
 1

An Enhanced Classifier System for Autonomous Robot
Navigation in Dynamic Environments

José M. Molina, Araceli Sanchis, Antonio Berlanga, Pedro Isasi

Grupo de Vida Artificial. Departamento de Informática.
Universidad Carlos III de Madrid, Spain.

Avda. Butarque 15, Leganés. Madrid.
Fax: +34 1 624 94 30, e-mail: molina@ia.uc3m.es

Abstract: In many cases, a real robot application requires the navigation in dynamic
environments. The navigation problem involves two main tasks: to avoid obstacles
and to reach a goal. Generally, this problem could be faced considering reactions and
sequences of actions. For solving the navigation problem a complete controller,
including actions and reactions, is needed. Machine learning techniques has been
applied to learn these controllers. Classifier Systems (CS) have proven their ability of
continuos learning in these domains. However, CS have some problems in reactive
systems. In this paper, a modified CS is proposed to overcome these problems. Two
special mechanisms are included in the developed CS to allow the learning of both
reactions and sequences of actions. The learning process has been divided in two
main tasks: first, the discrimination between a predefined set of rules and second, the
discovery of new rules to obtain a successful operation in dynamic environments.
Different experiments have been carried out using a mini-robot Khepera to find a
generalised solution. The results show the ability of the system to continuous
learning and adaptation to new situations.

Key Words : Learning, Reactive Systems, Autonomous Robots, Rule Discovery, Bucket Brigade

Algorithm, Genetic Algorithms, Classifier Systems.

1. Introduction

Multiple robotic systems applied in industry are autonomous mobile robots
working in stationary environments, i.e. automatic floor-cleaning, automatic assembly,
transporting parts in a factory, etc. Other applications of robotic systems involve
interactions with dynamic environments, where the autonomous robot deals with
unexpected events. The successful operation in such environments depends on the
ability of adaptation to the changes. The adaptation ability goes through the introduction
of current situation in each decision process.

A fundamental requirement of autonomous mobile robots is navigation. This task
gets the robot from place to place with safety and no damage. Approaches based on
the classical paradigms (abstraction, planning, heuristic search, etc.) are not completely
suitable for unpredictable and dynamic environments. Other approaches consider
reaction as the new paradigm to built intelligent systems. One classical instance of this
kind of architecture is the subsumption architecture which was proposed by Brooks [3]
and has been successfully implemented on several robots of MIT and other institutes.

Referencia bibliográfica
Published in:
Intelligent, Automation and Soft Computing Journal (AutoSoft), 6, 2 (2000), 113-124

 2

The base of the subsumption architecture is “behavior”. Each behavior occurs in a
situation and the global control is a composition of behaviors. The implementation of
these behaviors uses different systems, from finite state machines to fuzzy controllers.
The rules of these behaviors could be designed by a human expert, designed “ad-hoc”
for the problem, or learned using different artificial intelligence techniques [13].

Machine learning has been applied to shape the behavior of autonomous agents
in this kind of environment. Some of these techniques become inapplicable to the
problem of learning reactive behavior because they require more information than the
problem constraints allow. Thus, it would seem reasonable to use an automatic system
that gradually builds up a control system of an autonomous agent by exploiting the
changing interactions between the environment and the agent itself. Some approaches
use Genetic Algorithms to evolve fuzzy controllers [12], Evolution Strategies to evolve
connection weights in a Braitenberg approach [26] or Neural Networks to learn
behaviors [16].
 The learning system proposed in this work evaluate the complete behavior
without discriminating among different internal parts, i.e. if the behavior is composed by
a set of rules, the evaluation does not discriminate among rules. On the other hand, the
system ought to learn new rules, that replace old ones, in order to improve the set of
rules as a whole. However, for discovering new rules in isolation, some kind of measure
of the accuracy of each rule is needed.

Classifier Systems (CS) [7] are well suited to learn multiple different concepts
incrementally under payoff. These systems have been widely implemented and tested for
a large number of theoretical problems, [8, 1, 6, 17, 20, 21], but there are not many
cases in which they are included in real systems [4, 5, 17].

To survive in a dynamic environment, a system has to possess associations
between environmental signals and actions that will lead to satisfy its needs. In a CS,
these associations are represented by condition/action rules. Conditions match both
environment and internal state, and actions modify the internal state or execute an
external action. In general, the learning process in CS shows two main problems:

• Decision Time. In order to produce elaborate solutions, where the rules are
interrelated, the decision ought to be taken in several internal cycles. This
problem become stronger when CS are applied to problems in which a quick
response is needed.

• Rules Chain. CS are able not only to learn rules but to chain previously learned
ones. Rules belonging to a chain make no sense in isolation. Then, the loss of a
rule in the chain could imply the loss of all the knowledge, due to the high degree
of interrelationships between rules.

The principal problem of CS when are applied to reactive problems, as

Wilson [21] and Grefeenstette [24] detected, is that during several SC internal cycles,
the system gets blind to environmental changes and, furthermore, in dynamic systems
these changes happen repeatedly. The solution proposed by these authors does not

 3

allow the chaining of rules, then, each time an environmental input arrives an output is
produced by a rule in isolation. The solution outlined by Wilson and Grefeenstette is too
restrictive, what produces poor results. Therefore, the use of CS was abandoned, in this
type of problems, until Dorigo’s works [22] [23]. In these works, several designs are
introduced in order to speed up the response of CS. The new CS proposed by Dorigo
in [23] is based on: parallelism, a distributed architecture and a special training process.
The perspective adopted by Dorigo to solve the reactive problem is the division of the
problem in several levels, building a hierarchical architecture, where a set of CS learns
to co-operate. Then, the “reactivity” is based on “parallelism”: different levels of CS are
executed in different machines and, besides, different CS take charge of different tasks.
Using these ideas, the response time becomes smaller. However, the system continues
being blind to environmental changes during internal cycles.

Another interesting approach [25] employs what the author calls hierarchical
“chunking” to the application of CS in reactive systems. The basic idea of this work is as
follows: two rules are related when both are executed consecutively. A new aggregated
rule (C) is created by two related rules (A and B) in this way: the condition of C is the
condition of A and the consequence of C is the response of both in sequence A and B.
However, when an aggregated rule is executed, without considering new environmental
information, the system gets blind in the same way as in Dorigo’s work.

The capacity of the system to facilitate a quick response should not be
approached only from techniques that attempt to increase the speed of the process. It
can be approached from a different perspective: the introduction of data from the
environment at the same time that the CS takes intermediate decisions. In this sense, a
modification of the philosophy of CS is proposed, allowing reactions without losing the
possibility of rules sequencing. The new CS integrates the environmental input with the
internal state of previous input, in order to take a new decision.

In the proposed learning process, the only previous information is about the
number of inputs (robot sensors), the range of the sensors, the number of outputs
(number of robot motors) and motor description (velocity values). The robot controller
starts without information about the proper associations between sensor inputs and
motor velocities. And from this situation the robot is able to learn through experience to
reach its highest adaptability to the sensor information.

The robot has to use its experience to discover an effective set of rules. The
system should not use all its storage capacity for raw experience, so it must be able to
extract relevant information from each situation when it occurs. In this way, the system
learns incrementally; past experience is implicitly represented by the evolved rules.

2. Classifier Systems

 A generic production system is composed of a set of rules defined linguistically,
i.e. IF A THEN B. The application of Genetic Algorithms over rules of these systems
requires an intermediate representation, “codified rules”, for genetic operators to act.

 4

Classifiers Systems are a specialized form of production system that have been designed
to be amenable to the use of Genetic Algorithms [6]. These systems were developed by
Holland and Reitman [8], and later refined and modeled by Holland [9]. CS are
machine learning systems that learn syntactically simple string rules (called classifiers) to
guide their performance in an arbitrary environment [6].

2.1 Classifier System Architecture

A schematic representation of a Classifier System is showed in figure 1. In these
systems, it can be distinguished three activity levels:

(1) Performance, also called rule and message system: it interacts with the
environment, gathering information through the input interface and producing the
output through the output interface; it also receives the payoff. Structurally, the
performance level consist of: (A) a finite population of fixed length
condition/action rules, (B) a message list, (C) an input interface consisting of a
set of environmental feature detectors and (D) an output interface for acting in
the environment, that are also shown in figure 1.
(2) Credit Assignment: it causes rules to be established (fitting a rate of rules) on
the basis of their observed utility to the systems goal.
(3) Discovery: it employs a genetic algorithm as a discovery operator that
automatically generates new rules.

GENETIC
OPERATORS

(3) Discovery
Condition Message

(1) Performance

Message list

(i) (ii)

Input Interface Output Interface

from the
environment
(Detectors)

to the
environment

(Efectors)

Condition Message

Bucket
Brigade

Reorganization

(2) Credit Assignment
(A)

(B)(C) (D)

Figure 1: Representation of a Classifier System. (i) All messages are tested with all classifiers. (ii)

Winning classifiers post their messages to the message list.

In a CS, rules are composed of two parts: condition and message and they are
codified as strings: each condition is a string of fixed length k over the alphabet 0,1,#
(don’t care symbols, “#”, match both 0 as 1) and each message another string of fixed
length k over the alphabet 0,1.

2.2 Sequence of Operations in a Classifier System

 5

In the performance level, when a codified message arrives from the environment

(through the input interface), the message is set in the message list. The message list is
compared with all the classifiers and those that match with some message are fired. The
fired rules post their messages into the message list. Several rules could be activated in
parallel by a message. Before rules post messages, the message list ought to be cleaned.
Activation of rules is repeated for n cycles. Finally, a message is chosen to give the
output through the correspondent interface. The sequence of operations is summarized
in Figure 2.

A codified message of length k arrives
from the environment through the input

interface.

The message is set in the message list.

All the classifiers that match with some
message of the message list are fired.

When a condition is satisfied, the message
is posted to the message list.

A message is chosen to give the output
through the correspondent interface.

N > n cycles?

The message list is cleaned.

no

yes

Figure 2: Representation of a Sequence of Operations in a Classifier System.

In the Credit Assignment level, a reinforcement algorithm (called the Bucket
Brigade, BB, [10]) is used to solve the credit assignment problem: how to reinforce
individual rules in a multistep chain when the external reward is given only at the chain
conclusion. This algorithm also allows selection among incompatible or contradictory
solutions. BB assigns to each rule a value, called strength, that indicates the rule
usefulness to the systems goal. When a classifier is matched, it is qualified to participate
in an activation auction. To participate in the auction, a classifier makes a bid,
proportional to its strength and its specificity (this value is concerned with the number of
don’t care symbols in the rule). Winning classifiers pay a portion of their strength (their

 6

bid) to the one responsible of their activation, and their messages are posted to the
message list.
 A genetic algorithm is used in level three, to generate new, and possibly better,
rules into the system. From a CS, a set of rules with higher strength values is selected,
genetic operators are applied and the new rules obtained are set into the new CS. After
this, the BB will reorganize the rules strength.

3. Autonomous Robot Classifier System

The application of CS to solve the navigation problem needs both actions and
reactions. Therefore, a CS able to react (considering only the sensorial input
information) and to chain actions (considering information of the sensorial input and the
previous state of the CS) ought to be developed. The existence of internal cycles in CS
(see Figure 2) makes difficult the learning process of a reactive controller. On the other
hand, internal cycles are necessary to develop more complex actions sequences. The
designed CS, proposed in this work, modifies the performance level to include the
possibility of both actions and reactions. In section 3.1, this new architecture is
described. The special mechanisms, included in this architecture, modify the sequence of
operations of traditional CS (see section 2.2). This new sequence is presented in section
3.2.

3.1 Autonomous Robot Classifier System Architecture

Following the architecture presented in section 2.1, the performance level has

been modified to learn reaction and actions. The performance level is composed by
condition and messages in the same way than a general CS except for two main
differences: (1) condition/message length, k, is longer than the environmental message
length, m, (k>m), and (2) both conditions and messages are divided in three blocks.
Each block contains different kind of information (Figure 3):

1. Environmental information.
2. Information related with rules fired in a previous instant (internal conditions).
3. Information about the decisions.

Environmental
Conditions

Internal
Conditions

Decision Velocity
Conditions

Internal
Messages

Decision Velocity
Messages

Condition Message

Internal conditions allow the rule
chaining in the CS.

Figure 3: Composition of Conditions and Messages.

 7

 As it could be seen in Figure 3, the first block of the message, environmental
block, is empty. This empty block is used to fuse the environmental message with
messages of previous activated rules. The complete sequence of operations will be
explained in more detail in section 3.2. This fusion mechanism allows the controller to
learn complex actions, composed by a sequence of actions. Besides fused messages,
another message with only the first block of message, environmental part, is posted to
message list. This mechanism allows learning reactions, breaking the chain of rules.

GENETIC
OPERATORS

Condition Message

Environmental
Conditions

Internal
Conditions

Decision Velocity
Conditions

Internal
Messages

Decision Velocity
Messages

(1) PERFORMANCE LEVEL

Message
from the

environment

ROBOT

Message List

Internal
Messages

Decision Velocity
Messages

Message
from the

environment

Message
from the

environment

.....
....

Bucket Brigade
Reorganization

(2) Credit Assignment (3) Discovery

to the environment
(Efectors)

Input Interface Output Interface

Figure 4: Developed CS and information interchange between the robot and the CS.

 In figure 4 the complete Classifier System proposed and the information flow
are shown. In order to deal with this new architecture, it is necessary to define a new
sequence of operations.

3.2 Sequence of Operations in an Autonomous Robot Classifier System

When a codified message of length m arrives from the environment through the
input interface, the message is fused with messages of previously activated rules. A
message composed with the environmental message and don’t care symbols is posted
to the message list. All the classifiers that match with some message of the message list
are fired. A message is chosen from these fired rules. The list is kept to the next decision
cycle. These operations do not contain the repetition of the matching process of the
general CS because the chain of rules needs the information of the next environmental

 8

input. The rule chain is over different inputs, using internal conditions and message
fusion, allowing to learn reactions and actions sequence. The sequence of operations is
summarized in Figure 5.

A codified message of length m arrives
from the environment through the input

interface.

The message is fused with previous
messages in the message list.

One message with only the environmental
block is posted to the message list.

When a condition is satisfied, the message
is posted to the message list.

A message is chosen to give the output
through the correspondent interface.

Classifiers that match with some message
of the message list are fired.

The robot
interaction with
the environment
generates a new
environmental

message for the
next decision cycle

The message list is
kept to be fused in
the next decision

cycle

Figure 5: Representation of a Sequence of Operations in an Autonomous Robot Classifier System.

In this way, actions chaining is obtained taking into account two special
mechanisms in conditions and messages: the environmental message is fused with the
previously posted messages and internal conditions are added to evolve a chaining
strategy. This strategy allows to chain rules activated by the environmental message with
previous activated rules. In addition to the environmental message fusion, the CS
requires the inclusion of internal conditions that provide the evolution of a chaining
strategy. The fusion method gives the way to chain rules and the internal conditions
support the knowledge about the relationship between rules. The evolution process over
the internal conditions provided by the genetic algorithm leads to learn sequences of
rules through time.

Although all the messages in the message list are composed by fusion, there is
always one message with only the environment block filled with the environmental
message (don’t care symbols, “#”, filling the other two blocks, see Figure 4). The
matching process considers environmental conditions only and the system is able to
break the rule chain and to react to the environment. In this way, reactions are obtained
when a message, with the environmental information only, is posted to the message list.
 These mechanisms allow the generation of more complex rules needed for the
final solution of the problem. An example of Condition/Action rules that could evolve is
as follows:

 9

 IF External_Signal IS <type x> AND
 Last_Rule_Fired IS <type y> AND
 Decision_Velocity_Part IS <Vi, Vj>
 THEN Send_Message <001...>

 The reaction mechanism, on the other hand, allows the evolution of traditional
reaction rules as:

 IF External_Signal IS <type x>
 THEN Send_Message <001...>

4. Environmental and output messages design

The codification of information in CS (the design of environmental and output
messages) is based on the special problem where CS will be applied. In this work, the
CS is used as a controller of an autonomous robot named Khepera [15]. The mini-
robot Khepera is a commercial robot developed at LAMI (EPFL, Laussanne,
Switzerland). The robot characteristics are: 5.5 cm of diameter in circular shape, 3 cm
of height and 70 gr of weight. The sensory inputs come in from eight infra-red proximity
sensors. These sensors are composed of two devices: an IR emitter and a receiver. The
emitter and the receiver are independent, then it is possible to use the receiver to
measure the reflected light (with the emitter active) or to measure the environmental light
(without emission). The reflected light measurement can give some information about the
obstacles. In fact, this measure is not only a function of the distance to an object in front
of the emitter but also the environmental light and the object nature (color and texture).
So the value of distance is modified by the measure of the ambient light and the object
nature, the light used is constant and all the obstacles used have the same color and
texture. The robot has two wheels controlled by two independent DC motors with
incremental encoder that allow any type of movement. Each wheel velocity could be
read by a speedometer.
 Using the ambient sensors it is possible to measure the distance and the angle to
a light source. The distribution of the amount of light coming into the eight sensors is
used to evaluate the distance and the angle to the source (Figure 6). The amount of light
received in the sensor depends on the distance of the light source. Each sensor is
described by a sigmoidal function [15]. When the robot is placed near a light source,
Figure 6, each sensor gives a value of light intensity based on the sigmoidal function. In
Figure 6, an example of different values in each sensor is represented. In this case, the
sensor 6 returns the minimum value from all sensors, the value is used to obtain the
distance and the sensor number (ID 6) to obtain the angle to the light source.

 10

Mini-Robot Khepera
Ambient Sensors

1

2

3 4

5

6

78

Light Source

7 81 2 3 4 5 6

Figure 6: Light Incoming Distribution in the sensors

 The transformation function of the proximity sensors is a linear function between
(0,0) and (1023,40). The first point corresponds to the minimum distance, 0, both in the
real robot as in the codified domain. The second point corresponds to the maximum
value, 1023, in the real robot and in the codified domain, 40. The function that
transforms the ambient sensors into distance an angle searches the minimum intensity
value of the proximity sensors and the ID of that sensor. This intensity value is
transformed by means of a linear function to get the distance. The desired angle is
obtained considering the ID of the sensor with the minimum intensity valued found
previously:

Sensor ID 1 2 3 4 5 6 7 8
Angle 90 45 15 345 315 270 190 170

4.1 Codification

 The sensors (proximity, ambient and speedometer) supply three kinds of
incoming information: proximity to the obstacles, ambient light and velocity. Instead of
using the eight infra-red sensors individually, they have been grouped giving a unique
value from two sensor input values (Figure 7a), reducing the amount of information
received by the CS. Representing the goal by a light source, the ambient information lets
the robot know the angle (the angle position in the robot of the ambient sensor receiving
more light) and the distance (the amount of light in the sensor) (Figure 7b).

 11

Ambient Sensors

Proximity Sensors

Grouped
Sensors

(a) VELOCITIES

V1 V2

Robot
sense

Distance to
the objective

Angle to the
goal

S1

S2
S3

Grouped Proximity
Sensors

Grouped Ambient
 Sensors

• Light Amount

• Angular Position of the sensor with more Ligh

Light source

(b)

Figure 7: (a) Sensors considered in the real robot. (b) Input information to the system.

 The input to the CS consists of three proximity sensors, angle and goal distance
(given by ambient sensors) and velocity values obtained by the speedometer.
 The distance information of proximity sensors is obtained by the response curve
of the sensors, that is a sigmoidal function defined over the intensity values domain. The
distance domain is transformed, translating it into a simpler domain to codify the values.
This transformation allows both the CS and the robot to be independent. So the CS
could be developed for any robot by changing the transformation function. The input
domain has been partitioned in four crisp sets. The maximum distance value “seen” by
one sensor is 40 units and is divided in ranges as is shown in Figure 8.

S1

S2
S3

0 10 20 30 40

00 01 1011

00
01

10
11

Obstacle

10
20
30

Figure 8: Codification and partition of the proximity information.

 The angle sets are of different size to consider a fine fitting of the trajectory,
avoiding big oscillations when the robot follows the right direction (the sets near 0 and
2π are smaller than the “<π” and the “>π” ones). The input domain partitions are
presented in Figure 9.

 12

Angle to the
goal

0 π 2π

00 01 1011

10

11

00
01

Desired Direction

Figure 9: Codification and partition of the angle information.

 To keep the independence between robot and CS, the distance values are
translated from the real sensor values to a domain defined from 0 to ∞. The input
domain has been partitioned in four crisp sets as is shown in Figure 10.

Distance to
the objetive

0 25 100 200 ∞

00 01 1011

00
01

10

11

Goal

25
100200

Figure 10: Codification and partition of the distance information.

 Velocity values flow as input to the classifier system and as decision from the
CS to the robot. The values are defined by the maximum and minimum velocities (10, -
10). This range is divided in four equal sets as is shown in Figure 11.

V1 V2

-5-10 5 7,5 10

00 011011

VELOCITIES

• 11 : Backward
• 10 : Stop
• 00 : Slow Forward
• 01 : Fast Forward

Figure 11: Codification and partition of the velocity information.

 All these sets should be codified to build the message from the environment.
Two binary digits are needed to represent each set. The codified inputs to the robot are
also displayed in figures 8, 9, 10, 11.

 13

4.2 Messages Composition

 As it was previously mentioned (section 3) conditions and messages of the CS
are divided in three blocks. The environmental block should be matched with the
environmental message arriving from the robot and it is defined by codified sensor
values. The environmental message includes all the codified sensors, composed as in
Figure 12a. The first information of the environmental message is about the proximity
sensors to describe the near environment surrounding the robot. The second information
corresponds to the goal description using the angle and distance measures. The last
information of the environmental message deals with the actual velocity to consider the
difference between the real and the last decision velocity.
 The decision velocity is codified in the output message. Velocity values are
decodified an applied to each wheel in the robot, Figure 12b.

Sensor 1 Sensor 2 Sensor 3 Angle Distance Velocity 1 Velocity 2

Near environment
description.

(AVOID)
Goal description.

(FOLLOW) Internal robot situation
description.(a)

Velocity 1 Velocity 2

Classifier decission (output)(b)

Figure 12. (a) Composition of the environmental message,
(b) Decision velocities in the output message.

5. Experimental Results

 Learning reactions in a real robot involves two main tasks: first, to discriminate
better rules from a set of rules, and second to discover new rules to face new situations
or to improve its performance. In a CS the learning process is very sensitive to the
payoff. To fit the environmental payoff, a CS with a constant set of rules and a complex
environment where most kind of situations could be found have been used. To evaluate
several systems in different environments, fitting the payoff, it is useful to work with a
simulator. The result obtained in the simulator has to be directly transferable to the real
robot, so the simulation requires specification of environment, needs, sensory and motor
equipment and learning method. The resulting system has been tested in the real robot
using different environments.

5.1 Experimental Environment

 14

 Evolution takes a long time (days) of continuous functioning of the hardware. In
order to prove the different configurations of the CS, a simulator developed in a
previous work [19] has been used. In the simulator, the characteristics of the turtle
robot model [15] and the physical restrictions of the Khepera robot have been
considered.
 The simulation world consists of a rectangular map of user defined dimensions
where particular objects are located. In this world it is possible to define a final position
for the robot. In this case the robot is represented with three proximity sensors and two
special sensors to measure the distance and the angle to the goal (Figure 13).

Initial Position

Final Position

Trajectory

Obstacles

GOAL

Figure 13: SimDAI Simulator (Example of one simulated environment).

Figure 14: Example of a real experimental environment.

 Different simulated worlds which resembles the real ones have been defined in
order to tune the payoff from the environment before being implemented in the real

 15

world. An example of these environments can be seen in figure 13 and figure 14. The
pay off function is based on the analysis of the new situation produced by the CS
output. This situation is measured by means of distance to surrounding obstacles and the
relative position to the goal. It is necessary to adjust parameters that weight each part of
the fitness function to define the relative importance of each one. The relations among
parameters on the simulator will be kept constant in the real environment. The
transformation function is used to keep constant the values of parameters. Then, the
system developed is the same in both cases (simulated and real) except the differences
in the treatment of the sensors, by the transformation function.

5.2 Learning without Genetic Algorithms

 Different payoff parameters have been tested, the proposed reward from the
environment is a function of the distance and the angle to the goal and the proximity of
obstacles. With this reward the system learns to avoid the obstacles when the proximity
is dangerous and to follow a direct path to the goal when no obstacles are near.
 The system learns from an initial situation using: the reward, the bucket brigade
algorithm (to distribute the rule strength when a rule is activated by another rule), and a
function that assures that strength of not-fired rules decreases to differentiate them from
the fired rules, commonly used in CS [6] [10]. This decrease of rule strength is called a
tax.
 Experimental results show a learning behavior where the strengths of the best
rules for the problem increase while the strength of the other rules decrease vs. cycles in
the execution. The set of rules for the CS is collected in table 1.

 16

(a) Condition Message (b) Condition Message
##0000########10####
##00##########10####
####00########10####
000101########10####
001101########10####
001001########10####
000111########10####
001111########10####
001011########10####
000110########10####
001110########10####
001010########10####

(c) Condition
########00####11####
######0101####11####
######1101####11####
######0001####11####
######1001####11####
######0111####11####
######1111####11####
######0011####11####
######1011####11####
######0110####11####
######1110####11####
######0010####11####
######1010####11####

##############11111
1
##############11101
1
##############11111
0
##############11111
1
##############11110
0
##############11110
0
##############11001
1
##############11111
1
##############11100
0
##############11001
1
##############11001
0
##############11111
1

Message

##############11101
0
##############11001
1
##############11110
0
##############11001
0
##############11100
0
##############11001
1
##############11110
0
##############11001
0
##############11100
0
##############11001
0
##############11100
0
##############11010
0
##############11000
1

 010101########1#####
011101########1#####
011001########1#####
010111########1#####
011111########1#####
011011########1#####
010110########1#####
011110########1#####
011010########1#####
110101########1#####
111101########1#####
111001########1#####
110111########1#####
111111########1#####
111011########1#####
110110########1#####
111110########1#####
111010########1#####
100101########1#####
101101########1#####
101001########1#####
100111########1#####
101111########1#####
101011########1#####
100110########1#####
101110########1#####
101010########1#####

##############001111
##############001000
##############001000
##############000010
##############000000
##############000001
##############000010
##############000100
##############000000
##############000000
##############001000
##############001000
##############000010
##############000000
##############000001
##############000010
##############000100
##############000101
##############000000
##############001000
##############000001
##############000010
##############000000
##############000001
##############000100
##############000100
##############000101

Table 1: Rules of the CS: (a) avoiding when obstacles are near, (b) avoiding when obstacles are far,

(c) following.

 17

 These rules could be clustered in three groups (table 1). First group (a) is
related with situations in which there are collision danger. With this rules, the robot turns
to the right direction in presence of obstacles. Second group (b) corresponds to
situations in which there are no obstacles near, in this case, the robot will modify its
trajectory in order to avoid obstacles when there are no collision danger. This set of
rules allows the robot wandering around the experimental environment without taking
into account the goal. The last group (c) consist of rules that independently of obstacles
position, change the trajectory of the robot facing the goal.
 An example of rule in the three cases is shown in figure 15.

S 3S 1 S 2 Vel 1Internal Vel 2

. . . .##010 0 11 1110 0 0

.. . .##110 1 11 0000 0 0

.. . .####

A n g

#

#

1 0

Dis t

#

#

1 0

Vel 1Internal Vel 2

#1 0 #

#1 # #

#1 1 # ## # ## 0011 0 1

C O N D I T I O N M E S S A G E

Vel 1

#

#

#

Vel 2

#

#

#

(1)

(2)

(3)
Figure 15: Examples of rules.

 In more detail, the meaning of rule (1) is explained: If there is an obstacle in
front of the robot at a distance between 0 and 10 (S1=00, very near) and other
obstacle on the left at a distance between 20 and 30 (S2=11, far) and another on the
right at a distance between 10 and 20 (S3=01, near) and the last message sent is type
10 (internal=10) Then send a message type 10 that turn abruptly to the left (vel1 =-5,
vel2=5).
 The essential rules for solving the problem belong to groups (a) and (c). Group
(b) rules are superfluous because they allow the robot to avoid obstacles when they are
far (something not very useful) and they are not able to follow the goal. The most
efficient strategy is following the goal except when there is collision danger. This is
accomplished by rules of groups (a) and (c), in an efficient way when the appropriated
rules from these groups are selected.
 In order to fit the environmental payoff, several simulations have been carried
out. As a result the reward is built considering four positive payment contributions when:
there are no collisions and/or distance to the goal is decreased and/or angle to the goal
is decreased and/or the distance to an obstacle is increased. The implemented tax is a
function of the time and the actual strength, so the strength is reduced during the
execution when the rule is not fired.
 Once these parameters are set, the CS with 52 rules has been applied to the
real robot, with different strength initial values. The CS shows the capability of
discriminating among the three rules groups. It has been experimentally tested that rules
belonging to groups (a) and (c) have an average strength value above rules of group (b).
In figure 16 the rule strength evolution (over 900 cycles of running) of a rule belonging to
every group is shown.

The CS has also showed the ability to discriminate rules inside each set. Some
rules of the set are better (useful) than others because they wait until objects are near or
turn less abruptly. The CS is able to select (giving higher strength values) the more

 18

convenient rules of each set and to chain rules of different sets. Rules that have the
ability to solve a great part of the problem by themselves in some special environmental
configuration (e.g. when there are no obstacles to the goal) have their strength
increased. This strength growing takes place in a short number of cycles as can be seen
in figure 16a. The meaning of evolution of strength values is: while the special conditions
for these rules to be useful aren’t reached yet, their strength is decreased as an effect of
the taxes mechanism. On the other hand, when they are fired (or could be fired), and
due to the fact that they can solve a great part of the problem, they will be fired once
and so on, to grow in strength quickly. If the rules are fired as a part of a chain in
execution, their strength values are kept constant, more or less, as a result of composing
the grow for firing and the loose for taxes. When the robot faces a complex situation,
any rule try to solve the problem in isolation. In this case, strength values of good rules
increases or decreases depending on whether it takes part or not in the chain that is on
execution and that execution ends with a positive or negative payoff (figure 16c). Finally,
all rules have a tendency to decrease their strength as an effect of the taxes. This is more
evident in no necessary rules (figure 16b).

0

300

600

900

1 201 401 601 801
0

300

600

1 201 401 601 801

0

300

600

900

1 201 401 601 801

(a) (b)

(c)

cycles

cyclescycles

strength

strength strength

Figure 16: Evolution of the rules strength of: avoiding (a) with

obstacles near (b) no obstacles and (c) following rule.

 To check the robustness of the developed CS some experiments have been
done on the real robot considering different initial strength values. A similar set of rules
has been discriminated. The CS selects the better rules, this rules belong to the cluster
(a) and (c) where are representing the rules that avoid in danger situations and follow a
right path in absence of obstacles. The final effect of this discrimination is that the robot
is able to reach the objective avoiding obstacles in an efficient way.
 Figure 17 shows the results of the experiment where the initial assignation of
strength values has been done as follows: if the rule belongs to cluster (a) and (c) it is set
to 200 and to 600 otherwise (cluster b). In these conditions evolution of good rules is
much more difficult because they have, initially, a third part of the strength.

 19

Figure 17: Evolution of the strength of the whole set of rules over 1000 cycles

 It can be seen that a similar set of rules has been discriminated, all of them
belonging to the first and third groups. Also can be seen similar behaviors to those
shown in figure 16(a, b, c). The system has proven, thus, to be insensitive to initial
strength values assignation.

5.3 Learning with Genetic Algorithms

 Once it has been tested that the CS is able to discriminate good rules, a GA has
been included to discover new, and probably better, rules.
 The GA is called at the end of an execution. The robot navigation in an
execution starts from an initial random point and it ends when:
 (a) the goal is reached, or,

(b) the time exceeds some limit, fixed by the time needed to reach the goal using
a fuzzy controller [13], or,
(c) the number of collisions exceeds a maximum threshold.

 There are several approaches for initializing rules in a CS. The most common
method is a random initialization. This presents the maximum challenge to the learning
algorithm but doesn’t take into account the previous acquired knowledge. As an
alternative, a method consisting in seeding the initial population with previous learned
knowledge can be used [18].
 A combination of the two techniques could be useful to test the learning capacity
of the system without losing much of the previous acquired knowledge. In this work, the
last approach has been implemented.
 The initial population of the CS is composed of the ten better rules obtained in
previous experiments (the rules with higher average strength, section 5.2) and for each
rule, five random new rules have been added.
 The system follows the Michigan approach [9]. A problem with this approach in
CS is the sensitivity of the rules. This is due to the fact that the strength of some rules

 20

depends on the strength of others. To overcome this problem, a high degree of elitism
has been used, in such a way that generations are similar.
 The selected parameters of the GA are:

• 1 of crossover probability
• 0.02 of mutation probability
• 0.85 of elitism

 Evaluation of the system performance is based in a quantitative measure. This
measure doesn’t take part in the evolution process but it reflects the system global
performance evolution. For measuring systems evolution, following features have been
considered:

• Time needed to reach the goal (seconds in the real robot and cycles in the
simulator).

• Trajectory length (by means of velocity values of the motor wheels).
• Number of oscillations (measured using the difference between the wheels

velocity).
• Number collisions (measured using the minimum value of the proximity

sensors).

 The environment makes the CS to find the set of rules that cooperate to achieve
a common goal in order to incrementally perform the behavior “reach and avoid” in less
time, with less collisions and following a more straight trajectory to the goal. Figure 18
shows an evolution of the trajectory from the first execution to the last one.

(a)

(b)

Figure 18. System Evolution Examples in one simulation. (a) Starting situation. (b) Final situation.

 In figure 18a it can be seen the effects of removing some of the previous
acquired knowledge. Despite of the ability of the robot to reach the goal, it is done in an

 21

inefficient way. Through evolution some new good rules have been added making the
robot to follow a better trajectory without collisions (figure 18b).
 The last CS evolved has been used to control the real robot in different
environments. In figure 19 a real experiment equivalent to the one of figure 18b is
showed. Three frames that represents the starting point (figure 19a), intermediate state
(figure 19b) and the final position (figure 19c) are collected in figure 19.

Figure 19: System Evolution Examples in one real experimental environment. (a) Starting position,

(b) intermediate and (c) Goal reached.

 The results of the evolution of the system, based in the quality measure
previously mentioned (figure 20), shows a fast growing of the quality in the first steps.
This is due to the existence of less good rules at the beginning and the evolution of new
good rules is easier than when the system is filled of good rules. In the last steps the
quality of the whole system reaches an stationary situation, that is, the system has
evolved enough rules to react to any possible situation in a correct way.

 22

Time

0,00

100,00

200,00

300,00

400,00

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71

Oscillations

0,00

100,00

200,00

300,00

400,00

1 8 15 22 29 36 43 50 57 64 71

Trajectory

760,00
780,00
800,00
820,00
840,00
860,00
880,00
900,00
920,00
940,00

1 7 13 1 9 2 5 31 3 7 4 3 4 9 55 6 1 6 7 7 3

Figure 20: Evolution of the Quality Measure.

5.4 Testing CS in Dynamic Environments

 The proposed Classifier System has learned to react and to chain actions to
solve the navigation problem. The learned CS has also been tested in dynamic
environments. A subset of static environments from previous experiments has been
selected in order to compare with the results over similar dynamic environments. The
dynamic experiments are defined in this way: the initial point, the situation of the goal and
the static objects are equal than in the static ones but a circular object is wandered on
the simulated world. The mobile obstacle starts its movement from the position (x =
100, y = 200, initial direction = 200°) with a random trajectory that crosses in many
cases the robot path and avoid obstacles without a predefined goal. When the robot
finds an obstacle in its way it is able to react for avoiding the mobile obstacle without
losing the tendency to arrive the goal.

The static environments are defined by the initial position of the robot and the
objects. Nine experiments have been defined and 50 executions have been carried out
in order to obtain the average of trajectory length, collisions and time. Each experiment
is defined by the robot initial position (three different positions have been used: Robot1,
Robot2 and Robot3) and the number of static obstacles (one, two or three). Static
objects are the same than in Figure 18. Each robot is defined by coordinates (x, y) and
their initial direction:

 23

• Robot1: x = 50, y = 400, initial direction = 0°
• Robot2: x = 300, y = 450, initial direction = 180°
• Robot3: x = 50, y = 150, initial direction = 0°

 The average results of the CS in time, trajectory length and collisions are shown
in table 2 from 50 experiments. Three selected examples of these experiments are
shown in figures 21a, 21b and 21c.

Robot Environment Time Average Distance Average Collisions Average
Robot1 3 Objects 91.80 678.10 0.7
Robot1 2 Objects 82.21 650.30 0.7
Robot1 1 Object 68.32 635.20 0.7
Robot2 3 Objects 86.70 583.10 0.8
Robot2 2 Objects 73.20 523.43 0.3
Robot2 1 Object 62.30 427.80 0
Robot3 3 Objects 69.80 461.50 0
Robot3 2 Objects 27.50 333.20 0
Robot3 1 Object 27.30 332.70 0

Table 2: Numerical results of static experiments.

Figure 21: Three static experiments: (a) Robot 1, (b) Robot 2 and (c) Robot 3.

 In table 3, the numerical values obtained in these dynamical experiments, with a
mobile obstacle, are shown. Figures 22a, 22b and 22c show several trajectories starting
from the same point than in Figures 21a, 21b and 21c, respectively.

Robot Environment Time Average Distance Average Collisions Average
Robot1 3 Objects 157.50 791.51 3
Robot1 2 Objects 158.17 743.34 1.5
Robot1 1 Object 132.08 654.73 1.5

 24

Robot2 3 Objects 154.21 657.62 1.6
Robot2 2 Objects 80.12 580.23 1
Robot2 1 Object 74.14 473.79 0
Robot3 3 Objects 77.33 394.62 0
Robot3 2 Objects 50.67 343.09 0
Robot3 1 Object 51.50 320.70 0

Table 3: Numerical results of dynamic experiments.

Figure 22: Three dynamic experiments: (a) Robot 1, (b) Robot 2 and (c) Robot 3.

 As it could be seen in Table 2 and 3, the robot behavior is similar in different
environments. The navigation problem is solved from different initial position and with
different configuration of objects (both static and dynamic). Although the robot arrives
the goal in any circumstance, the results are different in static than in dynamic
environment, there are more collisions, the time and distance are larger in the dynamic
ones due to the difficulty of the mobile object. The results show that the learning rate of
CS allows to solve the navigation problem in different environments, both static and
dynamic.

6. Conclusions

A reactive Classifier System ought to be embedded into the reactivity definition:
“the system must decide for each input an action, and each action is determined by an
input, but without losing the capacity of rule sequencing. This sequence must be
produced in different instants of time”. Then, CS must not be blind when decisions are
taken as in [23] and [25]. A possible solution is the activation of rules in the same way
that in traditional CS, but including the environmental message in the activation process.
 The proposed CS has been developed to learn reactions (decision as a function
of the environmental information) and actions (decision as a function of the
environmental information and previous internal information). This modified Classifier

 25

System has proven its ability to learn autonomous robot behaviors in dynamic
environments.
 The fusion of each environmental message with information of previous fired
rules and the inclusion of internal conditions allow the generation of a sequence of
actions, defined by a rule chain over different inputs. Sets of cooperative rules emerge

from the evolution of the CS. Cooperation is viewed in this case as a rule chain, where a
rule only has meaning if it matches with the environment and follows other specific rule in
time.
 The inclusion of one message without another information but the environmental
input allows the evolution of reactions.
 The experiments carried out without generating new rules proved the capabilities
of our approach to accurately discriminate among rules in a system that is chaining rules
at the same time that is receiving new inputs.
 The results obtained considering the generation of new rules proved the
capability of generating not only new better rules but the mechanisms for chaining new
and existing rules.
 Another important aspect verified in this work is the possibility of continuous
learning and adaptation to new situations that allows to solve the problem even if there
are mobile objects, more than one goal, and dynamical goals that could appear and
disappear or move when the robot is moving.

7. References
[1] Brooker, L. “Improving behavior as an adaptation to the task environment”.
Doctoral Dissertation. Department of Computer and Communication Sciences,
University of Michigan, Ann Arbor. (1982).
[2] Brooker L., Goldberg D. and Holland J., “Classifier Systems and Genetic
Algorithms”. Artificial Intelligence, 40, 1-3, 235-282, (1989).
[3] Brooks R. A., “Intelligence without Representation”. Artificial Intelligence, 47, 139-
159, (1991).
[4] Colombetti M. and Dorigo M., “Training Agents to Perform Sequential Behavior”.
Technical Report 93-023, Politechnico di Milano, Italy, (1993).
[5] Dorigo M. and Sirtori, E., “Alecsys: A Parallel Laboratory for Learning Classifier
Systems”, Proceedings of the Fourth International Conference on Genetic Algorithms,
296-302, (1991).
[6] Goldberg D.E., “Genetic Algorithms in Search, Optimization and Machine
Learning”, Addison-Wesley, New York, (1989)
[7] Holland J., “Adaptation in Natural and Artificial Systems”. Ann Arbor, MI,
University of Michigan Press, (1975).

 26

[8] Holland J. and Reitman J.S. “Cognitive Systems Based on Adaptive Algorithms”, in
Waterman D.A. & Hayes-Roth F. (Eds.), Pattern-Directed Inference Systems, New
York, Academic Press, (1978).
[9] Holland J. “Escaping Brittleness: The Possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems” in Michasky R., Carbonell J. and
Mitchell T.(eds.), Machine Learning: An Artificial Intelligence Approach, vol 2,
Morgan Kaufman, los Altos, CA, (1986).
[10] Holland J., “Properties of the Bucket Brigade”, Proceedings of an International
Conference on Genetic Algorithms and their Applications. Grefenstette J.J., Eds.
(1986).
[11] Ishikawa S. “A Method of Autonomous Mobile Robot Navigation by using Fuzzy
Control”. Advanced Robotics, vol. 9, No. 1, 29-52, (1995)
[12] Lee M.A. and Takagi H., “Integrating Design Stages of Fuzzy Systems using
Genetic Algorithms”. Second International Conference on Fuzzy Systems, 612-617,
(1993).
[13] Matellán V., Molina J.M., Sanz J. and Fernandez C., “Learning Fuzzy Reactive
Behaviors in Autonomous Robots”. Proceedings of the Fourth European Workshop on
Learning Robots, Germany, (1995).
[14] Matellán V., Molina J. and Fernández C., “Fusion of Fuzzy Behaviors for
Autonomous Robots”, Proceedings of the third International Symposium on Intelligent
Robotic Systems”, (1995).
[15] McKerrow P.J., “Introduction to robotics”, Addison-Wesley Publishing Company
Inc. (1991)
[16] Mondada F. and Franzi P.I., “Mobile Robot Miniaturization: A Tool for
Investigation in Control Algorithms”. Proceedings of the Second International
Conference on Fuzzy Systems. San Francisco, USA, (1993).
[17] Schultz A., “Using a Genetic Algorithm to Learn Strategies for Collision Avoidance
and Local Navigation”, Proceedings of the Seventh International Symposium on
Unmanned Untethered Submersible Technology, 213-215, (1991).
[18] Schultz A. and Grefenstette J.J., “Improving Tactical Plans with Genetic
Algorithms”, Proceedings of IEEE Conference Tools for AI 90, 328-334, (1990).
[19] Sommaruga L., Merino I., Matellán V and Molina J., “A Distributed Simulator for
Intelligent Autonomous Robots”, Fourth International Symposium on Intelligent Robotic
Systems-SIRS96, Lisboa (Portugal), (1996).
[20] Wilson S.W., “Knowledge Growth in Artificial Animal”. Proceedings of an
International Conference on Genetic Algorithms and their Applications, (1985)
[21] Wilson S.W., “Classifier Systems and the Animat Problem”, Machine Learning, 2,
199-228, (1987).
[22] Dorigo M., “Genetic and non-Genetic Operators in ALECSYS”, Evolutionary
Computation, MIT Press, 1, 151-164, (1993).
[23] Dorigo M., “ALECSYS and the AutonoMouse: Learning to Control a Real Robot
by Distributed Classifier Systems”, Machine Learning, 19, 209-240, (1995).

 27

[24] Grefenstette J.J., “Credit Assignment in Rule Discovery Systems Based on Genetic
Algorithms”, Machine Learning, vol 3, 225-245, (1988).
[25] Weiβ G., “Hierarchical Chunking in Classifier Systems”, Proc. of the 12th.
International Conference on Artificial Intelligence”, 1335-1340, (1994).
[26] Isasi P., Berlanga A., Molina J. M. and Sanchis A., “Robot Controller against
Environment, a Competitive Evolution”, Special Session on Evolution Computation,
15th IMACS World Congress 1997 on Scientific Computation, Modelling and Applied
Mathematics. Germany, (1997).

