58 research outputs found

    A hybrid biometric template protection algorithm in fingerprint biometric system

    Get PDF
    Biometric recognition has achieved a considerable popularity in recent years due its various properties and widespread application in various sectors. These include very top priority sectors like countries boundary security, military, space missions, banks etc. Due to these reasons the stealing of biometric information is a critical issue. To protect this user biometric template information there should be efficient biometric template transformation technique and thereby the privacy of user is preserved. Non-invertible transformation can keep the user template based transformed information maximum secure against the regeneration. But the performance of non-invertible template protection mechanism will be reduced by the increase in security. This limitation of non-invertible biometric transformation should be solved. This research aims to develop a hybrid biometric template protection algorithm to keep up a balance between security and performance in fingerprint biometric system. The hybrid biometric template protection algorithm is developed from the combination of non-invertible biometric transformation and biometric key generation techniques. To meet the research objective this proposed framework composed of three phases: First phase focus on the extraction of fingerprint minutiae and formation of vector table, while second phase focus on develop a hybrid biometric template protection algorithm and finally the third phase focus on evaluation of performance of the proposed algorithm

    Pseudo Identities Based on Fingerprint Characteristics

    Get PDF
    This paper presents the integrated project TURBINE which is funded under the EU 7th research framework programme. This research is a multi-disciplinary effort on privacy enhancing technology, combining innovative developments in cryptography and fingerprint recognition. The objective of this project is to provide a breakthrough in electronic authentication for various applications in the physical world and on the Internet. On the one hand it will provide secure identity verification thanks to fingerprint recognition. On the other hand it will reliably protect the biometric data through advanced cryptography technology. In concrete terms, it will provide the assurance that (i) the data used for the authentication, generated from the fingerprint, cannot be used to restore the original fingerprint sample, (ii) the individual will be able to create different "pseudo-identities" for different applications with the same fingerprint, whilst ensuring that these different identities (and hence the related personal data) cannot be linked to each other, and (iii) the individual is enabled to revoke an biometric identifier (pseudo-identity) for a given application in case it should not be used anymore

    Performance comparison of intrusion detection systems and application of machine learning to Snort system

    Get PDF
    This study investigates the performance of two open source intrusion detection systems (IDSs) namely Snort and Suricata for accurately detecting the malicious traffic on computer networks. Snort and Suricata were installed on two different but identical computers and the performance was evaluated at 10 Gbps network speed. It was noted that Suricata could process a higher speed of network traffic than Snort with lower packet drop rate but it consumed higher computational resources. Snort had higher detection accuracy and was thus selected for further experiments. It was observed that the Snort triggered a high rate of false positive alarms. To solve this problem a Snort adaptive plug-in was developed. To select the best performing algorithm for Snort adaptive plug-in, an empirical study was carried out with different learning algorithms and Support Vector Machine (SVM) was selected. A hybrid version of SVM and Fuzzy logic produced a better detection accuracy. But the best result was achieved using an optimised SVM with firefly algorithm with FPR (false positive rate) as 8.6% and FNR (false negative rate) as 2.2%, which is a good result. The novelty of this work is the performance comparison of two IDSs at 10 Gbps and the application of hybrid and optimised machine learning algorithms to Snort

    A Survey on Biometrics and Cancelable Biometrics Systems

    Get PDF
    Now-a-days, biometric systems have replaced the password or token based authentication system in many fields to improve the security level. However, biometric system is also vulnerable to security threats. Unlike password based system, biometric templates cannot be replaced if lost or compromised. To deal with the issue of the compromised biometric template, template protection schemes evolved to make it possible to replace the biometric template. Cancelable biometric is such a template protection scheme that replaces a biometric template when the stored template is stolen or lost. It is a feature domain transformation where a distorted version of a biometric template is generated and matched in the transformed domain. This paper presents a review on the state-of-the-art and analysis of different existing methods of biometric based authentication system and cancelable biometric systems along with an elaborate focus on cancelable biometrics in order to show its advantages over the standard biometric systems through some generalized standards and guidelines acquired from the literature. We also proposed a highly secure method for cancelable biometrics using a non-invertible function based on Discrete Cosine Transformation (DCT) and Huffman encoding. We tested and evaluated the proposed novel method for 50 users and achieved good results

    Protection of privacy in biometric data

    Full text link
    Biometrics is commonly used in many automated veri cation systems offering several advantages over traditional veri cation methods. Since biometric features are associated with individuals, their leakage will violate individuals\u27 privacy, which can cause serious and continued problems as the biometric data from a person are irreplaceable. To protect the biometric data containing privacy information, a number of privacy-preserving biometric schemes (PPBSs) have been developed over the last decade, but they have various drawbacks. The aim of this paper is to provide a comprehensive overview of the existing PPBSs and give guidance for future privacy-preserving biometric research. In particular, we explain the functional mechanisms of popular PPBSs and present the state-of-the-art privacy-preserving biometric methods based on these mechanisms. Furthermore, we discuss the drawbacks of the existing PPBSs and point out the challenges and future research directions in PPBSs

    Composite Fixed-Length Ordered Features for Palmprint Template Protection with Diminished Performance Loss

    Full text link
    Palmprint recognition has become more and more popular due to its advantages over other biometric modalities such as fingerprint, in that it is larger in area, richer in information and able to work at a distance. However, the issue of palmprint privacy and security (especially palmprint template protection) remains under-studied. Among the very few research works, most of them only use the directional and orientation features of the palmprint with transformation processing, yielding unsatisfactory protection and identification performance. Thus, this paper proposes a palmprint template protection-oriented operator that has a fixed length and is ordered in nature, by fusing point features and orientation features. Firstly, double orientations are extracted with more accuracy based on MFRAT. Then key points of SURF are extracted and converted to be fixed-length and ordered features. Finally, composite features that fuse up the double orientations and SURF points are transformed using the irreversible transformation of IOM to generate the revocable palmprint template. Experiments show that the EER after irreversible transformation on the PolyU and CASIA databases are 0.17% and 0.19% respectively, and the absolute precision loss is 0.08% and 0.07%, respectively, which proves the advantage of our method

    A cancelable iris- and steganography-based user authentication system for the Internet of Things

    Get PDF
    Remote user authentication for Internet of Things (IoT) devices is critical to IoT security, as it helps prevent unauthorized access to IoT networks. Biometrics is an appealing authentication technique due to its advantages over traditional password-based authentication. However, the protection of biometric data itself is also important, as original biometric data cannot be replaced or reissued if compromised. In this paper, we propose a cancelable iris- and steganography-based user authentication system to provide user authentication and secure the original iris data. Most of the existing cancelable iris biometric systems need a user-specific key to guide feature transformation, e.g., permutation or random projection, which is also known as key-dependent transformation. One issue associated with key-dependent transformations is that if the user-specific key is compromised, some useful information can be leaked and exploited by adversaries to restore the original iris feature data. To mitigate this risk, the proposed scheme enhances system security by integrating an effective information-hiding technique-steganography. By concealing the user-specific key, the threat of key exposure-related attacks, e.g., attacks via record multiplicity, can be defused, thus heightening the overall system security and complementing the protection offered by cancelable biometric techniques
    • ā€¦
    corecore