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ABSTRACT 

The navigation problem involves how to reach a goal avoiding 
obstacles in dynamic environments. This problem can be faced 
considering reactions andor sequences of actions. Classifier 
Systems (CS) have proven their ability of continous learning, 
however they have some problems in reactive systems. A 
modified CS is proposed to overcome these problems. Two 
special mechanisms are included in the developed CS to allow 
the learning of both reactions and sequences of actions. This 
learning process involves two main tasks: first, discriminating 
between rules and second, the discovery of new rules to obtain 
a successful operation in dynamic environments. Different 
experiments have been carried out using a mini-robot Khepera 
to find a generalized solution. The results show the ability of 
the system for continuous learning and adaptation to new 
situations. 

1. INTRODUCTION 

A Classifier System (CS) [4] is well suited to leam multiple 
different concepts incrementally under payoff. These systems 
have been widely implemented and tested for a large number of 
theoretical problems, [15, 161, but there are not many cases in 
which they are included in real systems [2, 14, 151. In the most 
recent bibliography, especially in [14], the CS’s appear as 
systems of doubtful efficiency learning. They were employed 
with great frequency from the moment of their description by 
Holland [4, 51, but today they have smaller summit because of 
the problems and difficulties that present. When they are 
intended to apply Classifier Systems to the resolution of certain 
importance problems, a series of difficulties appear, that they 
could, even, make to think about the convenience of employing 
any other system. One of the principal problems located in 
CS’s are related to their application to dynamical 
environments. 

In spite of the article of Brooker [l] ,  that describes these 
systems as prepared to operate in changing environments 
(concretely, he has developed a controller system for a predator 
that moves and hunts in a world), the reality is that in the 
bibliography are not collected good results for these cases. This 
bad results are due to the fact that, if the decision time is let to 
increase to the classifier, something which is necessary to 
provide a elaborated solution to the problem, while the 
individual (predator in [ l ]  or “animat” in [15] and [16]) 
continues inside the world and being moved in it, when the 
system provides the solution, this no longer results valid, in 
most of the cases. Furthermore, the evaluation of that decision 
is not valid, since the appropriateness of the output is not 
known, due to the temporary lag between input and output. 
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The problem of the capacity of the system by producing a 
quick response should not be approached only from techniques 
that attempt to increase the speed of the process, but they can 
be approached from a different perspective: the injection of 
environmental data and obtainment of intermediate decisions in 
the course of global decision [ l l ,  121. The rule chaining in the 
traditional CS makes the system blind to the environment 
because it can not manage new sensorial inputs during the 
decision process. In a dynamic environment, system ought to 
read sensors in each decision step (reaction), that is the main 
feature of reactive systems. For instance, in a navigation 
problem in a dynamic environment (where the obstacles are 
moving around) a robot ought not to be blind any time, so each 
movement has to be the result of applying the decision process 
over the last sensorial input. 

In this work, a new CS is proposed, Reactive CS (RCS), 
modifying the general process in order to allow reactions 
without loosing the possibility of rule chaining. The new 
process integrates the environmental input with the intemal 
state of the previous input. Then, from an input, the RCS gives 
directly an action and, at the same time, modified the intemal 
state. When the next input arrives, the message is fused with 
the previous intemal state to allow a new reaction or an action 
that chains with the previous action. 

This new RCS will be used to learn a fundamental requirement 
for autonomous mobile robots: navigation. This task gets the 
robot from place to place with safety and no damages. In the 
proposed learning process, the only previous information is 
about the number of inputs (robot sensors), the range of 
sensors, the number of outputs (number of robot motors) and 
its description. The robot controller starts without information 
about the right associations between sensor inputs and motor 
velocities. And from this situation the robot is able to learn 
through experience to reach the highest adaptability grade to 
the sensors information. The results obtained proved the 
capability of generating not only new better rules but the 
mechanisms for chaining new and existing rules. 

Another important aspect verified in this work is the possibility 
of continuously learning and adaptation to new situations that 
allow to solve the problem even if there are mobile objects, 
more than one goal, and dynamical goals that could appear and 
disappear or move when the robot is navigating. 

In this paper we present the results of a research aimed at 
learning reactive behaviors in an autonomous robot. In section 
2, we outline the general theory of classifier and reactive 
systems. Section 3 is related to RCS and the goals of the work. 
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In Section 4 we present the particularities of the developed 
RCS for navigation problem. Some experimental results are 
showed in Section 5.  The last section contains some 
concluding remarks. 

- 
5. 

6. 
7. 2. CLASSIFIER SYSTEMS AND REACTIVITY 

in parallel by a message. Don't care symbols, 'W', 
match both 0 as 1. 
When a condition is satisfied, the message is posted to 
the message list. 
Step 4 and 5 are repeated for n internal cycles. 
Finally, a message is chosen to give the output through 
the correspondent interface. 

Classifiers Systems, CS, are a specialized form of production 
systems that have been designed to be specifically amenable to 
the use of genetic algorithms [3]. These systems were 
developed by Holland and Reitman [ 5 ] ,  and later refined and 
modeled by Holland [6 ] .  CS are machine learning systems that 
learn syntactically simple string rules (called classifiers) to 
guide their performance in an arbitrary environment [3]. A 
schematic representation of a Classifier System is showed in 
figure 1. In these systems, it can be distinguished three activity 
levels: 

Step Operation 
1. Read the sensors. 
2. Codify the sensor information to obtain inputs for the 

controller. 
3. Apply the rules over the inputs to obtain a new output. 
4. Decodify the output in numerical values. 
5. Write the numerical values over the motors. 

- 6. Go to step 1. 

(1) Performance, rule and message system, or some times 
called Classifier System, that interacts with the environment, 
gathering information through the input interface and 
producing the output through the output interface; it also 
receives the payoff. Structurally, the performance level consists 
of: (A) a finite population of fixed length conditiodaction 
rules, (B) a message list, (C) an input interface consisting of a 
set of environmental feature detectors and (D) an output 
interface for acting in the environment, that are also shown in 
figure 1. 
(2) Credit Assignment, that rewards rules on the basis of their 
observed utility to the systems goal. 
(3) Discovery, that employs a genetic algorithm as a discovery 
operator that automatically generates new rules. 

Figure 1: Representation of a Classifier System. (i) All 
messages are tested with all classifiers. (ii) 
Winning classifiers post their messages to the 
message list. 

In the performance level, rules are composed of two parts: 
condition and message. Rules are codified as strings: each 
condition is a string of fixed length k over the alphabet { 0,1,#) 
and each message another string of fixed length k over the 

. alphabet {O,l}. The sequence of operations are described in 
Table 1. 

A codified message of length k amves from the 

The system uses a reinforcement algorithm (called the Bucket 
Brigade, BB, [7]) to solve the credit assignment problem: how 
to reinforce individual rules in a multistep chain when the 
external reward is given only at the chain conclusion. This 
algorithm also allows selection among incompatible or 
contradictory solutions. BB assigns to each rule a value, called 
srrengfh, that indicates the rule usefulness to the systems goal. 
When a classifier is matched, it is qualified to participate in an 
activation auction. To participate in the auction, a classifier 
makes a bid, proportional to its strength and its specificity (this 
value is concerned with the number of don't care symbols in 
the rule). Winning classifiers pay a portion of their strength 
(their bid) to the one responsible of their activation, and their 
messages are post to the message list 

Finally, a discovery algorithm, a genetic one, is used to 
generate new, and possibly better, rules into the system. From a 
CS, a set of rules with higher strength values are selected, 
genetic operators are applied and the new rules obtained are set 
into the new CS. After this, the BB will reorganize the rules 
rate. 

A reactive robotic system obtains a new output for each new 
environmental information sending by the sensors. In this way, 
it could be defined a decision cycle in a generic robot as it is 
shown in Table 2. 

This process fixed the time range of reacting to environmental 
changes. The sequence of operations in a traditional CS only 
consider a new message, as it is shown in the step 1 of Table 1, 
from this point all the decisions are taken intemally without 
new environmental information. 

3. REACTIVE CLASSIFIER SYSTEM (RCS) 

The necessity of reacting leads the search of a new mechanism 
in Classifier Systems that allows to include new environmental 
codified message in each intemal cycle of the performance 
level. The sequence of operations of this new CS, Reactive CS 
(RCS), are shown in Table 3 and Figure 2. 
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I message list are fired. 
I All the messages of fired classifiers are posted to the 5. 

6. 
message list. 
A message is chosen among the rules that satisfied the 
conditions. 

This sequence of operations is related with the action level. 
The Credit Assignment level will be the one which decides 
what activated rules win in the competition, in the same way 
that it occurs in the traditional CS. 

T*.*l.l 

I 

Figure 2.  Sequence of Operations in a Decision Cycle in a 
Reactive Classifier System, Graphically. 

This sequence presents two main differences with the 
traditional CS: 

Generation of message list through fusion, GLTF: The 
step 2 and 3 in the traditional CS, “clear the message list” 
and “the codified environmental message is posted to the 
message list,” are translated in two new operations in the 
RCS: step 2, named “fusion the new message with 
previous messages”, and step 3, “post a new message”. 
No intemal cycles, NIC: The step 6 in the traditional CS, 
“the repetition of the step 4 and 5 for n intemal cycles”, is 
not necessary because the chaining of the rules is 
performed in each cycle of the performance level. 

The loss of intemal cycles breaks the rules sequence so 
characteristic of the traditional CS. To permit rules chaining 
the codification of the rules in the RCS has been modified. It 
has been included additional information related to the rules 
fired in previous instant, this new information is named as 
intemal tags, IT. 

The RCS modifies the performance level in order to develop a 
system able to react (considering only the sensorial input 
information) and to chain actions (considering information of 
the sensorial input and the previous state of the CS). These 
mechanisms instead of the traditional CS, allow the generation 
of more complex high level rules that are needed for the final 
solution of the problem. An example of ConditiodAction rules 
that can evolve is as follow: 

IF External-Signal IS <type 1> AND 
Last-Rule-Fired IS <type y> 

T” Send-Message e001 . . .  > 

The reaction mechanism, on the other hand, allows the 
evolution of traditional reaction rules as: 

IF External-Signal IS <type 1> 
l” Send-Message e001 . . .  > 

Then, action chaining is obtained taking into account two 
special mechanisms in conditions and messages: the 
environmental message is fused with the previous messages 
(GLTF and NIC) and internal tags (IT) are added to evolve a 
chaining strategy. Reactions are obtained posting a message,. 
with the environmental information only, to the message list. 

4. RCS IN ROBOTICS SYSTEMS 

To adapt RCS to the navigation problem, conditions and 
messages of the RCS described in the previous section are 
divided in three parts. The environmental part of conditions 
and the decision velocity part of messages concerns with robot 
state. 

The environmental part should be matched with the 
environmental message arriving from the robot and it is 
defined by codified sensor values. The environmental message 
includes all the codified sensors, composed as in Figure 3a. 
The first part of the message is composed by the proximity 
sensors to describe the near environment surrounding the 
robot. The second part corresponds to the goal description 
using the angle and distance information. The last part of the 
message deals with the actual velocity to consider the 
difference between the real and the last decision velocity. 

The decision velocity is codified in the output message. 
Velocity values are decodified and applied to each wheel in the 
robot, Figure 3b. 

Near environment 
description. 

(AVOID) 
Goal description. 

(FOLLOW) lntemal robot situation 
(a) description. 

(b) Classifier decission (output) 

Figure 3. (a) Composition of the environmental message, (b) 
Decision velocities in the output message. 
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Sensors description 
The robot used is a mini-robot Khepera [lo], which is a 
commercial robot developed at LAMI (EPFL, Laussanne 
Switzerland). The robot characteristics are: 5.5 cm of diameter 
in circular shape, 3 cm of height and 70 gr of weight. The 
sensory inputs come in from eight infra-red proximity sensors. 
These sensors are composed by two parts: an IR emitter and a 
receiver. The emitter and the receiver are independent, so that 
it is possible to use the receiver to measure the reflected light 
(with the emitter active) or to measure the environmental light 
(without emission). The reflected light measurement can give 
some information about the obstacles surrounding the robot. In 
fact, this measure is not only a function of the distance of an 
object in front of the emitter but also the environmental light 
and the object nature (color and texture). So the value of 
distance is modified by the measure of the ambient light and 
the object nature, the light use is constant and all the obstacles 
used have the same color and texture. The robot has two 
wheels controlled by two independent DC motors with 
incremental encoder that allows any type of movement. Each 
wheel velocity could be read by an odometer. 

By using the ambient sensors, it is possible to measure the 
distance and the angle to a light source. The distribution of the 
amount of light incoming into the eight sensors is used to 
evaluate the distance and the angle to the source (Figure 4). 

Figure 4: Light Incoming Distribution in the sensors 

The transformation function of the proximity sensors is a linear 
function between (0.0) and (1023,40). The first point 
corresponds to the minimum distance, 0, both in the real robot 
as in the codified domain. The second point corresponds with 
the maximum value, 1023, in the real robot and the codified 
domain, 40. The function, that transform the ambient sensors 
values into distance an angle values, searches the minimum 
intensity value of the proximity sensors and the ID of that 
sensor. This intensity value is transformed by means of a linear 
function to get the distance. The desired angle is obtained 
considering the ID of the sensor with the minimum intensity 
valued found previously: 

SensorID I 1 2 3 4 5 6 7 8 
Angle I 9 0  45 15 345 315 270 190 170 

Codification 
The sensors (proximity, ambient and odometer) supply three 
kinds of incoming information: proximity to the obstacles, 
ambient light and velocity. Instead of using the eight infra-red 
sensors individually, they have been grouped giving a unique 
value from two sensor input values, reducing the amount of 
information received by the RCS. Representing the goal by a 
light source, the ambient information lets the robot know the 
angle (the angle position in the robot of the ambient sensor 

receiving more light) and the distance (the amount of light in 
the sensor) to this goal (Figure 5). 

Figure 5: Input information to the system. 

The input to the CS consists of three proximity sensors, angle 
and goal distance (given by ambient sensors) and velocity 
values obtained by the odometer. 

The distance information of proximity sensors is obtained by 
the response curve of the sensors, that is a sigmoidal function 
defined over the intensity values domain. The distance domain 
is transformed, translating it into a more simple domain to 
codify the values. This transformation allows both the RCS and 
the robot to be independent. So the RCS could be developed 
for any robot by changing the transformation function. The 
input domain has been partitioned in four crisp sets. The 
maximum distance value “see” by one sensor is 40 units and is 
divided in ranges as is shown in figure 6. 

Figure 6: Codification and partition of the proximity 
information. 

The angle sets are of different size to consider a fine fitting of 
the trajectory, avoiding big oscillations when the robot follows 
the right direction (the sets near 0 and 2n are smaller than the 
“<n” and the “M’ ones). The input domain partitions are 
presented in Figure 7. 

0 

0 . a. 

Figure 7: Codification and partition of the angle information. 

To keep the independence between robot and RCS, the 
distance values are translated from the real sensor values to a 
domain defined from 0 to -. The input domain has been 
partitioned in four crisp sets as is shown in figure 8. 
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Figure 8: Codification and partition of the distance 
information. 

Velocity values flow as input to the classifier system and as 
decision from the CS to the robot. The values are defined by 
the maximum and minimum velocities (10, -10). This range is 
divided in four equal sets as is shown in figure 9. 

IO I I 7 5  10 

Figure 9: Codification and partition of the velocity 
information. 

All these sets should be codified to build the message from the 
environment. Two binary digits are needed to represent each 
set. 

5. EXPERIMENTS 

Evolution takes a long time of continuous functioning of the 
hardware. In order to prove the different configurations of the 
RCS, a simulator developed in a previous work 1131 has been 
used. In the simulator, the characteristics of the turtle robot 
model [9] and the physical restrictions of the Khepera robot 
have been considered. 

I ll 

lnmd Ponam 

[fi& 10 OhE””. 0 *). 0 h 0 l  

Figure 10: SimDAI Simulator. 

The simulation world consists of a rectangular map of user 
defined dimensions where particular objects are located. In this 
world it is possible to define a final position for the robot. In 
this case the robot is represented with three proximity sensors 
and two special sensors to measure the distance and the angle 
to the goal (Figure 10). 

Different simulated worlds which resemble the real ones have 
been defined in order to tune the payoff from the environment 
before being implemented in the real world. An example of 
these environments can be seen in figure 10. The system 
developed is the same in both cases (simulated and real) except 
the differences in the treatment of the sensors, by the 
transformation function. 

Experimental Results 
In these experiments, the initial population of the RCS is 
randomly generated. In this case, it can be proved the ability 
and improvement of the RCS to learn reactions compared with 
the traditional approach. The parameters of the CS: traditional 
and RCS one, are equal: 

The GA is called after 100 cycles of decisions. 
1 of crossover probability 
0.01 of mutation probability 
0.3 of overlapping 

Four internal cycles in the performing level are considered in 
the traditional CS. The simulator executes the robot controller 
like in the real world, so, while traditional and RCS take a 
decision the robot is continuously working. The velocity of the 
robot in this period is the previously decided velocity. This 
velocity is changed when the CS takes a decision for the 
incoming environmental message. This consideration takes a 
main place in traditional CS because it executes four internal 
cycles before taking a decision. 

Figure 11 shows the evolution of the evaluation parameters for 
the two types of classifiers. In Figure 11 (c) a function that 
linearly combines the two parameters is shown, the function is: 
1.5*time + distance. 

- RCS 
....... T n d Q d  CS 

-1 

Figure 1 1 .(a): Time to reach the goal by the RCS and the 
traditional CS. 

- RCS 
....... T-CS 

1 7 13 10 zs 31 43 40 81 67 n To IS n p1 lw lo9 115 121 1n 

EX.suti.% 

Figure 1 l.(b): Distance to reach the goal by the RCS and the 
traditional CS. 
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Figure 1 l.(c): Global evaluation of the two systems. 

Figures 11 (a), (b) and (c) show the results of 50 experiments. 
In these experiments, the seed to create the populations is 
changed in each generation, therefore, each experiment is 
related with a different set of initial rules. In the x axis 
executions are represented. An execution is the navigation of 
the robot from the initial situation until the goal is reached. In 
the y axis the average value over 50 experiments of the 
measured variable is represented both for CS and RCS. 

The Figure 1 l(a) shows the time in finding the goal, it could be 
seen how the rule learning process causes that the robot finds 
faster the goal in both of the cases. However, while the 
traditional CS causes a decrease of about 30%, the RCS could 
reach a 70% of reduction. This is due to the fact that the RCS 
is able to learn rules that will be fired just in time, because of 
the lack of delay between a rule execution and its reward from 
the environment. The learning of valid chained rules makes the 
RCS to go faster and straighter to the goal than CS does. 

The improvements of the RCS over the traditional CS could be 
seen in figure ll(c), where the effects of two measures are 
combined. The achieved rules in RCS improve the 
performance of the robot in a 60% compared with the rules 
obtained with the traditional CS. 

5. CONCLUSIONS 

The proposed RCS has been developed to learn reactions 
(decision is function of the environmental infomation) and 
actions (decision is function of the environmental information 
and previous internal information). This modified Classifier 
System has proven its ability to learn autonomous robot 
behaviors in dynamic environments. 

The fusion of each environmental message with information of 
previous fired rules (GLTF mechanism) and the inclusion of 
intemal conditions (IT mechanism) allow the generation of a 
sequence of actions, defined by a rule chain over different 
inputs. Sets of cooperative rules emerge from the evolution of 
the RCS. Cooperation is viewed in this case as a rules chain, 
where a rule is only meaningful if it matches with the 
environment and follows an other specific rule in time. 

The inclusion of a message without another information but the 
environmental input allows the evolution of reactions. The 
results obtained consider generation of new rules proved the 
capability of generating not only new better rules but the 
mechanisms for chaining new and existing rules. 

Another important aspect verified in this work is the possibility 
of continuously leaning and adaptation to new situations that 
allow to solve the problem even if there are mobile objects, 
more than one goal, and dynamical goals that could appear and 
disappear or move when the robot is navigating. 
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