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Abstract: In many cases, areal robot application requires the navigation in dynamic
environments. The navigation problem involves two main tasks: to avoid obstacles
and to reach agoal. Generally, this problem could be faced considering reactions and
sequences of actions. For solving the navigation problem a complete controller,
including actions and reactions, is needed. Machine learning techniques has been
applied to learn these controllers. Classifier Systems (CS) have proven their ability of
continuos learning in these domains. However, CS have some problems in reactive
systems. In this paper, amodified CS is proposed to overcome these problems. Two
special mechanisms are included in the developed CS to allow the learning of both
reactions and sequences of actions. The learning process has been divided in two
main tasks: first, the discrimination between a predefined set of rules and second, the
discovery of new rules to obtain asuccessful operation in dynamic environments.
Different experiments have been carried out using a mini-robot Khepera to find a
generalised solution. The results show the ability of the system to continuous
learning and adaptation to new situations.
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1. Introduction

Multiple robotic systems applied in indusiry are autonomous mobile robots
working in dationary environments, i.e. automatic floor-cleaning, automatic assembly,
trangporting parts in a factory, etc. Other gpplications of robotic sysems involve
interactions with dynamic environments, where the autonomous robot deds with
unexpected events. The successful operation in such environments depends on the
ability of adaptation to the changes. The adgptation ability goes through the introduction
of current Situation in each decison process.

A fundamentd requirement of autonomous mobile robots is navigetion. This task
gets the robot from place to place with safety and no damage. Approaches based on
the classicd paradigms (abstraction, planning, heuristic search, etc.) are not completely
auiteble for unpredictable and dynamic environments. Other approaches consder
reection as the new paradigm to built inteligent sysems. One dassicd ingtance of this
kind of architecture is the subsumption architecture which was proposed by Brooks [3]
and has been successfully implemented on severd robots of MIT and other inditutes.
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The base of the subsumption architecture is “behavior”. Each behavior occurs in a
Stuation and the globd contral is a compaogtion of behaviors. The implementation of
these behaviors uses different systems, from finite state machines to fuzzy controllers.
The rules of these behaviors could be designed by a human expert, designed “ad-hoc”
for the problem, or learned using different artificia intelligence techniques [13].

Machine learning has been gpplied to shape the behavior of autonomous agents
in this kind of environment. Some of these techniques become ingpplicable to the
problem of learning reactive behavior because they require more information than the
problem congraints alow. Thus, it would seem reasonable to use an automatic system
that gradudly builds up a control sysem of an autonomous agent by exploiting the
changing interactions between the environment and the agent itself. Some approaches
use Genetic Algorithms to evolve fuzzy controllers [12], Evolution Strategies to evolve
connection weights in a Braitenberg approach [26] or Neura Networks to learn
behaviors[16].

The learning system proposed in this work evaduate the complete behavior
without discriminating among different internd parts, i.e. if the behavior is composed by
a st of rules, the evauation does not discriminate among rules. On the other hand, the
system ought to learn new rules, that replace old ones, in order to improve the set of
rules as awhole. However, for discovering new rulesin isolation, some kind of measure
of the accuracy of each ruleis needed.

Classfier Systems (CS) [7] are well suited to learn multiple different concepts
incrementaly under payoff. These systems have been widdy implemented and tested for
a large number of theoretical problems, [8, 1, 6, 17, 20, 21], but there are not many
casesin which they areincluded in red sysems|[4, 5, 17].

To survive in a dynamic environment, a system has to possess associations
between environmental Sgnds and actions that will lead to stidfy its needs. In a CS,
these associations are represented by condition/action rules. Conditions match both
environment and internad Sate, and actions modify the internal Sate or execute an
externa action. In generd, the learning process in CS shows two main problems:

Decisgon Time. In order to produce eaborate solutions, where the rules are

interrdlated, the decison ought to be taken in severa interna cycles. This

problem become stronger when CS are gpplied to problems in which a quick
response is needed.

Rules Chain. CS are adle not only to learn rules but to chain previoudy learned

ones. Rules belonging to a chain make no sense in isolation. Then, the loss of a

rulein the chain could imply theloss of al the knowledge, due to the high degree

of interrdaionships between rules.

The principa problem of CS when are applied to reactive problems, as
Wilson [21] and Grefeendtette [24] detected, is that during severa SC internd cycles,
the system gets blind to environmenta changes and, furthermore, in dynamic systems
these changes happen repeatedly. The solution proposed by these authors does not



dlow the chaining of rules, then, each time an environmenta input arrives an output is
produced by aruleinisolation. The solution outlined by Wilson and Grefeendette istoo
restrictive, what produces poor results. Therefore, the use of CS was abandoned, in this
type of problems, until Dorigo’s works [22] [23]. In these works, several designs are
introduced in order to speed up the response of CS. The new CS proposed by Dorigo
in [23] is based on: paraldism, a distributed architecture and a specia training process.
The perspective adopted by Dorigo to solve the reactive problem is the division of the
problem in severd levds, building a hierarchicd architecture, where a set of CS learns
to co-operate. Then, the “reactivity” is based on “pardldism’: different levels of CS are
executed in different machines and, besides, different CS take charge of different tasks.
Using these idess, the response time becomes smdler. However, the system continues
being blind to environmenta changes during internd cycles.

Another interesting gpproach [25] employs what the author cals hierarchica
“chunking” to the gpplication of CSin reactive systems. The basic idea of thiswork isas
follows. two rules are related when both are executed consecutively. A new aggregated
rule (C) is created by two related rules (A and B) in this way: the condition of C is the
condition of A and the consequence of C is the response of both in sequence A and B.
However, when an aggregated rule is executed, without congdering new environmental
information, the system gets blind in the same way asin Dorigo’swork.

The capacity of the system to facilitate a quick response should not be
approached only from techniques that attempt to increase the speed of the process. It
can be approached from a different perspective: the introduction of data from the
environment a the same time that the CS takes intermediate decisons. In this sense, a
modification of the philosophy of CSis proposed, alowing reactions without losing the
posshility of rules sequencing. The new CS integrates the environmenta input with the
internd State of previous input, in order to take a new decision.

In the proposed learning process, the only previous information is about the
number of inputs (robot sensors), the range of the sensors, the number of outputs
(number of robot motors) and motor description (velocity values). The robot controller
darts without information about the proper associations between sensor inputs and
motor velocities. And from this Situation the robot is able to learn through experience to
reach its highest adgptability to the sensor information.

The robot has to use its experience to discover an effective set of rules. The
system should not use dl its storage capacity for raw experience, o it must be able to
extract rlevant information from each Stuation when it occurs. In this way, the system
learnsincrementdly; past experienceisimplicitly represented by the evolved rules.

2. Classifier Systems
A generic production system is composed of a set of rules defined linguigticdly,

i.e. IF A THEN B. The gpplication of Genetic Algorithms over rules of these systems
requires an intermediate representation, “codified rules’, for genetic operators to act.



Classfiers Systems are a specidized form of production system that have been designed
to be amenable to the use of Genetic Algorithms [6]. These systems were devel oped by
Holland and Reitman [8], and later refined and modeled by Holland [9]. CS are
machine learning systems that learn syntacticaly ample string rules (cdled classifiers) to
guide their performance in an arbitrary environment [6].

2.1 Classifier System Architecture

A schematic representation of a Classfier System is showed in figure 1. In these
sysems, it can be distinguished three ectivity levels:

(1) Performance, dso cdled rule and message system: it interacts with the
environment, gathering information through the input interface and producing the
output through the output interface; it dso receives the payoff. Structurdly, the
peformance levd conss of: (A) a finite populaion of fixed length
condition/action rules, (B) a message ligt, (C) an input interface congsting of a
set of environmental feature detectors and (D) an output interface for acting in
the environment, that are dso shown in figure 1.

(2) Credit Assgnment: it causes rulesto be established (fitting arate of rules) on
the bads of their observed utility to the sysems god.

(3) Discovery: it employs a genetic agorithm as a discovery operator that
automatically generates new rules.
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Figure 1: Representation of a Classifier System. (i) All messages are tested with all classifiers. (ii)
Winning classifiers post their messages to the message list.

In a CS, rules are composed of two parts. condition and message and they are
codified as gtrings. each condition is a string of fixed length k over the dphabet i 0,1,#y
(don't care symbals, “#’, match both 0 as 1) and each message another string of fixed
length k over the dphabet i 0,1y.

2.2 Sequence of Operationsin a Classifier System



In the performance levd, when a codified message arrives from the environment
(through the input nterface), the message is set in the message list. The message lidt is
compared with al the classfiers and those that match with some message are fired. The
fired rules post their messages into the message list. Severd rules could be activated in
pardle by a message. Before rules post messages, the message list ought to be cleaned.
Activation of rules is repeated for n cycles. Findly, a message is chosen to give the
output through the correspondent interface. The sequence of operations is summarized
in Figure 2.

A codified message of length k arrives
from the environment through the input
interface.

A

The message is set in the message list.

All theclassifiersthat match with some
message of the messagelist arefired.

\ 4
The message list is cleaned.

A 4

When a condition is satisfied, the message
is posted to the message list.

no

yes

A message is chosen to give the output
through the correspondent interface.

Figure 2: Representation of a Sequence of Operationsin a Classifier System.

In the Credit Assgnment levd, a reinforcement agorithm (caled the Bucket
Brigade, BB, [10]) is usad to solve the credit assgnment problem: how to reinforce
individua rules in a multistep chain when the externa reward is given only a the chain
concluson. This dgorithm aso alows sdection among incompatible or contradictory
solutions. BB assgns to each rule a vadue, cdled strength, that indicates the rule
usefulness to the systems god. When a classfier is matched, it is quaified to participate
in an activation auction. To paticipate in the auction, a classfier makes a bid,
proportiond to its strength and its specificity (this value is concerned with the number of
don't care symbols in the rule). Winning classifiers pay a portion of their strength (their



bid) to the one responsible of their activation, and their messages are pogted to the
message ligt.

A gendtic dgorithm is used in leve three, to generate new, and possibly better,
rules into the system. From a CS, a set of rules with higher strength vaues is selected,
genetic operators are applied and the new rules obtained are set into the new CS. After
this, the BB will reorganize the rules strength

3. Autonomous Robot Classifier System

The gpplication of CS to solve the navigation problem needs both actions and
reections. Therefore, a CS dle to react (consdering only the sensoria input
information) and to chain actions (conddering information of the sensorid input and the
previous state of the CS) ought to be developed. The existence of internd cyclesin CS
(see Figure 2) makes difficult the learning process of a reactive controller. On the other
hand, internd cycles are necessary to develop more complex actions sequences. The
designed CS, proposed in this work, modifies the performance level to include the
possibility of both actions and reactions. In section 3.1, this new architecture is
described. The specia mechanisms, included in this architecture, modify the sequence of
operations of traditiona CS (see section 2.2). This new sequence is presented in section
3.2

3.1 Autonomous Robot Classifier System Architecture

Following the architecture presented in section 2.1, the performance level has
been modified to learn reaction and actions. The performance level is composed by
condition and messages in the same way than a generd CS except for two man
differences. (1) condition/message length, K, is longer then the environmental message
length, m, (k>m), and (2) both conditions and messages are divided in three blocks.
Each block contains different kind of information (Figure 3):

1. Environmentd information.
2. Information related with rules fired in a previous ingtant (interna conditions).
3. Information about the decisions.

Condition M essage
Environmental Internal Decision Velocity Internal Decision Velocity
Conditions Conditions Conditions Messages Messages

'

Internal conditions allow the rule
chaining inthe CS.

Figure 3: Composition of Conditions and M essages.



As it could be seen in Figure 3, the firgt block of the message, environmenta
block, is empty. This empty block is used to fuse the environmentd message with
messages of previous activated rules. The complete sequence of operations will be
explained in more detall in section 3.2. This fuson mechanism dlows the contraller to
learn complex actions, composed by a sequence of actions. Besides fused messages,
another message with only the first block of message, environmenta part, is posted to
message lis. This mechanism dlows learning reactions, bresking the chain of rules.
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Figure 4: Developed CS and information interchange between the robot and the CS.

In figure 4 the complete Classifier System proposed and the information flow
are shown. In order to ded with this new architecture, it is necessary to define a new
sequence of operations.

3.2 Sequence of Operationsin an Autonomous Robot Classifier System

When a codified message of length m arrives from the environment through the
input interface, the message is fused with messages of previoudy activated rules. A
message composed with the environmental message and don't care symbals is posted
to the message lig. All the classifiers that match with some message of the message list
arefired. A message is chosen from these fired rules. Thelist is kept to the next decision
cycle. These operations do not contain the repetition of the matching process of the
generd CS because the chain of rules needs the information of the next environmental



input. The rule chain is over different inputs, usng internd conditions and message
fusion, dlowing to learn reactions and actions sequence. The sequence of operations is
summarized in Fgure 5.

AT A codified message of length m arrives
from the environment through the input
interface.

N

The message is fused with previous  SELCETITIEYS

messages in the message list. i
The robot One message with only the environmental :
interaction with block is posted to the message list. o
the environment The messagelist is
generates a new kept to be fu;e_d in
environmental the next decision
message for the - . cycle
- Classifiers that match with some message
next decision cycle of the message list are fired. H

When acondition is satisfied, the message |, s wuumnnmssss i
is posted to the message list.

A 4

A message is chosen to give the output
through the correspondent interface.

Figure 5: Representation of a Sequence of Operationsin an Autonomous Robot Classifier System.

In this way, actions chaining is obtained taking into account two specid
mechaniams in conditions and messages. the environmental message is fused with the
previoudy posted messages and internd conditions are added to evolve a chaining
srategy. This strategy alows to chain rules activated by the environmental message with
previous activated rules. In addition to the environmental message fusion, the CS
requires the incluson of internd conditions that provide the evolution of a chaining
drategy. The fuson method gives the way to chain rules and the internal conditions
support the knowledge about the relationship between rules. The evolution process over
the internal conditions provided by the genetic agorithm leads to learn sequences of
rules through time.

Although dl the messages in the message list are composed by fusion, there is
dways one message with only the environment block filled with the environmenta
message (don't care symbals, “#’, filling the other two blocks, see Figure 4). The
matching process consders environmenta conditions only and the system is able to
break the rule chain and to react to the environment. In this way, reactions are obtained
when a message, with the environmenta information only, is posted to the message list.

These mechaniams dlow the generation of more complex rules needed for the
find solution of the problem. An example of Conditiorn/Action rules that could evolve is
asfollows



I F External _Signal IS <type x> AND
Last Rule Fired IS <type y> AND
Deci sion_Velocity Part IS <Vi, Vj>
THEN Send_Message <001...>

The reaction mechanism, on the other hand, dlows the evolution of traditiona
reaction rules as.

I F External _Signal IS <type x>
THEN Send_Message <001...>

4. Environmental and output messages design

The codification of information in CS (the design of environmenta and output
messages) is based on the specid problem where CS will be applied. In thiswork, the
CS is used as a controller of an autonomous robot named Khepera [15]. The mini-
robot Khepera is a commercid robot developed a LAMI (EPFL, Laussanne,
Switzerland). The robot characterigtics are: 5.5 cm of diameter in circular shape, 3 cm
of height and 70 gr of weight. The sensory inputs come in from eight infra-red proximity
sensors. These sensors are composed of two devices: an IR emitter and areceiver. The
emitter and the receiver are independent, then it is possble to use the recaver to
measure the reflected light (with the emitter active) or to measure the environmentd light
(without emission). The reflected light measurement can give some information about the
obstacles. In fact, this measure is not only afunction of the distance to an object in front
of the emitter but aso the environmentd light and the object nature (color and texture).
So the vaue of distance is modified by the measure of the ambient light and the object
nature, the light used is congtant and dl the obstacles used have the same color and
texture. The robot has two wheds controlled by two independent DC motors with
incrementa encoder that dlow any type of movement. Each whed velocity could be
read by a speedometer.

Using the ambient sensors it is possible to measure the distance and the angle to
a light source. The didribution of the amount of light coming into the eight sensors is
used to evauate the distance and the angle to the source (Figure 6). The amount of light
received in the sensor depends on the distance of the light source. Each sensor is
described by a sgmoidd function [15]. When the robot is placed near a light source,
Fgure 6, each sensor gives a vaue of light intengity based on the Sgmoida function. In
Figure 6, an example of different vaues in each sensor is represented. In this case, the
sensor 6 returns the minimum vaue from dl sensors, the value is used to obtain the
distance and the sensor number (1D 6) to obtain the angle to the light source.
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Figure 6: Light Incoming Distribution in the sensors

The transformation function of the proximity sensorsis alinear function between
(0,0) and (1023,40). Thefirst point corresponds to the minimum distance, 0, both in the
red robot as in the codified domain. The second point corresponds to the maximum
value, 1023, in the red robot and in the codified domain, 40. The function that
trandforms the ambient sensors into distance an angle searches the minimum intengity
vaue of the proximity sensors and the ID of that sensor. This intengty vaue is
transformed by means of a linear function to get the distance. The desired angle is
obtained consdering the ID of the sensor with the minimum intensty valued found
previoudy:

SnsorID |1 2 3 4 5 6 7 8
Angle |90 45 15 345 315 270 190 170

4.1 Codification

The sensors (proximity, ambient and speedometer) supply three kinds of
incoming information: proximity to the obstacles, ambient light and velocity. Instead of
usng the aght infra-red sensors individudly, they have been grouped giving a unique
vaue from two sensor input vaues (Figure 7a), reducing the amount of information
received by the CS. Representing the god by alight source, the ambient information lets
the robot know the angle (the angle position in the robot of the ambient sensor receiving
more light) and the distance (the amount of light in the sensor) (Figure 7b).

10
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Figure 7: (a) Sensors considered in thereal robot. (b) Input information to the system.

The input to the CS congsts of three proximity sensors, angle and god distance
(given by ambient sensors) and velocity values obtained by the speedometer.

The distance information of proximity sensors is obtained by the response curve
of the sensors, thet isa 9gmoidd function defined over the intensity values domain. The
distance domain is transformed, trandating it into a smpler domain to codify the vaues.
This transformation alows both the CS and the robot to be independent. So the CS
could be developed for any robot by changing the transformation function. The input
domain has been partitioned in four crisp sets. The maximum distance vaue “seen” by
one sensor iS40 units and is divided in ranges asis shown in Figure 8.
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Figure 8: Codification and partition of the proximity information.

The angle sats are of different Sze to congder a fine fitting of the trgectory,
avoiding big oscillations when the robot follows the right direction (the sets near 0 and
2p ae sndle than the “<p” and the “>p” ones). The input domain partitions are
presented in Figure 9.
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Figure 9: Codification and partition of the angleinformation.

To keep the independence between robot and CS, the distance values are
trandated from the red sensor values to a doman defined from O to ¥. The input
domain has been partitioned in four crisp sets asis shown in Figure 10.

Distanceto
the objetive

|m| n + " + n

Figure 10: Codification and partition of the distance information.

Veocity vaues flow as input to the classfier sysem and as decison from the
CS to the robat. The vaues are defined by the maximum and minimum velocities (10, -
10). Thisrange isdivided in four equa setsasis shown in Figure 11.

VELOCITIES

+ 11: Backward ‘

- 10: Stop
+ 00: Slow Forward
- 01: Fast Forward

1 10 M 01
-10 -5 R 75 10

Figure 11: Codification and partition of the velocity information.

All these sets should be codified to build the message from the environment.
Two binary digits are needed to represent each set. The codified inputs to the robot are
adso displayed infigures 8, 9, 10, 11.



4.2 M essages Composition

As it was previoudy mentioned (section 3) conditions and messages of the CS
are divided in three blocks. The environmental block should be matched with the
environmental message arriving from the robot and it is defined by codified sensor
vaues. The environmental message includes dl the codified sensors, composed as in
Figure 12a The firg information of the environmental message is about the proximity
sensors to describe the near environment surrounding the robot. The second information
corresponds to the god description usng the angle and distance measures. The last
information of the environmental message deds with the actud velocity to congder the
difference between the red and the last decison veocity.

The decison velocity is codified in the output message. Velocity vaues are
decodified an gpplied to each whed in the robot, Figure 12b.

|‘ Sensor 1 I Sensorzl Sensor3| Angle IDistancel Velocity 1 I Velocity 2 |

Near environment

description. ;
Goal description.
(AVOID) ;
(FOLLOW) Internal robot situation
@ description.
/ Velocity 1 | Velocity 2
(b) Classifier decission (output)

Figure 12. (a) Composition of the environmental message,
(b) Decision velocities in the output message.

5. Experimental Results

Learning reactions in a redl robot involves two main tasks fird, to discriminate
better rules from a set of rules, and second to discover new rulesto face new sSituations
or to improve its performance. In a CS the learning process is very sendtive to the
payoff. To fit the environmenta payoff, a CS with a congtant set of rules and a complex
environment where most kind of Stuations could be found have been used. To evauate
svead sysgems in different environments, fitting the payoff, it is useful to work with a
smulator. The result obtained in the smulator has to be directly transferable to the red
robot, so the smulation requires specification of environment, needs, sensory and motor
equipment and learning method. The resulting system has been tested in the real robot
using different environments.

5.1 Experimental Environment

13



Evolution takes a long time (days) of continuous functioning of the hardware. In
order to prove the different configurations of the CS, a smulator developed in a
previous work [19] has been used. In the smulator, the characteristics of the turtle
robot modd [15] and the physica redrictions of the Khepera robot have been
considered.

The smulation world congds of a rectangular map of user defined dimensions
where particular objects are located. In thisworld it is possble to define afind postion
for the robot. In this case the robot is represented with three proximity sensors and two
specid sensors to measure the distance and the angle to the god (Figure 13).
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Figure 13: SSmDAI Simulator (Example of one simulated environment).
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Figure 14: Example of a real experimental environment.

Different smulated worlds which resembles the red ones have been defined in
order to tune the payoff from the environment before being implemented in the red

14



world. An example of these environments can be seen in figure 13 and figure 14. The
pay off function is based on the andyss of the new Stuation produced by the CS
output. This Stuation is measured by means of distance to surrounding obstacles and the
relaive pogtion to the godl. It is necessary to adjust parameters that weight each part of
the fitness function to define the relaive importance of each one. The relaions among
parameters on the smulator will be kept congant in the red environment. The
trandformation function is used to keep constant the vaues of parameters. Then, the
system developed is the same in both cases (Smulated and redl) except the differences
in the trestment of the sensors, by the transformation function.

5.2 L earning without Genetic Algorithms

Different payoff parameters have been tested, the proposed reward from the
environment is a function of the distance and the angle to the god and the proximity of
obstacles. With this reward the system learns to avoid the obstacles when the proximity
is dangerous and to follow adirect path to the god when no obstacles are near.

The system learns from an initid Stuation using: the reward, the bucket brigede
dgorithm (to digribute the rule strength when arule is activated by ancther rule), and a
function that assures that strength of not-fired rules decreases to differentiate them from
the fired rules, commonly used in CS [6] [10]. This decrease of rulestrength iscdled a
fax.

Experimentd results show a learning behavior where the strengths of the best
rules for the problem increase while the strength of the other rules decrease vs. cyclesin
the execution. The set of rules for the CSis collected in table 1.

15



(a) Condition Message (b) Condition Message
HHOOOOHHHHHHIHHHLOf#HHE  HHHHEHEHH#HH#11111 OLO101HHHIHIHHLHHIHIHE  HEHEHHEHHHA##001111
BHOOHIHHHHIHHIH L OB 1 QL1110 HHHHHIHF L HHIHHE  HHHHHBEHHHH##001000
HHHHOOHHBHHHHH 1 Of i HHp 11101 O11001 A 1 HHHHE  HHHHHEHH#H##001000
Q00101 #HHHHHHHA10MH#H#E 1 OLO1 1 VHHEHHIHF L HHHHE  HEHEHHAHHAHHAH000010
OOL 101 H#HHIHHALOfH#HE  HHEHHIHHAHH#11111 OL11 1 VHHHIHHHIHF LB HEHE 000000
001001 #HHHHA#10HHHE O OL101 1 HHHHHIHF L HHIHHE  HHEHHBHHEHH#000001
OO0 1 1 #HHHHHHA1 Ottt HiHHHHHE 11111 OL10110#HHHHHHIHA 1 Bt HEHHHHEHHHH##000010
Q0111 1 HHHHHAH1 Ot 1 QL1111 OHHEHHIHEL HHHHE  HHEHHAHHAHEA#H#000100
OOLO11HHHIHHHLOfHIHE  HiHEHHHHIHHHH11110 OL11010HHIHIHIHHFLHIHHE  HHEHHIHHEHH##000000
0001 10#HHHHIEHHIOfHHHE O 110101 HHHHHHI LI HHEHEHHEHHHH##000000
Q011 10#HHHHHHHA1 Ottt HiHHHHHE 11110 111101 HtHHHI L it pHEHHHHE 001000
OO1010#HHHHAH10#HH#H# 0 111001 HHHHHHIH L HHIHE  HHEHEHHHH##E#001000

#1100 1 11011 1HHHHHHIH LHHIHE  tHEHEHHHHE#000010
(c) Condition 1 11110 IHHHHHHE L S 000000
B0 RHE L L i P 11111 11101 1A L it pHEHEHHE 000001
HHHHRRO10 1 L 1 1 1101 10HH#H#HAHH L HRHHHE R HHHHHHH####000010
B Q1R L | s PR A1 1100 11111 OtHHHHEH L HHHHE S HA##000100
0001 L 18 O 111010 LHIHIH  tHEHHHIHF#000101
B 100 1 HEHE L 1 #1100 1 100101 HHHHHI L it  HHEHEHHHH#000000
HHHHAROL e L 1 L 101101 HH#HHAHHH L HAHHHE R HHHHH###7001000
B 1 1 L e | s PR A1 1001 101001 HEHHHEH L #HHHHE  tHHEHHEHHHA##000001
001 1 L s O 10011 1 LHIHIH BRI HH##000010
B0 1 HEHE L 1 i 1 1111 10110 1 At L it 000000
HHHHRROLI0 L 18 1 10101 1 HH#HHHHH L HAHHHE 7000001
B 1 1 O L | 1001 10t HHHEH LHHHHE  tHHEHHHEHE##000100
HHHHHO0 1 OfHH L LHHHHE Message 101110 LHIHIH BRI H#H#000100
HHHHHHLOLOMHH L LI HHHHH 11101 VOLOLOHHHHHHHELHHHHHE  HHFHHHHHHAHAHH##A##000101

0

11001

1

B 11110

0

11001

0

B 11100

0

11001

1

B 11110

0

11001

0

B 11100

0

11001

0

B 11100

0

11010

0

P HEHH##1 1000

1

Table 1: Rules of the CS: (@) avoiding when obstacles are near, (b) avoiding when obstacles are far,

(c) following.
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These rules could be clustered in three groups (table 1). First group (@) is
related with Stuations in which there are collison danger. With this rules, the robot turns
to the right direction in presence of obstacles. Second group (b) corresponds to
Stuations in which there are no obgtacles near, in this case, the robot will modify its
trgectory in order to avoid obstacles when there are no collison danger. This set of
rules dlows the robot wandering around the experimenta environment without taking
into account the god. The last group (¢) consist of rules that independently of obstacles
position, change the trgectory of the robot facing the god.

An example of rulein the three cases is shown in figure 15.

CONDITION MESSAGE
S1 S2 | S3 J Ang | DistjVel1jVel 2] Internal jVel 1] Vel 2 ) Internal J|Vel 1] Vel 2
(1) oo ) aa Jor | ## | #e] ## | ## 10 ## | ## ) LB 10 11 00
(2) 01 11 11 ## ## ## fidid 1# ## #i# ) LA 00 00 00
(3) |## | #e | we | 10 [10] ## | ## 11 wt | ## ) B 11 00 01

Figure 15: Examples of rules.

In more detail, the meaning of rule (1) is explained: If there is an obstacle in
front of the robot a a distance between 0 and 10 (S1=00, very near) and other
obstacle on the left at a distance between 20 and 30 (S2=11, far) and another on the
right a a distance between 10 and 20 (S3=01, near) and the last message sent is type
10 (internal=10) Then send a message type 10 that turn abruptly to the left (vell =5,
vel2=5).

The essentid rules for solving the problem belong to groups (&) and (c). Group
(b) rules are superfluous because they allow the robot to avoid obstacles when they are
far (something not very useful) and they are not able to follow the god. The most
efficent drategy is follomng the god except when there is collison danger. This is
accomplished by rules of groups (a) and (c), in an efficient way when the appropriated
rules from these groups are sdlected.

In order to fit the environmental payoff, severd smulations have been carried
out. As aresult the reward is built considering four positive payment contributions when:
there are no collisons and/or distance to the god is decreased and/or angle to the goa
Is decreased and/or the distance to an obstacle is increased. The implemented tax isa
function of the time and the actua drength, so the strength is reduced during the
execution when the ruleis not fired.

Once these parameters are set, the CS with 52 rules has been applied to the
real robot, with different strength initid values. The CS shows the capability of
discriminating among the three rules groups. It has been experimentaly tested that rules
belonging to groups (a) and (c) have an average strength value above rules of group (b).
In figure 16 the rule strength evolution (over 900 cycles of running) of arule belonging to
every group is shown.

The CS has dso showed the ability to discriminate rules indde each set. Some
rules of the set are better (useful) than others because they wait until objects are near or
turn less abruptly. The CS is able to sdect (giving higher strength vaues) the more
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convenient rules of each sat and to chain rules of different sets. Rules that have the
ability to solve a great part of the problem by themsdlves in some specid environmentd
configuration (eg. when there are no obstacles to the god) have their drength
increased. This strength growing takes place in a short number of cycles as can be seen
in figure 16a The meaning of evolution of srength vauesis while the specid conditions
for these rules to be useful aren't reached yet, their strength is decreased as an effect of
the taxes mechanism. On the other hand, when they are fired (or could be fired), and
due to the fact that they can solve a great part of the problem, they will be fired once
and s0 on, to grow in strength quickly. If the rules are fired as a part of a chain in
execution, ther strength vaues are kept constant, more or less, as aresult of composing
the grow for firing and the loose for taxes. When the robot faces a complex situation,
any rule try to solve the problem in isolation. In this case, strength values of good rules
increases or decreases depending on whether it takes part or not in the chain that is on
execution and that execution ends with a postive or negative payoff (figure 16¢). Findly,
al rules have a tendency to decrease their strength as an effect of the taxes. Thisismore
evident in no necessary rules (figure 16b).

strength strength

900 @) ANN
600
ann
300
1 1 1 I ! 1 'l !

ot t t t t n+ .
1 201 am AN1 an1 1 201 401 601 801
hydcn cycles:

strength ©

ann
600
200

o+
1 201 401 601 801
cycles

Figure 16: Evolution of the rules grength of: avoiding (&) with
obstacles near (b) no obstacles and (c) following rule.

To check the robustness of the developed CS some experiments have been
done on the red robot consdering different initid strength values. A Smilar set of rules
has been discriminated. The CS sdlects the better rules, this rules belong to the cluster
(& and (c) where are representing the rules that avoid in danger Stuations and follow a
right path in absence of obgtacles. The find effect of this discrimination is that the robot
Is able to reach the objective avoiding obstaclesin an efficient way.

Figure 17 shows the results of the experiment where the initid assignation of
strength values has been done asfollows: if the rule belongsto cluster (a) and (c) it is set
to 200 and to 600 otherwise (cluster b). In these conditions evolution of good rulesis
much more difficult because they have, initidly, athird part of the strength.
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Rule Strength Evolution
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< 800 §
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5
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Figure 17: Evolution of the strength of the whole set of rules over 1000 cycles

It can be seen that a Smilar set of rules has been discriminated, dl of them
belonging to the first and third groups. Also can be seen smilar behaviors to those
shown in figure 16(a, b, c). The system has proven, thus, to be insengtive to initid
Srength values assgnation.

5.3 Learning with Genetic Algorithms

Onceit has been tested that the CS is able to discriminate good rules, a GA has
been included to discover new, and probably better, rules.

The GA is cdled a the end of an execution. The robot navigation in an
execution garts from an initia random point and it ends when:

(a) the god isreached, or,

(b) the time exceeds some limit, fixed by the time needed to reach the god using

afuzzy cortroller [13], or,

(¢) the number of collisons exceeds a maximum threshold.

There are severd approaches for initidizing rules in a CS. The most common
method is a random initidization. This presents the maximum chalenge to the learning
dgorithm but doesn’'t take into account the previous acquired knowledge. As an
dternative, a method congsting in seeding the initid population with previous learned
knowledge can be used [18].

A combination of the two techniques could be useful to test the learning capacity
of the system without losing much of the previous acquired knowledge. In this work, the
last approach has been implemented.

The initid population of the CS is composed of the ten better rules obtained in
previous experiments (the rules with higher average strength, section 5.2) and for each
rule, five random new rules have been added.

The system follows the Michigan approach [9]. A problem with this gpproach in
CS is the sengtivity of the rules. This is due to the fact that the strength of some rules
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depends on the strength of others. To overcome this problem, a high degree of ditism
has been used, in such away that generations are Smilar.
The selected parameters of the GA are:
1 of crossover probability
0.02 of mutation probability
0.85 of dlitiam
Evauation of the sysem performance is based in a quantitative measure. This
measure doesn't take part in the evolution process but it reflects the system globd
performance evolution. For measuring systems evolution, following features have been
consdered:
Time needed to reach the goa (seconds in the red robot and cycles in the
samulator).
Tragectory length (by means of velocity values of the motor whedls).
Number of oscillations (measured using the difference between the wheds
velocity).
Number collisons (messured using the minimum vaue of the proximity
Sensors).

The environment makes the CS to find the set of rules that cooperate to achieve
acommon god in order to incrementally perform the behavior “reach and avoid” inless
time, with less collisons and following a more straight trgjectory to the god. Figure 18
shows an evolution of the trgectory from the first execution to the last one.

= SimDAI V1.0 — Monitor 2] = SimDAI V1.0~ Monitor [= ]
||Conexion”Opciones”Ayuda” (a) "ConexionHOpcionesHAyuda” (b)

* Bk
| Escala: 1.0 Ongenx: 0 Orgeny: 0 Activo| " Escala: 10 Origenx: 0 Origeny: 0 Activo ‘

Figure 18. System Evolution Examplesin one simulation. (a) Starting situation. (b) Final situation.

In figure 18a it can be seen the effects of removing some of the previous
acquired knowledge. Despite of the ability of the robot to reach the godl, it isdonein an



inefficient way. Through evolution some new good rules have been added making the
robot to follow a better trgjectory without collisions (figure 18b).

The last CS evolved has been used to control the red robot in different
environments. In figure 19 a red experiment equivaent to the one of figure 18b is
showed. Three frames that represents the starting point (figure 19a), intermediate Sate
(figure 19b) and the final position (figure 19¢) are collected in figure 19.

Figure 19: System Evolution Examples in one real experimental environment. (a) Starting position,
(b) intermediate and (c) Goal reached.

The reaults of the evolution of the system, based in the qudity measure
previoudy mentioned (figure 20), shows a fast growing of the qudity in the first steps.
This is due to the exigtence of less good rules at the beginning and the evolution of new
good rules is easer than when the system is filled of good rules. In the last steps the
qudity of the whole system reaches an sationary dtuation, that is, the sysem has
evolved enough rulesto react to any possible Situation in a correct way.
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Figure 20: Evolution of the Quality Measure.

5.4 Testing CSin Dynamic Environmerts

The proposed Classfier System has learned to react and to chain actions to
solve the navigation problem. The learned CS has dso been tested in dynamic
environments. A subset of datic environments from previous eperiments has been
selected in order to compare with the results over smilar dynamic environments. The
dynamic experiments are defined in thisway: the initid point, the Stuation of the god and
the static objects are equa than in the static ones but a circular object is wandered on
the amulated world. The mobile obgtacle gtarts its movement from the pogtion (x =
100, y = 200, initid direction = 200") with a random trajectory that crossesin many
cases the robot path and avoid obstacles without a predefined god. When the robot
finds an obstacle in its way it is able to react for avoiding the mohile obstacle without
losing the tendency to arrive the god.

The daic environments are defined by the initid position of the robot and the
objects. Nine experiments have been defined and 50 executions have been carried out
in order to obtain the average of trgectory length, collisons and time. Each experiment
is defined by the robot initia position (three different postions have been used: Robot1,
Robot2 and Robot3) and the number of static obstacles (one, two or three). Static
objects are the same than in Figure 18. Each robot is defined by coordinates (x, y) and
their initid direction:



Robotl: x =50, y =400,
Robot2: x =300, y =450,
Robot3: x =50, y =150,

initial direction=0

initid direction = 180

initial direction=0

The average results of the CSin time, trgectory length and collisons are shown
in table 2 from 50 experiments. Three selected examples of these experiments are
shown in figures 21a, 21b and 21c.

Robot | Environment | Time Average | Distance Average | Callisions Average
Robotl | 3 Objects 91.80 678.10 0.7

Robotl | 2 Objects 82.21 650.30 0.7

Robot1 1 Object 68.32 635.20 0.7

Robot2 | 3 Objects 86.70 583.10 0.8

Robot2 | 2 Objects 73.20 523.43 0.3

Robot2 1 Object 62.30 427.80 0

Robot3 | 3 Objects 69.80 461.50 0

Robot3 | 2 Objects 27.50 333.20 0

Robot3 1 Object 27.30 332.70 0

Table 2: Numerica results of static experiments.

[ Conexion] | Opciones || dyuda]

6

Escala: 10 Origenx:

0 Origeny: 0 Activo

Escala: 10 Origenx:

0 Origeny: 0 Activo

Escala: 10 Origenx:

0 Origeny: 0 Activo

Figure 21: Three static experiments. (8) Robot 1, (b) Robot 2 and (¢) Robot 3.

In table 3, the numerica vaues obtained in these dynamicd experiments, with a
mobile obstacle, are shown. Figures 22a, 22b and 22¢ show severa trgjectories starting
from the same point than in Figures 21a, 21b and 21c, respectively.

Robot | Environment | Time Average | Distance Average | Callisions Average
Robotl | 3 Objects 157.50 791.51 3

Robotl | 2 Objects 158.17 743.34 15

Robot1 1 Object 132.08 654.73 15
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Robot2 | 3 Objects 154.21 657.62 1.6
Robot2 | 2 Objects 80.12 580.23 1
Robot2 1 Object 74.14 473.79 0
Robot3 | 3 Objects 77.33 394.62 0
Robot3 | 2 Objects 50.67 343.09 0
Robot3 1 Object 51.50 320.70 0

Table 3: Numerical results of dynamic experiments.

Escala: 10 Origenx: 0 Ongeny: 0 Acavo Escala: 10 Origenx: 0 Orngeny: 0 Acavo Escale: 10 Origenx: 0 Origeny: 0 Activo

Figure 22: Three dynamic experiments. (a) Robot 1, (b) Robot 2 and (¢) Robot 3.

As it could be seen in Table 2 and 3, the robot behavior is amilar in different
environments. The navigation problem is solved from different initid podtion and with
different configuration of objects (both static and dynamic). Although the robot arrives
the god in any crcumdance, the results are different in datic than in dynamic
environment, there are more collisons, the time and distance are larger in the dynamic
ones due to the dfficulty of the mobile object. The results show that the learning rate of
CS dlows to solve the navigetion problem in different environments, both datic and
dynamic.

6. Conclusions

A reactive Classifier System ought to be embedded into the reactivity definition:
“the system must decide for each input an action, and each action is determined by an
input, but without losng the cgpacity of rule sequencing. This sequence must be
produced in different ingants of time’. Then, CS must not be blind when decisons are
taken asin [23] and [25]. A possible solution is the activation of rules in the same way
that in traditiond CS, but including the environmental message in the activation process.

The proposed CS has been developed to learn reactions (decision as a function
of the environmentd information) and actions (decison as a function of the
environmentd information and previous internd information). This modified Classfier
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Sysem has proven its ability to learn autonomous robot behaviors in dynamic
environments.

The fuson of each environmenta message with information of previous fired
rules and the inclusion of internd conditions dlow the generation of a sequence of
actions, defined by a rule chain over different inputs. Sets of cooperative rules emerge
from the evolution of the CS. Cooperation is viewed in this case as arule chain, where a
rule only has meaning if it matches with the environment and follows other specific rulein
time,

The incluson of one message without another information but the environmenta
input alows the evolution of reactions.

The experiments carried out without generating new rules proved the capabilities
of our goproach to accurately discriminate among rules in a system that is chaining rules
a the same timethat is receiving new inputs.

The results obtained conddering the generation of new rules proved the
cgpability of generating not only new better rules but the mechanisms for chaining new
and exigting rules.

Ancther important aspect verified in this work is the possibility of continuous
learning and adaptation to new Stuations that alows to solve the problem even if there
are mobile objects, more than one goa, and dynamica goals that could appear and
disgppear or move when the robot is moving.
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