34,547 research outputs found

    Covering t-element Sets by Partitions

    Get PDF
    Partitions of a set V form a t-cover if each t-element subset is covered by some block of some partitions. The rank of a t-cover is the size of the largest block appearing. What is the minimum rank of a t-cover of an n-element set, consisting of r partitions? The main result says that it is at least n/q, where q is the smallest integer satisfying r ⩽ qt−1 + qt−2 + ⋯ + q + 1

    Orientation-Constrained Rectangular Layouts

    Full text link
    We construct partitions of rectangles into smaller rectangles from an input consisting of a planar dual graph of the layout together with restrictions on the orientations of edges and junctions of the layout. Such an orientation-constrained layout, if it exists, may be constructed in polynomial time, and all orientation-constrained layouts may be listed in polynomial time per layout.Comment: To appear at Algorithms and Data Structures Symposium, Banff, Canada, August 2009. 12 pages, 5 figure

    Covering matroid

    Full text link
    In this paper, we propose a new type of matroids, namely covering matroids, and investigate the connections with the second type of covering-based rough sets and some existing special matroids. Firstly, as an extension of partitions, coverings are more natural combinatorial objects and can sometimes be more efficient to deal with problems in the real world. Through extending partitions to coverings, we propose a new type of matroids called covering matroids and prove them to be an extension of partition matroids. Secondly, since some researchers have successfully applied partition matroids to classical rough sets, we study the relationships between covering matroids and covering-based rough sets which are an extension of classical rough sets. Thirdly, in matroid theory, there are many special matroids, such as transversal matroids, partition matroids, 2-circuit matroid and partition-circuit matroids. The relationships among several special matroids and covering matroids are studied.Comment: 15 page

    Updown categories: Generating functions and universal covers

    Full text link
    A poset can be regarded as a category in which there is at most one morphism between objects, and such that at most one of Hom(c,c') and Hom(c',c) is nonempty for distinct objects c,c'. If we keep in place the latter axiom but allow for more than one morphism between objects, we have a sort of generalized poset in which there are multiplicities attached to covering relations, and possibly nontrivial automorphism groups. We call such a category an "updown category". In this paper we give a precise definition of such categories and develop a theory for them. We also give a detailed account of ten examples, including updown categories of integer partitions, integer compositions, planar rooted trees, and rooted trees.Comment: arXiv admin note: substantial text overlap with arXiv:math/040245

    Quasiorders, Tolerance Relations and Corresponding “Partitions”

    Get PDF
    The paper deals with a generalization of the notion of partition for wider classes of binary relations than equivalences: for quasiorders and tolerance relations. The counterpart of partition for the quasiorders is based on a generalization of the notion of equivalence class while it is shown that such a generalization does not work in case of tolerances. Some results from [5] are proved in a much more simple way. The third kind of “partition” corresponding to tolerances, not occurring in [5], is introduced
    corecore