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QUASIORDERS, TOLERANCE RELATIONS

AND CORRESPONDING “PARTITIONS”

Abstract

The paper deals with a generalization of the notion of partition for wider classes

of binary relations than equivalences: for quasiorders and tolerance relations.

The counterpart of partition for the quasiorders is based on a generalization of

the notion of equivalence class while it is shown that such a generalization does

not work in case of tolerances. Some results from [5] are proved in a much

more simple way. The third kind of “partition” corresponding to tolerances, not

occurring in [5], is introduced.

Keywords: partition, quasiorder, tolerance relation

1. Introduction

The purpose of the paper is to develop a little bit a theory of partitions
presented in [5]. We shall consider here the notions of corresponding “par-
titions” only for two cases: quasiorderings and tolerance relations. The
method leading to obtain the class of quasipartitions, i.e., the “partitions”
corresponding to quasiorders, applied in [5] is quite general, however it does
not work for any “well” defined class of binary relations. For example, it
cannot be applied just in case of tolerance relations, as we will show it
here. The method itself is a little bit complicated and we give up of using
it in this paper in case of quasiorderings. The results for that class of rela-
tions will be presented directly in a simpler way than in [5]. A completely
different but similarly complex way for establishing a notion of partition
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corresponding to tolerance relations was used in [5]. According to this ap-
proach, two different kinds of “partitions” for tolerances were obtained. We
shall define here one of them, containing the “partitions” called tolerance
coverings, also directly, in a simple way. As the class of all equivalence re-
lations is the intersection of two classes: quasiorders and tolerances, so the
class of ordinary partitions is the intersection of all the quasipartitions and
tolerance coverings. Moreover, a third kind of “partition” corresponding
to tolerances will be presented.

2. Quasiorders and quasipartitions

We start from an equivalent definition of quasipartition to the one intro-
duced in [5].

Definition. Let A be any set and R ⊆ P (A). The family R is called a
quasipartition of A iff

(1) for any a ∈ A there exists the least element in the poset < Ra,⊆>,
where Ra = {X ∈ R : a ∈ X},

(2) ∀X ∈ R ∃a ∈ A,X = |a|R, where for any b ∈ A, |b|R is the least
element in < Rb,⊆>. (If R is clear from a context then the notation |b| is
used.)

Notice that the condition (2) implies that for all X ∈ R, X 6= ∅, while
(1) implies that A ⊆

⋃
R. The empty set (R = ∅) is the only quasipartition

of empty set (A = ∅).
The obvious example of a quasipartition of A is any ordinary partition

of A. Given a partition R of A, for any a ∈ A, Ra = {|a|}, where |a| is the
unique element of the partition to which a belongs. Another example of a
quasipartition of A is any closure system C of A (that is a family of subsets
of A closed on any intersection) such that C = {C({a}) : a ∈ A}, where
the mapping C is the corresponding closure operation (that is, given any
X ⊆ A, C(X) =

⋂
{Y ∈ C : X ⊆ Y }). Here for each a ∈ A, |a| = C({a}).

In particular, the family of all principal filters [a) = {x ∈ A : a ≤ x}
in a complete lattice (A,≤) is a quasipartition of A. Here for any X ⊆
A, C(X) = [inf X).

Proposition 2 below shows a general form of a quasipartition. It needs
to consider the quasiorders (sometimes called preorders), that is reflexive
and transitive binary relations. The class QOrd(A) of all quasiorders
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defined on A forms a complete lattice (QOrd(A),⊆) such that for any
nonempty Θ ⊆ QOrd(A) : infΘ =

⋂
Θ and supΘ =

⋃
Θ, where for any

binary relation r ⊆ A×A, r is the transitive closure of r.
For any quasiorder ρ defined on a set A the following obvious fact is

useful.

Fact 1. ∀x, y ∈ A : xρy iff (x] ⊆ (y], where for any a ∈ A, (a] = {x ∈
A : xρa}.

Proposition 2. For any reflexive and transitive relation ρ on a set A,
the family A/ρ = {(x] : x ∈ A} is a quasipartition of A in which for each
a ∈ A, |a| = (a].

Proof. Notice that for any a ∈ A : (A/ρ)a = {(x] : aρx}. So from
reflexivity of ρ we have (a] ∈ (A/ρ)a, while from transitivity it follows that
(a] ⊆ (x] for each x ∈ A such that aρx. Hence (a] is the least element
in (A/ρ)a, that is the condition (1) of the definition of quasipartition is
satisfied. Obviously, the condition (2) follows from the very definition of
(A/ρ). �

Given a quasiorder ρ, the quasipartition A/ρ will be called a quotient
set of A with respect to the quasiorder ρ.

Now one may show that for any quasipartition R of A, the relation ρR
defined on A by

xρRy iff Ry ⊆ Rx iff ∀X ∈ R(y ∈ X ⇒ x ∈ X),

is reflexive and transitive. The relation ρR will be called a quasiorder
determined by the quasipartition R.

Lemma 3. For any quasipartition R of A, for any x, y ∈ A:
(i) xρRy iff |x| ⊆ |y|,
(ii) (x] = |x|, where (x] = {a ∈ A : aρRx}.

Proof. For (i). (⇒) : Suppose that Ry ⊆ Rx. Then |y| ∈ Rx, therefore
|x| ⊆ |y|.

(⇐): Assume that |x| ⊆ |y| and choose a Z ∈ Ry. So Z ∈ R and
|y| ⊆ Z. Hence and from the assumption it follows that |x| ⊆ Z, that is
x ∈ Z and finally Z ∈ Rx.

For (ii). (⊆): Let a ∈ (x]. Then |a| ⊆ |x| by (i) so a ∈ |x|.
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(⊇) : Let a ∈ |x|. Then |x| ∈ Ra, therefore |a| ⊆ |x| which implies that
a ∈ (x] by (i). �

Lemma 4. Any quasiorder ρ on a set A is determined by its quotient set:
ρ = ρ(A/ρ). Any quasipartition R of a set A is the quotient set of A with
respect to the quasiorder determined by itself: R = A/ρR.

Proof. Assume that ρ is any reflexive and transitive relation on A. From
Lemma 3(i) it follows that xρ(A/ρ)y iff |x|(A/ρ) ⊆ |y|(A/ρ). However, in
view of Proposition 2 we have |a|(A/ρ) = (a], where (a] = {u ∈ A : uρa}.
Thus, xρ(A/ρ)y iff (x] ⊆ (y] iff xρy, by Fact 1.

Now, let R be any quasipartition ofA. We show that R = {(a] : a ∈ A},
where for each a ∈ A : (a] = {x ∈ A : xρRa}.

(⊆) : Let Z ∈ R. Then by condition (2) of the definition of a quasi-
partition, there exists an a ∈ A such that Z = |a|. So from Lemma 3(ii) it
follows that Z = (a].

(⊇): Due to Lemma 3(ii), any set (a] ∈ A/ρR is the least element in
Ra, so it belongs to R. �

Definition. For any quasipartitions R1 and R2 of a set A, we say that R1

is a refinement of R2, in symbols, R1 ≤ R2 iff for all a ∈ A, |a|R1
⊆ |a|R2

.

It is easy to show that the relation ≤ is a partial ordering on the family
QPart(A) of all quasipartitions of A.

Proposition 5. The mapping φ : QOrd(A) −→ QPart(A) defined by
φ(ρ) = A/ρ, is an isomorphism of the complete lattices (QOrd(A),⊆),
(QPart(A),≤).

Proof. Consider the function ψ : QPart(A) −→ QOrd(A) defined
by ψ(R) = ρR. Then, according to Lemma 4, (φ ◦ ψ)(ρ) = ψ(φ(ρ)) =
ψ(A/ρ) = ρ(A/ρ) = ρ and (ψ ◦ φ)(R) = φ(ψ(R)) = φ(ρR) = A/ρR = R.
This proves that φ is a bijection. Now one needs to prove that for all
ρ1, ρ2 ∈ QOrd(A) : ρ1 ⊆ ρ2 iff A/ρ1 ≤ A/ρ2.

(⇒): Assume that ρ1 ⊆ ρ2. Then obviously, for any a ∈ A, (a]ρ1
⊆

(a]ρ2
, so A/ρ1 ≤ A/ρ2 due to Proposition 2.

(⇐): Assume that A/ρ1 ≤ A/ρ2 and let xρ1y. Then x ∈ (y]ρ1
. From

the assumption and Proposition 2 it follows that (y]ρ1
⊆ (y]ρ2

, therefore
x ∈ (y]ρ2

, so xρ2y. �
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Now we may formulate a counterpart of the well-known fact for equiv-
alence relations.

Proposition 6. Let (B,≤) be any poset, A be any set and f : A −→ B
be any mapping from A onto B. Then

(1) a relation ρ, defined on A by aρb iff f(a) ≤ f(b), is a quasiorder,
(2) a mapping g : A/ρ −→ B of the form g((a]) = f(a) is well defined

and is an isomorphism of the quasipartition (A/ρ,⊆) ordered by inclusion
and the poset (B,≤),

(3) f = kρ ◦ g, where the mapping kρ : A −→ A/ρ is defined by
kρ(a) = (a].

Proof. We show only condition (2). Suppose that (a] = (b]. Then by Fact
1, aρb and bρa, therefore f(a) = f(b), that is the mapping g is well defined.
In order to show that g is 1-1 assume that g((a]) = g((b]). So f(a) = f(b)
and hence aρb and bρa, thus (a] = (b] due to Fact 1. Furthermore, g is
onto for f is onto. Finally, the preservation of the suitable orderings by
the map g follows: (a] ⊆ (b] iff aρb iff f(a) ≤ f(b) iff g((a]) ≤ g((b]). �

In the case of equivalence relations, not only any mapping f from a set
A to a set B defines an equivalence relation θ on A (aθb iff f(a) = f(b)) but
also conversely, any equivalence relation θ on A is induced by a mapping:
aθb iff kθ(a) = kθ(b). The analogous fact which is simply a generalization
of that one, holds for quasiorders. Namely, not only any mapping from a
set to a poset defines a quasiorder (Proposition 6(1)) but also conversely,
any quasiorder ρ on a set A is induced by a mapping from A to a poset:

for any a, b ∈ A, aρb iff kρ(a) ⊆ kρ(b),

due to Fact 1. The last statement is well-known in case a quasiorder ρ is a
partial ordering ≤. Then it simply expresses the condition of preservation
of partial orderings by isomorphism k≤ in the representation theorem for
posets saying that a poset (A,≤) is isomorphic with the poset (A/≤,⊆)
(one may derive this theorem from Proposition 6(2) in case (B,≤) = (A,≤)
and f is the identity function of A). This representation theorem may be
a little bit generalized in the following way.

Proposition 7. Let ρ ∈ QOrd(A). Then ρ is a partial ordering on A iff
kρ is an isomorphism of the relational systems (A, ρ), (A/ρ,⊆).
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Proof. (⇒): This implication is the representation theorem.
(⇐): It is enough to assume that kρ is 1-1. Suppose that aρb and bρa.
Then, according to Fact 1, (a] = (b] so kρ(a) = kρ(b) and finally, a = b. �

3. Tolerance relations and tolerance coverings

In case of tolerance relations the role of a partition of a set A on which the
relation is defined, is played by a family of subsets of A that will be called
tolerance covering of A (the same family but defined in other way, is called
τ -covering in [1] and [8], comp. also [5]).

Definition. Given a set A, any family S of subsets of A satisfying the
following conditions

(1) S is an antichain in the poset (℘(A),⊆) of all subsets of A,
(2) ∀Z ⊆ A(∀x, y ∈ Z ∃X ∈ S(x ∈ X & y ∈ X) ⇒ ∃X ∈ S, Z ⊆ X),
(3)

⋃
S = A,

will be called a tolerance covering of the set A.

Let Σ ⊆ ℘(℘(A)) be the set of all tolerance coverings of A. One may
equip the set Σ with the partial ordering ≤ defined by S1 ≤ S2 iff ∀X ∈
S1∃Y ∈ S2, X ⊆ Y .

Notice that any partition of A that is, a family S of nonempty pairwise
disjoint subsets of A, fulfilling the condition (3), is a tolerance covering
of A.

By a tolerance relation on A we mean any reflexive and symmetric
relation defined on A ([7], cf. [6] to discover the significance of tolerances).
Let T be the family of all tolerance relations defined on A. Obviously, the
poset (T ,⊆) is a complete lattice such that for any T ⊆ T , supT =

⋃
T

and inf T =
⋂
T if T 6= ∅ (inf ∅ = A2).

In the sequel, the following simple general fact dealing with any binary
relation will be useful.

Fact 8. Given a binary relation ρ defined on a set A consider the family
{Z ⊆ A : Z2 ⊆ ρ} ordered by inclusion. Then any element of the family is
included in a maximal element of the family.

Proof. By application of Kuratowski-Zorn lemma. �
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For any binary relation ρ defined on a set A let Max(ρ) be the family
of all the maximal elements in the poset ({Z ⊆ A : Z2 ⊆ ρ},⊆).

Consider the following two mappings φ : T −→ ℘(℘(A)), ψ : Σ −→
℘(A2). For each ρ ∈ T , φ(ρ) = Max(ρ) and for any S ∈ Σ, ψ(S) =⋃
{X2 : X ∈ S}.

Lemma 9. For each tolerance relation ρ on A, φ(ρ) ∈ Σ and for each
tolerance covering S of A, ψ(S) ∈ T .

Proof. Let ρ be a tolerance relation on A. Then condition (1) of the
definition of a tolerance covering is satisfied by Max(ρ) in an obvious way.
In order to show (2) suppose that for a given Z ⊆ A for any elements
x, y ∈ Z there is an X ∈ Max(ρ) such that x, y ∈ X. Now take any
a, b ∈ Z into consideration. Then {a, b}2 ⊆ X2 ⊆ ρ, for some X ∈Max(ρ)
so (a, b) ∈ ρ. In this way Z2 ⊆ ρ, thus there exists an X ∈ Max(ρ) such
that Z ⊆ X due to Fact 8. Now, the condition (3) is satisfied due to
reflexivity of ρ and Fact 8. Finally, Max(ρ) is a tolerance covering of A.
The second part of lemma is obvious. �

Lemma 10. For each tolerance relation ρ on A, ψ(φ(ρ)) = ρ that is, ρ =⋃
{X2 : X ∈Max(ρ)}, and for any tolerance covering S of A, φ(ψ(S)) = S

that is, S = Max(
⋃
{X2 : X ∈ S}).

Proof. First we show that given a tolerance relation ρ, for any a, b ∈
A, (a, b) ∈ ρ iff a, b ∈ X for some X ∈ Max(ρ). Given a, b ∈ A the
implication (⇐) is obvious and the inverse one follows from Fact 8. Now
we show the second part of the lemma.

(⊇): Let Z be a maximal set such that Z2 ⊆
⋃
{Y 2 : Y ∈ S}. There-

fore, for any a, b ∈ Z there is a Y ∈ S such that a ∈ Y & b ∈ Y . Hence and
from (2) it follows that Z ⊆ X for some X ∈ S. Since X2 ⊆

⋃
{Y 2 : Y ∈ S}

so Z = X due to maximality of Z. Finally, Z ∈ S.
(⊆): Let Z ∈ S. Then it is obvious that Z2 ⊆

⋃
{Y 2 : Y ∈ S}.

In order to show that Z is a maximal element in the family {X ⊆ A :
X2 ⊆

⋃
{Y 2 : Y ∈ S}} suppose conversely that Z ⊆ X0, Z 6= X0 and

X2
0 ⊆

⋃
{Y 2 : Y ∈ S}. Hence and from (2) it follows that X0 ⊆ Y0 for

some Y0 ∈ S. Thus, Z ⊆ Y0 and Z 6= Y0 which is impossible for S is an
antichain. �
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It is seen that any tolerance relation ρ is completely determined by the
family of sets Max(ρ). Furthermore, any tolerance covering of the set A is
uniquely determined by corresponding tolerance relation.

Lemma 11. For any tolerance relations ρ1, ρ2, ρ1 ⊆ ρ2 iff φ(ρ1) ≤ φ(ρ2).

Proof. (⇒): Let ρ1 ⊆ ρ2. We should show that for any X ∈ Max(ρ1)
there is a Y ∈ Max(ρ2) such that X ⊆ Y . However this is obvious since
when X2 ⊆ ρ1, then X2 ⊆ ρ2 so X is contained in some Y ∈Max(ρ2) due
to Fact 8.

(⇐): Assume that for any X ∈Max(ρ1) there is a Y ∈Max(ρ2) such
that X ⊆ Y . Let (x, y) ∈ ρ1. Then {x, y}2 ⊆ ρ1. Hence and from Fact 8 it
follows that {x, y} ⊆ X for some X ∈ Max(ρ1). So from the assumption
we have {x, y} ⊆ Y for some Y ∈Max(ρ2) that is, (x, y) ∈ ρ2. �

Corollary 12. The complete lattice (T ,⊆) of all tolerance relations
defined on a set A and the complete lattice (Σ,≤) of all tolerance coverings
of A are isomorphic.

Proof. Obvious due to Lemmas 10 and 11. �

As we see, the role of partition corresponding to a given tolerance
relation ρ defined on A is played by the family Max(ρ) of all maximal
subsets X of A such that X2 ⊆ ρ. In general, this family does not coincide
with the family A/ρ of “tolerance” classes of ρ : {(x] : x ∈ A}, where for
any x ∈ A, (x] = {y ∈ A : (y, x) ∈ ρ} (in several papers, e.g., [3], [4], the
elements from Max(ρ) are just called tolerance classes while in the others,
for example [2], these elements are said to be blocks of the tolerance ρ). The
connections between both families are given in the following proposition.

Proposition 13. Let ρ be any tolerance relation defined on a set A. Then
(1) for each subset X of A the following conditions are equivalent:

(i) X ∈Max(ρ),
(ii) ∀y ∈ A (y ∈ X iff ∀x ∈ X, (y, x) ∈ ρ),
(iii) X =

⋂
{(x] : x ∈ X},

(2) for any a ∈ A, (a] =
⋃
{X ∈Max(ρ) : a ∈ X}.

Proof. For (1). We show only that (i) ⇔ (ii) for (iii) is a notation
variant of (ii).
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(i) ⇒ (ii): Assume (i) and take any y ∈ A. Then the implication
y ∈ X ⇒ ∀x ∈ X, (y, x) ∈ ρ is obvious due to (i). In order to show the
inverse one suppose that for all x ∈ X, (y, x) ∈ ρ but y 6∈ X. Hence from
(i) it follows that (X ∪ {y})2 ⊆ ρ which implies, contrary to (i) that X is
not maximal in the family {Y ⊆ A : Y 2 ⊆ ρ}.

(ii) ⇒ (i): Assume (ii). Then the fact X2 ⊆ ρ follows directly. In
order to prove that X is maximal suppose that X ⊆ Y and Y 2 ⊆ ρ for
some Y ⊆ A. Consider any a ∈ Y . Then for all x ∈ X, (a, x) ∈ ρ so a ∈ X
due to (ii). Thus Y ⊆ X and finally X = Y .

For (2). Consider any a ∈ A. Then applying Fact 8 we have b ∈ (a] iff
bρa iff {a, b}2 ⊆ ρ iff there is an X ∈ Max(ρ) such that {a, b} ⊆ X iff
b ∈

⋃
{X ∈Max(ρ) : a ∈ X}. �

Due to condition (2) of Proposition 13, one may show that given a
tolerance relation ρ on A, Max(ρ) = A/ρ iff ρ is an equivalence relation
of A (notice that the assumption Max(ρ) = A/ρ and (2) of Proposition 13
imply that for any a ∈ A, {X ∈Max(ρ) : a ∈ X} = {(a]}).

In general, there is no an isomorphism from the complete lattice (T ,⊆)
to a poset composed of the quotient sets A/ρ, ρ ∈ T . The reason consists in
that the mapping T ∋ ρ 7−→ A/ρ is not one-to-one. This fact holds for any
set A with cardinality ≥ 4. To show it consider the different four elements
a, b, c, d ∈ A and an equivalence relation ρ on A such that {a, b, c, d}2 ⊆ ρ.
Next consider the following tolerance relations

ρ1 = ρ− {(a, b), (b, a), (c, d), (d, c)},

ρ2 = ρ− {(a, c), (c, a), (b, d), (d, b)}.

Then we have

(a]ρ1
= (a]ρ − {b} = (d]ρ2

,

(b]ρ1
= (b]ρ − {a} = (c]ρ2

,

(c]ρ1
= (c]ρ − {d} = (b]ρ2

,

(d]ρ1
= (d]ρ − {c} = (a]ρ2

and

(x]ρ1
= (x]ρ = (x]ρ2

for any x ∈ A− {a, b, c, d}.

So A/ρ1 = A/ρ2, however, ρ1 6= ρ2. It is convenient to illustrate the
relations ρ, ρ1, ρ2 for example in the form of the following graphs.
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It would be interesting to mention that in case the cardinality of A is
3, let us say, A = {a, b, c}, the mapping T ∋ ρ 7−→ A/ρ is one-to-one,
however it differs from the isomorphism T ∋ ρ 7−→Max(ρ). On the figure
below the lattice of all tolerances of A is presented.
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θ1 = {(a, b), (b, a)} ∪ idA
θ2 = {(a, c), (c, a)} ∪ idA
θ3 = {(b, c), (c, b)} ∪ idA
τ1 = {(a, b), (b, a), (a, c), (c, a)} ∪ idA
τ2 = {(a, b), (b, a), (b, c), (c, b)} ∪ idA
τ3 = {(a, c), (c, a), (b, c), (c, b)} ∪ idA

idA = {(a, a), (b, b), (c, c)}

• idAHHHHHH

������

• τ3HHHHHH

•θ2HHHHHH

������• τ2

•A2

•θ1������• τ1������

•θ3HHHHHH

Here A/θi = Max(θi), i = 1, 2, 3, A/idA = Max(idA), A/A2 =
Max(A2) and A/τi = Max(τi) ∪ {A}, i = 1, 2, 3.

Now we will show that any tolerance relation on a set A is defined by a
mapping from A to a semilattice with a least element. This is a counterpart
of the fact that any quasiorder on A is defined by a mapping from A to
a poset. So let (B,∧, 0) be a (lower) semilattice with zero. Consider any
mapping f : A −→ B − {0}. Then the binary relation ρf defined on A by

(x, y) ∈ ρf iff f(x) ∧ f(y) 6= 0,

is a tolerance relation on A. Conversely, we have

Proposition 14. For any tolerance relation ρ defined on a set A there is
a similattice (B,∧, 0) and a mapping f : A −→ B−{0} such that ρ = ρf .

Proof. Suppose that ρ is any tolerance relation on A. Consider the
semilattice (℘(℘(A)),∩, ∅) and the mapping fρ : A −→ ℘(℘(A)) defined by
fρ(a) = {X ∈ Max(ρ) : a ∈ X}. Obviously, for any a ∈ A there is an
X ∈ Max(ρ) such that a ∈ X (due to Fact 8 or Lemma 10) so fρ(a) 6= ∅.
Now notice that the following four conditions are equivalent (first two due
to Lemma 10):

(a, b) ∈ ρ,
there is an X ∈Max(ρ) such that a, b ∈ X,
{X ∈Max(ρ) : a ∈ X} ∩ {X ∈Max(ρ) : b ∈ X} 6= ∅,
fρ(a) ∩ fρ(b) 6= ∅.

Finally, ρ = ρf . �
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To the end let us consider another possible counterpart of partition
corresponding to tolerance relation. Consider the class ℘(℘(A)−{∅}) of the
all families R ⊆ ℘(A) such that ∅ 6∈ R. In the next lemma we assume that
≤ is any binary relation defined on ℘(℘(A) − {∅}) satisfying the following
condition:

(≤) for any R,S ⊆ ℘(A) − {∅}, R ≤ S iff for each a ∈ A, Ra ≤ Sa,

where, as before, given R ⊆ ℘(A), Ra = {X ∈ R : a ∈ X}. For exam-
ple, the ordinary set inclusion fulfils the condition (≤). Also, the relation
defined by R ≤ S iff ∀X ∈ R∃Y ∈ S, X ⊆ Y .

Lemma 15. Let R ⊆ ℘(℘(A)−{∅}) be such that the relation ≤ restricted to
R is a partial ordering. Then the relation ⊑ defined on the class {{Ra : a ∈
A} : R ∈ R} by {Ra : a ∈ A} ⊑ {Sa : a ∈ A} iff for all a ∈ A, Ra ≤ Sa,
is also a partial ordering and the mapping Φ : R −→ {{Ra : a ∈ A} :
R ∈ R} defined by Φ(R) = {Ra : a ∈ A} is an isomorphism of the posets
(R,≤), {{Ra : a ∈ A} : R ∈ R},⊑).

Proof. First we show that Φ is one-to-one. So suppose that {Ra : a ∈
A} = {Sa : a ∈ A} for R,S ∈ R. In order to show the inclusion R ⊆ S
assume that X ∈ R. Then X ∈ Ra for some a ∈ A since X 6= ∅. Thus
from the assumption it follows that X ∈ Sb for some b ∈ A. So X ∈ S.
The inverse inclusion is proved in the same way. Finally, R = S. Now
suppose that the relation ≤ restricted to R is a partial ordering. In order
to show the reflexivity of ⊑ assume that {Ra : a ∈ A} = {Sa : a ∈ A}
for some R,S ∈ R. Then R = S as it has been just shown so R ≤ S
and consequently {Ra : a ∈ A} ⊑ {Sa : a ∈ A} by definition of ⊑ and
the condition (≤). The transitivity and antisymmetry of ⊑ follow from
the definition of ⊑ and (≤) immediately. Finally, the condition R ≤ S iff
{Ra : a ∈ A} ⊑ {Sa : a ∈ A} for any R,S ∈ R, follows also by definition of
⊑ and (≤). �

Now, put R = Σ = {Max(ρ) : ρ ∈ T } and for any R,S ⊆ ℘(A) −
{∅}, R ≤ S iff ∀X ∈ R ∃Y ∈ S, X ⊆ Y . Then the required condition
(≤) is satisfied:



Quasiorders, Tolerance Relations and Corresponding “Partitions” 77

Max(ρ1) ≤Max(ρ2) iff for each a ∈ A,Max(ρ1)a ≤Max(ρ2)a

and ≤ is a partial ordering on Σ. So using the map fρ from the proof of
Proposition 14 and applying Lemma 15 and Corollary 12 one may state
the following corollary.

Corollary 16. The mapping Φ assigning to each tolerance covering
Max(ρ) the family {fρ(a) : a ∈ A} where for each a ∈ A, fρ(a) = {X ∈
Max(ρ) : a ∈ X} is an isomorphism of the posets ({Max(ρ) : ρ ∈ T },≤),
{{fρ(a) : a ∈ A} : ρ ∈ T },⊑). Consequently, the complete lattices (T ,⊆),
({{fρ(a) : a ∈ A} : ρ ∈ T },⊑) are isomorphic.

4. Discussions

The counterpart of partition for a quasiorder ρ defined on a set A is a
natural extension of the ordinary partition associated with an equivalence
relation. Simply it is the set A/ρ of all “equivalence” classes (a]ρ = {x ∈
A : xρa}, a ∈ A. While the main counterpart of partition (established in
the paper) for a tolerance ρ defined on A is the set Max(ρ) of all maximal
subsets X of A such that X2 ⊆ ρ. Both sets, A/ρ and Max(ρ), coincide
iff ρ is an equivalence relation. The reason that the quotient sets A/ρ, ρ
is a tolerance on A, do not form “partitions” of A is that the correspon-
dence ρ 7−→ A/ρ is not one-to-one whenever the cardinality of A is greater
than 3. This correspondence is obviouly one-to-one when it is restricted to
equivalence relations on A. In case it concerns the class of all tolerances,
it is one-to-one iff A is the cardinality less than 4. So, in particular, one
may treat the classes {a, b, c}/ρ, ρ is a tolerance on 3-element set {a, b, c},
as the counterparts of partitions. In case ρ is a tolerance not being an
equivalence, the set {a, b, c}/ρ is not a partition of {a, b, c} in the usual
sense.

In the paper one may also find another kind of “partitions” for toler-
ances (cf. Corollary 16). Namely, given a tolerance relation ρ defined on
A, the elements of such a “partition” associated with ρ are the families
{X ∈ Max(ρ) : a ∈ X}, a ∈ A. In case ρ is an equivalence relation, such
a “partition” is of the form: {{[a]} : a ∈ A}, where given a ∈ A, [a] is the
equivalence class determined by a. However, one could have some justified
doubts to call such a family a counterpart of partition of A. Most likely a
counterpart of partition of a given set should be a family of its subsets.
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