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A B ST R A C T

G R A IN -SIZ E  O P T IM IZ A T IO N  A N D  SC H E D U L IN G  
FO R  D IS T R IB U T E D  M EM O R Y  A R C H IT E C T U R E S

by
Jing-C hiou  Liou

The problem of scheduling parallel programs for execution on distr ibuted 

memory parallel architectures has become the subject of intense research in recent 

years. Because of the high inter-processor communication overhead in existing 

parallel machines, a crucial step in scheduling is task clustering, the process of 

coalescing heavily communicating line grain tasks into coarser ones in order to 

reduce the communication overhead so that  the overall execution time is minimized.

The thesis of this research is th a t  the task of exposing  the  parallelism in a  given 

application should be left to the algorithm designer. On the other hand, the  task of 

l im i t in g  the  parallelism in a chosen parallel algorithm is best handled by the compiler 

or operating system for the  target parallel machine. Toward this end, we have 

developed CASS (for Clustering And Scheduling System), a. task management system 

th a t  provides facilities for au tom atic  granularity optimization and task scheduling of 

parallel programs on distr ibuted memory parallel architectures.

In CASS, a task graph generated by a profiler is used by the clustering m odule 

to find the best granularity a t which to execute the program so tha t  the overall 

execution tim e is minimized. The scheduling module maps the clusters onto a 

fixed num ber of processors and determines the order of execution of tasks in each 

processor. The output of scheduling module is then used by a code generator to 

generate machine instructions.

CASS employs two efficient heuristic algorithms for clustering s ta t ic  task 

graphs: CASS-1 for clustering with task duplication, and CASS-11 for clustering 

without task duplication. It is shown that  the clustering algorithms used by CASS



outperform  the best known algorithms reported in the literature. For the scheduling 

m odule in CASS, a  heuristic algorithm based on load balancing is used, to merge 

clusters such th a t  the num ber of clusters matches the num ber of available physical 

processors.

We also investigate task clustering algorithms for dynam ic  task graphs and 

show th a t  it is inherently more difficult than the static case.
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C H A P T E R  1 

IN T R O D U C T IO N

1.1 T hesis M otivation

In the  last decade, massively parallel processing (M P P) has become consensus 

approach to high-performance computing. M PP vendors have leveraged the small 

size, low cost, and high performance of commodity microprocessors to build large- 

scale parallel machines with hundreds or even thousands of nodes. These powerful 

machines are now capable of performing billions of floating-point operations per 

second (gigaflops) and are expected to reach the tera.flop level (1000 gigaflops) by 

the year 2000.

Although the peak performance of M PP machines are impressive, they are 

rarely achieved in practice. A typical application program running on an M PP  

m achine distributes its tasks and da ta  among the processing nodes and relies 

on message-passing to transfer da ta  between tasks or to synchronize the tasks 

operations. At the physical level, the resultant inter-node communication causes 

some nodes to sit idle waiting for data. In existing M P P  machines, this com m uni­

cation overhead can be large, typically in excess of 500 instruction cycles [11], As 

a result, the actual performance of an application often falls short of its theoretical 

performance, except for a few “embarrassingly parallel” applications th a t  do not 

require inter-task communication.

A parallel program can be viewed abstractly as a collection of tasks, where each 

task consists of a sequence of instructions and input and ou tpu t parameters. A task 

s ta r ts  execution only after all of its input parameters are available; ou tput param eters 

are sent out to other tasks only after task completion. This notion of a  task is 

called the “macro-dataflow model” by Sarkar [415] and is used by other researchers

1



[42, 16, 27, 40, 49, 51]. Loosely speaking, the granu lar ity  (or grain size) of a task is 

the ratio of its execution time vs. the  overhead incurred when communicating with 

o ther tasks. The granularity of a parallel program is the m inimum granularity of its 

constituent tasks. (A more precise definition of granularity will be given later.)

The high communication overhead in existing M PP machines imposes a 

m inim um  threshold on task granularity below which performance degrades signifi­

cantly. Consequently, to obtain m axim um  performance, afine-grain parallel program 

(i.e., a  program  with small granularity) may have to be restructured to produce an 

equivalent coarse-grain program by coalescing many fine-grain tasks into a single 

task. M anual “fine-tuning” of a parallel program is, unfortunately, too excessive a 

burden to place on the shoulders of an algorithm designer, be (s)he novice or expert. 

Not only does (s)he have to deal with the difficult problem of exposing  the paral­

lelism in a  given application, bu t (s)he also needs to worry about the  equally difficult 

problem of l im i t in g  the parallelism in the algorithm to minimize communication 

overhead. Moreover, the latter  problem requires of the designer deep knowledge 

of the  characteristics of the  target M PP  machine, e.g., the number of processing 

nodes, C PU  speed, local memory size, message transfer rate, and network topology. 

Finally, the  fine-tuned program, while it would run with maximum  performance 

on the chosen machine, would in all likelihood perform poorly on another machine 

with different architectural characteristics. The designer would have to rewrite the 

program to tune  it to the new machine.

1.2 R esearch Goals

The thesis of this research is tha t  the  task of exposing  the parallelism in a  given appli­

cation should be left to the algorithm designer, who has in tim ate  knowledge of the 

application characteristics. On the other hand, the task of l im i t in g  the  parallelism
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in a chosen parallel algorithm is best, handled by the compiler  or operating system  for 

the  target M PP  machine. Toward this end, we have developed C A S S  (for Clustering 

/ lnd  Scheduling System ), a  task management system tha t  provides facilities for 

au tom atic  granularity optimization and task scheduling of parallel programs on 

d istr ibu ted  memory parallel architectures.

The main functional modules of C A S S  are shown in Figure 1.1. Given a 

parallel program and a target parallel machine, a profiler generates a task graph 

specifying the dependencies among the tasks of the program, the task execution 

times and the inter-task communication delays. The task graph is used by the 

clustering module to find the best granularity at which to execute the program so 

th a t  the  overall execution tim e is minimized. The ou tpu t of the clustering module is 

a clustered task graph, in which each cluster represents a collection of tasks th a t  are 

to be m apped to the same processor. The scheduling module maps the clusters onto 

a  fixed num ber of processors and determines the order of execution of tasks in each 

processor. The output of the  scheduling module is then used by the code generator 

to generate machine instructions and to insert communication and synchronization 

primitives at appropriate  [joints in the  generated code.

T he clustering module identifies the optimal num ber of processing nodes that  

the  program will require to obtain maximum performance on the target parallel 

machine. Our approach is to decouple the clustering algorithm from the scheduling 

algorithm th a t  actually maps the clusters to the physical processors. There are 

several reasons for adopting this approach. Firstly, it facilitates scalability analysis 

of the  parallel program, i.e., how program performance is affected as the num ber of 

physical processors is increased or decreased. In C A S S ,  the  user may specify a prior  

desired num ber of processors on which the program is to be run, and a compile-time 

scheduler will generate code for the appropriate number of processors by merging 

clusters. (Of course, if the num ber of processors is more than the number of clusters,



no cluster merging is needed.) This two-phase method - task clustering and cluster 

merging - is more efficient than the one-phase m ethod tha t  performs partitioning 

and scheduling in the same algorithm. In the former, re-scaling the program so 

th a t  it runs in a new num ber of physical processors only requires re-running the 

cluster merging step, which examines a smaller data set (the clusters), while the 

la tte r  requires re-executing the entire partitioning and scheduling algorithm on the 

original fine-grain task graph.

Another motivation for adopting the two-phase method is th a t  in m ultipro­

gram m ing environm ents where the physical machine is shared by m any users, the 

number of available processors may not be known till run time. In general, a run ­

tim e scheduler incurs significant scheduling overhead, proportional to the  number 

of scheduled tasks, th a t  can degrade the performance of the parallel program. The 

advantage of our approach is that  task clustering dramatically reduces the number 

of tasks to be scheduled a t run time, thereby minimizing the effect of scheduling 

overhead on program performance.

1.3 O riginality  and S ignificance o f th e  R esearch

Previous work on compilers for parallel machines have focused largely on “para l­

lelizing” or “vectorizing” compilers that  automatically extract parallelism from 

existing sequential programs (e.g., “dusty-deck” FORTRAN programs). While such 

compilers have their niche of applications, there is a greater and more pressing need 

to develop compilers for parallel programming languages tha t  incorporate language 

constructs for explicitly expressing concurrency in programs.

Many existing compilers for parallel programming languages do not perform 

granularity optim ization, and if at all, make use of very simple algorithms. 

For example, the  Connection Machine compiler maps “virtual processors” (the
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processors used by the program) to physical processors by distributing the virtual 

processors equally among the  physical processors without regard to communication 

usage patterns. In some compilers, more sophisticated techniques lor granularity 

optim ization are used, but they can only be applied to certain segments of the 

parallel code. For example, loop spreading and loop coalescing are commonly 

used for granularity optimization: loop spreading distributes iterations of a FO R  

loop across different processors, while loop coalescing combines several loops into 

a single loop for execution by the same processor. However, these techniques are 

only applicable at the  loop level and can not be used to optimize the granularity  of 

program segments th a t  exist within loops or are outside of loops.

Our research addresses the granularity optimization problem in a more general 

context by using a parallel program representation (the task graph) th a t  is essentially 

language independent. Moreover, unlike previous work which focuses on optimization 

for sp e c i f ic  architectures (as is the case for most commercial compilers), our inves­

tigation uses a parameterized parallel machine model, thus allowing us to develop 

granularity  optimization techniques tha t  are applicable to a  wide range of parallel 

architectures. Consequently, we will not only be able to assess the effectiveness 

of to d ay ’s parallel machines in solving M PP applications, bu t we will also be able 

to  determ ine the key architectural features required by these applications, whether 

these features exist in current machines, and how future M PP  machines should be 

built in order to solve M PP  applications much more efficiently and cost-effectively.

1.4 Sum m ary o f R esearch C ontributions

1.4.1 C A SS C lustering M odule

Finding a  clustering of a  task graph that results in minimum overall execution 

t im e is an A / J-hard problem [7, 40, 43]. Consequently, practical algorithms must
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sacrifice optim ality  for the sake of efficiency. We have investigated two versions of the  

problem: clustering without task duplication and clustering with task duplication. 

In clustering without task duplication, the tasks are partitioned into disjoint clusters 

and exactly one copy of each task is scheduled. In clustering with task duplication, 

a task may have several copies in different clusters, each of which is independently 

scheduled. In general, clustering with task duplication produces shorter schedules 

than the ones produced by clustering without, task duplication. We have developed 

efficient heuristic algorithms for these two problems, established theoretical bounds 

on the quality of solutions they generate, and validated the theoretical performance 

empirically.

W hen task duplication is allowed, we have an algorithm (CASS-1) which for 

a task graph with arbitrary granularity, produces a schedule whose makespan is at 

most twice optimal. Indeed, the quality of the schedule improves as the granularity 

of the  task graph becomes larger. For example, if the granularity is at least the 

m akespan of the schedule is at most |  times optimal. For a task graph with If7! tasks 

and |i?| inter-task communication constraints, CASS-1 runs in 0 ( |F | ( | I '7]/</1V'| +  \ E |)) 

t ime, which is | l 7| times faster than the current known algorithm for this problem 

[40].

We have validated the performance of CASS-I experimentally. Our empirical 

results dem onstra te  that  CASS-I outperforms the currently best known algorithm in 

term s of both speed and solution quality.

We have also shown tha t  CASS-I can be used to solve the clustering problem 

for tree-structured task graphs with no  task duplication. The algorithm produces a 

schedule whose makespan is at most twice optimal. This result is interesting because 

it is known th a t  clustering without task duplication remains AfP -hard  even when 

restricted to trees [7],



8

Unfortunately, we are unable to find a provably  good clustering algorithm with 

no  task duplication for general task graphs. This problem appears to be very difficult 

because it is known th a t  for general task graphs, clustering with no task duplication 

remains TV/Miard even when the solution quality is relaxed to be within twice the 

optimal solution [40], Consequently, we directed our efforts to develop an algorithm 

(CASS-II) which has fast time complexity of 0 ( \E \  T  |V'|/f7 |U |) and good empirical  

performance.

We compared CASS-II with the DSC algorithm of [18], which is empirically 

the  best known algorithm for clustering without, task duplication. Our experimental 

results indicate th a t  CASS-II outperforms DSC in terms of speed (3 to 5 times 

faster). Moreover, in terms of solution quality, CASS-II is very competitive: it is 

be tter  than  DSC for grain sizes less or equal to 0.6, and its superiority increases as the 

DAG becomes increasingly fine grain. On the other hand, for task graph with grain 

size 0.6 or greater, DSC becomes competitive and in some cases even outperforms 

CASS-II, bu t  by no more than 3%.

1.4.2 C A SS Scheduling  M odule

The scheduling module maps the task clusters produced by the clustering module 

onto a fixed num ber of processors. If the num ber of task clusters is greater than the 

num ber of processors, a clustering merging step is performed. We investigated three 

approaches for cluster merging. Load Balancing  maps the clusters onto processors 

so that  the  processors have equal workload (i.e., sum of task execution times). 

Communication Traffic Minimizing  maps the clusters onto processors so tha t  the 

total am ount of inter-processor communication is minimized. Finally, Random, maps 

the  clusters onto processors in a random fashion.

Our experim ental results show th a t  when task clustering is performed prior 

to scheduling, load balancing (LB) is the preferred approach for cluster merging.
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LB is fast, easy to implement, and produces significantly better final schedules than 

Communication Traffic Minimizing (CTM). While C'TM outperforms LB for fine 

grain task graphs, such a  situation never arises in the two-phase method of CASS 

because the task clustering phase produces coarse grain task graphs, for which LB 

is clearly superior to CTM.

We have also compared the two-phase m ethod with the one-phase m ethod of 

scheduling. In the one-phase method, the num ber of the  physical processors is used 

as one of the  param eters and those three approaches for cluster merging are applied 

to task graphs directly. On the contrary, in the two-phase method (which is used 

by CASS), the clustering module determines the best clustering for the task graph 

according to its granularity, and the scheduling module matches the num ber of the 

clusters to the num ber of the  physical processors. The empirical results show tha t  

the  two-phase m ethod is superior to the  one-phase m ethod in terms of both speed 

and solution quality, regardless of the cluster merging heuristic used. Indeed, our 

experimental results indicate th a t  it is not necessary to utilize all processors in the 

system to obtain a “good” schedule. In other words, the clustering module in the two- 

phase m ethod can find a near-optimal clustering whose the num ber of the clusters is 

less than  the num ber of the  physical processors, then the utilization of all processors 

in the  one-phase m ethod may produce a schedule worse than the previous one.

1.4 .3  D ynam ic Task G raphs

CASS-I and CASS-II are applicable only to parallel programs th a t  can be charac­

terized by sialic, task graphs. Such a program consists of a fixed collection of tasks 

whose execution times and inter-task dependencies and communication delays can 

be es tim ated  at compile time. On the other hand, m any parallel programs give rise 

to d y n a m ic  task graphs. In such programs, the num ber of tasks changes dynam ­

ically a t runtime. A currently executing task can spawn new tasks which in turn
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can com m unicate with other executing tasks and spawn other tasks. Therefore, 

the task execution times and inter-task dependencies cannot be known in advance. 

Programs with dynamic task graphs arise in a variety of applications such as particle 

simulations, adaptive multigrid algorithms, n-body simulations, and combinational 

optimization [15].

Because the complete task graph is not known in advance, clustering algorithms 

based on global critical path analysis are not applicable. This m ethod relies 011 global 

information about the  longest path in the  task graph to determine the clustering. 

It is the  m ethod employed by most algorithms for scheduling static  task graphs, 

including our CASS-I and CASS-II algorithms.

For dynamic task graphs, clustering must be performed onlinc\ i.e., scheduling 

decisions m ust be made solely on the basis of the portion of the task graph revealed 

so far, and not on future tasks. The competitive ratio is used for the  performance 

analysis of online scheduling algorithms. Roughly speaking, the competitive ratio 

is the ratio between the makespan of the schedule produced by an optimal o f f l i n e  

scheduling algorithm (that, knows the entire task graph in advance) and the makespan 

of the schedule generated by an online scheduling algorithm. In this research, we 

have found a. lower bound 011 competitive ratio of any randomized dynamic tree 

scheduling and a deterministic online algorithm tha t  matches the bound. We show 

th a t  any online tree scheduling algorithm, even a randomized one, has competitive 

ratio log(i{jj)) for trees with granularity at most g <  1 and degree d.

1.5 T hesis O rganization

The rest of the  thesis is organized as follows. In Chapter 2, we address the impact 

of program partitioning and granularity on scheduling for parallel architectures, and 

also discuss some existing clustering and scheduling approaches. In Chapter 3, a fast



s ta tic  clustering algorithm (CASS-I) allowing task duplication is presented, and the 

performance bounds and complexity of CASS-1 arc shown. In Chapter 4, we present 

another static clustering algorithm that allows no task duplication. In C hapter  5, 

we present performance comparison and experimental results for task clustering 

algorithms to show th a t  the  clustering algorithms used by CASS outperform the best 

known algorithms reported in the literature. In Chapter 6, we describe algorithms for 

mapping clustered tasks onto physical processors, and present some experiments to 

show th a t  a load balancing heuristic outperforms the o ther algorithms. In C hapter  7, 

we extend our scope from static  task graphs to dynamic ones. We adopt a framework 

of analyzing online scheduling algorithms and based on th a t  we derive a lower bound 

and a deterministic algorithm tha t  matches tha t  bound. In Chapter 8, we summarize 

the  research work and discuss future work.



C H A P T E R  2 

B A C K G R O U N D

2.1 P a r a l l e l  A r c h i t e c t u r e s

A parallel architecture is a computer system with two or more processors connected 

by an interconnection network as shown in Figure 2.1.

Mem. MemMem Mem,

PEPE PE,PE

Interconnection Network

F i g u r e  2.1 A parallel architecture with n  processors and n memory units.

Most modern parallel architectures can be categorized as S1MD or MIMD. 

In SIMD machines (single instruction stream, multiple d a ta  stream ), processors 

are synchronized and execute a single sequence of instructions emanating from a. 

single control unit, possibly on different data. Examples of SIMD machines are 

ICL DAP, Goodyear M PP, Connection Machine CM-2, and M asPar MP-1216. In 

MIM D machines (multiple instruction stream, multiple da ta  s tream), processors have 

independent, control units and thus can execute different programs on different data.

T he  majority  of existing parallel machines are MIMD; examples are the 

Sequent Symmetry, Encore M ultiMax, Alliant FX /8, nCUBE, Intel iPSC/860, Intel 

Delta, and Connection Machine CM-5. Parallel architectures can also be classified 

according to their memory organization. In a shared memory architecture, memory 

is globally shared by all processors. Typically, this is accomplished by connecting 

the processors to the memory modules using a high-speed bus. Some examples are

12



13

Sequent Symmetry, Encore MultiMax, Alliant FX /8. The advantage of the shared 

memory architecture  is tha t  each processor has equal-time access to all shared 

memory locations. Therefore, d a ta  placement is not an im portant issue. However, 

this kind of architecture does not scale past, a small number of processors (on the 

order of 50). In a d istributed memory architecture, each processor is combined with a 

memory unit into a single node; nodes are connected using a scalable interconnect,ion 

network (e.g., a ring, a  mesh, or a hypercube) and communicate via message-passing. 

Some examples are Intel iPSC/860, nCUBE, Intel Delta, Connection Machine C'M-5. 

The architecture  is scalable to a very large number of processors (current machines 

contain thousands of processors). But, a disadvantage of the architecture is the 

processor’s non-uniform access to data (i.e., remote memory accesses take much 

longer than local memory accesses).

Distributed memory MIMD architectures are emerging as the consensus 

approach to scalable general-purpose parallel processing. A MIMD machine offers 

greater flexibility than a SIMD machine because it can execute different, programs 

on different nodes, or it can execute different tasks of a single program on different 

nodes ( the  la tte r  is sometimes referred to as SPMD or single program, multiple 

data). In addition, the distributed memory organization allows parallel machines 

to be built from off-the-shelf microprocessors and memory chips and to be scaled 

up to a large num ber of processors. However, programming distributed memory 

machines is more difficult than for shared memory machines. In this thesis we focus 

on distr ibuted mem ory MIMD architectures.

2.2 T he Issue o f Grain Size O ptim ization

An im portan t factor th a t  determines program performance on a distributed memory 

parallel machine is the speed at which computation and communication can be
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performed. Over the last decade, processor speeds have increased at the  dram atic  

rate  of 50% a year. On the other hand, communication speeds have not kept pace. 

To be sure, the  bandw idth  of interconnection networks has improved by employing 

be tte r  routing algorithms (e.g., wormhole routing), by using bette r  packaging of 

parallel processors, or by simply increasing the num ber of wires in the links th a t  make 

up the interconnection network. However, the cost of routing a message depends not 

only on its transport t ime  (the time tha t  it stays in the network) but also on the 

overhead spent in executing the operating system routines for sending and receiving 

the message. On contem porary machines, this software overhead is so large th a t  it 

often dominates the transport time, even for messages traveling very long distances 

in the network. Typically, the  message overhead is of the order of hundreds to a few 

thousands of processor clock cycles.

A parallel program can be viewed abstractly  as a collection of tasks, where 

each task consists of a  sequence of instructions and input and outpu t parameters. 

A task starts execution only after all of its input parameters are available; ou tpu t 

param eters are sent to  o ther tasks only after the task completes execution. This 

notion of a task is called the “macro-dataflow model” by Sarkar [43] and is used by 

other researchers [42, 16, 27, 40, 49, 51]. In the macro-dataflow model, a parallel 

program is represented as a weighted directed acyclic graph (DAG) G — (V', E , //,, A), 

where each v 6  V  represents a task whose execution tim e is p(u)  and each directed 

edge (or arc) (u ,v )  6  E  representes tim e constraint tha t  task u should complete 

its execution before task v can be started. In addition, u communicates d a ta  to v 

upon its completion; the delay incurred by this da ta  transfer is A(u ,v )  if u and v 

reside in different processors and zero otherwise. In other words, task v cannot begin 

execution until all of its predecessor tasks have completed and it has received all 

da ta  from these tasks.
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The granularity of a task graph is an im portant param eter which we take into 

account when analyzing the performance of our algorithms. Basically there are t wo 

d istinct strategies for scheduling: parallelizing tasks or secpientializing tasks. The 

trade-off point between parallelization and sequentialization is closely related to the 

granularity  value: the ratio between the task execution tim e and communication 

time. If communication cost is too high, parallelization is not encouraged.

um

w l w2 wn

Figure 2.2 Definition of the task graph granularity.

YVe adopt the definition of granularity given in [18]. Let G =  (V, E, /i, \ )  be a 

'weighted DAG. for a node v £  V'" as shown in Figure 2.2, let

</i(e) = m in { /i (u ) |(u ,n )  £ Z?}/max{A(u,u)|(tf,v) £  E } and

<j2 {v) =min{/i(tw)|(t>, w) £ E}/max{A(v, iv)j(v, w) £ E } .

T he grain-size of v is defined as min {;/< ( ) ,  <y2( ) }  • The granular i ty  of DAG G is 

given by g(G)  =min{(/(t>)|i> £ V} .  One can verify th a t  for the DAG G of Figure 2.4, 

flr(G) =  i.

The high communication overhead in existing distributed memory parallel 

machines imposes a m inim um  threshold on program granularity below which 

performance degrades significantly. To avoid performance degradation, one solution 

would be to coalesce several fine grain tasks into single coarser grain tasks. This
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reduces the communication overhead but increases the execution tim e of the (now 

coarser grain) tasks. Because of this inherent tradeoff, the goal is to determine' the 

program granularity  th a t  results in the fastest total parallel execution time. 'Phis 

problem is called grain size optimization.

2.3 G rain Size O ptim ization  V ia  Task C lustering

Grain size optim ization can be viewed as the problem of scheduling the tasks of the 

program on the processors of the parallel machine such tha t  the finish tim e of the 

last task (or “makespan of the schedule” ) is minimized. Much of the  early work in 

scheduling algorithms considered only the task execution times and assumed zero 

communication times between interacting tasks. The survey papers by Coffman [9], 

Graham , et al. [2 0 ], and Lawler et al. [29] give excellent summaries of work in this 

area.

More recent work in scheduling algorithms explicitly consider inter-task 

communication times. The basic idea behind most of these algorithms is “task 

clustering” , i.e., scheduling several communicating tasks in the same processor so 

tha t  the communications between these tasks are realized as local memory accesses 

within the processor, instead of message transmissions across the  interconnection 

network. In o ther words, the communication time between two tasks becomes zero 

when these tasks are mapped to the same processor. The result is a reduction in the 

message overhead, and hence total parallel execution time.

Researchers have investigated two types of task clustering algorithms, depending 

on whether or not task duplication (or recomputation) is allowed. In task clustering 

without duplication, the  tasks are partitioned into disjoint sets or clusters and 

exactly one copy of each task is scheduled. In task clustering with duplication, 

a task may have several copies belonging to different clusters, each of which are
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independently scheduled. In general, for the same DAG, task clustering with dupli­

cation produces a  schedule with a smaller makespan (i.e., total execution time) than 

when task duplication is not allowed.

For example, for the  fork  DAG shown in Figure 2.3(a), the optimal makespan 

without task duplication is 16 while that  with task duplication is 11. Note th a t  when 

two communicating tasks are mapped to the same processor, the communication 

delay becomes zero because the da ta  transfer is effectively a local mem ory write 

followed by a local memory read.

MAKESPAN = 17 MAKESPAN = 16

®

©

©

©

0  

0

d)
(a) (b)

MAKESPAN = 11 

(c)

F i g u r e  2 .3  (a) A fork DAG; (b) optimal clustering without task duplication; (c  ̂
optim al clustering with task duplication.

5 IT2

T8 ( ? )  T9 © T10

F i g u r e  2.4 An example of DAG.

Figure 2.4 gives an example of DAG; the node weights denote the task execution 

times and the arc weights denote the communication delays. Thus, assuming tha t  

each task resides in a  separate processor, the earliest time tha t  task T4 can be s tar ted
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is 19, which is the  tim e it needs to wait until the  da ta  from task T2 arrives (the data  

from task T l  arrives earlier, at time 10). The makespan of the schedule is the length 

of the  critical path , i.e., the path with the maximum sum of node and arc weights. 

In Figure 2.4, the  critical path is indicated by the bold arcs; its length, and hence 

the m akespan of the schedule, is 52.

A clustering of G is the m apping of the nodes in V  onto clusters, where each 

cluster is a subset of V.  If the clusters form a. partition of V  (i.e., they are pairwise 

disjoint) then the clustering is said to be without duplication. Similarly, if a node 

is m apped to more than one cluster (i.e., it has more than one copy) then the 

clustering is said to be with duplication. For example, for the  DAG of Figure 2.4, 

the  clustering =  {{T), 7f|, TV, T9 }, {7^, T-j, Tr„ T(i, Ts , T\o}} is without duplication, 

while the  clustering <I>2 =  {{Tx}, {T2, 71,, 7}„ Tr, T9}, {T2, Ta, T5, Te, Ts, Z\0}} is with 

duplication; in the  latter, nodes 7 2 and Ts each have two copies.

A schedule for a clustering maps the clusters of <I> to processors and assigns 

to each node v a s ta r t  time s (v ,p )  on every processor p to which v is mapped. The 

schedule should satisfy the following condition for every node v: if 0 is mapped to 

processor p then, for every im m ediate  predecessor u of u, there is some processor q 

to which u  is m apped such th a t  s(v , p) > s(u,  q) ■+ g(ti) +  A'(u, u), where A' — A(u, v) 

if P 7^ (l • s (v ) =niin{.s(u,7?)|u is mapped to processor p}. The makespan of the 

schedule is given by max{s(i>) +  /i(u)l'y is a siuk node}.

A schedule S  is optimal for a clustering $  if for every other schedule 

S'  for 4>, it is the case tha t  m a k e s p a n (S )  < m a k e s p a n ( S ’). We define the 

makespan of a clustering <I> as the makespan of its optimal schedule S.  A 

clustering <I> is optimal for a DAG G  if for every other clustering <!>' for 6', 

m a k e s p a n ($>) <  makespan(fy ') .  Figure 2.5 gives a schedule for the  clustering 

$ 2  =  { { r , }, {72, T u ? 5 , 7V, r 9}, {T2, T3, 7s, 7c„ 7s, Tw }} defined earlier. In the 

schedule, the  three clusters are m apped to distinct processors; the value s,- beside the
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s6  -
s7 -  16

s9 = 20

s i 0 = 2 0

F i g u r e  2 .5  An optim al clustering with duplication for the DAG of Figure 2.4.

node denotes the  s ta r t  time of task T, on the designated processor. The makespan 

of this schedule is 26. It turns out that  this schedule is optimal for clustering <1>2. If 

also turns out th a t  4>2 is an optimal clustering for the  DAG of Figure 2.4. Therefore, 

the  shortest, possible execution time for the  DAG is 26.

Similar to the  Figure 2.5 which gives an optimal schedule for clustering with 

task duplication, Figure 2 . 6  shows an optimal schedule for clustering without dupli­

cation for the exam ple DAG in Figure 2.4. The clustering 4>3 =  {{7\ }, {72,7',|, 7’5, T7, 

7T,}, {7’3, T’g, 7s, 7\o}} are mapped to three different processors. The makespan of this 

schedule is 26.
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s i = 0

sl0  = 21

MAKESPAN = 26

F i g u r e  2 .6  An optimal clustering without duplication for the DAG of Figure 2.4.

2 .4  P r e v io u s  W o r k  on  T a s k  C lu s te r in g  a n d  S c h e d u l in g

In this section, we discuss existing heuristic algorithms for the task clustering and 

scheduling problem. Task clustering -  with or without task duplication -  is an 

N P-hard  problem [7, 40, 43]. Consequently, practical solutions will have to sacrifice 

optim ality  for the  sake of efficiency. Nonetheless, task clustering heuristic algorithms 

have a num ber of properties in common when they try to achieve the goal of finding 

an optim al clustering for a DAG G. They all perform a  sequence of clustering 

refinements  s ta rting  with an initial clustering (initially each task is assumed to be 

in a cluster). Each step performs a refinement of the previous clustering so that 

the final clustering satisfies or “near” to the original goals. The algorithms are non­



21

backtracking, i.e.. once the clusters are merged in a refinement step, they cannot be 

unmerged afterwards.

A typical refinement step is to merge two clusters and zero  the edge tha t  

connect them. Zeroing the communication cost on the edge between two clusters 

is necessary for reducing the makespan (or parallel time) of the schedule. The 

m ak e sp a n  is determ ined by the longest path in the scheduled graph. In o ther words, 

the  makespan of a given schedule is equal to the tim e of the last task has been 

completely executed.

There are two im portan t parameters in performing the refinement steps: the 

critical path  of a task graph G and the earliest s ta r t  time of each node v 6  V.  'The 

critical path (CP) is the  longest path in the task graph. In [18], Gerasoulis and 

Yang use dominant  sequence (DS) instead of CP to represent the longest path  of the 

scheduled task graph or the  path whose length equals the actual makespan of the 

schedule. Nonetheless, the  CP is so im portan t th a t  the  heuristic algorithms rely on 

it for a global information of the  task graph to guarantee the reduction of makespan 

in each refinement steps. We will show later the necessity of critical path  as a  global 

information. On the o ther hand, the earliest s ta r t  tim e of a node v E V  is the earliest 

t im e th a t  node v can s ta r t  execution for any clustering. If the  execution of every 

node in G  is s tar ted  at its earliest s tart  time, then the schedule must be optimal.

Assuming there is a list of available nodes (or tasks) ready for clustering at 

certain refinement step, heuristic algorithms have to make decisions on: ( 1 ) which 

node to take from the list; (2 ) where to put it. Usually the decisions are made 

according to cost functions and objectives of clustering heuristics. If the  objective 

of clustering heuristic is to execute every node as early as possible, the cost function 

will then be the earliest s ta r t  time and the strategy of allocation is to put the  node 

into a cluster where the node can start  execution as early as possible. However, if 

the  objective is to minimize the makespan, then the critical path will be adopted as
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the cost function and the node is put into a cluster that  causes the minimum critical 

path.

We distinguish between two classes of task scheduling algorithms. The two- 

phase m ethod performs a clustering first, under the assumption th a t  there is an 

unbounded num ber of fully connected processors. When two tasks are assigned to the 

same cluster, they are executed in the  same processor. At the second phase, clusters 

are merged and scheduled on the p physical processors if the  num ber of clusters in 

is larger than  p. Examples of clustering algorithms using the two-phase method 

are Sarkar [43], the DSC algorithm of Gerasoulis and Yang [18], Papadim itriou and 

Yannakakis [40], and Chung and Ranka [8 ], On the other hand, the  one-phase method 

schedules a task graph directly on the p physical processors. Scheduling algorithms in 

this class include the MCP algorithm of Wu and Gajski [50], and Kwok and Ahmad 

[28]. Kim and Browne [24, 25] have experimented with the two-phase m ethod and 

the one-phase method. They found tha t  the  two-phase m ethod results in significantly 

be tte r  schedules than the one-phase method.

2.4 .1  C lu sterin g  w ith  Task D up lica tion

For task clustering with duplication, Papadimitriou and Yannakakis [40] have 

developed a polynomial-time algorithm for arbitrary  DAGs th a t  generates a schedule 

whose makespan is a t  most twice optimal. O ther algorithms th a t  allow duplication, 

such as those given in Kruatrachue and Lewis [26], Chung and Ranka [8 ], and Kwok 

and A hm ad [28], do not give theoretical guarantees on performance as does the PY 

algorithm. Moreover, in terms of speed, the  PY algorithm is also the fastest.

P Y ’s a lgorithm

We consider the  PY  algorithm as a clustering heuristic based on earliest start, tim e 

criterion. They use e values in their algorithm as the cost function. The basic idea 

of the  PY algorithm is to minimize the start  time of each node without considering
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load balance. The way it constructs the clustering is tha t  each node i> £ V  is pu t into 

cluster C  along with the nodes in the subset of v's ancestors that  actually determ ine 

the e(v).  The algorithm can be described as follows:

1. For each node v £  V  consider the set of node u ’s ancestors, and for each such 

ancestors u compute the cost function f ( u )  =  e{u) + fi[u) +  \ ( v , v ) .

2. Sort the ancestors in decreasing order: /  : f ( u y )  >  ./(u2) >  ■ • • >

3. Consider an integer j  and suppose tha t  f{i ik)  > j  >  f i u k+1 )-

•  Let Nj{ v)  be the subdag of G consisting of all nodes u,, i <  k.

• Find Lj  =  maxfL, [e(i>;) +  /'(''/)] such tha t  j  >  L j .  Then t (v)  =  j .

4. The nodes of are executed by the processor of v.

In [40], page 326, the authors have shown tha t  the makespan of the schedule 

produced by the PY algorithm is at most twice optimal. In terms of the quality of 

solutions generated, the PY algorithm is theoretically the best known polynomial­

tim e algorithm for task clustering with duplication. However, its tim e complexity is 

quite  high: 0(|V''|2 ( | l /r|/</|V’| +  |f?|)) time for a DAG with | |  nodes (or tasks) and 

|E |  arcs. The main source of complexity in the algorithm is the method used to find, 

for each node v, the  cluster tha t  allows v to be executed as early as possible. To find 

this cluster, the algorithm keeps track of as many as |F |  candidate clusters, each of 

which takes 0 (|V''|/^/1V| +  |/?|) time to process.

2.4 .2  C lu sterin g  w ith ou t Task D uplication

For task clustering without duplication, several polynomial-time algorithms have 

been proposed. Broadly speaking, these algorithms are based on three different 

heuristics: (1) critical path analysis [18, 24, 43, 50]; (2) priority-based list scheduling 

[2, 22, 30, 42]; and (3) graph decomposition [33]. Recently in [34], the empirical



performance of these algorithms were compared based on ten DAGs tha t  model 

the struc tu re  of several practical application. Nonetheless, none of the algorithms 

have provable guarantees an upper bound on the quality of schedules they generate, 

relative to an optimal schedule. Some algorithms are guaranteed to work well for 

special DAGs. For coarse grain DAGs (i.e., DAGs whose task execution times are 

larger than  the  inter-task communication times), the DSC (Dominant Sequence 

Clustering) algorithm of [18] has been shown by the authors to give a schedule

whose makespan is at most twice optimal, under the assumption tha t  the number

of processors is unbounded. The E T F  (Earliest Task First) algorithm of [22] gives a 

schedule whose makespan is at most ( 2  — 1 / n ) M opt + C  , where M opt is the  optimal 

makespan on n processors without considering communication delays and C  is the 

m axim um  communication delay along any chain of nodes in the DAG.

D SC  algorithm

Gerasoulis and Yang [18] presented a  clustering algorithm based on the reduction of 

the critical path. At each stage in their clustering algorithm, they define tha t  the 

set of nodes which are in the longest path of scheduled task graph at tha t  stage is 

called the Dominant, Sequence (DS). The dominant sequence, however, reduces to 

the  critical path  for linear clustering.

The basic idea of the DSC is to identify the DS at each step and then zero 

edges in th a t  DS. It is based on the following observations:

e Zeroing one edge in the CP will change CP in the next stage.

•  Reducing DS a t each step locally will let DS be computed incrementally without 

having to traverse the entire graph again.

Let t l eve l{n ) be the length of the  longest path from a source node to n  in the 

scheduled DAG (excluding /t(n)) and blevel(n)  be the length of the  longest path  from 

n  to a sink node (including /i(7?)). DSC can then be described as follows:
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1 . Com pute cost function blevel for each node and set t.level =  0  for each f r e e  

node.

‘2. For each DS in an examined task graph C *:

• Apply edge zeroing operation on DS tha t  result in the largest possible 

decrease of makespan.

o If no zeroing is accepted, node remains in a unit cluster. Apply edge 

zeroing recursively to the subDS (next longest path).

3. Update  the DS, repeat step 2 until all edges are examined.

By localizing the zeroing, the algorithm computes DS incrementally and 

eventually has a complexity of 0(( |J3 | +  |V|)/<7 |Vr|) which is faster than any o ther 

clustering algorithms in this problem. In [51, 16, 17], the authors have compared 

their DSC algorithm with o ther algorithms for task clustering without duplication 

and shown tha t  the  DSC algorithm outperforms the o ther algorithms in terms of 

speed and (empirical) solution quality.

2.4 .3  D ynam ic Scheduling

All the  heuristics mentioned previously are modeled as static task graphs. On 

the o ther hand, scheduling algorithms for dynamic task graphs have received 

little a tten tion  although programs for an increasing number of scientific application 

naturally  fall into this class. There  are some basic approaches to dynamic scheduling: 

(1) Unconstrained FIFO; (2) Balance-constrained; (3) Cost-constrained; (4) Hybrids 

scheduling.

The most elem entary approach to dynamic scheduling assumes no a  priori 

knowledge of the parallel program. In Unconstrained FIFO scheduling p +  1
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processors are used: one PE  runs a schedule tha t  dispatches tasks on a first-in-first- 

out (PTFO) basis to all o ther p PEs. The schedule produced by this heuristic is often 

far from optim al.

A balanced-constrained heuristic a ttem pts  to rebalance the loads on all 

processors by periodically shifting waiting tasks from one waiting queue to another. 

In d istr ibuted m em ory architectures, this could involve many realignments. It is not 

guaranteed to always find the minimum time. A cost-constrained heuristic works as 

follows. It performs the balance-constrained heuristic locally to identify candidate 

tasks to be moved. These tasks are then checked for communication costs to see if 

it is greater than the decrease in execution time before they are moved.

A hybrid scheduling which is a combination of static and dynamic schedulers 

can be used in the  case of loop-back and branch. In this type of problem, we might 

know the probabilities of a branch or loop estimated by profiling the program on 

a num ber of actual runs. Then we can perform a static scheduling on these graph 

and encode them  into a dynamic scheduler table, and apply the appropriate  static 

schedule at run time.



C H A P T E R  3

C L U ST E R IN G  STATIC TASK G R A P H S  W IT H  D U P L IC A T IO N

For task clustering with duplication, the Papadimitriou and Yannakakis’ algorithm 

is theoretically the best known polynomial-time algorithm in terms of the quality of 

solutions generated. It has been shown by the authors th a t  their algorithm generates 

a schedule whose makespan is a t  most twice optimal. In this chapter, we present a 

be tte r  algorithm for this problem which, for a task graph with arbitrary granularity 

g, produces a schedule whose makespan is at most (1 +  1 / ( 1  +  g)) times optimal. 

Therefore, the quality of the schedule improves as the granularity of the task graph 

becomes larger. For example, if the granularity is at least 1/2, the makespan of the 

schedule is at most 5 /3  times optimal. For a task graph with | V\ tasks and \E\ in ter­

task communication constraints, the algorithm runs in 0 ( |V '|( |F |/g |Vr| +  |E |) )  time, 

which is \ V\  times faster than the PY algorithm for this problem. Similar algorithms 

are developed tha t  produce: ( 1 ) optimal schedules for coarse grain graphs; (2 ) 2 - 

optimal schedules for trees with no task duplication; and (3) optimal schedules for 

coarse grain trees with no task duplication.

3.1 C A SS-I A lgorithm

This section presents a greedy algorithm th a t  finds a clustering for a given DAG 

G = (F, £,//., A). We prove tha t  the clustering 4>((7) produced by the algorithm is 

“good” in the following sense: If g(G) > (J — s ) j e  for some 0 <  e <  1, then the 

makespan of $(G') is a t  most (1 +  s) times the makespan of the optimal clustering 

for G. As a corollary, for a DAG with arbitrary  granularity (i.e., g{G)  >  0 ), the 

clustering produced by the algorithm has a makespan which is at most twice optim al, 

thus matching the bound of the PY algorithm [40], However, as g(G)  increases, the

27
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bound gets better. For example, if g(G)  >  the makespan of the  clustering is at 

most |  t im es optimal.

T he  basic idea behind the algorithm is similar to the PY algorithm. For each 

v E V, we first compute a lower bound e(r>) on the earliest possible s ta r t  tim e of 

v. This is accomplished by finding a cluster C(v)  containing v tha t  allows v to be 

s tar ted  as early as possible when all the nodes in C(r>) are executed on the same 

processor and all o ther nodes in V  — C(v)  are executed on o ther processors. This 

cluster can be determined using a simple greedy algorithm which (unlike the PY 

algorithm) grows the cluster one node at a time. Once the clusters are determined, 

they are m apped to processors in a simple way, and we show th a t  this mapping has a 

schedule whose makespan is “good” in the sense described in the previous paragraph.

3 .1 .1  C om p u tin g  the e  Value

T he c. values are computed in topological order of the nodes of G.  For a source node, 

its e value is equal to zero. For any other nodes, its e value is com puted after all of 

its ancestors have been assigned e values. Consider a node v all of whose ancestors 

have been assigned e values, and suppose we wish to com pute e(v).  Since e(v)  is a 

lower bound on the s ta r t  time of v, it suffices to look at clusters C  consisting of v and 

a subset of its ancestors. If a cluster C'  contains a node w  which is not an ancestor of 

v, removing w  from C'  results in a cluster in which v can be started  possibly sooner, 

but never later, than  u ’s s tart tim e in C .

Let C  be a  cluster consisting of node v and a subset of its ancestors {</j , . .  ., Uk). 

We wish to find a lower bound ec{v)  on the earliest s tart time of v assuming tha t  all 

nodes in C  are executed on the same processor. Ignore for the m om ent the  arcs that  

cross C, i.e., those tha t  connect nodes outside of C  to nodes inside of C. W hat is the 

earliest t im e  th a t  v can be scheduled? Clearly, the answer is the  makespan of the 

optim al schedule for the one-processor scheduling problem with release times for the
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instance { u j , . . . .  «*} with e-(u,) and /<(«,-) being the release time and execution time, 

respectively, of task u,-. This problem is solved optimally by the greedy algorithm 

th a t  executes the  tasks in nondecreasing order of release times. Therefore, for the 

cluster C,

ec {v) > G R E E D Y  -  S C H E D U L E R  -  {c}) (3.1)

where GREEDY-SCHEDULE(«) returns the makespan of the one-processor schedule 

for the  set of tasks specified by its argument.

Next consider the  set of arcs that  cross C.  For such an arc (u ,w) ,  define its c

value as c(u,iu) — e(u)  +  f i (u) +  \ ( u , w ) .  Node v cannot be scheduled before time

c(u, w)  because there is a path from u to v through node w. Therefore,

ec(v)  >  M A X  -  C  -  V A L U E ( C )  (3.2)

where MAX-C-VALUE(C) is the maximum c value among the arcs tha t  cross C. 

From (3.1) and (3.2), it follows that  for a given cluster C,

, . . . G R E E D Y  -  S C H E D U L E I C  -  {v})
e c M >  m « < (  U A X - C - V A W E ( C )

and

e(v) > m m{ec (r)} (3.3)

The problem is to find the cluster C  for which ec{v)  is minimum. We show tha t



this cluster can be found using a simple greed}' algorithm. S tarting with node v, the 

algorithm “grows” the cluster a node at a time and checks if the new cluster can 

potentially decrease the current estim ate  for the e value of r .  If growing the cluster 

can only increase the e value, the  algorithm stops and ret urns the minimum c value 

obtained.

Suppose we have found a candidate cluster C; hence ec(v )  satisfies Equation (3.3). 

We have the following two cases:

Case I: MAX-C-VALUE(C) >  G REED Y-SCIIEDU LE(C -  {v}). Let («, »;) be an 

arc th a t  crosses C  such tha t  c (u ,w)  =  MAX-C-VALUE(C). Since cc{v)  >  c[u,w),  

an e value less than ec{v)  cannot be obtained as long as node u is outside of the  

cluster C . Therefore, C  must be grown to include node u.

Case 2: G R EED Y-SCH EDU LE(C -  {»>}) >  MAX-C-VALUE(C). Since ec (e) >  

G R EED Y -SCIIED U LE(C — {e}), then adding any  new node x  to C cannot 

decrease the e value because GREEDY-SCIIEDULE(C U {.r} -  {u}) >  GREEDY- 

SC IIED U LE(C -  {e}).

Case 1 gives the criterion for growing the candidate cluster while case 2  gives the 

stopping criterion. The complete algorithm for computing e(e) is given as Algorithm 

CO M PUTE-E-VA LU E below. For the DAG of Figure 2.4, Figure 3.1 shows the c 

values com puted  by the algorithm. Figure 3.2 illustrates how the e value of node 1 0  

is computed.

1 . A lgorith m  C O M PU TE-E-V A LU ER, G)

2. beg in

3. if v is a source node th en  return (0);
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6 . c <- MAX-C-VALUE(C);

7. c <— c;

8 . w h i le  m  <  c do

9. Ie t(u ,  w) be an arc such tha t  u $  C , w  G C, and c =  c(u,iv);

10. C <— C  U { «};

1 1 . m  <- GREEDY-SCH EDU LE(C -  {■<>});

12. c <- MAX-C-VALUE(C');

13. e <—min{e,max{m ,c}};

14. e n d w h i le ;

15. r e t u r n  (e);

16. e n d  COM PUTE-E-VALUE.

3 .1 .2  C o n s t r u c t i n g  t h e  S c h e d u le

Algorithm CO M PUTE-E-VA LU E (e ,C )  can be easily modified so tha t  it returns, in 

addition to e(e), the corresponding cluster C (e). We now describe how to construct a 

clustering (h(G') for G  whose makespan is at. most (1 +e)-optim aI if g(G) > (1 —s)/e .

$(G') is constructed by visiting the nodes of G  in reverse topological order (i.e., 

from sink nodes to source nodes). Initially, ^(G') =  0  and the sink nodes of G are 

“m arked” . The following steps are then performed until there are no more marked 

nodes:

1. Pick a  m arked node v and add C(v)  to <&(G’).

2. Unmark v and mark all nodes u for which there is an arc {u ,w )  such that  

u C (u ) and w  G C(v) .
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F i g u r e  3 .1  The e values and clusters for the DAG of Figure 2.4.

To schedule $((.?), we m ap each cluster in d>(G') to a distinct processor and 

execute the  nodes mapped to the same processor in nondecreasing order of their e 

values. If node w  is mapped to processor p, we let s (w ,p )  denote the start  tim e of 

w  in p. Note tha t  each processor p holds exactly one cluster and tha t  this cluster is 

C(v)  for some marked node v. Moreover, v is the last node executed in this cluster.
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F i g u r e  3 .2  Com puting the e value of node 1 0 ; critical arcs are in bold.

3 .2  P e r f o r m a n c e  B o u n d s  fo r  C A S S - I

Let u be a non-source node. In the algorithm, each iteration of the  w h i le  loop 

chooses an arc in step 9 for inclusion in the candidate cluster C.  Call such arcs 

critical.  Clearly, the  set of critical arcs forms a tree T  with root v, as illustrated in 

Figure 3.3. It follows tha t ,  for any cluster of nodes tha t  includes v bu t excludes some 

o ther nodes in T,  there is at least one critical arc tha t  crosses it. Let ???., and c, be 

the in and c values, respectively, that  are computed in lines 11  and 1 2  a t  iteration i
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of the w h i le  loop, and let ???o and c0 be the initial values before entering the loop. 

Furthermore, let e, =  max{??7.,-, c.}. Finally, let t be the  last iteration of the  loop.

Figure 3.3  The set of critical arcs forms a tree T  with root v.

The following fact is obvious.

Fact 1. For 0 <  ? <  t, ???.,■ < c,-; and m t >  ct.

Let A: be the least integer such that a- =  min0 <t-<i{e,-} =  e(e). From Fact 1, 

if follows that  for 0 <  i <  /, e, =  max{m,-,c,-} =  e, >  e*. Similarly, m t =  

nia.v{ni t, c, } =  ct > e*. Therefore, we have 

F a c t  2. For 0  <  i < i,C{ > e(v) ;  and rnt > e(n).

We are now ready to prove the following.

T h eorem  1 Algorithm C O M P U T E - E - V A L U E ( v ,G ) returns a lower bound e(v) on 

the earliest start t ime o f  node v.

P roof. The proof is by induction on the depth of node v .  The theorem is obviously

true  for source nodes. So let v  be a non-source node and assume that  the theorem

holds for all of ids ancestors. Suppose tha t  the  algorithm returns e(v) =  e .̂, the  e 

value computed at iteration A: of the w hile loop. Let C* be the cluster of nodes 

constructed a t this iteration. Suppose to the contrary tha t  there is another cluster 

C'  containing v in which v can be executed a t tim e e' <  eu — e(u). Then all nodes 

in Ck must be in C . If not, there is some critical arc that  lies inside C\- bu t crosses
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C . The  c value of this critical arc is c,- for some 7 , 0  < i < k < /.. Therefore, c' > c.j 

which by Fact 2 implies e' > c* =  c(u), a contradiction. Therefore, C\  C C . Next 

consider the  following two cases:

Case  1 : k = t. Since C'  includes all nodes in C t then e' >  vnt. But by fact 1 , 

rtit =  ma.x{r7?.(, C t} = e,-; hence e' > e t — e(v),  which is a contradiction.

Case  2 : k < t. Let (u , w ) be an arc tha t  crosses C* whose c value equals c/t. Then 

C  m ust contain (u , w ). If not, then ( u , w ) must cross C (since w  6  C). But this 

implies th a t  e’ >  c* =  m a x {777*, ĉ .} =  ejt =  c(v),  which is a contradiction. Now 

suppose (u , w ) is in C 1. Then all  nodes in C-t must be in C . Otherwise, there will 

be a critical arc tha t  crosses C'  whose c value is cj for some k < j  <  t. But then 

c' T  Cj > e<,. =  e(v)  (by Fact 2), which is again a contradiction. Finally, if C'  includes

all nodes in C t, we arrive at the contradiction that e' >  rn( >  e^ =  e„ (using Fact 2).

We now prove the following.

L e m m a  1  Let v be a marked node such that C(v)  is mapped to processor p. I f  

jr/(C/) >  (1  — e ) / e  fo r  some  0  <  c <  1 , then s (v ,p )  <  ( 1  +  e)c((;).

P r o o f .  The proof is by induction on the depth of marked node v. The  theorem is 

true for all marked nodes v th a t  do not have ancestors which are also marked nodes 

because in this case s(u ,p)  =  e(rO- Now consider a marked node v and suppose tha t  

the  theorem  holds for all of its ancestors tha t  are also marked nodes. For each node 

w G C(v ) ,  let ( u ,w )  be an arc with the maximum c value among all arcs tha t  cross 

C(v )  and ends a t w. Thus u is a marked node. It follows th a t  w can be started at 

time

s{w,p)  <  (1  +  e)e(u)  + p(u)  +  \ ( u ,  w).

since u is a  predecessor of w, e(w)  >  e(u) +  p(u).  Therefore, 

s (w ,p )  < e(iu) +  se(u)  +  \ ( u ,  w).
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Now p ( u ) / \ ( u , w )  >  (1 — e)/e ; thus, e[g(u) +  A(u,iu)] >  \ ( u , w ) .  It follows tha t

s (w ,p )  < e(w)  +  c[e(u) +  p(u)  +  A(u, «;)].

<  e(w)  -f ec(t’),

because e(i>) >  e{u ) +  p(u)  + \ ( u , w ) .  The last inequality implies tha t  every node in 

C(v)  can be started  a t its e value plus a delay of at, most e-e(u). Therefore, v can be 

s tar ted  at tim e s (v ,p )  <G R EED Y -SC H E D U LE(C  — {u}) +  £,e(u) <  (1 +  e)e(u).

T h e o r e m  2 / /  (j{G) > (1 — e) /e  f o r  some  0 <  c <  1 . then the make span o / $ ( G )  is 

at most  ( 1  +  e) t imes the makespan of  an optimal clustering for  G.

P r o o f .  Let M opt be the  makespan of an optimal clustering for G. Then M opt > m a,x{c(r)+  

p{v)} ,  over all sink nodes v of C.  Since every sink node v is a marked node, then by 

Lem ma 1,

makespaii(<&(G))<mcLx{{ I +  e)c{v)  +  p{v)}

< m ax{( l  +  e)[e(u) +  p,{v)}}

=  ( 1  +  e)max{e(u) +  /<(?;)}

<  (1 +  s ) M opt.

Figure 3.4 shows the clustering constructed by the procedure for the DAG G of 

Figure 2.4. The figure also shows the start  times of the nodes when the clusters are 

m apped to distinct processors. The makespan of the clustering is 27. On the other 

hand, the makespan of an optimal clustering is at least e(Tg) +  p{rJ\)  =  18 +  6  =  24.

The granularity of G  is g(G)  =  T  Setting \  = (1 — e) /e  gives e =  Thus,

27 <  (1 +  g) * 24 =  45 as predicted by Theorem 2 . Note tha t  while 24 is a lower 

bound on the optim al makespan, the optimal makespan is 26, as shown in Figure 2.5. 

Therefore, the clustering produced by the algorithm is actually closer to optimal than 

predicted.
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F i g u r e  3.4 A clustering and schedule for the DAG of Figure 2.4.

3 .3  C o m p l e x i ty  A n a ly s is  o f  C A S S - I

In this section, we describe the implementation details and derive the time complexity 

of the  algorithm. The runtime of Algorithm COM PUTE-E-VALUE depends on how 

the functions MAX-C-VALUE and GREEDY-SCHEDULE are computed. MAX- 

C-VALUE(C) is computed as follows: we maintain a Fibonacci heap //[10] whose 

elements are the nodes of the  DAG. For each node u we associate a. value key[u\ which 

equals the maximum  c value among all arcs that cross cluster C  and emanate  from
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u. (If no such arc exists, key[u\ =  —oo). The following operations are performed 011

I I .

•  E X T R A C T -M A X (//) :  deletes from I I the node with largest key.

•  IN C R EA SE-K EY (//,a : ,  k): increases the key of node x  in I I  to the value k.

The algorithm grows the cluster C  by adding a node u from which em anates 

an arc with the maximum  c value tha t  crosses C.  This node u is obtained by 

performing EXTRAC'T-M AX(/7). Now, adding u to C  reveals new arcs ( x , u )  that  

cross C'. Therefore, heap I I  is updated by performing INCREASE-KEY( / / ,  .r, c(x, u)) 

for each such arc (,r,it).

E X TR A C T-M A X  is executed at most \V\ times. INCREASE-KEY is called 

once for each new arc th a t  crosses C  and hence is executed at most \E\ times. 

For a Fibonacci heap with |K| elements, an EXTRACT-M AX operation can be 

performed in 0 ( lg \ V \ )  amortized time and an INCREASE-KEY operation in 0 (1 )  

amortized time. Therefore, excluding the calls to function GREEDY-SCIIEDULE, 

the  algorithm runs in 0 ( |V | /g |K |  -f |£ | )  time.

Next consider the implementation of function GREEDY-SCIIEDULE. In the 

algorithm, each subsequent call to GREEDY-SCHEDULE adds a single node (task) 

to the argum ent set. Moreover, the makespan of the greedy schedule is obtained by 

executing the tasks in the set in nondecreasing order of e values. Therefore, if the 

tasks are initially sorted, a  new task can be inserted in the sorted list using binary 

search. However, although insertion can be done in 0( lg \V \)  time, com puting the 

makespan of the schedule for the new list will take 0 (|V’|) time.

By using a 2-3 tree T  [1], we can reduce the time to compute the makespan to 

0 ( lg \V \ ) .  In 7 ’, every internal node has either two or three children and all leaves 

are at the same distance from the root.. Given a set of tasks and their e values, 

we store the  tasks in the leaves of T  in sorted order, i.e., arranged from left to
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right in nondecreasing order of e values. We say tha t  node a  “owns” the sublist 

of tasks stored in the subtree rooted at o.  Node a  contains the following pieces of 

information:

o e[cr]: T he  maximum  e value among all tasks owned by a .

•  s[o], / [a ] :  If the  tasks owned by a  are scheduled greedily, then s[n] is the 

s ta r t  tim e of the first task executed and /[o ]  is the finish tim e of the last task 

executed. (Note the f[a]  is also the makespan of the  greedy schedule for this 

sublist of tasks.)

•  d[a]: The idle tim e in the  greedy schedule for the sublist tasks owned by o; 

i.e., the  number of t im e units between .s[o] and /[cv] during which no task is 

being executed.

Figure 3.5 illustrates how the 2-3 tree T  evolves for the  given sec|uence of tasks. 

To insert a new task x,  we traverse the tree downward from the root to locate the 

point of insertion, insert a new leaf corresponding to task .r, then traverse the  tree 

upward towards the root to upda te  the information of the nodes affected by the 

insertion. Observe th a t  an insertion may cause some nodes along the traversed path 

to have four children, in which case the node is split into two nodes, each with two 

children. The details of insertion and node splitting can be found in [1],

Figure 3.6 shows how a node’s key values are updated, given the key values of 

its children. The proof of correctness is straightforward and is om itted  here. Note 

th a t  only the nodes along the root-to-leaf path are updated  and tha t  an update  takes 

constant time.

Since T  has at most |F |  leaves, its depth is 0(Uj\V\)  and hence insertion takes 

0{Uj\V\)  time. Moreover, the makespan of the greedy schedule for the tasks currently 

stored in T  can be found in 0 (1 )  time as it is simply f[rool(T)} .  It follows tha t  

the  calls to GREED Y-SCIIEDU LE in Algorithm CO M PUTE-E-VALUE contribute
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F ig u r e  3.5  The 2-3 tree T.

0 ( \V \ lg \V \ )  to the total runtime. Therefore, Algorithm CO M PUTE-E-VALUE runs 

in 0(|V|/«jf|V| +  1/^1). Since the algorithm is called |U| times, computing the e values 

of all nodes takes 0 (|U|(|V|/<7 |U| +  l^ l) )  time.

Finally, once the e values are computed, the clustering can be constructed 

in 0 ( |V |  +  |A’|) time. Therefore, the entire task clustering algorithm takes 

0 ( \V \ ( \V \ lg \V \  + \ E \ ) ) t \ m e .

3.4  S p e c ia l  C a se s

3 .4 .1  C o a r s e  G r a i n  D A G s

A DAG G is coarse grain if g(G) > 1; otherwise it is fine grain. For coarse grain 

DAGs, the task clustering algorithm of the previous section produces a clustering
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F igure 3.6 Updating a node with (a) two children;(b) three children.

whose makespan is at most 1.5 times optimal. We show that  by slightly modifying 

the  algorithm an optimal clustering can be obtained. Before showing this result, we 

prove some properties of coarse grain DAGs.

Let G — ( V , E , p ,  A) be a coarse grain DAG. For v £ V,  let e(v)  be the  c 

value returned by Algorithm COM PUTE-E-VALUE(u, G)  and let C(v)  be the  corre­

sponding cluster. For nodes u , t ; ,£  V,  call u a critical predecessor of v if and only if 

c (u ,v )  =  m a x {c (w ,  c)|(ic, v) £ E ) .

L em m a 2 I f  u is a critical predecessor of  v, then e(v)  >  m a x { e ( u ) + f i ( u ) ,m a x { c ( w , v )  

E and w f  u }}.

P roof. The claim obviously holds if e(u) +  //,(») >  m ax {c (w ,  v ) G E  and

w  ^  c} because c(v) > c(u)  +  p.(u) (u is a predecessor of v).  So assume to the 

contrary tha t  c (r)  <  c (x , v )  for some ,r ^  u. (Note tha t  c(u ,v )  >  c(x ,v ) . )  Then 

x  and u  m ust both be executed on the same j^rocessor as v. Therefore, e(u) >  

G R EED Y -SCH ED IJLE(u ,.t) .  We have two cases:

Case  1 : c(u) >e(x).  Then

e(u) >  rnax{e(u)  +  p(u) ,  e(x) + p{x)  +  p{u)}
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>  e{x)  +  fi(x)  +  /«(»)

>  e(x)  +  [j,(x) +  \ ( x , v ) ,  since g{v) >  1

=  c(.r,e)

>  e(i>), a. contradiction.

Case  2 : e(x)  >e{a).  Then

e(e) >  m a x { e ( x )  +  y(u ) , e (u )  +  /<(u) +  //,(;r)}

> e(u)  + f/.(u) + / i (x)

> e (u ) +  fi.(u) + X(w, i>), since </(n) >  1

=  c(u, v)

> c (x ,v )

> e{v), a contradiction.

A cluster of nodes C — ui , . . . ,Uk  is called a critical chain if and only if for 

1 <  i < k, rtt+i is a critical predecessor of The head  of the chain is U\ and the 

tail is iik-

L e m m a  3 For every node v  6  V, C(w) is a critical chain.

P r o o f .  T he  proof is by induction on the number of iterations of the w h i le  loop of 

Algorithm COM PUTE-E-VALUE(u, Cl). Let C,- be the cluster a t  iteration i of the 

loop. Clearly, C\ is a critical chain since it consists of v and its critical predecessor. 

Suppose th a t  for some k > 1, the  clusters (1  <  i <  k)  are critical chains. Let C^ be 

{n, w u ..., Wk}. Therefore, ?7U.=GREEDY-SCIIEDULE {{iv\ , . .., Wk]) and ca-=MAX- 

C-VALUE({u, iv\, ...,Wk}). If mb  >  c* then the loop is term inated  and the algorithm 

returns a cluster Cj, j  <  k , which is a critical chain. Thus the claim holds.

Suppose tha t  m-k < c^. Then the algorithm executes iteration k +  1 . We show 

th a t  Cfc+1 is also a critical chain. Let (x, ivj )  be an arc with maximum  c value tha t  

crosses C7.+1 ; thus c. (x,Wj)  =  ĉ . and j  £ If j  =  k then x  is a critical

predecessor of wj. Therefore Cf.+ \ — U {x}  is a critical chain, and the claim holds.
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So suppose th a t  j  <  k .  It follows tha t  m k < c( x , n>j )  < c(teJ+i, lUj) (since is a

critical predecessor of wj).  But:

m k > e{wJ+1) +  n(wj+1 ) +  n(wj)

>  e( t oj + i) +  +  \ { i u j + l , Wj ) ,  since g (w j+i) > 1

=  c { w j  + U tVj)

> m k, a contradiction.

Therefore, x  must be a critical predecessor of w k and hence C k + \ ' s a critical chain.

Consider two critical chains C \  and C2 such that l a i . l { C \ ) =  /mad(C2). We 

define C \  © C 2 as the critical chain th a t  results when t a i l { C \ )  is replaced by C2. 

Finally, for v G V’, let (7*(v) be the critical chain returned by the following steps:

r e p e a t

let t v  —  l a i l { C { v ) ) \

C { v )  <- C(e) © C M ;  

u n t i l  C ( w ) =  {w}.

To construct a clustering for G, we proceed as before: i.e., we begin by

computing the c values and the clusters of the nodes of G using Algorithm

COM PUTE-E-VALUE. Next, we com pute $ (G ) except th a t  now we add C ’ to

$ (G )  (instead of C ( v ) ) .  We now prove the following.

T h e o r e m  3 L e t  v  b e  m a p p e d  t o  p r o c e s s o r  p  a n d  l e t  i t s  s t a r t  t i m e  o n  p  b e  s ( v , p ) .  

T h e n  s ( v ,  p )  =  e ( v ) .

P r o o f .  The theorem is trivially true  for all source nodes. Let v  be a non-source 

node and assume tha t  all of its im m ediate predecessors have s ta r t  times equal to 

their e values. Suppose tha t  v  resides in critical chain C " .  We have two cases:

C a s e  1 : v  ^  t a i l ( C * ) .  Let u be the  critical predecessor of v  in C*. Then
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,s(v, p )= m nx{e (u )  -j- g(u). iriax{c(w, v)\(iu, i>) £ E  and w (f C ' } }  <  e(o).

Case  2  : v =  £a?7(C*). By definition of C*, it should be the case that  C(v )  = {n}. 

Hence, s (v ,p )  =max{c(iu, u) £ E ]  =  e(i>).

3 .4 .2  T re e s

An in tree  is a directed rooted tree in which every arc is directed from a node to 

its parent. An outtree  is similar except tha t  every arc is directed from a  node to 

its children. If duplication is allowed, the task clustering problem for outtrees can 

be solved optimally using the  following simple algorithm [7]: map every root,-to-lea.f 

pa th  to a processor and execute each node as its e value. If duplication is not allowed, 

the  task clustering problem for outtrees is A^P-complete [7], For the case of intrees, 

it was shown in [7] th a t  the  task clustering problem with no task duplication is also 

A^P-complete. Moreover, allowing duplication does not help because duplication 

tasks can always be removed without increasing the makespan.

An interesting question is whether there are good approximation algorithms 

for scheduling intrees and outtrees when no duplication is allowed. The answer is 

affirmative: our greedy algorithm can be construct 2 -optimal schedules for both 

intrees and outtrees.

C o r o l l a r y  1  When duplication is not allowed, there is a polynomial-time algorithm 

that constructs a clustering fo r  an intree with granularity at least (1 — e) je  whose 

makespan is at most, ( 1  +  e) times the makespan o f  an optimal clustering.

P r o o f .  L et v be a node in a DAG G. It is easy to verify tha t  for the  clustering 

produced by our algorithm, a necessary condition for v to have duplicates is tha t  

it has two descendants u t and u2 such that  one of these nodes, say ;q, is reachable 

from v via some path  th a t  does not contain u 2. If G  is an intree, this condition is 

never true. Thus, the  clustering produced by our algorithm contains no duplicate 

nodes and the result follows.
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C orollary 2 W h e n  d u p l i c a t i o n  i s  n o t  a l l o w e d ,  t h e r e  i s  a  p o l y n o m i a l - t i m e  a l g o r i t h m  

t h a t  c o n s t r u c t s  a  c l u s t e r i n g  f o r  a n  o u t t r e e  w i t h  g r a n u l a r i t y  a t  l e a s t  (1 — s ) / s  w h o s e  

m a k e s p a n  i s  a t  m o s t  (1 +  e) t i m e s  t h e  m a k e s p a n  o f  a n  o p t i m a l  c l u s t e r i n g .

P roof. Let, T  be an outtree. T  can be converted into an intree T "  by reversing the 

direction of every arc in T .  Moreover, the granularities of T  and T '  are equal. Given 

a schedule S ' for T ’ (with no task duplication), a schedule S for T  with the same 

m akespan can be derived by defining the s ta r t  time of node v  in S as makespan(S ')- 

finish tim e  of v  in S ' [7], A similar transformation can be m ade from any schedule for 

T  to a schedule for T'. Therefore, for an outtree  with granularity at least (1 — e ) /e ,  a 

( 1 + e)-op tim al can be obtained by first converting it into an intree T ', then computing 

a (1 +  e)-optimal clustering for T'.

C orollary 3 W h e n  d u p l i c a t i o n  i s  n o t  a l l o w e d ,  t h e r e  a r e  p o l y n o m i a l - t i m e  a l g o r i t h m s  

t h a t  c o n s t r u c t  o p t i m a l  c l u s t e r i n g s  f o r  coarse grain i n t r e e s  a n d  o u t t r e e s .

P roof. Follows from the fact th a t  our greedy algorithm, when applied to coarse 

grain DAGs, produces schedules with optimal makespans.

3.5 Sum m ary

In this chapter, we present a new task clustering algorithm th a t  runs |V'| times faster 

than  the  PY  algorithm. Unlike the PY algorithm, the new algorithm uses a simple 

greedy s tra tegy to find the best cluster for a node v :  it m aintains only one candidate 

cluster and “grows” the cluster a node at a tim e if doing so can potentially decrease 

the  s ta r t  t im e of v .  In addition, we prove a be tte r  performance guarantee by explicitly 

taking into account the g r a n u l a r i t y  of the DAG. We show th a t  if g ( G )  >  (1 — e ) / e  

for some 0  <  e <  1 , our algorithm produces a schedule whose makespan is at most 

( 1 + f )  times the optimal makespan. As a corollary, for a  DAG with a r b i t r a r y



46

granularity (i.e., g(G) > 0), the algorithm produces a schedule th a t  is at most twice 

optimal, thus matching the bound of the  PY algorithm. However, as g ( G ) increases, 

the bound gets better. For example, if g(G)  >  |  the makespan is a t  most |  times 

optimal.

For coarse grain DAGs (i.e., DAGs whose granularity is a t  least 1), the task 

clustering algorithm gives 1.5-optimal schedules. We improve this result by giving a 

slightly different algorithm tha t  produces optimal  schedules for coarse grain DAGs.

Finally, we show th a t  the algorithm can be used to solve the task clustering 

problem with no  task duplication for directed rooted trees. In particular, we exhibit: 

( 1 ) 2 -optimal schedules for general directed rooted trees; and (2 ) optim al schedules 

for coarse grain directed rooted trees. These results are interesting because it is 

known tha t  task clustering with no duplication is A^P-hard even when restricted to 

directed rooted trees [7].



C H A P T E R  4

C L U S T E R IN G  STATIC TA SK  G R A P H S W IT H O U T  D U P L IC A T IO N

For task clustering with no duplication, the DSC algorithm of Gerasoulis and Yang 

is empirically the best known algorithm to date in terms of both speed and solution 

quality. The DSC algorithm is based on the critical path method. At each refinement 

step, it computes the critical path of the clustered DAG constructed so far, i.e., the 

longest path from a source node to a  sink node. (The length of a path is the  sum of 

the  node weights and edge weights along the path.) It then zeroes out an edge along 

the  critical path if doing so will decrease the critical path  length. The main source 

of complexity in the DSC algorithm is the computation of the critical path, which is 

done a t each refinement step. On the o ther hand, the use of critical path information 

is also the reason why DSC performs very well compared to o ther algorithms.

In this chapter, we present an algorithm called CASS-11 for task clustering 

with no duplication which is competitive to DSC in term s of both speed and solution 

quality. W ith  respect to speed, CASS-II is better than  DSC: it has a time complexity 

o f O ( |£ |  +  |F |  lg |F |) ,  as opposed to D SC’s O (( |^71 + 1 | ) lg |V{). Indeed, experimental 

results (described later in C hapter  5) show that  CASS-II is between 3 to 5 times faster 

than  DSC. (It is worth pointing out th a t  we used the C code for DSC developed by 

the authors of the DSC algorithm. The C code for CASS-II was developed by the 

au thor of this thesis.) W ith respect, to solution quality, experimental results show 

th a t  CASS-II is virtually as good as DSC and, in fact, even outperforms DSC for 

very fine grain DAGs (granularity less than 0.1).

47
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4.1 C A SS-II A lgorithm

CASS-II employs a two-step approach. Let G  =  (V, E , / i ,  A) be a  weighted DAG. In 

the first step, CASS-II computes for each node v  a value s(u), which is the length of 

a longest path  from a source node to v (excluding the execution tim e of v).  Thus, 

s ( v )  is the s ta r t  tim e of v  prior to any clustering of G .  The s values are computed 

in node topological order of G .  The s  value of every source node is zero. Let v  be a. 

node all of whose im m ediate predecessors have been assigned s values. Then,

s { v )  = max{s(«) +  //( «) +  A(w, t’)|(w,, t>) e  E )  (4.1)

The second step is the  clustering step. Jus t  like DSC, it consists of a sequence 

of refinement steps, where each refinement step creates a new cluster or “grows” 

an existing cluster. Unlike DSC, CASS-II constructs the clusters bottom -up, i.e., 

starting  from the  sink nodes. To construct the clusters, the algorithm computes for 

each node v ,  a value f ( v ) ,  which is the  longest pa th  from v  to a sink node in the 

current partially clustered DAG. Let l ( v )  =  s ( v )  +  f { v ) .  The algorithm uses l ( v )  to 

determ ine w hether the  node v  can be considered for clustering at current refinement 

step.

More precisely, the algorithm begins by placing every sink node v  in its own 

cluster and by setting f ( v )  =  f i ( v )  (hence, l ( v )  —  s(e) + n { v ) ) .  The algorithm 

then goes through a  sequence of iterations, where at each iteration it considers for 

clustering every node u all of whose im m ediate  successors have been clustered (and 

hence been assigned j  values). Call such a node current.. For every current node m, 

its /  value is computed as

f { u )  -  max{/((«) +  A (a, v) + f { v ) \ ( u , v )  6 E j (4.2)
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T he im m ediate successor v  which determines f ( u )  is defined as the  d o m i n a n t ,  

s u c c e s s o r  of current node u .  In general, two or more current nodes may share the 

same dom inant successor. Figure 4.1 illustrates the com putation of the /  values of 

current nodes. In Figure 4.1, nodes u | and U2 are current nodes, but u 3 is not since 

one of its im m ediate successors, u 2 , has not been assigned an /  value. Since tq is the 

only im m ediate successor of iq, f ( u  1) =  f i ( u i ) +  A(?/1, iq) +  / ( r q ) - 32, and tq is the 

dom inant successor of u \ .  On the other hand, current node u 2 has two im m ediate 

successors iq and iq. Thus, f ( u 2 ) =  max{;t(ix2) +  \ { u 2 , v \ ) +  / ( rq ) ,  n ( u 2 ) +  X ( u 2 , iq) +  

. f ( v 4 ) }  =  26; the dom inant successor of u 2 is v \ .  Thus, current nodes tq and u 2 have 

the  same dom inant successor, tq. Note that  /(tq) =  -s(tq) +  f ( i i \ )  =  18 +  32 =  50 

and l ( u 2 ) =  s (u2) +  f ( u 2 ) =  2 1  +  26 =  47. Finally, we define the f  value of a cluster 

as the  f  value of the  first node in the cluster. For example, in Figure 4.1, assuming 

th a t  node tq is the first node in the cluster C 1 , then f ( C  1) - ./*(t> 1 ) =  17.

Once the / values of all current nodes have been computed, one of them  will be 

placed in a  cluster during the current iteration. The current nodes are considered for 

clustering in nondecreasing order of their I values. For a given current node u, let v 

be its dom inant successor and let C v be the cluster containing v. Then, u is included 

in the  cluster Cv if doing so does not increase both f ( u )  and f { C v). Otherwise, u is 

placed in a  new cluster all to itself.

Figure 4.2 illustrates the method that  could be used for including a  current 

node Ui in a cluster C. In the  figum, it is assumed th a t  Vj is the first node in C 

and <.’3 is the  first im m ediate  successor of ?/,i in C  (with respect to the  sequential 

ordering). Then u\ is included in C  by placing it either: ( 1 ) immediately before u,, 

or (2 ) immediately before t>3. Note if ui  is inserted before tq, f [ u \ )  may increase 

bu t the /  values of the  o ther nodes in C  would not change. On the o ther hand, 

if i/. 1 is inserted before u3, f ( u \ )  may decrease but f ( v \ )  and f ( v 2) may increase.
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s=10
s=21
f=26 s=18

f=32

s=33
f=17

f=8

C2 Cl
F i g u r e  4.1  An example of computing the /  values of current nodes.

In the second case, updating the f ( v \ )  and J ( v 2) will increase the time complexity. 

Therefore, only the first case is used by CASS-II. Note th a t  we also do not update 

the  I and s values for the nodes in the  cluster. If the placement is not acceptable 

( tha t  is, reduce the /  values of neither the current node nor the  cluster), the current 

node is placed in a new cluster all to itself.

Figure 4.3 shows the result of applying the clustering strategy to Figure 4.1. 

Curren t node ti\ will be considered first since it has a higher I value than  current 

node u2. If Ui were included in the cluster Cj containing its dom inant successor Ui, 

/ ( ■ M i )  would be reduced from 32 to 25 and / ( C i )  would not be changed. (For C 1 , 

its /  value would be determined by node vj, whose /  value would remain 17 but 

whose s value would now be s (u 2) +  p{u2) +  A(u2, i'i) =  2 1 + 5  +  4 =  30. Hence,
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current node

c
F igure 4.2 The strategy of edge zeroing.

l (v i) =  47.) Thus, the  clustering is acceptable and current node Ui is included in 

cluster C\.  Next, current node u2 is considered. One can check tha t  clustering u 2 

with Ci increases f ( i i 2 ) ; hence u2 is placed in a new cluster all to itself.

T he  complete algorithm is given as Algorithm CASS-11 below. The algorithm 

m aintains a priority queue 5  consisting of items of the  form [•</.,/(».),?;], where u 

is a current node, l{u) is the  / value of it., and v is the dominant successor of u. 

INSERT(S,iZem ) inserts an item in 5 and DELETE-MAX-L-VALUERS') deletes 

from S  the  item with the maximum I value. The algorithm returns, lor each node e, 

the  cluster C[v)  containing it.

1. A lgorith m  CASS-II(C)

2. begin

3. for each node v do

4. com pute s(v)\

5. endfor;
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s=10 s=8

1=43
f=25

f=17

f=8

C2 Cl
F i g u r e  4 .3  The clustering of the DAG in Figure 4.1.

6 . fo r  each sink node v do

7. f ( v )  <r- f i ( v ); l(v) = s(v)  +  f ( v ) \

8. C(v )  {u};

9. e n d fo r ;

10. S  <- 0;

1 1 . w h i l e  there  are current nodes d o

1 2 . fo r  each new current node u do

13. find ids dominant successor v;
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14. / ( « )  <- i.i(u) +  \ {u ,  v)  + f{v);

15. l(u) <- s(u)  +  / (u ) ;

16. INSERT(5, [» ,/(«), (-]);

17. e nd fo r ;

18. b ' , / ( . r) , l / ]  «-  D E L E T E -M A X -L - V A L U E (S);

19. i f  C ( y )  U x  is acceptable t h e n

20. C { x )  <— C(j/) 4— C ( y )  U {x-};

2 1 . e lse

2 2 . C(.r) <- {.r};

23. endif ;

24. e n d w h i le ;

25. r e t u r n  ({ C ( r ) | r  6 C/});

26. e n d  CASS-II.

For the DAG of Figure 2.4, Figure 4.4 shows each iteration of Algorithm CASS-

II. T he  figure also shows the I values of the tasks in each step. The makespan of 

the  clustering shown in Figure 4.4(1) is 26. On the other hand, applying DSC on the 

example DAG results in the following clusters:

C 1 =  { 1 } ,C 2 =  { 2 ,5 } ,C 3 =  {3,6,10}, 

C4 =  {4,7,9}, Cs =  {8 }.
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T he makespan of the clustering produced by the DSC algorithm is 30 by searching 

both directions (i.e., top-down and bottom -up) of the  DAG. Note th a t  in practice, 

like the DSC algorithm, CASS-II also searches both directions of the DAG and uses 

the  makespan of whichever is better.

4.2 C om plex ity  A nalysis

We now analyze the complexity of Algorithm CASS-II. The s values of all nodes (lines 

3-5) can be com puted in tim e 0 ( |C |  +  |E’|). Initializing the sink nodes (lines 6 - 1 0 ) 

takes 0 ( |C l )  time. Each iteration of the main w hile loop (lines 11-26) consists of:

( 1 ) identifying the current nodes; (2 ) for each current node, determining its dom inant 

successor, computing its /  and / values, and inserting a corresponding item in the 

queue 5; and (3) for each current node deleted from S’, determining the cluster to 

which it belongs.

The current nodes a t the  s ta r t  of each iteration can be determined by simply 

com puting for each node u, a value n u m (u )  which is the  number of im m ediate  

successors th a t  have not yet been clustered. Initially (prior to any clustering), 

nnin(u )  is simply the total num ber of imm ediate successors of u. Whenever a node, 

say v, is assigned its cluster, the n u m  value of every immediate predecessor of v  is 

decremented by 1 . Thus, at the s ta r t  of each new iteration, the current nodes are 

those nodes which have not been clustered and which have n u m  values equal to zero. 

It is easy to verify th a t  updating the n u m  values and determining the current, nodes 

take 0 (|V7| +  |/^|) tim e overall.

T he  dom inant successor of a current node can be determined in a. similar way. 

For each node u, we keep track of the “candidate” dominant successor v, which is 

the  im m ediate successor of u th a t  has already been clustered and for which fi(u)  +  

\ ( u , v )  +  f ( v )  is m axim um . This latter  value will be the “candidate” value for f ( u ) .
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F igure 4.4 The I values and clusters for the DAG of Figure 2.4
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W henever a node v is assigned its cluster, the candidate /  value of every immediate 

predecessor u of v is upda ted  as m ax { /(« ) ,  fi(u) +  \ ( a , v )  +  f { v ) } .  If f ( u )  changes 

in value, then the candidate  dominant successor of u is changed to v. Thus, when 

node u becomes a current node, its candidate dominant, successor and its candidate 

/  value are the true  dom inant successor and the true /  value, respectively. Overall, 

keeping track of the  candidate  values takes O dC ] +  |F j)  time.

Consider next the  insert and delete operations on the priority queue S.  By 

implementing 5  as a heap, each insert operation and each delete operation takes 

0 ( l g |S | )  time. Since there are a total of |V7| insert operations and V  delete 

operations, these operations contribute at most 0 (| V| lg |V'|) to the total time.

Finally, for each current node v, its cluster can be computed in 0 (1 )  tim e (since 

the s valuses may be changed later, we did not upda te  the I and a values of nodes 

in the  cluster, this reduces the complexity to 0 ( 1 )), thus contributing 0 ( |V | ) time 

overall. It follows th a t  Algorithm CASS-II runs in 0 ( \E \  +  jV7(lg | W|) time.

4.3  Special C ases

In this section, we discuss the performance of CASS-II for fork and join DACs, and 

show the optim ality  of the  algorithm for these DAGs.

Figure 4.5 demonstrates  the clustering steps of CASS-II for a fork DAG. 

W ithou t loss of generality, we assume that  the  leaf nodes in the DAG shown in (a) 

are sorted in a nonincreasing order of the c values (i.e., c(t>i) >  c(v2 ) >  • • • >  c(um)). 

Initially, each node is in a unit cluster as shown in Figure 4.5(b). The /  value of 

u equals to inaxi{c(r ,j)  which is c(u |). At step 2 shown in (c), the cluster of tq is 

grown to include node u. f ( u )  is reduced to c(v2) at this moment. The cluster will 

keep growing until the following condition can not be satisfied.

k
^2 I'i -

i = l
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As shown in (cl), CASS-II stops a t node t>c-+i and the original leftmost scheduled 

cluster forms a linear chain. The steps applied in fork DAGs can be applied to join 

DAGs by ju st  simply reversing the join DAG into a fork DAG.

Vm,Vk

(b) Initial clustering

m

Vm

(a) A Fork DAG

m

nr

(c)Step 2, VI is clustered

Vm

(d) step k+1

F i g u r e  4.5 CASS-II clustering steps for a  fork DAG.

T h e o r e m  4 CASS-I I  achieves optimal scheduling fo r  fork and join DAGs.

P r o o f :  The proof is cpiite simple. After f ( u )  is determined. CASS-II will

examine free nodes r>i, u2, • • •, vm in a nonincreasing order of c values. Assume

the optim al parallel time to be P T opl. Let the optimal scheduling stop a t node p,

and i ( C ) = £ f =1 p{vi). Then the optimal P T  is:

PTopt = p{u)  +  max{ t{C) ,  p{vp+i) +  A(ep+1)) (4.3)

CASS-II zeroes edges from left to right, as many as possible, up to the point k as
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shown in Figure 4.5(d) such that:

i— 1 

i =  I

and
k

1 (-1.4)
i = i

Suppose tha t  p ^  k  and P T opt < PT c a s s - i i • There are two cases:

If p < k, then

P k
X > .-  <  Z><- <  p,{vk) +  A(efc) <  /i(up+i) +  A(ep+i)
;=i i=i

Thus Equation 4.3 can be simplified as:

P T opt =  p(u)  +  A(up+1) +  p.(vp+1) >  p(u)  +  \ { v k) +  p.{vk )

> p{u)  +  m a x ( t ( C ) ,  p ( v k+:) +  A(efc+1)) =  P T c a s s - i i

If p >  At  then since Ef=i ki > Hi=i IP  > ll{vk+1 ) +  H?k+i) > A( i’p+i) +  / /( t’p+i), 

P T o p t  =  p{u) +  Ef=i I 1', >  / ' ( « )  +  m a x ( t {C ) , / i { v k+l) +  A ( c a. + 1 ) )  =  P T c a s s - i i  

There is a contradiction in both cases.

For a join, the  optimality can be proved using the same analysis by reversing 

the DAG and the solution is symmetrical to the optimal result for a fork. H

4.4 Sum m ary

In this chapter, we have presented a simple task clustering algorithm without task 

duplication. Unlike the DSC algorithm, CASS-II uses only limited “global” infor­

mation and does not recompute the critical path in each refinement step. Therefore,
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the  algorithm runs in 0 { \E \  +  |U|/g|V"|) which is faster than 0 ( ( |V |  +  \E\)lg\V\)  of 

the DSC algorithm. Unfortunately, we are unable to find a  provable bound 011 the 

solution quality produced by the CASS-II. This is very difficult because it is known 

th a t  for general task graphs, clustering without task duplication remains N  P -hard 

even when the solution quality is relaxed to be within twice the optimal solution. 

However, we exhibit optimal schedules for the special cases such as join and fork 

DAGs.



C H A P T E R  5

PERFORM ANCE COMPARISON AND EXPERIMENTAL RESULTS

This chapter describes experimental results for the CASS-1 and CASS-II algorithms 

introduced in the  previous chapters. CASS-I is compared with the PY algorithm 

[40], which is in theory the best known algorithm for clustering with task duplication. 

Similarly, CASS-II is compared with the DSC algorithm [18], which is empirically 

the  best known algorithm for clustering without task duplication. Our experimental 

results dem onstra te  th a t  the CASS algorithms compare very favorably with their 

counterparts, and generally outperform the o ther algorithms in terms of both speed 

and solution quality.

5.1 C lustering w ith  Task D uplication

For clustering with task duplication, several algorithms are known, e.g., Kruatrachue 

and Lewis [26], Chung and Ranka [8], Kwok and Ahmad [28], and Papadim itriou  and 

Yannakakis [40]. Table 5.1 compares these algorithms with CASS-I with respect to 

theoretical run tim e and performance guarantee (if any). All algorithms, except tha t  

of Kwok and Ahm ad, assume an unbounded num ber of processors; for Kwok and 

A hm ad’s algorithm, the num ber of processors, p, is an input param eter. Only the 

PY  algorithm and CASS-I have theoretical guarantees on performance. The PY 

algorithm guarantees schedules with makespan which are at most 2-optimal. CASS- 

I gives an even tighter bound on performance: (1 +  y^-) times optimal for task graphs 

of granularity (j. Moreover, CASS-I achieves the fastest theoretical runtim e among 

the  algorithms.

To validate CASS-I, we tested the algorithm on random DAGs. A random 

DAG is generated by first randomly generating the number of nodes, then randomly

60
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generating edges between them , and finally assigning random node weights and edge 

weights. For comparison purposes, we also ran the PY algorithm on the same set of 

DAGs. Our first experiment consisted on 300 DAGs; the results are summarized in 

Table 5.2.

ALGO R ITH M AUTHORS PERFORM .
GU A R A N TEE

RU NTIM E OF 
ALGORITHM

Duplication
Scheduling
Heuristic

Kruatrachue 
&; Lewis, 1987 None O (n ')

Bottom-Up
Top-Down

Duplication
Heuristic

Chung Sz Ranka, 
1992 None 0 ( 77,'•)

Critical path 
Fast Duplication 

Heuristic

Kwok Sz Ahmad, 
1994 None 0 ( n 2ep)

PY Heuristic
Papadim itriou 
& Yannakakis, 

1990
2-optimal 0 ( n 3lgn +  n 2c)

CASS-I
Heuristic

Palis, Liou Sz 
Wei, 1994

l +  l / ( l + g )  
-optimal 0 ( n 2lgn +  ne)

Table 5.1 A comparison of clustering algorithms with task duplication, n  =  no. of 
tasks, e =  no. of edges, p — no. of processors.

#  of DAGs #  nodes 
Min-Max

M(PY,CASS-I) 
Avg.

T(PY,CASS-I) 
Avg.

G l* 100 6-64 1.23 1.13
G2 100 64-256 1.30 1.72
G3 100 256-511 1.36 1.72

Table 5.2 Experimental results for CASS-I and PY run on a 386PC* and a 
DEC5900.

The 300 DAGs are divided into three groups of 100 DAGs each. Group G1 

was tested on CASS-I and PY  running on a 386 PC; groups G2 and G3 were tested 

on the algorithms running on a  DEC 5900. Column 3 of the Table 5.2 gives the 

range of num ber of nodes for the DAGs in the group. Column 4 gives the  average
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makespan ratio of PY over CASS-I. In general, given two clustering algorithms A 

and B, the  average makespan ratio of  A over B, M(A,B), is defined as

makespan, \[Gi)
m a k e s p a n ^ G ,)

where N  is the  num ber of DACis. Finally, column 4 gives the average runtim e ratio 

of PY over CASS-I. Given two clustering algorithms A and B, the  average runtime  

ratio o f  A over B , T(A ,B), is defined as

T (  \ R \  =  —  V  r u n l i m e A{Gi )
N r u n t i m e b{Gi)

Table 5.2 indicates th a t  CASS-I gives 23%-36% shorter makespans than PY, in 13%- 

72% less time.

To determ ine how well both algorithms perform on DAGs with varying grain 

size, we conducted another experiment on 280 DAGs, where they are divided into 

14 groups, as shown in Table 5.3. Column 1 of the table is interpreted as follows: 

grain size =  0.1 means a group of 20 DAGs with granularity in the range (0, 0.1], 

grain size =  0.2 means 20 DAGs with granularity in the range (0.1, 0.2], and so on. 

Column 2 gives the range of number of nodes for DAGs in the group. Column 3 and 

4 give the  average runtim e (in seconds) for PY and CASS-I, respectively, running on 

a Sun Sparc workstation. Column 5 is the average makespan ratio of PY over the 

loiver bound (LB) on the optimal makespan (obtained from the e values computed 

by CASS-I). Finally, Column 6 is the average makespan ratio of CASS-I over the 

lower bound on the optimal makespan.

For ease of comparison, Table 5.4 shows the average makespan ratio and average 

runtim e ratio of PY over CASS-I.
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Grain
Size

#  of Tasks 
Min - Max

PY Runtime 
(sec)

CASS-I Runtime 
(sec)

M(PY,LB) M(CASS-I,LB)

0.1 91-996 10.94 6.22 1.80 1.90
0.2 71-9J0 3.68 2.45 1.70 1.74
0.3 137-1009 2.85 2.09 1.58 1.58
0.4 84-989 1.97 1.57 1.53 1.48
0.5 97-1022 1.60 1.23 1.45 1.37
0.6 124-1002 1.36 1.16 1.45 1.40
0.7 77-982 1.40 1.01 1.41 1.33
0.8 90-1015 1.12 1.13 1.36 1.30
0.9 123-962 1.44 1.02 1.33 1.24
1.0 70-942 1.36 1.06 1.31 1.22
2.0 202-889 1.30 1.19 1.27 1.27
3.0 83-955 1.29 0.89 1.16 1.14
4,0 129-935 1.13 1.01 1.11 1.09
5.0 76-882 1.01 0.91 1.09 1.04

Table 5.3  Experimental results for CASS-I and PY run on a Sun Sparc workstation.

Table 5.4 reveals tha t  there are instances where PY gives bette r  makespans 

than  CASS-I (grain size =  0.1 and 0.2), although for the majority  of the  cases, 

CASS-I is better. CASS-1 is also significantly faster than PY (up to 76% faster for 

grain size =  0.1), although there is one surprising instance (grain size =  0.8) for 

which PY is slightly faster.

Finally, Figure 5.1 plots the average makespan ratio of PY and CASS-I over 

the  lower bound on the optimal makespan (column 5 and 6 of Table 5.3). The plot 

labeled “performance bound” is (1 -f j ^ ) ,  where g  is the granularity. It validates the 

theoretical guarantee on performance for CASS-I; i.e., the makespans generated by 

CASS-I are within (1 +  y ^ )  times the optimal makespans. Note that the experimental 

results are pessimistic, because we used the lower bound on the optimal makespan, 

instead of the optimal makespan (which we are unable to compute). Surprisingly, 

the graph indicates th a t  the PY algorithm also satisfies the same performance upper 

bound, at least empirically. We conjecture tha t  a tighter analysis of the PY algorithm
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Grain
Size

M(PY,CASS-I) T(PY,CASS-I)

0.1 0.95 1.76
0.2 0.97 1.50
0.3 1.00 1.36
0.4 1.03 1.26
0.5 1.05 1.30
0.6 1.03 1.17
0.7 1.06 1.38
0.8 1.05 0.99
0.9 1.08 1.41
1.0 1.08 1.28
2.0 1.00 1.10
3.0 1.02 1.44
4.0 1.03 1.12
5.0 1.04 1.11

T a b le  5 .4  The average makespan ratio and average runtim e ratio of PY over CASS-I.

(i.e., by taking task graph granularity into account) would likewise prove tha t  it 

satisfies the  performance upper bound in theory.

5.2 C lustering w ith ou t Task D up lication

For clustering without task duplication, a number of o ther algorithms have been 

reported in the literature besides DSC and CASS-II. The most well-known are the 

algorithms proposed by Sarkar [43], the MCP heuristic of Wu and Gajski [49], and the 

a lgorithm of Kim and Browne [24]. All algorithms assume an unbounded number 

of processors. Table 5.5 compares these algorithms with CASS-II with respect to 

performance guarantee and theoretical runtime. It shows th a t  none of the algorithms 

have a performance guarantee on general task graphs. Among these algorithms, 

CASS-II is superior to the others in terms of speed.
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Perform ance B ound PY  CASS-I

Figure 5.1 Average makespan ratio of PY and CASS-I over the lower bound on 
optimal makespan.

Sarkar MCP Kim Browne DSC CASS-II
Join/Fork no no no optimal optimal

General
DAGs

no no no no no

Runtime 0 ( e ( n  +  e)) 0 ( n 2lgn) 0 ( n ( n  +  c)) 0 ( ( n  + e)lgn) 0 ( e  +  nlgn)

Table 5.5 A comparison of static clustering algorithms without task duplication, n 
=  no. of tasks, e =  no. of edges.

Experim ental results in [16, 18, 51] have shown that  DSC outperforms all 

the algorithms listed in Table 5.5, except for CASS-II, in terms of both speed and 

solution quality. To see how CASS-II compares with DSC, we tested both algorithms 

on 350 DAGs. The 350 DAGs were divided into 14 groups of 25 DAGs each according 

to their grain size, as indicated by column I of Table 5.6. Column 2 of the table gives 

the  range of num ber of nodes for the DAGs in the group. Column 3 and 4 give the 

average runtim es (in milliseconds) of DSC and CASS-II, respectively, when executed 

on a Sun Sparc workstation. Column 5 gives the average makespan ratio of DSC
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over CASS-II. Finally, column 6 gives the average runtim e ratio of DSC over CASS-II.

Grain
Size

#  of 'basks 
Min - Max

DSC Avg 
Runtim e

CASS-II’s 
Avg Runtime

M(DSC,CASS-II) T(DSC,CASS-II)

0.1 85-988 544 131 1.37 4.15
0.2 129-987 698 156 1.10 4.47
0.3 86-988 684 149 1.05 4.59
0.4 87-989 566 129 1.00 4.39
0.5 88-990 532 123 1.01 4.33
0.6 89-949 533 116 1.00 4.59
0.7 90-997 615 141 1.00 4.36
0.8 89-992 524 136 0.99 3.85
0.9 93-993 652 141 0.98 4,62
1.0 90-992 687 133 0.97 5.17
2.0 91-993 930 178 1.00 5.22
3.0 92-994 884 171 1.00 5.17
4.0 93-953 851 159 1.00 5.35
5.0 94-995 737 155 1.00 4,75

T a b le  5 .6  Experimental results of CASS-II and DSC algorithm run on a Sun Sparc 
workstation.

Table 5.6 indicates th a t  CASS-II is between 3.85 to 5.35 times faster than  DSC. 

Moreover, in terms of solution quality, CASS-II is very competitive: it is be tte r  than 

DSC for grain sizes less or equal to 0.6, and its superiority increases as the DAG 

becomes increasingly fine grain. For example, for grain sizes equal to 0.1 or less, 

CASS-II generates makespans which are up to 37% shorter than DSC’s. For some 

DAGs with this grain size, sequentializing a set of tasks (one cluster produced) can 

achieve a  be tte r  makespan than executing them in parallel (two or more clusters 

produced). It is interesting th a t  the case can be detected by CASS-II, but DSC 

seems not to find the necessity for serial execution and produces several clusters 

instead of one. On the o ther hand, for task graph with grain size 0.6 or greater, DSC 

becomes competitive and in fact even outperforms CASS-II, although by no more 

than  3% (grain size =  1.0).
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5.3 Sum m ary

Our experimental results validate the theoretical guarantee on the performance of 

CASS-I, i.e., it generates schedules whose makespans are at most (1 +  times 

the optimal makespan. We have also compared CASS-1 with the PY algorithm and 

dem onstrated  tha t  CASS-I generally outperforms PY in terms of both speed and 

solution quality.

We have also compared CASS-II with the DSC algorithm and showed that  

CASS-II is 3 to 5 times faster than DSC. For fine grain DAGs (granularity =  0.6 

or less), CASS-II consistently gives bette r  schedules. For DAGs with grain size 0.6 

or greater, DSC becomes comparable to CASS-II, and in some cases even strictly 

better, but by no more than 3%.

In summary, our experimental results demonstrate th a t  both CASS-I (for 

clustering with task duplication) and CASS-II (for clustering without task dupli­

cation) are very competitive algorithms in terms of speed and solution quality, 

outperforming the best currently known algorithms (PY for clustering with task 

duplication and DSC for clustering without task duplication).



C H A P T E R  6

SCHEDULING OF CLUSTERS ON PHYSICAL PROCESSORS

The role of the CASS scheduling module is to merge the task clusters generated by 

the CASS clustering module onto a  fixed number of processors and to determ ine the 

order of execution of tasks within each processor. The scheduling module consists of 

the  following sequence of optimization steps:

1. Cluster Merging : given in task clusters and n processors such th a t  rn > n, 

merge the clusters so that the number of remaining clusters equals to ».

2. Processor Assignment  : given n clusters and n  processors, find a one-to-one 

mapping of the  clusters to the processors taking into account the underlying 

network topology.

3. Local Scheduling : determine the order of execution of tasks mapped to the 

same processor.

6.1 Cluster Merging

The cluster merging step is performed whenever the num ber of task clusters is greater 

than  the number of physical processors. We have investigated three approaches for 

cluster merging: (a) load balancing (LB), (b) communication traffic minimizing 

(CTM ), and (c) random  (RAND). All three approaches execute a sequence of 

refinement steps; each refinement step reduces the number of clusters by one by 

m erg ing  a pair of clusters into a single cluster. The approaches essentially differ in 

their choice of the pair of clusters to be merged:

•  L B

Define the (com putational) workload of a cluster as the sum of execution times

68
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of the tasks in the cluster. At each refinement step, choose a cluster, Ci, that  

has a m inim um  workload among all clusters, and find a cluster, C 2, tha t  has 

a m inim um  workload among those clusters which have communication edge 

between it and C\.  Then the pair of clusters C\ and C2 are merged.

• C T M

Define the (communication) traffic of a pair of clusters ( C i ,C 2) as the sum of 

comm unication times of the edges from C\ to C’2 and from C2 to C x. At each 

refinement step, merge the pair of clusters which has the most traffic.

•  R A N D

At each refinement step, merge a random pair of clusters.

LB merges the clusters to processors so th a t  the processors have approximately equal 

workload; i.e., they spend approximately the same time executing tasks, ignoring 

the inter-cluster communication delays. In CTM, the clusters are merged to the 

processors so th a t  the  total inter-cluster communication is minimized; the  workload 

of the  processors is ignored. Finally, RAND ignores both the workload and the 

communication traffic when m apping the clusters to the processors.

Consider, for example, the clustered task graph (with task duplication) shown 

in Figure 3.4. W hen the 5 task clusters are merged to the physical processors, LB 

and C TM  result in the  same two clusters, as shown in Figure 6.1. On the o ther hand, 

consider the  clustered task graph (without task duplication) shown in Figure 4.4(1). 

W hen m apped  to  two physical processors, LB produces the two clusters shown in 

Figure 6.2(a) while CTM produces the two clusters shown in Figure 6.2(b). Observe 

tha t  the  clusters produced by LB has a  schedule of length 26 while tha t  of CTM 

has a schedule of length 40, which is significantly longer. As discussed later in this 

chapter, our experimental results indicate tha t  LB is generally bette r  than CTM, 

and th a t  RAND is the worst approach.
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F i g u r e  6 .1  The cluster merging of the  clustering in Figure 3.4.

6.2 P rocessor A ssignm ent and Local Scheduling

The processor assignment finds a one-to-one mapping of the clusters to the 

processors, taking into account the underlying network topology. Presently, CASS 

uses a simple heuristic to m ap the cluster to processors: (1) assign to a processor 

the  cluster with the  largest total communication traffic with all o ther clusters; (2) 

choose an unassigned cluster with the largest communication traffic with an assigned 

cluster and place it in a processor closest to its communicating partner; (3) repeat

(2) until all clusters have been assigned to processors.

For example, consider the situation depicted in Figure 6.3, where four task 

clusters are to be assigned to four physical processors connected as a linear array. The 

width of the  edges indicates the relative am ount of communication traffic between
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F i g u r e  6 .2  The cluster merging of the clustering in Figure 4.4(1).

the  clusters. Thus, cluster C4 communicates most heavily with all other clusters. 

Consequently, we first assign C .i to a processor, say the  third processor. Next, we 

consider the  cluster which communicates most heavily with C4; this is 6Y Thus, C 2 

is placed on a processor closest to C4, say the second processor. Then, cluster C3 is 

considered and placed on the fourth processor, closest to C4, which is its most heavily 

comm unicating partner. Finally, cluster C\ is placed on the remaining processor.

Recall th a t  the CASS clustering module specifies, for each task cluster, a 

sequential order of execution of tasks within the cluster. The cluster merging step 

-  if invoked -  also maintains a task execution order for each ou tpu t  cluster (which 

might be the result of merging some original clusters). This order of execution is 

derived from the predicted sta r t  times of the tasks. Unfortunately, these sta r t  times

Makespan = 26 Makespan = 40
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F i g u r e  6 .3  An example of processor assignment.

are generally optim istic  estimates because they do not take into account the  increase 

in comm unication delay between tasks th a t  are mapped to non-adjacent processors 

by the processor assignment step. Thus, it is possible for two independent tasks, 

say A and B, to have start  times s ( / l )  <  s ( B ) before processor assignment and 

have s ta r t  times s '(A )  > s '(B )  after processor assignment because A needs da ta  

from a task m apped to a. distant processor. The role of local scheduling is to re­

order the execution of the tasks to minimize processor idle time, while respecting 

the precedence constraints between tasks. CASS uses a simple greedy algorithm 

tha t  m aintains a. global clock and, a t  each clock tick, dispatches a task for execution 

once it has received all the messages it requires. This algorithm is an adaptation of 

the well-known optimal algorithm for one-processor scheduling for tasks with release 

times.

6.3  E x p e r i m e n t a l  R e s u l t s

We compared the performance of the cluster merging algorithms empirically. Our 

experimental set-up is shown in Figure 6.4. In the  first experiment ( the two-phase 

m ethod), we first applied the CASS-II clustering algorithm to a task graph to 

produce a clustered task graph. The clustered task graph was then used as input
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t,o the  three cluster merging algorithms. In the second experiment (the one-phase 

m ethod), the clustering algorithm was not applied; instead, the  original task graph 

was used directly by the cluster merging algorithms. In each experiment, we varied 

the granularity of the original task. Our experimental set-up allows us to compare 

the performance of the cluster merging algorithms for varying task graph g ranu­

larity, and with or without prior task clustering. In particular, task clustering, in 

efTect, changes the granularity of the task graph that  is input to the cluster merging 

algorithms. Consequently, the best cluster merging algorithm for the one-phase 

m ethod may not be the best algorithm for the two-phase method.

Task Graph
Clustered

Task
Graph

LB

CTM

RAND

Clustering
Algorithm

Scheduled
Task
Graph

(a) Two-Phase Method.

Task Graph CTM

LB

RAND

Scheduled
Task
Graph

(b) One-Phase Method.

Figure 6.4 Experimental set-up for the cluster merging algorithms.

Our experimental set-lip also allows us to assess the effectiveness of task 

clustering as an in termediate step in the scheduling process. In other words, we
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want to determ ine whether significantly bette r  schedules can be obtained when task 

clustering is applied, as opposed to not applying it.

YVe conducted the two experiment on 130 random DAGs. For each DAG, we 

applied the CASS-II clustering algorithm to produce a clustered DAG with, say, k 

clusters. We used the integer k to determine the number of processors, m, to use 

with the cluster merging algorithms. Specifically, for a given k, we choose rn to be 

some power of 2 <  k. We then ran the cluster merging algorithms both on the 

original DAG (one-phase method) and on the clustered DAG (two-phase method) 

and compared the makespans of the resulting scheduled DAGs.

Grain
Size

Two-Phase One-Plia.se
LB CTM RAND LB CTM RAND

0.1 1.06 1.09 1.11 1.81 1.14 1.86
0.2 0.99 1.00 1.02 1.20 1.10 1.30
0.3 0.97 0.90 0.96 1.25 1.10 1.29
0.4 1.02 0.96 1.02 1.35 1.13 1.34
0.5 1.05 1.06 1.05 1.48 1.21 1.45
0.6 1.10 1.16 1.15 1.58 1.38 1.55
0.7 1.11 1.28 1.24 1.39 1.33 1.45
0.8 1.13 1.32 1.34 1.40 1.50 1.43
0.9 1.14 1.44 1.47 1.39 1.70 1.53
1.0 1.19 1.55 1.62 1.44 1.72 1.51
2.0 1.07 1.09 1.09 1.29 1.39 1.24
3.0 1.12 1.19 1.21 1.27 1.37 1.27
4.0 1.09 1.19 1.22 1.18 1.30 1.25

T a b le  6 .1  Average makespan ratios of cluster merging algorithms (relative to CASS- 
II) for two-phase and one-phase methods.

Table 6.1 summarizes our experimental results. The first column represents 

the grain size of the original DAG. Each of the remaining columns gives the 

average makespan ratio relative to CASS-II, i.e., the average ratio of the makespan 

produced by the cluster merging algorithm over the makespan produced by the
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CASS-II clustering algorithm. It is clear from the table tha t  for a fixed cluster 

merging algorithm (LB, CTM , RAND), the two-phase method (with prior task 

clustering) produces significantly better  makespans than the one-phase m ethod (no 

prior task clustering). On average, L B tu,„-phase is be tte r  than LZ?OI,c_p/lr,sr by 28%, 

CTMtwo-phase is bettei than  C T Mone—phase by 15%, and R A N  R iwo—piiasc is bettei 

than R A N D one-phase by 22%.

We should point out th a t  the above results are actually skewed in favor of the 

one-phase method. The reason is tha t  the num ber of processors, rn, was always 

chosen to be less than  the num ber of clusters, k , produced by the CASS-II clustering 

algorithm. In practice, ???. may be greater than k. If this were the case, then the 

two-phase method would not perform the cluster merging step (because there are 

already less clusters than processors) and hence would produce a schedule using k 

processors and whose makespan equals that  produced by the clustering algorithm. 

On the o ther hand, the  one-phase method would schedule the original task graph 

consisting of n  >  m  nodes onto m  processors using either LB, CTM , or RAND. The 

resulting schedule would oftentimes be very bad because it still uses way too mail}' 

processors than necessary. (Recall tha t  the num ber of clusters produced by task 

clustering represents the  optimal or near-optimal num ber of processors on which to 

schedule the task graph.) For example, we experimented on two DAGs G'l and G2. 

DAG C/1 has 947 nodes and DAG G'2 has 577 nodes. Using the one-phase m ethod, we 

ran LB, CTM , and RAND on DAG G1 assuming 128 physical processors and on DAG 

G2 assuming 32 physical processors. The makespans produced by the algorithms are 

given by columns 4 to 6 of Table 6.2.

Column 7 of the  table gives the makespan produced by CASS-II, and the 

num ber in parentheses gives the corresponding num ber of clusters. Note th a t  since 

for each DAG the num ber of clusters produced by CASS-II is already less than the 

num ber of physical processors, the cluster merging step will not be performed by



76

the two-phase method. Thus, for example, for DAG G1 the two-phase m ethod will 

ou tpu t a schedule using 2 processors and with m akespan= 6283. On the o ther hand, 

the one-phase m ethod using LB will ou tpu t a schedule using 128 processors and 

with m akespan=  45,556, which is 7 times worse than the two-phase method. The 

same is true for CTM  and RAND.

Node # P E #
MAKESPAN

LB CTM RAND CASS-II
G l 947 128 45556 13038 32699 6283(2)
G2 577 32 21185 7952 13118 4125(3)

Table 6.2 Experimental results for sample DAGs G1 and G2.

Grain
Size

Two-Phase One-Phase
Best Next Worst M(W ,B) Best Next Worst M(W ,B)

0.1 LB CTM RAND 1.04 CTM LB RAND 1.63
0.2 LB CTM RAND 1.02 CTM LB RAND 1.18
0.3 CTM RAND LB 1.08 CTM LB RAND 1.04
0.4 CTM RAND LB 1.07 CTM RAND LB 1.19
0.5 LB RAND CTM 1.01 CTM RAND LB 1.22
0.6 LB RAND CTM 1.06 CTM RAND LB 1.33
0.7 LB RAND CTM 1.14 CTM LB RAND 1.09
0.8 LB CTM RAND 1.19 LB RAND CTM 1.07
0.9 LB CTM RAND 1.29 LB RAND CTM 1.23
1.0 LB CTM RAND 1.36 LB RAND CTM 1.20
2.0 LB CTM RAND 1.02 RAND LB CTM 1.12
3.0 LB CTM RAND 1.08 RAND LB CTM 1.08
4,0 LB CTM RAND 1.11 LB RAND CTM 1.10

Table 6.3 Relative performance of cluster merging algorithms.

We next analyze which cluster merging algorithm is superior for the one- 

phase and two-phase methods. Table 6.3 ranks the three cluster merging algorithms 

according to the  makespans they generated (Best =  smallest makespan). The column 

labeled M (W ,B) gives the average makespan ratio of the worst algorithm over the 

best algorithm, fo r  the one-phase m ethod, CTM is the clear choice for fine grain 

task graphs, outperform ing the two other algorithms for grain size 0.7 or less. On the
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other hand, for grain sizes greater than 0.7, LB is generally the better m ethod. 'Phis 

is to be expected because inter-task communication times dominate task execution 

times for fine grain task graphs (hence, minimizing communication traffic) while 

task execution times dom inate inter-task communication times for coarse grain task 

graphs (hence, balance processor workload).

For the two-phase m ethod, a different situation arises: LB is generally superior 

to  the other two algorithms regardless of the grain size of the original task graph. 

The reason is th a t  the  task clustering step increases the granularity of a fine grain 

task graph to the point where task execution time is more or less equal to inter­

task communication time. T ha t  is, the fine grain task graph becomes coarse grain. 

Consequently, LB is the  algorithm of choice for cluster merging because the input 

task graph is now coarse grain. Finally, RAND exhibits somewhat, erratic behavior 

.and  is generally the  worst algorithm for either the one-phase or two-phase method.

Finally, Table 6.4 gives the runtimes of the cluster merging algorithms. As 

expected, CTM is the slowest algorithm because it computes the communication 

traffic between every pair of clusters. LB and RAND are significantly faster. For 

the  one-phase method, RAND is faster than LB because LB spends extra, time 

com puting the workload of each cluster. Interestingly, for two-phase m ethod. LB 

is very competitive to RAND, and in fact is faster than RAND in a m ajority  of 

the  cases. Our explanation for this is as follows: After the task clustering step, 

the  clusters have granularity  close to 1. As the clusters are merged, LB will always 

merge clusters with the smallest workload, which will also contain the fewest num ber 

of tasks. The actual merging step — which takes tim e proportional to the num ber of 

tasks — will thus be computed fairly quickly. On the other hand, RAND will, with 

high probability, m erge clusters w ith more tasks. Consequently, the actual m erging  

step takes longer. Thus, although RAND does not spend ex tra  time computing the
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clusters’ workload (as does LB), it takes considerably more time actually merging 

the clusters.

Grain
Size

Two-Phase One-Phase
LB CTM RAND LB CTM RAND

0.1 16 16 16 416 215491 83
0.2 16 30 33 699 236690 249
0.3 18 121 33 799 361485 183
0.4 23 584 58 766 354369 150
0.5 24 1218 33 308 95938 75
0.6 41 2564 43 433 178393 100
0.7 48 3566 58 841 447282 133
0.8 39 2561 29 250 66172 49
0.9 26 1273 66 624 269989 125
1.0 29 1719 55 641 268371 108
2.0 39 986 49 416 128278 99
3.0 44 1579 25 399 128728 116
4,0 39 1651 41 566 196942 149

Table 6.4 Runtim e of cluster merging algorithms run on a Sun Sparc workstation 
(in msec).

6.4 Summary

T he experimental results clearly dem onstrate the effectiveness of the two-phase 

m ethod of CASS, in which task clustering is performed prior to the  actual scheduling 

process. Task clustering determines the optimal or near-optimal num ber of processors 

on which to schedule the task graph. In other words, there is never a need to use rnon? 

processors (even though they are available) than the number of clusters produced by 

the task clustering algorithm — doing so would only increase the parallel execution 

time.

T he experimental results also indicate tha t  when task clustering is performed 

prior to scheduling, load balancing (LB) is the preferred approach for cluster merging. 

LB is fast, easy to implement, and produces significantly better  final schedules than 

communication traffic minimizing (CTM). While CTM outperforms LB for fine grain



task graphs, such a situation never arises in the two-pha.se method of CASS because 

the task clustering phase produces coarse grain task graphs, for which LB is clearly 

superior to CTM.

In summary, the two-phase method consisting of task clustering and load 

balancing is a simple yet highly effective strategy for scheduling task graphs on 

d istr ibuted memory parallel architectures.



C H A P T E R  7

C L U ST E R IN G  D Y N A M IC  TASK G R A P H S  

7.1 O nline Scheduling o f D ynam ic Trees

In this chapter, we investigate online scheduling algorithms for dynamic trees. 

Dynamic trees arise naturally in a  num ber of im portant applications, e.g., divide- 

and-conquer, backtracking, branch-and-bound, and adaptive multi-grid algorithms. 

A dynamic tree consists of a finite num ber of nodes (or tasks), but its size is not 

known a priori to the scheduling algorithm. Initially, only the root of the free is 

“known” and can be scheduled for execution. A known node must, be executed to 

completion before it spawns its children (i.e., before its children become “known” ).

We assume tha t  the dynamic tree is to be executed on a distributed memory 

parallel machine with an unbounded number of processors. Every node of the tree 

represents a. sequential task th a t  takes // tim e units to execute on any processor of the 

parallel machine. In addition, if v is a child of w in the tree, then a  communication 

delay of A time units is incurred if v is executed on a processor different from the 

one th a t  executed w. This implies tha t  if w finishes at tim e t on processor p, then v 

can be s tar ted  on processor q ^  p no earlier than time i +  A. On the other hand, if 

q — p then v can be started at time t , i.e., as soon as w finishes. The communication 

delay A models the  cost of migrating v to another processor, along with any output 

d a ta  produced by w tha t  will be need for ids execution.

The gra n u la r i ty  of a tree is an im portant parameter which we take into account 

when analyzing the performance of online tree scheduling algorithms. For a tree 

T  with uniform node execution times // and uniform communication delays A, its 

granularity  is defined as g( T)  =  //,/A. T  is called fine-grain if g( T)  < 1; otherwise, T  

is coarse-grain.

80
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7.2 C om p etitive  A nalysis

We study the performance of online scheduling algorithms for dynamic trees using 

the competitive analysis approach first introduced by Sleator and Tarjan [45]. Let /I 

be a deterministic online scheduling algorithm and let M .\{T)  be the makespan of 

/ l ’s schedule on tree T.  Let M o p t { T ) be the makespan of the  schedule produced by 

an optimal o f f l i n e  scheduling algorithm tha t  is given the entire tree T  in advance. 

Algorithm A  is said to be c-compelitivc (or has competitive ratio c) if Ma { T)  <  

cM o p t { T )  +  0 (1 )  for all trees T.  If A is a  randomized algorithm, then A  is said 

to be c-compctitive if E [M t\(T)\  <  cM o p t { T)  +  0 (1 )  for all trees 7’, where the 

expectation is taken over all random choices of the algorithm A.

As with o ther online algorithms, online tree scheduling can be viewed as a 

game against an adversary who is allowed to  determine the requests  (i.e., tasks) 

th a t  must be served  (i.e., executed) before it issues new requests (i.e., children of a. 

completed task). Thus, lower bound arguments can be phrased in terms of a  strategy 

for the  adversary th a t  forces the competitive ratio to be as large as possible. For 

the  deterministic case, one may assume that  the  adversary has complete knowledge 

of the  online algorithm. For the randomized case, we distinguish between two types 

of adversaries. An adaptive adversary is one who knows in advance both the online 

algorithm and the results of the coin tosses of the algorithm. An oblivious adversary 

knows only the algorithm but not the results of the coin tosses. Our lower bounds 

assume an oblivious adversary, which is weaker than an adaptive adversary. Of 

course, using a weaker adversary means our lower bound results stronger.

7.3 Sum m ary o f R esu lts

In [7], it was shown th a t  finding an optimal o f  f l i n e  schedule for directed acyclic task 

graphs is an A^P-hard problem, even when restricted to trees. On the other hand, we
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have shown in Chapter 3 that  there is an o f f l i n e  tree scheduling algorithm which, 

for a tree with arbitrary  granularity, produces a. schedule whose makespan is at most 

twice optimal. It is therefore interesting to ask whether there is an online  tree 

scheduling algorithm th a t  is c-competitive for some constant c.

We answer this question in the  negative. We show th a t  any online tree 

scheduling algorithm, even a randomized one, has competitive ratio n( ( ^ ) / l oga;(j))  

for trees with granularity at most g <  1 and degree d. Moreover, if the  tree is allowed 

to have unbounded degree, the competitive ratio is Thus, the competitive

ratio grows inversely with the granularity, and implies tha t  very bad schedules can 

result from online scheduling of fine-grain dynamic trees.

We also prove a  tight upper bound by exhibiting a simple d e te rm in is t ic  online 

tree scheduling algorithm tha t  achieves a  competitive ratio of 0 ( (  j)//o<7^(^)). Thus, 

randomization does not help in online tree scheduling. This result is interesting 

in light of the fact th a t  randomization helps in other oidine settings, e.g., online 

embedding of dynamic trees in fixed connection networks [4, 32].

7.4 T he Lower B ound

Theorem 5 The competitive ratio o f  any randomized online tree scheduling algorithm, 

working against an oblivious adversary, is n( {^ )  /  l o g ^ ) )  fo r  trees with granularity 

at most g < 1 and degree d, fo r  any  2 <  d <  [T].

Proof. Let k  =  [ i ] .  The adversary’s strategy is to construct a tree T  of the  form 

depicted in Figure 7.1.

T  is composed of L +  1 identical trees 7’0, 7 ' , , . . . ,  l ' i ,  such th a t  the root ,r, of 

Ti is a leaf of the  previous tree r,-_i, for 1 <  i < L. Each of the  T.’s is a complete 

d-ary tree of height h — \logdk], Figure 7.2 illustrates the tree T  for the  case d =  3  

and k = 8. For this case, each T\ is a complete 3-ary tree of height h = [70 /7 3 8] =  2.



83

F i g u r e  7.1  Tree T  constructed by the adversary.

All nodes in T  have unit execution time, and all edges have communication 

delay k .  Thus, T  has granularity £ = J^fq\ —  9 ’ ^ 01  ̂ — 1 — Xi ' s ch °scn by 

the adversary randomly and uniformly from among the leaves of T!+i- Finally, the 

adversary chooses L  > 3 k  +  1.

Let .4 be any randomized algorithm that  schedules T  online. Suppose tha t  

.4 executes .r,- on some processor p, finishing at tim e /(a;,-). As A proceeds, it. will 

eventually execute some number m  of the dh leaves of T, on processor p and the rest 

on some other processors (m  may be 0). Let Cj, c2, . . . ,  cm be the  rn leaves executed 

on p , ordered by increasing finish times: f ( c \ )  < / ( c 2) <  . . .  <  / ( c m). Since .t!+] 

is chosen by the adversary randomly and uniformly from among the dh leaves, the  

probability tha t  x 1+1 =  Cj is ^  , regardless of the probability distribution used by
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x0

To

Ti

F ig u r e  7.2 Tree T  for the case d= 3  and k=8.

.4. Similarly, the probability th a t  x t+] is not any one of the c 's  (i.e., executed on 

some processors o ther than p) is d Jjj”1. In the  latter case, .r,+i cannot finish earlier 

than f ( x { )  + k +  h. because there are h unit-time tasks along the path  from Xi to x !+1 

(excluding Xi bu t including ,t1+i ) and a communication delay of a t  least k  is incurred 

along the path  (since is executed on a processor other than p).  Therefore, we 

have

I 7,1 dh — in
E [ f { x i+1)] >  [ / ( ;ci) +  k +  h]

j=l
( 7 . j ;

Let f ( c j )  — f ( x i )  +  A j .  Note th a t  A j  > h since there are h unit-tim e tasks along the 

pa th  from x, to  cj (excluding x,  bu t  including cj). Moreover, since f ( c j )  < / ( c J+]) 

then A j  <  A j + i .  Substituting / ( x t ) +  A j  for / ( c j )  in equation (7 .1 )  yields:
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1 _m_ —  777
£ [ / ( * * . ) ]  >  / ( I . )  +  J, £  Ai +  <7 -2 >

( j = 1

To find the minimum , first fix m. Since /; <  Ai <  A 2 < • . .  <  A m, the minimum 

occurs when A j = (h — 1) + j .  Therefore,

+ . ) i  >  / ( * . )  +  > < *  - 1 ) +  +  ^ ( * + * i  ( 7 . 3 )

W hen m  is allowed to vary, the minimum occurs when rn =  From this, we get

E [ f i x i+i ) \  >  f ( x i) +  k +  ^ ~~ 9 8̂

But h = \logt{k\ and hence dh >  k. Therefore,

E [ J i x i+1)] >  f ( x i) +  k  +  ^ -  j [ - 7 f  +  ^  +  g] (7.5)

E [ f i x i+i)] >  /(-Ti) +  ^  +  /'• -  (7.6)

£ ,[/(.t,-+i)] >  /(.r,-) +  ^  +  h -  I ,s ince  k  >  1. (7.7)

Since /(.I'u) =  1 if follows that

E[J{x l )\ >  1 +  ~  +  L{h — 1) (7.8)

Now x i  is itself the  roof of a complete d-ary tree TL of height, h =  \log(lk ] . Hence
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th e  las t  node  to  execu te  in T\, finishes no earlier th an  t im e  J { x l )  +  /;. We therefo re  

conclude th a t  the  ex p ec ted  m akespan  of A on T  is

E[Ma(T)] >  1 +  y  +  L{h -  1) +  h (7.9)

We now give an upper bound on the makespan of an optimal offline schedule. 

Consider the schedules depicted in Figure 7.3. This schedule picks any leaf z  in 

T i  and executes all the  nodes along the path from x 0 to 2  on the same processor 

p. Let y be a node not on this path  but whose parent is on the path. Node y is 

executed 011 a separate processor, together with all the nodes in the subtree rooted 

a t y.

Figure  7.3 shows th e  nodes y0,7/1, . . . ,  y/,_i no t on th e  p a th  from xl to  £ bu t  

whose p aren ts  are along th is  pa th .  Let 7 ,- be th e  processor th a t  executes th e  su b tree  

roo ted  a t  v/, and let f{(jt) be the  finish tim e of th e  last node executed  in C learly 

th e  m akespan  of schedule S is m a x { / ( 7 ,)}. M oreover, am ong  th e  7 ,-’s, qh~\ has th e  

m a x im u m  finish time. To see this, no te  th e  7 , executes a  com ple te  d-ary tree  of 

height i, which has nodes. It follows th a t  for i > 0 ,

/ ( 7 i) - / ( 7 , - _ 1) = ^ - ( ^  +  l)

= (d'-l)(d-  1 )

>  1 , since d >  2 .

Now x l  finishes at tim e Lh + 1 , since there are th a t  many nodes along the path  

from .To to x l -  Therefore, the finish time of processor 7 /1- 1 , and hence the makespan 

of the schedule S is

Lh +  1 +  k +  < Lh + 1 +  k + since dh <  dk.

= Lh +  2fc +  1 +  $5 }

<  Lh -F 3A’ +  1, since d > 2.
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q, %q, h-2l i- l

F ig u re  7.3  An example schedule.



88

An o p tim a l offline' schedule for V is 110 worse th an  schedule S; therefore,

M o p t ( -0  <  Lh  +  3A- +  1 ( e.10)

From  E q u a t io n s  (7.9) and  (7.10), it follows th a t  th e  co m p e ti t iv e  ra tio  of a lgorithm  

A  is

E \ M a { T ) ] >  l  +  k f + L { h - l ) + h  

A/op7’(71) L/i+3A:+1

-  I l +^ ± i ‘ •

For L > 3k  +  1, we get

E \ M a { T ) ] >
M o p t ( T )

> — k  
~  2 ( / i + l )

_ k
2(f/cis,jfc] +  l )

=  Sl ( (Lg ) / l ogd( Lg ))-

If th e  t ree  is allowed to  have unbounded  degree, th en  the  adversary  can choose 

d — [^ ] .  T hus ,  we get the  following corollary:

C o r o l l a r y  4 The competitive ratio o f  any randomized online tree scheduling 

algorithm, working against an oblivious adversary, is f l ( l ) fo r  trees with unbounded 

degree and granularity g < 1.

7 .5  A  D e t e r m in i s t i c  A l g o r i t h m

In this section we present a  simple deterministic online tree scheduling algorithm 

whose competitive ratio m atches the lower bound given by Theorem 5. The algorithm 

is based on bounded breadth-first clustering. Let T  be a dynamic tree with uniform 

node execution times p and uniform communication delays A >  p. Let k =  [Aj =
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As before, we assume th a t  T  has degree at most d <  k. The algorithm 

processes the  nodes of T  in breadth-first order and groups them  into clusters, such 

tha t  the nodes in the same cluster are executed on the same processor. Each cluster 

contains the  first k  nodes found in a dynamic breadth-first expansion of the roof 

node in the  cluster. Every node which is a child of some fringe nodes in the cluster 

is assigned to a new cluster.

Formally, the  algorithm proceeds in the  following m anner with any cluster from 

the tim e th a t  the root node in the cluster s tarts  its computation. We associate two 

entities with the cluster: a FIFO queue, Q , which keeps the currently pending nodes 

for th a t  cluster, and a variable, C O U N T ,  which maintains the current count of the 

nodes in the  cluster th a t  have already been executed. Initially, the queue Q contains 

the root node of the  cluster and C O U N T  is set to zero. The following steps are 

repeated until the queue Q becomes empty.

1 . Let x  =  D E L E T E ( Q )  be the first node in the queue. Execute x  on the 

processor associated with the cluster and increment C O U N T  by 1 .

2. Let y, , t/2 , • • •, Vm be th e  children spawned by x.  Let j  be the  largest integer 

<  m such th a t  C O U N T  + j <  k. T hen  add nodes y \ , y2, . ..,,(/, to the  end of 

th e  queue  Q and  assign each of the  rem ain ing  nodes (if any) to a  new cluster.

We now show tha t  the above online scheduling algorithm has optimal 

competitive ratio. Consider the first tree T  and the associated clustering of nodes of 

T  as produced by the online algorithm. Since the degree of T  is at most d < k, any 

root-to-leaf pa th  in T  containing L nodes can pass through at most TV 

clusters. To see this, let Ci, C2, • • • , C r be the sequence of clusters th a t  are inter­

sected by the  pa th  starting from the root of the tree. Then every cluster, except 

possibly Cr , is full, i.e., contains exactly k nodes. Moreover, because the nodes 

are processed in breadth-first order, any subpath that, s tarts  from the roof of a full
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cluster to a fringe node in the same cluster has at least nodes. The bound

N l is therefore implied.

From the preceding argument, it follows that  any path of length L is executed 

in time at most k/.iNi, + A(AT — 1): the  two terms respectively bound the time 

spent in com putation and in inter-cluster communication. But k — [A///.] and hence 

kf i N^  +  A ( /Vf, — 1) <  A AT +  \ { N l — 1) <  2 \L .  No optimal clustering can finish the 

path in less than  fiL  steps. Consequently, the competitiveness of the  deterministic 

algorithm is a t  most = 0 ( ( J ) / l o g d(J)).

T h e o r e m  6 The bounded breadth-firs I online scheduling algorithm achieves a 

competitive ratio, 0 ( ( ^ ) / l o g [i(^)), fo r  trees with granularity g <  1 and degree

7.6  C o a r s e - G r a in  T re es

We now consider a class of out-trees where the computation tim e in a node dominates 

both the communication times from the parent node as well as the  child nodes 

(whenever the node is scheduled on a different processor). Such out-trees, called 

coarse-grain trees, arise very often as online execution traces of recursive algorithms. 

Sometimes, the  algorithm allows us to predict the computation times of the children 

of a currently executing node, along with the communication times on the edges that 

are grown online as a result of further recursive calls. We first, consider the simple 

case of a coarse-grain out-tree and show tha t  a very simple online algorithm is able 

to construct clusters and their associated schedules which at most 2 times the length 

of the optimal makespan.

Formally, let T  be a tree tha t  is being grown online and let.r< be any node in 

the  tree. Then , for all pairs of nodes v ,w  (not necessarily distinct) which are children
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of u in the  tree, the condition

min{/i(u), /•*(«)} >  A( u , w)

defines the  coarse-grain natu re  of the  tree T.  Intuitively, the communication cost, on 

an edge («, v)  is always dom inated by the computation costs at each of the endpoints 

of the edge as well as the  com putation cost of any sibling of v in the free.

It has been shown th a t  if a coarse-grain out-tree is known offline, then it is 

possible to compute an optimal  schedule for the free without duplication of nodes in 

different, clusters. In fact, the  algorithm produces a clustering in which every cluster 

is linear, i.e. the nodes mapped to any cluster form a contiguous path ending at, 

some leaf node of the tree. This observation motivates a simple, greedy algorithm 

for constructing online clusters for the  tree as it grows over time.

The strategy adopted is as follows: when a node completes execution in 

some processor (cluster), any  one of the  spawned children is selected and retained 

within the cluster for im m ediate  execution. The remaining children are sent to new 

processors where they begin their own clusters. Thus, over time, the algorithm 

produces linear clusters; a t  any fixed instant, a cluster either ends in a node which 

is being computed, or ends in a node which will not spawn further children.

T h e o r e m  7 The greedy online algorithm produces a 2-optimal schedule fo r  any  

coarse-grain tree T .

P r o o f :  Let C  denote the final clustering produced by the online algorithm. From 

the preceding remarks, the clustering is linear: any given cluster of nodes forms a 

contiguous path from some internal nodes of T  to some leaf nodes of 7'.

Fix a leaf node / in the  tree and consider the unique path  from the root of T  

to /. Let Mi be the sum of the  computation costs for nodes along the path; it follows 

th a t  the optimal schedule for T  cannot complete processing / before time Mi. The 

path  s tarts  at the root and follows some sequence of nodes in a C-cluster (say c ^ ,
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then switches to the  s ta r t  of another C-cluster (say c2), follows it for a while before 

switching to a th ird  cluster and so on. In general, it is easy to see th a t  I can finish 

computing in tim e equals to Mi plus the  sum of the communication costs incurred 

while switching from one cluster to the next along the path. The la tter  cost is at 

most Mi from the coarse-grain condition, since the cost of every edge (■»., v) tha t  

switches clusters, is dom inated by the computation cost of node u, and the cost of u 

appears exactly once in M\.

It follows th a t  every leaf node in T  completes computation within twice the 

optimal completion time. Consequently, the makespan of the online schedule is 

within a factor of two of the optimal makespan. B

7.7 Sum m ary

In this chapter, we showed that  any online tree scheduling algorithm, even a 

randomized one, has competitive ratio U((^)//o//,y(k)) for trees with granularity  at 

most g <  1 and degree d. Moreover, if the tree is allowed to have unbounded degree, 

the competitive ratio is f^(^)- Thus, the competitive ratio grows inversely with the 

granularity, and implies th a t  very bad schedules can result from online scheduling of 

fine-grain dynamic trees.

We also proved a tight upper bound by exhibiting a simple d e te rm in is t ic  online 

tree scheduling algorithm th a t  achieves a competitive ratio of 0 ( ( i ) / / o y j ( 7 ) ) .  Thus, 

randomization does help in online tree scheduling. This result is interesting in light 

of the fact th a t  randomization helps in other online settings, e.g., online embedding 

of dynamic trees in fixed connection networks [4, 32].



C H A P T E R  8 

C O N C L U SIO N S

The scheduling problem is a  distinguishing feature of parallel versus serial programming. 

Informally, the  scheduling problem arises because the concurrent parts of a parallel 

program m ust be arranged in time and space so that the overall execution time of 

the  parallel program is minimized. This is a well-known A P -com ple te  problem. 

The effectiveness of the heuristics depends on a num ber of factors -  grain size, 

interconnection topology, communication bandwidth, and program structure.

As a  result, research performed prior to this thesis inspected the possibility 

of finding heuristics for approxim ating an optimum performance. A number of 

heuristics have been proposed, each of which may work under different circumstances. 

This variation has led to confusion and misunderstanding of the  heuristics.

This research investigates those most widely accepted models in static task 

graph scheduling and explores the dynamic scheduling for d istributed memory archi­

tectures th a t  few had touched. As a consequence of the  research, we have made 

several general contributions:

• A clustering algorithm with task duplication (CASS-I) th a t  produces a schedule 

whose makespan is at most twice optimal. Our theoretical and experimental 

results show tha t  CASS-I outperforms the other existing algorithms in this 

problem in terms of both speed and makespan.

•  A very fast algorithm (CASS-II) th a t  has also good empirical performance for 

task clustering without task duplication. It has been shown in this research that  

CASS-II is superior to the other existing algorithms in this problem in terms 

of speed. In terms of makespan, CASS-II produces the best solution quality 

when the granularity of the task graph is less than 0.6, and has a performance

93
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comparable to the one of DSC which is empirically the best known algorithm 

in this problem for the  o ther cases.

•  A bette r  understanding of randomization applied to dynamic tree scheduling 

problem. We have shown tha t  any online scheduling algorithm, deterministic 

or randomized, has a. lower bound on the competitive ratio. We have also 

developed a  deterministic  algorithm that  matches the lower bound. Thus, 

randomization does not help in online scheduling of dynamic trees.

® A be tte r  understanding of two-phase and one-phase m ethods used to solve the 

problem of scheduling parallel programs for execution on distributed memory 

architectures. We have run cluster merging algorithms solely or incorporated 

with CASS clustering algorithm and found th a t  in all cases the schedules 

generated by the two-phase m ethod is be tter  than the one produced by the one- 

phase method. We have also shown that  use the number of physical processors 

in a specific target, machine as a  parameter may result in a schedule far away 

from the optimal one, and a slow speed.

•  A Clustering and Scheduling System (CASS) th a t  can be integrated with 

existing or future compilers for parallel machines to provide facilities for 

au tom atic  granularity optimization and task scheduling. Given a parallel 

program and a target parallel machine, a profiler generates a task graph 

specifying the dependencies among the tasks of the program, the task execution 

times and the inter-task communication delays. The task graph is used by the 

clustering module in CASS. The output of the  scheduling module in CASS 

is a clustered task graph whose number of clusters matches the num ber of 

processors of target parallel machine. The ou tpu t is then used by the code 

generator to generate machine instructions and to insert communication and 

synchronization primitives at appropriate points in the generated code.
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Although we have contributions in static  and dynamic task clustering and 

scheduling for d istributed memory architectures, there are several directions for 

future work.

•  After we developed CASS, the implementation of CASS incorporated with 

current parallel compilers will be the most im portant work in the near future.

o In this research, we did not address the problem of finding the task graph (i.e., 

program profiler). Autom atic derivation of DAG parallelism is im portan t for 

CASS. The general dependence analysis is NP-hard but for some special cases 

there exist polynomial algorithms [39, 48], A polynomial algorithm for general 

cases may be developed incorporated with an interactive system to allow users 

to derive DAGs.

•  C'ASS adopts simple heuristics for the processor assignment and local scheduling. 

Since there are no provably good and fast algorithms for these two problems, 

heuristic algorithms may be developed for a better performance of entire' 

clustering and scheduling.

•  For many computing applications such as particle simulations, it is often the 

case where it is impossible to determine the execution time of tasks, direction 

of branches, or number of iterations in a loop [46]. This type of problem 

can not be solved by static task clustering algorithms. In this research, we 

have derived a lower bound for any online algorithms of dynamic trees and 

developed a deterministic, algorithm th a t  matches this bound. However, there is 

no provably good online algorithm for general task graph. Heuristic algorithms 

may be developed for general task graphs th a t  can be applied to this problem.
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