form [•</.,/(».),?;], where u

is a current node, l{u) is the / value of it., and v is the dominant successor of u.

INSERT(S,iZem) inserts an item in 5 and DELETE-MAX-L-VALUERS') deletes

from S the item with the maximum I value. The algorithm returns, lor each node e,

the cluster C[v) containing it.

1. A lgorith m CASS-II(C)

2. begin

3. for each node v do

4. com pute s(v)\

5. endfor;

52

s=10 s=8

1=43
f=25

f=17

f=8

C2 Cl
F i g u r e 4 .3 The clustering of the DAG in Figure 4.1.

6 . fo r each sink node v do

7. f (v) <r- f i (v); l(v) = s(v) + f (v) \

8. C(v) {u};

9. e n d fo r ;

10. S <- 0;

1 1 . w h i l e there are current nodes d o

1 2 . fo r each new current node u do

13. find ids dominant successor v;

53

14. / («) <- i.i(u) + \ {u , v) + f{v);

15. l(u) <- s(u) + / (u) ;

16. INSERT(5, [» ,/(«), (-]);

17. e nd fo r ;

18. b ' , / (. r) , l /] «- D E L E T E -M A X -L - V A L U E (S);

19. i f C (y) U x is acceptable t h e n

20. C { x) <— C(j/) 4— C (y) U {x-};

2 1 . e lse

2 2 . C(.r) <- {.r};

23. endif ;

24. e n d w h i le ;

25. r e t u r n ({ C (r) | r 6 C/});

26. e n d CASS-II.

For the DAG of Figure 2.4, Figure 4.4 shows each iteration of Algorithm CASS-

II. T he figure also shows the I values of the tasks in each step. The makespan of

the clustering shown in Figure 4.4(1) is 26. On the other hand, applying DSC on the

example DAG results in the following clusters:

C 1 = { 1 } ,C 2 = { 2 ,5 } ,C 3 = {3,6,10},

C4 = {4,7,9}, Cs = {8 }.

54

T he makespan of the clustering produced by the DSC algorithm is 30 by searching

both directions (i.e., top-down and bottom -up) of the DAG. Note th a t in practice,

like the DSC algorithm, CASS-II also searches both directions of the DAG and uses

the makespan of whichever is better.

4.2 C om plex ity A nalysis

We now analyze the complexity of Algorithm CASS-II. The s values of all nodes (lines

3-5) can be com puted in tim e 0 (|C | + |E’|). Initializing the sink nodes (lines 6 - 1 0)

takes 0 (|C l) time. Each iteration of the main w hile loop (lines 11-26) consists of:

(1) identifying the current nodes; (2) for each current node, determining its dom inant

successor, computing its / and / values, and inserting a corresponding item in the

queue 5; and (3) for each current node deleted from S’, determining the cluster to

which it belongs.

The current nodes a t the s ta r t of each iteration can be determined by simply

com puting for each node u, a value n u m (u) which is the number of im m ediate

successors th a t have not yet been clustered. Initially (prior to any clustering),

nnin(u) is simply the total num ber of imm ediate successors of u. Whenever a node,

say v, is assigned its cluster, the n u m value of every immediate predecessor of v is

decremented by 1 . Thus, at the s ta r t of each new iteration, the current nodes are

those nodes which have not been clustered and which have n u m values equal to zero.

It is easy to verify th a t updating the n u m values and determining the current, nodes

take 0 (|V7| + |/^|) tim e overall.

T he dom inant successor of a current node can be determined in a. similar way.

For each node u, we keep track of the “candidate” dominant successor v, which is

the im m ediate successor of u th a t has already been clustered and for which fi(u) +

\ (u , v) + f (v) is m axim um . This latter value will be the “candidate” value for f (u) .

55

F igure 4.4 The I values and clusters for the DAG of Figure 2.4

56

W henever a node v is assigned its cluster, the candidate / value of every immediate

predecessor u of v is upda ted as m ax { /(«) , fi(u) + \ (a , v) + f { v) } . If f (u) changes

in value, then the candidate dominant successor of u is changed to v. Thus, when

node u becomes a current node, its candidate dominant, successor and its candidate

/ value are the true dom inant successor and the true / value, respectively. Overall,

keeping track of the candidate values takes O dC] + |F j) time.

Consider next the insert and delete operations on the priority queue S. By

implementing 5 as a heap, each insert operation and each delete operation takes

0 (l g |S |) time. Since there are a total of |V7| insert operations and V delete

operations, these operations contribute at most 0 (| V| lg |V'|) to the total time.

Finally, for each current node v, its cluster can be computed in 0 (1) tim e (since

the s valuses may be changed later, we did not upda te the I and a values of nodes

in the cluster, this reduces the complexity to 0 (1)), thus contributing 0 (|V |) time

overall. It follows th a t Algorithm CASS-II runs in 0 (\E \ + jV7(lg | W|) time.

4.3 Special C ases

In this section, we discuss the performance of CASS-II for fork and join DACs, and

show the optim ality of the algorithm for these DAGs.

Figure 4.5 demonstrates the clustering steps of CASS-II for a fork DAG.

W ithou t loss of generality, we assume that the leaf nodes in the DAG shown in (a)

are sorted in a nonincreasing order of the c values (i.e., c(t>i) > c(v2) > • • • > c(um)).

Initially, each node is in a unit cluster as shown in Figure 4.5(b). The / value of

u equals to inaxi{c(r ,j) which is c(u |). At step 2 shown in (c), the cluster of tq is

grown to include node u. f (u) is reduced to c(v2) at this moment. The cluster will

keep growing until the following condition can not be satisfied.

k
^2 I'i -

i = l

57

As shown in (cl), CASS-II stops a t node t>c-+i and the original leftmost scheduled

cluster forms a linear chain. The steps applied in fork DAGs can be applied to join

DAGs by ju st simply reversing the join DAG into a fork DAG.

Vm,Vk

(b) Initial clustering

m

Vm

(a) A Fork DAG

m

nr

(c)Step 2, VI is clustered

Vm

(d) step k+1

F i g u r e 4.5 CASS-II clustering steps for a fork DAG.

T h e o r e m 4 CASS-I I achieves optimal scheduling fo r fork and join DAGs.

P r o o f : The proof is cpiite simple. After f (u) is determined. CASS-II will

examine free nodes r>i, u2, • • •, vm in a nonincreasing order of c values. Assume

the optim al parallel time to be P T opl. Let the optimal scheduling stop a t node p,

and i (C) = £ f =1 p{vi). Then the optimal P T is:

PTopt = p{u) + max{ t{C) , p{vp+i) + A(ep+1)) (4.3)

CASS-II zeroes edges from left to right, as many as possible, up to the point k as

58

shown in Figure 4.5(d) such that:

i— 1

i = I

and
k

1 (-1.4)
i = i

Suppose tha t p ^ k and P T opt < PT c a s s - i i • There are two cases:

If p < k, then

P k
X > .- < Z><- < p,{vk) + A(efc) < /i(up+i) + A(ep+i)
;=i i=i

Thus Equation 4.3 can be simplified as:

P T opt = p(u) + A(up+1) + p.(vp+1) > p(u) + \ { v k) + p.{vk)

> p{u) + m a x (t (C) , p (v k+:) + A(efc+1)) = P T c a s s - i i

If p > At then since Ef=i ki > Hi=i IP > ll{vk+1) + H?k+i) > A(i’p+i) + / /(t’p+i),

P T o p t = p{u) + Ef=i I 1', > / ' («) + m a x (t {C) , / i { v k+l) + A (c a. + 1)) = P T c a s s - i i

There is a contradiction in both cases.

For a join, the optimality can be proved using the same analysis by reversing

the DAG and the solution is symmetrical to the optimal result for a fork. H

4.4 Sum m ary

In this chapter, we have presented a simple task clustering algorithm without task

duplication. Unlike the DSC algorithm, CASS-II uses only limited “global” infor­

mation and does not recompute the critical path in each refinement step. Therefore,

59

the algorithm runs in 0 { \E \ + |U|/g|V"|) which is faster than 0 ((|V | + \E\)lg\V\) of

the DSC algorithm. Unfortunately, we are unable to find a provable bound 011 the

solution quality produced by the CASS-II. This is very difficult because it is known

th a t for general task graphs, clustering without task duplication remains N P -hard

even when the solution quality is relaxed to be within twice the optimal solution.

However, we exhibit optimal schedules for the special cases such as join and fork

DAGs.

C H A P T E R 5

PERFORM ANCE COMPARISON AND EXPERIMENTAL RESULTS

This chapter describes experimental results for the CASS-1 and CASS-II algorithms

introduced in the previous chapters. CASS-I is compared with the PY algorithm

[40], which is in theory the best known algorithm for clustering with task duplication.

Similarly, CASS-II is compared with the DSC algorithm [18], which is empirically

the best known algorithm for clustering without task duplication. Our experimental

results dem onstra te th a t the CASS algorithms compare very favorably with their

counterparts, and generally outperform the o ther algorithms in terms of both speed

and solution quality.

5.1 C lustering w ith Task D uplication

For clustering with task duplication, several algorithms are known, e.g., Kruatrachue

and Lewis [26], Chung and Ranka [8], Kwok and Ahmad [28], and Papadim itriou and

Yannakakis [40]. Table 5.1 compares these algorithms with CASS-I with respect to

theoretical run tim e and performance guarantee (if any). All algorithms, except tha t

of Kwok and Ahm ad, assume an unbounded num ber of processors; for Kwok and

A hm ad’s algorithm, the num ber of processors, p, is an input param eter. Only the

PY algorithm and CASS-I have theoretical guarantees on performance. The PY

algorithm guarantees schedules with makespan which are at most 2-optimal. CASS-

I gives an even tighter bound on performance: (1 + y^-) times optimal for task graphs

of granularity (j. Moreover, CASS-I achieves the fastest theoretical runtim e among

the algorithms.

To validate CASS-I, we tested the algorithm on random DAGs. A random

DAG is generated by first randomly generating the number of nodes, then randomly

60

61

generating edges between them , and finally assigning random node weights and edge

weights. For comparison purposes, we also ran the PY algorithm on the same set of

DAGs. Our first experiment consisted on 300 DAGs; the results are summarized in

Table 5.2.

ALGO R ITH M AUTHORS PERFORM .
GU A R A N TEE

RU NTIM E OF
ALGORITHM

Duplication
Scheduling
Heuristic

Kruatrachue
&; Lewis, 1987 None O (n ')

Bottom-Up
Top-Down

Duplication
Heuristic

Chung Sz Ranka,
1992 None 0 (77,'•)

Critical path
Fast Duplication

Heuristic

Kwok Sz Ahmad,
1994 None 0 (n 2ep)

PY Heuristic
Papadim itriou
& Yannakakis,

1990
2-optimal 0 (n 3lgn + n 2c)

CASS-I
Heuristic

Palis, Liou Sz
Wei, 1994

l + l / (l + g)
-optimal 0 (n 2lgn + ne)

Table 5.1 A comparison of clustering algorithms with task duplication, n = no. of
tasks, e = no. of edges, p — no. of processors.

of DAGs # nodes
Min-Max

M(PY,CASS-I)
Avg.

T(PY,CASS-I)
Avg.

G l* 100 6-64 1.23 1.13
G2 100 64-256 1.30 1.72
G3 100 256-511 1.36 1.72

Table 5.2 Experimental results for CASS-I and PY run on a 386PC* and a
DEC5900.

The 300 DAGs are divided into three groups of 100 DAGs each. Group G1

was tested on CASS-I and PY running on a 386 PC; groups G2 and G3 were tested

on the algorithms running on a DEC 5900. Column 3 of the Table 5.2 gives the

range of num ber of nodes for the DAGs in the group. Column 4 gives the average

62

makespan ratio of PY over CASS-I. In general, given two clustering algorithms A

and B, the average makespan ratio of A over B, M(A,B), is defined as

makespan, \[Gi)
m a k e s p a n ^ G ,)

where N is the num ber of DACis. Finally, column 4 gives the average runtim e ratio

of PY over CASS-I. Given two clustering algorithms A and B, the average runtime

ratio o f A over B , T(A ,B), is defined as

T (\ R \ = — V r u n l i m e A{Gi)
N r u n t i m e b{Gi)

Table 5.2 indicates th a t CASS-I gives 23%-36% shorter makespans than PY, in 13%-

72% less time.

To determ ine how well both algorithms perform on DAGs with varying grain

size, we conducted another experiment on 280 DAGs, where they are divided into

14 groups, as shown in Table 5.3. Column 1 of the table is interpreted as follows:

grain size = 0.1 means a group of 20 DAGs with granularity in the range (0, 0.1],

grain size = 0.2 means 20 DAGs with granularity in the range (0.1, 0.2], and so on.

Column 2 gives the range of number of nodes for DAGs in the group. Column 3 and

4 give the average runtim e (in seconds) for PY and CASS-I, respectively, running on

a Sun Sparc workstation. Column 5 is the average makespan ratio of PY over the

loiver bound (LB) on the optimal makespan (obtained from the e values computed

by CASS-I). Finally, Column 6 is the average makespan ratio of CASS-I over the

lower bound on the optimal makespan.

For ease of comparison, Table 5.4 shows the average makespan ratio and average

runtim e ratio of PY over CASS-I.

63

Grain
Size

of Tasks
Min - Max

PY Runtime
(sec)

CASS-I Runtime
(sec)

M(PY,LB) M(CASS-I,LB)

0.1 91-996 10.94 6.22 1.80 1.90
0.2 71-9J0 3.68 2.45 1.70 1.74
0.3 137-1009 2.85 2.09 1.58 1.58
0.4 84-989 1.97 1.57 1.53 1.48
0.5 97-1022 1.60 1.23 1.45 1.37
0.6 124-1002 1.36 1.16 1.45 1.40
0.7 77-982 1.40 1.01 1.41 1.33
0.8 90-1015 1.12 1.13 1.36 1.30
0.9 123-962 1.44 1.02 1.33 1.24
1.0 70-942 1.36 1.06 1.31 1.22
2.0 202-889 1.30 1.19 1.27 1.27
3.0 83-955 1.29 0.89 1.16 1.14
4,0 129-935 1.13 1.01 1.11 1.09
5.0 76-882 1.01 0.91 1.09 1.04

Table 5.3 Experimental results for CASS-I and PY run on a Sun Sparc workstation.

Table 5.4 reveals tha t there are instances where PY gives bette r makespans

than CASS-I (grain size = 0.1 and 0.2), although for the majority of the cases,

CASS-I is better. CASS-1 is also significantly faster than PY (up to 76% faster for

grain size = 0.1), although there is one surprising instance (grain size = 0.8) for

which PY is slightly faster.

Finally, Figure 5.1 plots the average makespan ratio of PY and CASS-I over

the lower bound on the optimal makespan (column 5 and 6 of Table 5.3). The plot

labeled “performance bound” is (1 -f j ^) , where g is the granularity. It validates the

theoretical guarantee on performance for CASS-I; i.e., the makespans generated by

CASS-I are within (1 + y ^) times the optimal makespans. Note that the experimental

results are pessimistic, because we used the lower bound on the optimal makespan,

instead of the optimal makespan (which we are unable to compute). Surprisingly,

the graph indicates th a t the PY algorithm also satisfies the same performance upper

bound, at least empirically. We conjecture tha t a tighter analysis of the PY algorithm

64

Grain
Size

M(PY,CASS-I) T(PY,CASS-I)

0.1 0.95 1.76
0.2 0.97 1.50
0.3 1.00 1.36
0.4 1.03 1.26
0.5 1.05 1.30
0.6 1.03 1.17
0.7 1.06 1.38
0.8 1.05 0.99
0.9 1.08 1.41
1.0 1.08 1.28
2.0 1.00 1.10
3.0 1.02 1.44
4.0 1.03 1.12
5.0 1.04 1.11

T a b le 5 .4 The average makespan ratio and average runtim e ratio of PY over CASS-I.

(i.e., by taking task graph granularity into account) would likewise prove tha t it

satisfies the performance upper bound in theory.

5.2 C lustering w ith ou t Task D up lication

For clustering without task duplication, a number of o ther algorithms have been

reported in the literature besides DSC and CASS-II. The most well-known are the

algorithms proposed by Sarkar [43], the MCP heuristic of Wu and Gajski [49], and the

a lgorithm of Kim and Browne [24]. All algorithms assume an unbounded number

of processors. Table 5.5 compares these algorithms with CASS-II with respect to

performance guarantee and theoretical runtime. It shows th a t none of the algorithms

have a performance guarantee on general task graphs. Among these algorithms,

CASS-II is superior to the others in terms of speed.

65

1.9

1.8

1.7

low er bound
1.6

1.5

1.4

1.3

1.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 3 4
Granularity

Perform ance B ound PY CASS-I

Figure 5.1 Average makespan ratio of PY and CASS-I over the lower bound on
optimal makespan.

Sarkar MCP Kim Browne DSC CASS-II
Join/Fork no no no optimal optimal

General
DAGs

no no no no no

Runtime 0 (e (n + e)) 0 (n 2lgn) 0 (n (n + c)) 0 ((n + e)lgn) 0 (e + nlgn)

Table 5.5 A comparison of static clustering algorithms without task duplication, n
= no. of tasks, e = no. of edges.

Experim ental results in [16, 18, 51] have shown that DSC outperforms all

the algorithms listed in Table 5.5, except for CASS-II, in terms of both speed and

solution quality. To see how CASS-II compares with DSC, we tested both algorithms

on 350 DAGs. The 350 DAGs were divided into 14 groups of 25 DAGs each according

to their grain size, as indicated by column I of Table 5.6. Column 2 of the table gives

the range of num ber of nodes for the DAGs in the group. Column 3 and 4 give the

average runtim es (in milliseconds) of DSC and CASS-II, respectively, when executed

on a Sun Sparc workstation. Column 5 gives the average makespan ratio of DSC

66

over CASS-II. Finally, column 6 gives the average runtim e ratio of DSC over CASS-II.

Grain
Size

of 'basks
Min - Max

DSC Avg
Runtim e

CASS-II’s
Avg Runtime

M(DSC,CASS-II) T(DSC,CASS-II)

0.1 85-988 544 131 1.37 4.15
0.2 129-987 698 156 1.10 4.47
0.3 86-988 684 149 1.05 4.59
0.4 87-989 566 129 1.00 4.39
0.5 88-990 532 123 1.01 4.33
0.6 89-949 533 116 1.00 4.59
0.7 90-997 615 141 1.00 4.36
0.8 89-992 524 136 0.99 3.85
0.9 93-993 652 141 0.98 4,62
1.0 90-992 687 133 0.97 5.17
2.0 91-993 930 178 1.00 5.22
3.0 92-994 884 171 1.00 5.17
4.0 93-953 851 159 1.00 5.35
5.0 94-995 737 155 1.00 4,75

T a b le 5 .6 Experimental results of CASS-II and DSC algorithm run on a Sun Sparc
workstation.

Table 5.6 indicates th a t CASS-II is between 3.85 to 5.35 times faster than DSC.

Moreover, in terms of solution quality, CASS-II is very competitive: it is be tte r than

DSC for grain sizes less or equal to 0.6, and its superiority increases as the DAG

becomes increasingly fine grain. For example, for grain sizes equal to 0.1 or less,

CASS-II generates makespans which are up to 37% shorter than DSC’s. For some

DAGs with this grain size, sequentializing a set of tasks (one cluster produced) can

achieve a be tte r makespan than executing them in parallel (two or more clusters

produced). It is interesting th a t the case can be detected by CASS-II, but DSC

seems not to find the necessity for serial execution and produces several clusters

instead of one. On the o ther hand, for task graph with grain size 0.6 or greater, DSC

becomes competitive and in fact even outperforms CASS-II, although by no more

than 3% (grain size = 1.0).

67

5.3 Sum m ary

Our experimental results validate the theoretical guarantee on the performance of

CASS-I, i.e., it generates schedules whose makespans are at most (1 + times

the optimal makespan. We have also compared CASS-1 with the PY algorithm and

dem onstrated tha t CASS-I generally outperforms PY in terms of both speed and

solution quality.

We have also compared CASS-II with the DSC algorithm and showed that

CASS-II is 3 to 5 times faster than DSC. For fine grain DAGs (granularity = 0.6

or less), CASS-II consistently gives bette r schedules. For DAGs with grain size 0.6

or greater, DSC becomes comparable to CASS-II, and in some cases even strictly

better, but by no more than 3%.

In summary, our experimental results demonstrate th a t both CASS-I (for

clustering with task duplication) and CASS-II (for clustering without task dupli­

cation) are very competitive algorithms in terms of speed and solution quality,

outperforming the best currently known algorithms (PY for clustering with task

duplication and DSC for clustering without task duplication).

C H A P T E R 6

SCHEDULING OF CLUSTERS ON PHYSICAL PROCESSORS

The role of the CASS scheduling module is to merge the task clusters generated by

the CASS clustering module onto a fixed number of processors and to determ ine the

order of execution of tasks within each processor. The scheduling module consists of

the following sequence of optimization steps:

1. Cluster Merging : given in task clusters and n processors such th a t rn > n,

merge the clusters so that the number of remaining clusters equals to ».

2. Processor Assignment : given n clusters and n processors, find a one-to-one

mapping of the clusters to the processors taking into account the underlying

network topology.

3. Local Scheduling : determine the order of execution of tasks mapped to the

same processor.

6.1 Cluster Merging

The cluster merging step is performed whenever the num ber of task clusters is greater

than the number of physical processors. We have investigated three approaches for

cluster merging: (a) load balancing (LB), (b) communication traffic minimizing

(CTM), and (c) random (RAND). All three approaches execute a sequence of

refinement steps; each refinement step reduces the number of clusters by one by

m erg ing a pair of clusters into a single cluster. The approaches essentially differ in

their choice of the pair of clusters to be merged:

• L B

Define the (com putational) workload of a cluster as the sum of execution times

68

69

of the tasks in the cluster. At each refinement step, choose a cluster, Ci, that

has a m inim um workload among all clusters, and find a cluster, C 2, tha t has

a m inim um workload among those clusters which have communication edge

between it and C\. Then the pair of clusters C\ and C2 are merged.

• C T M

Define the (communication) traffic of a pair of clusters (C i ,C 2) as the sum of

comm unication times of the edges from C\ to C’2 and from C2 to C x. At each

refinement step, merge the pair of clusters which has the most traffic.

• R A N D

At each refinement step, merge a random pair of clusters.

LB merges the clusters to processors so th a t the processors have approximately equal

workload; i.e., they spend approximately the same time executing tasks, ignoring

the inter-cluster communication delays. In CTM, the clusters are merged to the

processors so th a t the total inter-cluster communication is minimized; the workload

of the processors is ignored. Finally, RAND ignores both the workload and the

communication traffic when m apping the clusters to the processors.

Consider, for example, the clustered task graph (with task duplication) shown

in Figure 3.4. W hen the 5 task clusters are merged to the physical processors, LB

and C TM result in the same two clusters, as shown in Figure 6.1. On the o ther hand,

consider the clustered task graph (without task duplication) shown in Figure 4.4(1).

W hen m apped to two physical processors, LB produces the two clusters shown in

Figure 6.2(a) while CTM produces the two clusters shown in Figure 6.2(b). Observe

tha t the clusters produced by LB has a schedule of length 26 while tha t of CTM

has a schedule of length 40, which is significantly longer. As discussed later in this

chapter, our experimental results indicate tha t LB is generally bette r than CTM,

and th a t RAND is the worst approach.

70

sl= 0

s2=3s2=0

s3=8
s4=10

s5=12

s7=22

s6=14

s9=26
s8=16

sl0=19

Makespan = 32

s2=0

s4=10

s7=22

Makespan = 32

sl= 0

s2=3

s3=8

s5=12

s6=14

s8=16

sl0=19

(a) LB (b) CTM

F i g u r e 6 .1 The cluster merging of the clustering in Figure 3.4.

6.2 P rocessor A ssignm ent and Local Scheduling

The processor assignment finds a one-to-one mapping of the clusters to the

processors, taking into account the underlying network topology. Presently, CASS

uses a simple heuristic to m ap the cluster to processors: (1) assign to a processor

the cluster with the largest total communication traffic with all o ther clusters; (2)

choose an unassigned cluster with the largest communication traffic with an assigned

cluster and place it in a processor closest to its communicating partner; (3) repeat

(2) until all clusters have been assigned to processors.

For example, consider the situation depicted in Figure 6.3, where four task

clusters are to be assigned to four physical processors connected as a linear array. The

width of the edges indicates the relative am ount of communication traffic between

71

s2=0

s3 = ll

s5=15

s4=17

s6=23

s7=25

s8=29

s9=32

slO=38

F i g u r e 6 .2 The cluster merging of the clustering in Figure 4.4(1).

the clusters. Thus, cluster C4 communicates most heavily with all other clusters.

Consequently, we first assign C .i to a processor, say the third processor. Next, we

consider the cluster which communicates most heavily with C4; this is 6Y Thus, C 2

is placed on a processor closest to C4, say the second processor. Then, cluster C3 is

considered and placed on the fourth processor, closest to C4, which is its most heavily

comm unicating partner. Finally, cluster C\ is placed on the remaining processor.

Recall th a t the CASS clustering module specifies, for each task cluster, a

sequential order of execution of tasks within the cluster. The cluster merging step

- if invoked - also maintains a task execution order for each ou tpu t cluster (which

might be the result of merging some original clusters). This order of execution is

derived from the predicted sta r t times of the tasks. Unfortunately, these sta r t times

Makespan = 26 Makespan = 40

72

y- " ' " N

c* oC l L z

C3 n

Communication
Volume Between

Clusters

i = > © — © — © — ©

Processor Assignment

F i g u r e 6 .3 An example of processor assignment.

are generally optim istic estimates because they do not take into account the increase

in comm unication delay between tasks th a t are mapped to non-adjacent processors

by the processor assignment step. Thus, it is possible for two independent tasks,

say A and B, to have start times s (/ l) < s (B) before processor assignment and

have s ta r t times s '(A) > s '(B) after processor assignment because A needs da ta

from a task m apped to a. distant processor. The role of local scheduling is to re­

order the execution of the tasks to minimize processor idle time, while respecting

the precedence constraints between tasks. CASS uses a simple greedy algorithm

tha t m aintains a. global clock and, a t each clock tick, dispatches a task for execution

once it has received all the messages it requires. This algorithm is an adaptation of

the well-known optimal algorithm for one-processor scheduling for tasks with release

times.

6.3 E x p e r i m e n t a l R e s u l t s

We compared the performance of the cluster merging algorithms empirically. Our

experimental set-up is shown in Figure 6.4. In the first experiment (the two-phase

m ethod), we first applied the CASS-II clustering algorithm to a task graph to

produce a clustered task graph. The clustered task graph was then used as input

73

t,o the three cluster merging algorithms. In the second experiment (the one-phase

m ethod), the clustering algorithm was not applied; instead, the original task graph

was used directly by the cluster merging algorithms. In each experiment, we varied

the granularity of the original task. Our experimental set-up allows us to compare

the performance of the cluster merging algorithms for varying task graph g ranu­

larity, and with or without prior task clustering. In particular, task clustering, in

efTect, changes the granularity of the task graph that is input to the cluster merging

algorithms. Consequently, the best cluster merging algorithm for the one-phase

m ethod may not be the best algorithm for the two-phase method.

Task Graph
Clustered

Task
Graph

LB

CTM

RAND

Clustering
Algorithm

Scheduled
Task
Graph

(a) Two-Phase Method.

Task Graph CTM

LB

RAND

Scheduled
Task
Graph

(b) One-Phase Method.

Figure 6.4 Experimental set-up for the cluster merging algorithms.

Our experimental set-lip also allows us to assess the effectiveness of task

clustering as an in termediate step in the scheduling process. In other words, we

74

want to determ ine whether significantly bette r schedules can be obtained when task

clustering is applied, as opposed to not applying it.

YVe conducted the two experiment on 130 random DAGs. For each DAG, we

applied the CASS-II clustering algorithm to produce a clustered DAG with, say, k

clusters. We used the integer k to determine the number of processors, m, to use

with the cluster merging algorithms. Specifically, for a given k, we choose rn to be

some power of 2 < k. We then ran the cluster merging algorithms both on the

original DAG (one-phase method) and on the clustered DAG (two-phase method)

and compared the makespans of the resulting scheduled DAGs.

Grain
Size

Two-Phase One-Plia.se
LB CTM RAND LB CTM RAND

0.1 1.06 1.09 1.11 1.81 1.14 1.86
0.2 0.99 1.00 1.02 1.20 1.10 1.30
0.3 0.97 0.90 0.96 1.25 1.10 1.29
0.4 1.02 0.96 1.02 1.35 1.13 1.34
0.5 1.05 1.06 1.05 1.48 1.21 1.45
0.6 1.10 1.16 1.15 1.58 1.38 1.55
0.7 1.11 1.28 1.24 1.39 1.33 1.45
0.8 1.13 1.32 1.34 1.40 1.50 1.43
0.9 1.14 1.44 1.47 1.39 1.70 1.53
1.0 1.19 1.55 1.62 1.44 1.72 1.51
2.0 1.07 1.09 1.09 1.29 1.39 1.24
3.0 1.12 1.19 1.21 1.27 1.37 1.27
4.0 1.09 1.19 1.22 1.18 1.30 1.25

T a b le 6 .1 Average makespan ratios of cluster merging algorithms (relative to CASS-
II) for two-phase and one-phase methods.

Table 6.1 summarizes our experimental results. The first column represents

the grain size of the original DAG. Each of the remaining columns gives the

average makespan ratio relative to CASS-II, i.e., the average ratio of the makespan

produced by the cluster merging algorithm over the makespan produced by the

75

CASS-II clustering algorithm. It is clear from the table tha t for a fixed cluster

merging algorithm (LB, CTM , RAND), the two-phase method (with prior task

clustering) produces significantly better makespans than the one-phase m ethod (no

prior task clustering). On average, L B tu,„-phase is be tte r than LZ?OI,c_p/lr,sr by 28%,

CTMtwo-phase is bettei than C T Mone—phase by 15%, and R A N R iwo—piiasc is bettei

than R A N D one-phase by 22%.

We should point out th a t the above results are actually skewed in favor of the

one-phase method. The reason is tha t the num ber of processors, rn, was always

chosen to be less than the num ber of clusters, k , produced by the CASS-II clustering

algorithm. In practice, ???. may be greater than k. If this were the case, then the

two-phase method would not perform the cluster merging step (because there are

already less clusters than processors) and hence would produce a schedule using k

processors and whose makespan equals that produced by the clustering algorithm.

On the o ther hand, the one-phase method would schedule the original task graph

consisting of n > m nodes onto m processors using either LB, CTM , or RAND. The

resulting schedule would oftentimes be very bad because it still uses way too mail}'

processors than necessary. (Recall tha t the num ber of clusters produced by task

clustering represents the optimal or near-optimal num ber of processors on which to

schedule the task graph.) For example, we experimented on two DAGs G'l and G2.

DAG C/1 has 947 nodes and DAG G'2 has 577 nodes. Using the one-phase m ethod, we

ran LB, CTM , and RAND on DAG G1 assuming 128 physical processors and on DAG

G2 assuming 32 physical processors. The makespans produced by the algorithms are

given by columns 4 to 6 of Table 6.2.

Column 7 of the table gives the makespan produced by CASS-II, and the

num ber in parentheses gives the corresponding num ber of clusters. Note th a t since

for each DAG the num ber of clusters produced by CASS-II is already less than the

num ber of physical processors, the cluster merging step will not be performed by

76

the two-phase method. Thus, for example, for DAG G1 the two-phase m ethod will

ou tpu t a schedule using 2 processors and with m akespan= 6283. On the o ther hand,

the one-phase m ethod using LB will ou tpu t a schedule using 128 processors and

with m akespan= 45,556, which is 7 times worse than the two-phase method. The

same is true for CTM and RAND.

Node # P E #
MAKESPAN

LB CTM RAND CASS-II
G l 947 128 45556 13038 32699 6283(2)
G2 577 32 21185 7952 13118 4125(3)

Table 6.2 Experimental results for sample DAGs G1 and G2.

Grain
Size

Two-Phase One-Phase
Best Next Worst M(W ,B) Best Next Worst M(W ,B)

0.1 LB CTM RAND 1.04 CTM LB RAND 1.63
0.2 LB CTM RAND 1.02 CTM LB RAND 1.18
0.3 CTM RAND LB 1.08 CTM LB RAND 1.04
0.4 CTM RAND LB 1.07 CTM RAND LB 1.19
0.5 LB RAND CTM 1.01 CTM RAND LB 1.22
0.6 LB RAND CTM 1.06 CTM RAND LB 1.33
0.7 LB RAND CTM 1.14 CTM LB RAND 1.09
0.8 LB CTM RAND 1.19 LB RAND CTM 1.07
0.9 LB CTM RAND 1.29 LB RAND CTM 1.23
1.0 LB CTM RAND 1.36 LB RAND CTM 1.20
2.0 LB CTM RAND 1.02 RAND LB CTM 1.12
3.0 LB CTM RAND 1.08 RAND LB CTM 1.08
4,0 LB CTM RAND 1.11 LB RAND CTM 1.10

Table 6.3 Relative performance of cluster merging algorithms.

We next analyze which cluster merging algorithm is superior for the one-

phase and two-phase methods. Table 6.3 ranks the three cluster merging algorithms

according to the makespans they generated (Best = smallest makespan). The column

labeled M (W ,B) gives the average makespan ratio of the worst algorithm over the

best algorithm, fo r the one-phase m ethod, CTM is the clear choice for fine grain

task graphs, outperform ing the two other algorithms for grain size 0.7 or less. On the

77

other hand, for grain sizes greater than 0.7, LB is generally the better m ethod. 'Phis

is to be expected because inter-task communication times dominate task execution

times for fine grain task graphs (hence, minimizing communication traffic) while

task execution times dom inate inter-task communication times for coarse grain task

graphs (hence, balance processor workload).

For the two-phase m ethod, a different situation arises: LB is generally superior

to the other two algorithms regardless of the grain size of the original task graph.

The reason is th a t the task clustering step increases the granularity of a fine grain

task graph to the point where task execution time is more or less equal to inter­

task communication time. T ha t is, the fine grain task graph becomes coarse grain.

Consequently, LB is the algorithm of choice for cluster merging because the input

task graph is now coarse grain. Finally, RAND exhibits somewhat, erratic behavior

.and is generally the worst algorithm for either the one-phase or two-phase method.

Finally, Table 6.4 gives the runtimes of the cluster merging algorithms. As

expected, CTM is the slowest algorithm because it computes the communication

traffic between every pair of clusters. LB and RAND are significantly faster. For

the one-phase method, RAND is faster than LB because LB spends extra, time

com puting the workload of each cluster. Interestingly, for two-phase m ethod. LB

is very competitive to RAND, and in fact is faster than RAND in a m ajority of

the cases. Our explanation for this is as follows: After the task clustering step,

the clusters have granularity close to 1. As the clusters are merged, LB will always

merge clusters with the smallest workload, which will also contain the fewest num ber

of tasks. The actual merging step — which takes tim e proportional to the num ber of

tasks — will thus be computed fairly quickly. On the other hand, RAND will, with

high probability, m erge clusters w ith more tasks. Consequently, the actual m erging

step takes longer. Thus, although RAND does not spend ex tra time computing the

78

clusters’ workload (as does LB), it takes considerably more time actually merging

the clusters.

Grain
Size

Two-Phase One-Phase
LB CTM RAND LB CTM RAND

0.1 16 16 16 416 215491 83
0.2 16 30 33 699 236690 249
0.3 18 121 33 799 361485 183
0.4 23 584 58 766 354369 150
0.5 24 1218 33 308 95938 75
0.6 41 2564 43 433 178393 100
0.7 48 3566 58 841 447282 133
0.8 39 2561 29 250 66172 49
0.9 26 1273 66 624 269989 125
1.0 29 1719 55 641 268371 108
2.0 39 986 49 416 128278 99
3.0 44 1579 25 399 128728 116
4,0 39 1651 41 566 196942 149

Table 6.4 Runtim e of cluster merging algorithms run on a Sun Sparc workstation
(in msec).

6.4 Summary

T he experimental results clearly dem onstrate the effectiveness of the two-phase

m ethod of CASS, in which task clustering is performed prior to the actual scheduling

process. Task clustering determines the optimal or near-optimal num ber of processors

on which to schedule the task graph. In other words, there is never a need to use rnon?

processors (even though they are available) than the number of clusters produced by

the task clustering algorithm — doing so would only increase the parallel execution

time.

T he experimental results also indicate tha t when task clustering is performed

prior to scheduling, load balancing (LB) is the preferred approach for cluster merging.

LB is fast, easy to implement, and produces significantly better final schedules than

communication traffic minimizing (CTM). While CTM outperforms LB for fine grain

task graphs, such a situation never arises in the two-pha.se method of CASS because

the task clustering phase produces coarse grain task graphs, for which LB is clearly

superior to CTM.

In summary, the two-phase method consisting of task clustering and load

balancing is a simple yet highly effective strategy for scheduling task graphs on

d istr ibuted memory parallel architectures.

C H A P T E R 7

C L U ST E R IN G D Y N A M IC TASK G R A P H S

7.1 O nline Scheduling o f D ynam ic Trees

In this chapter, we investigate online scheduling algorithms for dynamic trees.

Dynamic trees arise naturally in a num ber of im portant applications, e.g., divide-

and-conquer, backtracking, branch-and-bound, and adaptive multi-grid algorithms.

A dynamic tree consists of a finite num ber of nodes (or tasks), but its size is not

known a priori to the scheduling algorithm. Initially, only the root of the free is

“known” and can be scheduled for execution. A known node must, be executed to

completion before it spawns its children (i.e., before its children become “known”).

We assume tha t the dynamic tree is to be executed on a distributed memory

parallel machine with an unbounded number of processors. Every node of the tree

represents a. sequential task th a t takes // tim e units to execute on any processor of the

parallel machine. In addition, if v is a child of w in the tree, then a communication

delay of A time units is incurred if v is executed on a processor different from the

one th a t executed w. This implies tha t if w finishes at tim e t on processor p, then v

can be s tar ted on processor q ^ p no earlier than time i + A. On the other hand, if

q — p then v can be started at time t , i.e., as soon as w finishes. The communication

delay A models the cost of migrating v to another processor, along with any output

d a ta produced by w tha t will be need for ids execution.

The gra n u la r i ty of a tree is an im portant parameter which we take into account

when analyzing the performance of online tree scheduling algorithms. For a tree

T with uniform node execution times // and uniform communication delays A, its

granularity is defined as g(T) = //,/A. T is called fine-grain if g(T) < 1; otherwise, T

is coarse-grain.

80

81

7.2 C om p etitive A nalysis

We study the performance of online scheduling algorithms for dynamic trees using

the competitive analysis approach first introduced by Sleator and Tarjan [45]. Let /I

be a deterministic online scheduling algorithm and let M .\{T) be the makespan of

/ l ’s schedule on tree T. Let M o p t { T) be the makespan of the schedule produced by

an optimal o f f l i n e scheduling algorithm tha t is given the entire tree T in advance.

Algorithm A is said to be c-compelitivc (or has competitive ratio c) if Ma { T) <

cM o p t { T) + 0 (1) for all trees T. If A is a randomized algorithm, then A is said

to be c-compctitive if E [M t\(T)\ < cM o p t { T) + 0 (1) for all trees 7’, where the

expectation is taken over all random choices of the algorithm A.

As with o ther online algorithms, online tree scheduling can be viewed as a

game against an adversary who is allowed to determine the requests (i.e., tasks)

th a t must be served (i.e., executed) before it issues new requests (i.e., children of a.

completed task). Thus, lower bound arguments can be phrased in terms of a strategy

for the adversary th a t forces the competitive ratio to be as large as possible. For

the deterministic case, one may assume that the adversary has complete knowledge

of the online algorithm. For the randomized case, we distinguish between two types

of adversaries. An adaptive adversary is one who knows in advance both the online

algorithm and the results of the coin tosses of the algorithm. An oblivious adversary

knows only the algorithm but not the results of the coin tosses. Our lower bounds

assume an oblivious adversary, which is weaker than an adaptive adversary. Of

course, using a weaker adversary means our lower bound results stronger.

7.3 Sum m ary o f R esu lts

In [7], it was shown th a t finding an optimal o f f l i n e schedule for directed acyclic task

graphs is an A^P-hard problem, even when restricted to trees. On the other hand, we

82

have shown in Chapter 3 that there is an o f f l i n e tree scheduling algorithm which,

for a tree with arbitrary granularity, produces a. schedule whose makespan is at most

twice optimal. It is therefore interesting to ask whether there is an online tree

scheduling algorithm th a t is c-competitive for some constant c.

We answer this question in the negative. We show th a t any online tree

scheduling algorithm, even a randomized one, has competitive ratio n((^) / l oga;(j))

for trees with granularity at most g < 1 and degree d. Moreover, if the tree is allowed

to have unbounded degree, the competitive ratio is Thus, the competitive

ratio grows inversely with the granularity, and implies tha t very bad schedules can

result from online scheduling of fine-grain dynamic trees.

We also prove a tight upper bound by exhibiting a simple d e te rm in is t ic online

tree scheduling algorithm tha t achieves a competitive ratio of 0 ((j)//o<7^(^)). Thus,

randomization does not help in online tree scheduling. This result is interesting

in light of the fact th a t randomization helps in other oidine settings, e.g., online

embedding of dynamic trees in fixed connection networks [4, 32].

7.4 T he Lower B ound

Theorem 5 The competitive ratio o f any randomized online tree scheduling algorithm,

working against an oblivious adversary, is n({^) / l o g ^)) fo r trees with granularity

at most g < 1 and degree d, fo r any 2 < d < [T].

Proof. Let k = [i] . The adversary’s strategy is to construct a tree T of the form

depicted in Figure 7.1.

T is composed of L + 1 identical trees 7’0, 7 ' , , . . . , l ' i , such th a t the root ,r, of

Ti is a leaf of the previous tree r,-_i, for 1 < i < L. Each of the T.’s is a complete

d-ary tree of height h — \logdk], Figure 7.2 illustrates the tree T for the case d = 3

and k = 8. For this case, each T\ is a complete 3-ary tree of height h = [70 /7 3 8] = 2.

83

F i g u r e 7.1 Tree T constructed by the adversary.

All nodes in T have unit execution time, and all edges have communication

delay k . Thus, T has granularity £ = J^fq\ — 9 ’ ^ 01 ̂ — 1 — Xi ' s ch °scn by

the adversary randomly and uniformly from among the leaves of T!+i- Finally, the

adversary chooses L > 3 k + 1.

Let .4 be any randomized algorithm that schedules T online. Suppose tha t

.4 executes .r,- on some processor p, finishing at tim e /(a;,-). As A proceeds, it. will

eventually execute some number m of the dh leaves of T, on processor p and the rest

on some other processors (m may be 0). Let Cj, c2, . . . , cm be the rn leaves executed

on p , ordered by increasing finish times: f (c \) < / (c 2) < . . . < / (c m). Since .t!+]

is chosen by the adversary randomly and uniformly from among the dh leaves, the

probability tha t x 1+1 = Cj is ^ , regardless of the probability distribution used by

84

x0

To

Ti

F ig u r e 7.2 Tree T for the case d= 3 and k=8.

.4. Similarly, the probability th a t x t+] is not any one of the c 's (i.e., executed on

some processors o ther than p) is d Jjj”1. In the latter case, .r,+i cannot finish earlier

than f (x {) + k + h. because there are h unit-time tasks along the path from Xi to x !+1

(excluding Xi bu t including ,t1+i) and a communication delay of a t least k is incurred

along the path (since is executed on a processor other than p). Therefore, we

have

I 7,1 dh — in
E [f { x i+1)] > [/ (;ci) + k + h]

j=l
(7 . j ;

Let f (c j) — f (x i) + A j . Note th a t A j > h since there are h unit-tim e tasks along the

pa th from x, to cj (excluding x, bu t including cj). Moreover, since f (c j) < / (c J+])

then A j < A j + i . Substituting / (x t) + A j for / (c j) in equation (7 .1) yields:

85

1 _m_ — 777
£ [/ (* * .)] > / (I .) + J, £ Ai + <7 -2 >

(j = 1

To find the minimum , first fix m. Since /; < Ai < A 2 < • . . < A m, the minimum

occurs when A j = (h — 1) + j . Therefore,

+ .) i > / (* .) + > < * - 1) + + ^ (* + * i (7 . 3)

W hen m is allowed to vary, the minimum occurs when rn = From this, we get

E [f i x i+i) \ > f (x i) + k + ^ ~~ 9 8̂

But h = \logt{k\ and hence dh > k. Therefore,

E [J i x i+1)] > f (x i) + k + ^ - j [- 7 f + ^ + g] (7.5)

E [f i x i+i)] > /(-Ti) + ^ + /'• - (7.6)

£ ,[/(.t,-+i)] > /(.r,-) + ^ + h - I ,s ince k > 1. (7.7)

Since /(.I'u) = 1 if follows that

E[J{x l)\ > 1 + ~ + L{h — 1) (7.8)

Now x i is itself the roof of a complete d-ary tree TL of height, h = \log(lk] . Hence

86

th e las t node to execu te in T\, finishes no earlier th an t im e J { x l) + /;. We therefo re

conclude th a t the ex p ec ted m akespan of A on T is

E[Ma(T)] > 1 + y + L{h - 1) + h (7.9)

We now give an upper bound on the makespan of an optimal offline schedule.

Consider the schedules depicted in Figure 7.3. This schedule picks any leaf z in

T i and executes all the nodes along the path from x 0 to 2 on the same processor

p. Let y be a node not on this path but whose parent is on the path. Node y is

executed 011 a separate processor, together with all the nodes in the subtree rooted

a t y.

Figure 7.3 shows th e nodes y0,7/1, . . . , y/,_i no t on th e p a th from xl to £ bu t

whose p aren ts are along th is pa th . Let 7 ,- be th e processor th a t executes th e su b tree

roo ted a t v/, and let f{(jt) be the finish tim e of th e last node executed in C learly

th e m akespan of schedule S is m a x { / (7 ,)}. M oreover, am ong th e 7 ,-’s, qh~\ has th e

m a x im u m finish time. To see this, no te th e 7 , executes a com ple te d-ary tree of

height i, which has nodes. It follows th a t for i > 0 ,

/ (7 i) - / (7 , - _ 1) = ^ - (^ + l)

= (d'-l)(d- 1)

> 1 , since d > 2 .

Now x l finishes at tim e Lh + 1 , since there are th a t many nodes along the path

from .To to x l - Therefore, the finish time of processor 7 /1- 1 , and hence the makespan

of the schedule S is

Lh + 1 + k + < Lh + 1 + k + since dh < dk.

= Lh + 2fc + 1 + $5 }

< Lh -F 3A’ + 1, since d > 2.

87

q, %q, h-2l i- l

F ig u re 7.3 An example schedule.

88

An o p tim a l offline' schedule for V is 110 worse th an schedule S; therefore,

M o p t (-0 < Lh + 3A- + 1 (e.10)

From E q u a t io n s (7.9) and (7.10), it follows th a t th e co m p e ti t iv e ra tio of a lgorithm

A is

E \ M a { T)] > l + k f + L { h - l) + h

A/op7’(71) L/i+3A:+1

- I l +^ ± i ‘ •

For L > 3k + 1, we get

E \ M a { T)] >
M o p t (T)

> — k
~ 2 (/ i + l)

_ k
2(f/cis,jfc] + l)

= Sl ((Lg) / l ogd(Lg))-

If th e t ree is allowed to have unbounded degree, th en the adversary can choose

d — [^] . T hus , we get the following corollary:

C o r o l l a r y 4 The competitive ratio o f any randomized online tree scheduling

algorithm, working against an oblivious adversary, is f l (l) fo r trees with unbounded

degree and granularity g < 1.

7 .5 A D e t e r m in i s t i c A l g o r i t h m

In this section we present a simple deterministic online tree scheduling algorithm

whose competitive ratio m atches the lower bound given by Theorem 5. The algorithm

is based on bounded breadth-first clustering. Let T be a dynamic tree with uniform

node execution times p and uniform communication delays A > p. Let k = [Aj =

89

As before, we assume th a t T has degree at most d < k. The algorithm

processes the nodes of T in breadth-first order and groups them into clusters, such

tha t the nodes in the same cluster are executed on the same processor. Each cluster

contains the first k nodes found in a dynamic breadth-first expansion of the roof

node in the cluster. Every node which is a child of some fringe nodes in the cluster

is assigned to a new cluster.

Formally, the algorithm proceeds in the following m anner with any cluster from

the tim e th a t the root node in the cluster s tarts its computation. We associate two

entities with the cluster: a FIFO queue, Q , which keeps the currently pending nodes

for th a t cluster, and a variable, C O U N T , which maintains the current count of the

nodes in the cluster th a t have already been executed. Initially, the queue Q contains

the root node of the cluster and C O U N T is set to zero. The following steps are

repeated until the queue Q becomes empty.

1 . Let x = D E L E T E (Q) be the first node in the queue. Execute x on the

processor associated with the cluster and increment C O U N T by 1 .

2. Let y, , t/2 , • • •, Vm be th e children spawned by x. Let j be the largest integer

< m such th a t C O U N T + j < k. T hen add nodes y \ , y2, . ..,,(/, to the end of

th e queue Q and assign each of the rem ain ing nodes (if any) to a new cluster.

We now show tha t the above online scheduling algorithm has optimal

competitive ratio. Consider the first tree T and the associated clustering of nodes of

T as produced by the online algorithm. Since the degree of T is at most d < k, any

root-to-leaf pa th in T containing L nodes can pass through at most TV

clusters. To see this, let Ci, C2, • • • , C r be the sequence of clusters th a t are inter­

sected by the pa th starting from the root of the tree. Then every cluster, except

possibly Cr , is full, i.e., contains exactly k nodes. Moreover, because the nodes

are processed in breadth-first order, any subpath that, s tarts from the roof of a full

90

cluster to a fringe node in the same cluster has at least nodes. The bound

N l is therefore implied.

From the preceding argument, it follows that any path of length L is executed

in time at most k/.iNi, + A(AT — 1): the two terms respectively bound the time

spent in com putation and in inter-cluster communication. But k — [A///.] and hence

kf i N^ + A (/Vf, — 1) < A AT + \ { N l — 1) < 2 \L . No optimal clustering can finish the

path in less than fiL steps. Consequently, the competitiveness of the deterministic

algorithm is a t most = 0 ((J) / l o g d(J)).

T h e o r e m 6 The bounded breadth-firs I online scheduling algorithm achieves a

competitive ratio, 0 ((^) / l o g [i(^)), fo r trees with granularity g < 1 and degree

7.6 C o a r s e - G r a in T re es

We now consider a class of out-trees where the computation tim e in a node dominates

both the communication times from the parent node as well as the child nodes

(whenever the node is scheduled on a different processor). Such out-trees, called

coarse-grain trees, arise very often as online execution traces of recursive algorithms.

Sometimes, the algorithm allows us to predict the computation times of the children

of a currently executing node, along with the communication times on the edges that

are grown online as a result of further recursive calls. We first, consider the simple

case of a coarse-grain out-tree and show tha t a very simple online algorithm is able

to construct clusters and their associated schedules which at most 2 times the length

of the optimal makespan.

Formally, let T be a tree tha t is being grown online and let.r< be any node in

the tree. Then , for all pairs of nodes v ,w (not necessarily distinct) which are children

91

of u in the tree, the condition

min{/i(u), /•*(«)} > A(u , w)

defines the coarse-grain natu re of the tree T. Intuitively, the communication cost, on

an edge («, v) is always dom inated by the computation costs at each of the endpoints

of the edge as well as the com putation cost of any sibling of v in the free.

It has been shown th a t if a coarse-grain out-tree is known offline, then it is

possible to compute an optimal schedule for the free without duplication of nodes in

different, clusters. In fact, the algorithm produces a clustering in which every cluster

is linear, i.e. the nodes mapped to any cluster form a contiguous path ending at,

some leaf node of the tree. This observation motivates a simple, greedy algorithm

for constructing online clusters for the tree as it grows over time.

The strategy adopted is as follows: when a node completes execution in

some processor (cluster), any one of the spawned children is selected and retained

within the cluster for im m ediate execution. The remaining children are sent to new

processors where they begin their own clusters. Thus, over time, the algorithm

produces linear clusters; a t any fixed instant, a cluster either ends in a node which

is being computed, or ends in a node which will not spawn further children.

T h e o r e m 7 The greedy online algorithm produces a 2-optimal schedule fo r any

coarse-grain tree T .

P r o o f : Let C denote the final clustering produced by the online algorithm. From

the preceding remarks, the clustering is linear: any given cluster of nodes forms a

contiguous path from some internal nodes of T to some leaf nodes of 7'.

Fix a leaf node / in the tree and consider the unique path from the root of T

to /. Let Mi be the sum of the computation costs for nodes along the path; it follows

th a t the optimal schedule for T cannot complete processing / before time Mi. The

path s tarts at the root and follows some sequence of nodes in a C-cluster (say c ^ ,

92

then switches to the s ta r t of another C-cluster (say c2), follows it for a while before

switching to a th ird cluster and so on. In general, it is easy to see th a t I can finish

computing in tim e equals to Mi plus the sum of the communication costs incurred

while switching from one cluster to the next along the path. The la tter cost is at

most Mi from the coarse-grain condition, since the cost of every edge (■»., v) tha t

switches clusters, is dom inated by the computation cost of node u, and the cost of u

appears exactly once in M\.

It follows th a t every leaf node in T completes computation within twice the

optimal completion time. Consequently, the makespan of the online schedule is

within a factor of two of the optimal makespan. B

7.7 Sum m ary

In this chapter, we showed that any online tree scheduling algorithm, even a

randomized one, has competitive ratio U((^)//o//,y(k)) for trees with granularity at

most g < 1 and degree d. Moreover, if the tree is allowed to have unbounded degree,

the competitive ratio is f^(^)- Thus, the competitive ratio grows inversely with the

granularity, and implies th a t very bad schedules can result from online scheduling of

fine-grain dynamic trees.

We also proved a tight upper bound by exhibiting a simple d e te rm in is t ic online

tree scheduling algorithm th a t achieves a competitive ratio of 0 ((i) / / o y j (7)) . Thus,

randomization does help in online tree scheduling. This result is interesting in light

of the fact th a t randomization helps in other online settings, e.g., online embedding

of dynamic trees in fixed connection networks [4, 32].

C H A P T E R 8

C O N C L U SIO N S

The scheduling problem is a distinguishing feature of parallel versus serial programming.

Informally, the scheduling problem arises because the concurrent parts of a parallel

program m ust be arranged in time and space so that the overall execution time of

the parallel program is minimized. This is a well-known A P -com ple te problem.

The effectiveness of the heuristics depends on a num ber of factors - grain size,

interconnection topology, communication bandwidth, and program structure.

As a result, research performed prior to this thesis inspected the possibility

of finding heuristics for approxim ating an optimum performance. A number of

heuristics have been proposed, each of which may work under different circumstances.

This variation has led to confusion and misunderstanding of the heuristics.

This research investigates those most widely accepted models in static task

graph scheduling and explores the dynamic scheduling for d istributed memory archi­

tectures th a t few had touched. As a consequence of the research, we have made

several general contributions:

• A clustering algorithm with task duplication (CASS-I) th a t produces a schedule

whose makespan is at most twice optimal. Our theoretical and experimental

results show tha t CASS-I outperforms the other existing algorithms in this

problem in terms of both speed and makespan.

• A very fast algorithm (CASS-II) th a t has also good empirical performance for

task clustering without task duplication. It has been shown in this research that

CASS-II is superior to the other existing algorithms in this problem in terms

of speed. In terms of makespan, CASS-II produces the best solution quality

when the granularity of the task graph is less than 0.6, and has a performance

93

94

comparable to the one of DSC which is empirically the best known algorithm

in this problem for the o ther cases.

• A bette r understanding of randomization applied to dynamic tree scheduling

problem. We have shown tha t any online scheduling algorithm, deterministic

or randomized, has a. lower bound on the competitive ratio. We have also

developed a deterministic algorithm that matches the lower bound. Thus,

randomization does not help in online scheduling of dynamic trees.

® A be tte r understanding of two-phase and one-phase m ethods used to solve the

problem of scheduling parallel programs for execution on distributed memory

architectures. We have run cluster merging algorithms solely or incorporated

with CASS clustering algorithm and found th a t in all cases the schedules

generated by the two-phase m ethod is be tter than the one produced by the one-

phase method. We have also shown that use the number of physical processors

in a specific target, machine as a parameter may result in a schedule far away

from the optimal one, and a slow speed.

• A Clustering and Scheduling System (CASS) th a t can be integrated with

existing or future compilers for parallel machines to provide facilities for

au tom atic granularity optimization and task scheduling. Given a parallel

program and a target parallel machine, a profiler generates a task graph

specifying the dependencies among the tasks of the program, the task execution

times and the inter-task communication delays. The task graph is used by the

clustering module in CASS. The output of the scheduling module in CASS

is a clustered task graph whose number of clusters matches the num ber of

processors of target parallel machine. The ou tpu t is then used by the code

generator to generate machine instructions and to insert communication and

synchronization primitives at appropriate points in the generated code.

95

Although we have contributions in static and dynamic task clustering and

scheduling for d istributed memory architectures, there are several directions for

future work.

• After we developed CASS, the implementation of CASS incorporated with

current parallel compilers will be the most im portant work in the near future.

o In this research, we did not address the problem of finding the task graph (i.e.,

program profiler). Autom atic derivation of DAG parallelism is im portan t for

CASS. The general dependence analysis is NP-hard but for some special cases

there exist polynomial algorithms [39, 48], A polynomial algorithm for general

cases may be developed incorporated with an interactive system to allow users

to derive DAGs.

• C'ASS adopts simple heuristics for the processor assignment and local scheduling.

Since there are no provably good and fast algorithms for these two problems,

heuristic algorithms may be developed for a better performance of entire'

clustering and scheduling.

• For many computing applications such as particle simulations, it is often the

case where it is impossible to determine the execution time of tasks, direction

of branches, or number of iterations in a loop [46]. This type of problem

can not be solved by static task clustering algorithms. In this research, we

have derived a lower bound for any online algorithms of dynamic trees and

developed a deterministic, algorithm th a t matches this bound. However, there is

no provably good online algorithm for general task graph. Heuristic algorithms

may be developed for general task graphs th a t can be applied to this problem.

R E F E R E N C E S

1. A. V. Alio, J. E. Hopcroft, and J . D. Ullman, The Design and Analysis of
Computer Algorithms, New York: Addison-YVesley, 197-1.

2. J. Baxter and J. Patel, “The last algorithm: A heuristic-basd static allocation
algorithm ,” Proc. 1989 Int. Conf. on Parallel Processing, vol. 2, pp. 217—
222, 1989.

3. S. Ben-David and A. Borodin, etc, “On the power of randomization in online
algorithm ,” Comm. A C M , pp. 379-386, 1990.

4. S. B hatt , D. Greenberg, T. Leighton, and P. Liu, “Tight bounds for on-line free
embeddings,” in Proc. 2nd Annual A C M -SIA M Symposium on Discrete
Algorithms , pp. 344-350, 1991.

5. F. Bodin and F. Charot, “Loop optimization for horizontal microcoded
machines,” in Proc. Int. Conf. on Supercomputing, pp. 164-176, 1990.

6. P. Chretienne, “Task scheduling over distributed memory machines,” Tech.
Report M.A.S.I. 253, Universite Pierre et Marie Curie, Laboratorie M ASI,
UA818, 4, place Jussie, 75252 Paris ceclex 05, France., 1988.

7. P. Chretienne, “Complexity of tree scheduling with interprocessor comm uni­
cation delays,” Tech. Report M.A.S.I. 90.5, Universite Pierre et Marie
Curie, 1990.

8. Y.-C. Chung and S. Ranka, “Applications and performance analysis of a
compile-time optimization approach for list scheduling algorithms on
distr ibuted memory multiprocessors,” in Proc. Supcrcomputeing ‘92,
pp. 512-521, 1992.

9. E. CL Coffman, Jr. (eds.) Computer and Job-Shop Scheduling Theory , New York:
John Wiley, 1976.

10. T. II. Cor men, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms,
Cambridge, MA: The M IT Press, 1990.

1 1. YV. Dally, “Network and processor architecture for message-driven com puter,”
in VLSI and Parallel Compulation (R. Suaya and G. B. eds.), San Mateo,
C’A: Morgan Kaufmaim, pp. 140-218, 1990.

12. K. Efe, “Heuristic models of task assignment scheduling in d istributed system s,”
IE E E Computer, vol. 15:6, pp. 50-56, 1982.

13. II. El-Rewini, T. G. Lewis, and II. II. Ali, Task Scheduling in Parallel and
Distributed Systems , Englewood Cliffs, NJ: Prentice Hall, 1994.

96

97

14. G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving
Problems on Concurrent Processors, Englewood ClifTs, NJ: Prentice Hall,
vol. 1, 1988.

15. G. C. Fox, R. D. Williams, and P. C. Messina., Parallel Computing Works, San
Mateo, CA: Morgan Kaufmann, 1994.

16. A. Gerasoulis and T. Yang, “Clustering task graphs for message passing archi­
tectures,” in Proc. Int. Conf. on Supercomputing, pp. 447-456, 1990.

17. A. Gerasoulis and T. Yang, “Scheduling program task graphs on MIMD archi­
tectures,” Algorithm Derivation and Program Transformation (R. Paige.
J. Reif, and R. Wachter eds.), New York: Kluwer Publisher, 1992.

18. A. Gerasoulis and T. Yang, “On the granularity and clustering of directed acyclic
task graphs,” IE E E Transactions on Parallel and Distributed System s ,
vol. 4:6, pp. 686-701, June 1993.

19. M. Girkar and C. Polychronopouls, “Partitioning programs for parallel
execution,” in Proc. Int. Conf. on Supercomputing , 1988.

20. R. L. Graham , E. L. Lawler, J. K. Lenstra, and A. II. G. Rinnoov
Kan, “Optimization and approximation in deterministic sequencing and
scheduling: A survey” , Ann. Discrete Math., pp. 287-326, May 1979.

21. M. G up ta and P. Banerjee, “Demonstration of au tom atic d a ta partitioning
techniques for parallelizing compilers on m ulticom puters,” IE E E Trans­
actions on Parallel and Distributed Systems, vol. 3:2, pp. 179-193, March
1992.

22. J. J. Hwang, Y. C. Chow, F. D. Anger, and C. Y. Lee, “Scheduling precedence
graphs in systems with interprocessor communication tim es,” S I A M
Journal on Computing, vol. 18:2, pp. 244-257, April 1989.

23. K. Hwang, Advanced Computer Architecture with Parallel Programming, New
York: McGraw-Hill, 1994.

24. S. Kim and J. C. Browne, “A general approach to m apping of parallel compu­
tation upon multiprocessor architectures,” Proc. Int. Conf. on Parallel
Processing, vol. 3, pp. 1-8, 1988.

25. S. J. Kim, “A general approach to multiprocessor scheduling,” 'lech. Report TR-
88-04, University of Texas at Austin, Departm ent of Com puter Science,
1988.

26. B. Kruatrachue and T. Lewis, “Grain size determination for parallel processing,”
IE E E Software, pp. 23 32, Jan. 1988.

98

27. A. W. Kvvan, L. Bic, and G. Gajski, “Improving parallel program performance
using critical pa th analysis,” Languages and Compilers fo r Parallel
Computing (D. Gerlernter, A. Nicolau, and D. P. eds.), Cambridge, MA:
The M IT Press, 1990.

28. Y. -I\. Kwok and I. Ahmad, ” Exploiting Duplication to Minimize the
Execution Times of Parallel Programs on Message-Passing System s” ,
Proc. Symposium on Parallel and Distributed Systems, 1994.

29. E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan, “Recent developments in
deterministic sequencing and scheduling: A survey” , Deterministic and
Stochastic Scheduling, (M. H. Dempster, J. K. Lenstra, and A. II. G.
Rinnooy Kan eds.), D. Reidel, The Netherlands: Dordrecht, pp. 367-374,
1982.

30. C. Y. Lee, J. J. Hwang, Y. C. Chow, and F. D. Anger, “Multiprocessor
scheduling with interprocessor communication delays,” Oper. Res. Lett.,
vol. 7:3, pp. 141-147, 1988.

31. F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Array
Trees Hypercubes, San Mateo, CA: Morgan Kanfmann, 1992.

32. T. Leighton, M. Newman, A. G. Ranacla, and E. Schwabe, “Dynamic tree
embeddings in butterflies and hypercubes,” Proc. A C M Sympoisum on
Parallel Algorithms and Architectures, pp. 224- 234, 1989.

33. C. McCreary and H. Gill, “Automatic determination of grain size for efficient
parallel processing,” Comm. ACM, pp. 1073-1078, Sep. 1989.

34. C. McCreary, A. A. Khan, J. J. Thompson, and M. E. McArdle, “A comparison
of heuristics for scheduling DAGs on multiprocessors,” Proc. 8th Int.
Parallel Processing Symposium, pp. 446-451, 1994.

35. M. A. Palis, J.-C. Liou, and D. S. Wei, “Task clustering and scheduling for
distributed m emory parallel architectures,” To appear in IE E E Trans­
action on Parallel and Distributed Systems.

36. M. A. Palis, J.-C. Liou, and D. S. Wei, “A greedy task clustering heuristic tha t
is provably good,” in Proc. Int. Symposium on Parallel Architectures,
Algorithms and Networks, pp. 398-405, 1994.

37. M. A. Palis, J.-C. Liou, S. Rajasekaran, S. Shende and D. S. Wei, “Online
scheduling of dynamic trees,” Subm itted for publication.

38. J.-C. Liou, M. A. Palis, D. S. Wei, “Performance analysis of task clustering
heuristics for scheduling static DAGs on multiprocessor,” Manuscript.

39. W. Pugh, “The Omega test: a fast and practical integer programming algorithm
for dependence analysis,” Proc. of Supercomputing '91, pp. 446-451, 1994.

99

40. C. II. Papadim itriou and M. Yannakakis, ‘‘Towards an architecture-independent
analysis of parallel algorithms,” S I A M Journal on Computing , vol. 19:2,
pp. 322-328, April 1990.

41. J. Ram anujam and P. Sadayappam, “Compile-time techniques for d a ta distri­
bution in distributed memory machines,” IE E E Transactions on Parallel
and Distributed Systems , vol. 2:4, pp. 472-482, Oct 1991.

42. H. E. Rewini and T. G. Lewis, “Scheduling parallel program tasks onto arbitrary
target machines,” Journal o f Parallel and Distributed. Computing, vol. 9,
pp. 1 3 8 -1 5 3 , 1990.

43. V. Sarkar, Partitioning and Scheduling Parallel Programs fo r Execution on
Multiprocessors, Cambridge, MA: The M IT Press, 1989.

44. U. Schwiegelshohn, F. Gasperoni, and K. Ebcioglu, “On optimal parallelization
of a rb itrary loops,” Journal o f Parallel and Distributed Computing ,
vol. 11, pp. 130-134, 1991.

45. D. D. Sleator and R. E. Tarjan, “Amortized efficiency of list upda te and paging
rules,” Comm. A C M , vol. 28:2, pp. 202-208, 1985.

46. D. Towsley, “Allocating programs containing branches and loops within a
m ultiple processor system,” IE E E Transactions on Software Engineering ,
vol. SE-12, no. 10, pp. 1018-1024, 1986.

47. M. E. Wolf and M. S. Lam, “A loop transformation theory and an algorithm
to maximize parallelism,” IE E E Transactions on Parallel and Distributed
System s , vol. 2:4, pp. 452-471, Oct 1991.

48. M. Wolfe and U. Banerjee, “D ata dependence and its application to parallel
processing,” International Journal o f Parallel Programming, vol. 16, no. 2,
pp. 137-178, 1987.

49. M. Y. Wu and D. D. Gajski, “A programming aid for hypercube architectures,”
Journal o f Supercomputing, vol. 2, pp. 349-372, 1988.

50. M. Y. Wu and D. D. Gajski, “Hypertool: A programming aid for message-
passing system s,” IEEE Transactions on Parallel and Distributed
System s , vol. 1:3, pp. 330-343, July 1990.

51. T. Yang, “ Scheduling and Code Generation for Parallel Architectures” ,
PhD dissertation, Tech. Report DCS-TR-299, Department of Com puter
Science, Rutgers University, May. 1993.

52. W. II. Yu, “ LU Decomposition on a Multiprocessing System with Com m uni­
cation Delay” , PhD dissertation, Departm ent of Electrical Engineering
and Com puter Science, University of California, Berkeley, May 1984.

100

53. H. Zima., Supercompilers fo r Parallel and Vector Computers , New York: ACM
Press, 1991.

	New Jersey Institute of Technology
	Digital Commons @ NJIT
	Spring 1995

	Grain-size optimization and scheduling for distributed memory architectures
	Jing-Chiou Liou
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Copyright Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Background
	Chapter 3: Clustering Static Task Graphs with Duplication
	Chapter 4: Clustering Static Task Graphs without Duplication
	Chapter 5: Performance Comparison and Experimental Results
	Chapter 6: Scheduling of Clusters on Physical Processors
	Chapter 7: Clustering Dynamic Task Graphs
	Chapter 8: Conclusions
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

