34,575 research outputs found

    Algorithmic aspects of covering supermodular functions under matroid constraints

    Get PDF
    A common generalization of earlier results on arborescence packing and the covering of intersecting bi-set families was presented by the authors in [Bérczi, Király, Kobayashi, 2013]. The present paper investigates the algorithmic aspects of that result and gives a polynomial-time algorithm for the corresponding optimization problem

    Game saturation of intersecting families

    Get PDF
    We consider the following combinatorial game: two players, Fast and Slow, claim kk-element subsets of [n]={1,2,...,n}[n]=\{1,2,...,n\} alternately, one at each turn, such that both players are allowed to pick sets that intersect all previously claimed subsets. The game ends when there does not exist any unclaimed kk-subset that meets all already claimed sets. The score of the game is the number of sets claimed by the two players, the aim of Fast is to keep the score as low as possible, while the aim of Slow is to postpone the game's end as long as possible. The game saturation number is the score of the game when both players play according to an optimal strategy. To be precise we have to distinguish two cases depending on which player takes the first move. Let gsatF(In,k)gsat_F(\mathbb{I}_{n,k}) and gsatS(In,k)gsat_S(\mathbb{I}_{n,k}) denote the score of the saturation game when both players play according to an optimal strategy and the game starts with Fast's or Slow's move, respectively. We prove that Ωk(nk/35)gsatF(In,k),gsatS(In,k)Ok(nkk/2)\Omega_k(n^{k/3-5}) \le gsat_F(\mathbb{I}_{n,k}),gsat_S(\mathbb{I}_{n,k}) \le O_k(n^{k-\sqrt{k}/2}) holds

    Some New Bounds For Cover-Free Families Through Biclique Cover

    Get PDF
    An (r,w;d)(r,w;d) cover-free family (CFF)(CFF) is a family of subsets of a finite set such that the intersection of any rr members of the family contains at least dd elements that are not in the union of any other ww members. The minimum number of elements for which there exists an (r,w;d)CFF(r,w;d)-CFF with tt blocks is denoted by N((r,w;d),t)N((r,w;d),t). In this paper, we show that the value of N((r,w;d),t)N((r,w;d),t) is equal to the dd-biclique covering number of the bipartite graph It(r,w)I_t(r,w) whose vertices are all ww- and rr-subsets of a tt-element set, where a ww-subset is adjacent to an rr-subset if their intersection is empty. Next, we introduce some new bounds for N((r,w;d),t)N((r,w;d),t). For instance, we show that for rwr\geq w and r2r\geq 2 N((r,w;1),t)c(r+ww+1)+(r+w1w+1)+3(r+w4w2)logrlog(tw+1), N((r,w;1),t) \geq c{{r+w\choose w+1}+{r+w-1 \choose w+1}+ 3 {r+w-4 \choose w-2} \over \log r} \log (t-w+1), where cc is a constant satisfies the well-known bound N((r,1;1),t)cr2logrlogtN((r,1;1),t)\geq c\frac{r^2}{\log r}\log t. Also, we determine the exact value of N((r,w;d),t)N((r,w;d),t) for some values of dd. Finally, we show that N((1,1;d),4d1)=4d1N((1,1;d),4d-1)=4d-1 whenever there exists a Hadamard matrix of order 4d

    On the number of maximal intersecting k-uniform families and further applications of Tuza's set pair method

    Get PDF
    We study the function M(n,k)M(n,k) which denotes the number of maximal kk-uniform intersecting families F([n]k)F\subseteq \binom{[n]}{k}. Improving a bound of Balogh at al. on M(n,k)M(n,k), we determine the order of magnitude of logM(n,k)\log M(n,k) by proving that for any fixed kk, M(n,k)=nΘ((2kk))M(n,k) =n^{\Theta(\binom{2k}{k})} holds. Our proof is based on Tuza's set pair approach. The main idea is to bound the size of the largest possible point set of a cross-intersecting system. We also introduce and investigate some related functions and parameters.Comment: 11 page
    corecore