9,708 research outputs found

    Reactive with tags classifier system applied to real robot navigation

    Get PDF
    7th IEEE International Conference on Emerging Technologies and Factory Automation. Barcelona, 18-21 October 1999.A reactive with tags classifier system (RTCS) is a special classifier system. This system combines the execution capabilities of symbolic systems and the learning capabilities of genetic algorithms. A RTCS is able to learn symbolic rules that allow to generate sequence of actions, chaining rules among different time instants, and react to new environmental situations, considering the last environmental situation to take a decision. The capacity of RTCS to learn good rules has been prove in robotics navigation problem. Results show the suitability of this approximation to the navigation problem and the coherence of extracted rules

    An enhanced classifier system for autonomous robot navigation in dynamic environments

    Get PDF
    In many cases, a real robot application requires the navigation in dynamic environments. The navigation problem involves two main tasks: to avoid obstacles and to reach a goal. Generally, this problem could be faced considering reactions and sequences of actions. For solving the navigation problem a complete controller, including actions and reactions, is needed. Machine learning techniques has been applied to learn these controllers. Classifier Systems (CS) have proven their ability of continuos learning in these domains. However, CS have some problems in reactive systems. In this paper, a modified CS is proposed to overcome these problems. Two special mechanisms are included in the developed CS to allow the learning of both reactions and sequences of actions. The learning process has been divided in two main tasks: first, the discrimination between a predefined set of rules and second, the discovery of new rules to obtain a successful operation in dynamic environments. Different experiments have been carried out using a mini-robot Khepera to find a generalised solution. The results show the ability of the system to continuous learning and adaptation to new situations.Publicad

    Learning sequences of rules using classifier systems with tags

    Get PDF
    IEEE International Conference on Systems, Man, and Cybernetics. Tokyo, 12-15 October 1999.The objective of this paper was to obtain an encoding structure that would allow the genetic evolution of rules in such a manner that the number of rules and relationship in a classifier system (CS) would be learnt in the evolution process. For this purpose, an area that allows the definition of rule groups has been entered into the condition and message part of the encoded rules. This area is called internal tag. This term was coined because the system has some similarities with natural processes that take place in certain animal species, where the existence of tags allows them to communicate and recognize each other. Such CS is called a tag classifier system (TCS). The TCS has been tested in the game of draughts and compared with the classical CS. The results show an improving of the CS performance

    A reactive approach to classifier systems

    Get PDF
    IEEE International Conference on Systems, Man, and Cybernetics. San Diego, CA, 11-14 Oct. 1998The navigation problem involves how to reach a goal avoiding obstacles in dynamic environments. This problem can be faced considering reactions and/or sequences of actions. Classifier Systems (CS) have proven their ability of continuous learning, however they have some problems in reactive systems. A modified CS is proposed to overcome these problems. Two special mechanisms are included in the developed CS to allow the learning of both reactions and sequences of actions. This learning process involves two main tasks: first, discriminating between rules and second, the discovery of new rules to obtain a successful operation in dynamic environments. Different experiments have been carried out using a mini-robot Khepera to find a generalized solution. The results show the ability of the system for continuous learning and adaptation to new situations

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications

    Applying classifier systems to learn the reactions in mobile robots

    Get PDF
    The navigation problem involves how to reach a goal avoiding obstacles in dynamic environments. This problem can be faced considering reactions and sequences of actions. Classifier systems (CSs) have proven their ability of continuous learning, however, they have some problems in reactive systems. A modified CS, namely a reactive classifier system (RCS), is proposed to overcome those problems. Two special mechanisms are included in the RCS: the non-existence of internal cycles inside the CS (no internal cycles) and the fusion of environmental message with the messages posted to the message list in the previous instant (generation list through fusion). These mechanisms allow the learning of both reactions and sequences of actions. This learning process involves two main tasks: first, discriminate between rules and, second, the discovery of new rules to obtain a successful operation in dynamic environments. DiVerent experiments have been carried out using a mini-robot Khepera to find a generalized solution. The results show the ability of the system for continuous learning and adaptation to new situations.Publicad

    RTCS: a reactive with tags classifier system

    Get PDF
    In this work, a new Classifier System is proposed (CS). The system, a Reactive with Tags Classifier System (RTCS), is able to take into account environmental situations in intermediate decisions. CSs are special production systems, where conditions and actions are codified in order to learn new rules by means of Genetic Algorithms (GA). The RTCS has been designed to generate sequences of actions like the traditional classifier systems, but RTCS also has the capability of chaining rules among different time instants and reacting to new environmental situations, considering the last environmental situation to take a decision. In addition to the capability to react and generate sequences of actions, the design of a new rule codification allows the evolution of groups of specialized rules. This new codification is based on the inclusion of several bits, named tags, in conditions and actions, which evolve by means of GA. RTCS has been tested in robotic navigation. Results show the suitability of this approximation to the navigation problem and the coherence of tag values in rules classification.Publicad

    A new approach for discovering business process models from event logs.

    Get PDF
    Process mining is the automated acquisition of process models from the event logs of information systems. Although process mining has many useful applications, not all inherent difficulties have been sufficiently solved. A first difficulty is that process mining is often limited to a setting of non-supervised learnings since negative information is often not available. Moreover, state transitions in processes are often dependent on the traversed path, which limits the appropriateness of search techniques based on local information in the event log. Another difficulty is that case data and resource properties that can also influence state transitions are time-varying properties, such that they cannot be considered ascross-sectional.This article investigates the use of first-order, ILP classification learners for process mining and describes techniques for dealing with each of the above mentioned difficulties. To make process mining a supervised learning task, we propose to include negative events in the event log. When event logs contain no negative information, a technique is described to add artificial negative examples to a process log. To capture history-dependent behavior the article proposes to take advantage of the multi-relational nature of ILP classification learners. Multi-relational process mining allows to search for patterns among multiple event rows in the event log, effectively basing its search on global information. To deal with time-varying case data and resource properties, a closed-world version of the Event Calculus has to be added as background knowledge, transforming the event log effectively in a temporal database. First experiments on synthetic event logs show that first-order classification learners are capable of predicting the behavior with high accuracy, even under conditions of noise.Credit; Credit scoring; Models; Model; Applications; Performance; Space; Decision; Yield; Real life; Risk; Evaluation; Rules; Neural networks; Networks; Classification; Research; Business; Processes; Event; Information; Information systems; Systems; Learning; Data; Behavior; Patterns; IT; Event calculus; Knowledge; Database; Noise;

    Ants constructing rule-based classifiers.

    Get PDF
    Classifiers; Data; Data mining; Studies;
    corecore