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a b s t r a c t

An (r, w; d) cover-free family (CFF) is a family of subsets of a finite set X such that the
intersection of any r members of the family contains at least d elements that are not in
the union of any other w members. The minimum size of a set X for which there exists an
(r, w; d) − CFF with t blocks is denoted by N((r, w; d), t).

In this paper, we show that the value of N((r, w; d), t) is equal to the d-biclique
covering number of the bipartite graph It(r, w)whose vertices are allw- and r-subsets of a
t-element set, where a w-subset is adjacent to an r-subset if their intersection is empty.
Next, we provide some new bounds for N((r, w; d), t). In particular, we show that for
r ≥ w and r ≥ 2

N((r, w; 1), t) ≥ c

 r+w

w+1


+


r+w−1
w+1


+ 3


r+w−4
w−2


log r

log(t − w + 1),

where c is approximately 1
2 . Also, we determine the exact value of N((r, w; d), t) for t ≤

r+w+
r
w
and also for some values of d. Finally, we show thatN((1, 1; d), 4d−1) = 4d−1

if and only if there exists a Hadamard matrix of order 4d.
© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A family of sets is called an (r, w)-cover-free family if no intersection of r sets of the family are covered by a union of
any other w sets of the family. Cover-free families have been studied extensively throughout the literature due to both its
interesting structure and applications in several respects; see [11,13,16,23,31,33]. As an interesting application of cover-free
families, one can consider key predistribution scheme (KPS). In many applications we need to have a KPS in which there is a
key for every group of r users, and each such key is secure against any disjoint coalition of at most w users. We can see that
if we have an (r, w)-cover-free family then we can construct such a KPS; see [23].

The remainder of the paper is organized as follows. In Section 1, we set up notation and terminology. Section 2 is
devoted to study the connection between cover-free families and biclique cover. In Section 3, we present several new lower
bounds for N((r, w; d), t). Section 4 concerns the fractional version of biclique cover and we determine the exact value of
N((r, w; d), t) for t ≤ r + w +

r
w
and for some values of d. Finally, we show that if there exists a Hadamard matrix of order

4d, then N((1, 1; d), 4d − 1) = 4d − 1.
Throughout this paper, we only consider finite simple graphs. For a graph G, let V (G) and E(G) denote its vertex and edge

sets, respectively. By a biclique we mean a bipartite graph with vertex set (X, Y ) such that every vertex in X is adjacent to
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every vertex in Y . Note that every empty graph is a biclique. A biclique cover of a graph G is a collection of bicliques of G such
that each edge of G is in at least one of the bicliques. The number of bicliques in a minimum biclique cover of G is called the
biclique covering number of G and denoted by bc(G). This parameter of graphs was studied in the literature [1,2,14].

In this paper, we also need a generalization of the biclique cover as follows.

Definition 1. A d-biclique cover of a graph G is a collection of bicliques of G such that each edge of G is in at least d of the
bicliques. The number of bicliques in a minimum d-biclique cover of G is called the d-biclique covering number of G and
denoted by bcd(G). �

As usual, we denote by [t] the set {1, 2, . . . , t}. In this paper, by Ac wemean the complement of the set A. For 0 < w ≤ r ≤ t ,
the subset graph St(w, r) is a bipartite graph whose vertices are all w- and r-subsets of a t-element set, where a w-subset
is adjacent to an r-subset if and only if one subset is contained in the other. Some properties of this family of graphs have
been studied by several researchers; see [27]. In this paper, we consider an isomorphic version of this graph and name it
bi-intersection graph.

Definition 2. For 0 < w ≤ r ≤ t , the bi-intersection graph It(r, w) is a bipartite graph whose vertices are all w- and
r-subsets of a t-element set, where a w-subset is adjacent to an r-subset if and only if their intersection is empty. �

A set system is an ordered pair (X, B), where X is a set of elements and B is a family of subsets (called blocks) of X .
A set system can be described by an incidence matrix. Let (X, B) be a set system, where X = {x1, x2, . . . , xv} and
B = {B1, B2, . . . , Bb}. The incidence matrix of (X, B) is the b × v matrix A = (aij), where

aij =


1 if xj ∈ Bi
0 if xj ∉ Bi.

Definition 3. Let n, t, r , and w be positive integers. A set system (X, B), where |X | = n and B = {B1, . . . , Bt} is called an
(r, w) − CFF(n, t) if for any two sets of indices L,M ⊆ [t] such that L ∩ M = ∅, |L| = r , and |M| = w, we have

l∈L

Bl ⊈


m∈M

Bm. �

Stinson and Wei [30] generalized the definition of cover-free families as follows.

Definition 4. Let d, n, t, r , and w be positive integers. A set system (X, B), where |X | = n and B = {B1, . . . , Bt} is called
an (r, w; d) − CFF(n, t) if for any two sets of indices L,M ⊆ [t] such that L ∩ M = ∅, |L| = r , and |M| = w, we have


l∈L

Bl


\


m∈M

Bm

 ≥ d. �

Let N((r, w; d), t) denote the minimum number of elements in any (r, w; d)− CFF having t blocks. For convenience, we
use the notation N((r, w), t) instead of N((r, w; 1), t). Obviously, we have N((r, w; d), t) = N((w, r; d), t). Hence, unless
otherwise stated we assume that w ≤ r .

2. Biclique cover

In this section, we show that the existence of a cover-free family can result from the existence of biclique cover of bi-
intersection graph and vice versa. Our viewpoint sheds some new light on cover-free family. Using this observation, we
introduce several new bounds.

Theorem 1. Let r, w, and t be positive integers, where t ≥ r + w, then

N((r, w), t) = bc(It(r, w)).

Proof. First, consider an optimal (r, w) − CFF(n, t), i.e., n = N((r, w), t), with incidence matrix A = (aij). Assign to the jth
column of A, the set Aj as follows

Aj
def
= {i|1 ≤ i ≤ t, aij = 1}.

Now, for any 1 ≤ j ≤ n, construct a bipartite graph Gj with vertex set (Xj, Yj), where the vertices of Xj are all r-subsets of
Aj and the vertices of Yj are all w-subsets of Ac

j , i.e.,

Xj = {U|U ⊆ Aj, |U| = r} and Yj = {V |V ⊆ Ac
j , |V | = w}.
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Also, an r-subset is adjacent to a w-subset if their intersection is empty. One can see that Gj, for 1 ≤ j ≤ n, is a biclique. Let
UV be an arbitrary edge of It(r, w), where U ∩ V = ∅, |U| = r and |V | = w. In view of definition of CFF and since A is the
incidence matrix of the CFF , there is a column of A, say j, where aij = 1 if i ∈ U and aij = 0 if i ∈ V . Clearly, U ∈ Xj, V ∈ Yj,
and UV ∈ Gj. Hence, {G1,G2, . . . ,Gn} is a biclique cover of It(r, w). So bc(It(r, w)) ≤ N((r, w), t).

Conversely, assume that G1, . . . ,Gl constitute a biclique cover of It(r, w), where l = bc(It(r, w)) and Gi has as its vertex
set (Xi, Yi). LetAi be the union of sets that lie inXi. Consider the indicator vector of the setAi, for i = 1, . . . , l, and construct the
matrix Awhose ith column is the indicator vector of the set Ai. We claim that A is the incidencematrix of an (r, w)−CFF(l, t).
To see this, let U and V be two arbitrary disjoint sets of [t], where |U| = r and |V | = w. Thus, UV is an edge of the graph
It(r, w). Hence, there exists a biclique Gj, where U ∈ Xj and V ∈ Yj. Now, in view of definition of Aj, all entries corresponding
to the elements of U and V in the jth column are 1 and 0, respectively. So N((r, w), t) ≤ bc(It(r, w)). This completes the
proof. �

By the same argument we obtain the following theorem.

Theorem 2. Let r, w, d, and t be positive integers, where t ≥ r + w, then

N((r, w; d), t) = bcd(It(r, w)).

A weakly separating system on [t] is a collection {(X1, Y1), . . . , (Xn, Yn)} of disjoint pairs of subsets of [t] such that for every
i, j ∈ [t] with i ≠ j there is a kwith either i ∈ Xk and j ∈ Yk or i ∈ Yk and j ∈ Xk. Similarly, a strongly separating system on [t]
is a collection {(X1, Y1), . . . , (Xn, Yn)} of disjoint pairs of subsets of [t] such that for every ordered pair (i, j)with 1 ≤ i, j ≤ t
and i ≠ j, there is a k ∈ [n] with i ∈ Xk and j ∈ Yk. The study of separating systems was started by Rényi [25] in 1961.
Other researchers have studied the properties of separating systems in the literature; see [5,6,24,28]. One can construct a
(1, 1) − CFF(n, t) from a strongly separating system on [t] of size n and vice versa (see the proof of Theorem 1). So if we
denote by R(t), the minimum size of a strongly separating system, then N((1, 1), t) = R(t). Let {(X1, Y1), . . . , (Xn, Yn)}
be a weakly separating system. The complete bipartite graphs with vertex classes Xi and Yi cover the edges of the complete
graph Kt with vertex set [t]. Also, if the family {G1, . . . ,Gn} is a biclique cover of Kt , whereGi has as its vertex set (Xi, Yi), then
{(X1, Y1), . . . , (Xn, Yn)} is a weakly separating system. So if we denote by s(t), the size of the minimum weakly separating
system, then s(t) = bc(Kt). Also, in [2], it was proved that R(t) = bc(K−

t,t), where K−

t,t is the complete bipartite graph Kt,t
with a perfect matching removed. The exact value of R(t) was determined by Sperner.

Theorem A ([29]). If C = min{c |


c

⌊
c
2 ⌋


≥ t}, then C = R(t).

Theorem A implies

R(t) = log2 t +
1
2
log2 log2 t + O(1).

It is simple to see that bc(G) ≥ m(G), where m(G) is the maximum size of induced matchings of G. Let F = {(Ai, Bi)}
h
i=1 be

a family of pairs of subsets of an arbitrary set. The family F is called an (r, w)-system if for all 1 ≤ i ≤ h, |Ai| = r, |Bi| =

w, Ai ∩ Bi = ∅, and for all distinct i, j with 1 ≤ i, j ≤ h, Ai ∩ Bj ≠ ∅. Bollobás [4] proved that the maximum size of an
(r, w)-system is equal to

 r+w

r


. Obviously,m(It(r, w)) is the maximum size of an (r, w)-system, so N((r, w), t) ≥

 r+w

r


.

3. Bounds

In this section, we introduce several bounds for N((r, w; d), t). Engel [11], using the fractional matching and fractional
cover of ordered interval hypergraph, obtained the following bounds.

Theorem B ([11]). For any positive integers r, w, and t, where r ≥ w and t ≥ r + w, we have

N((r, w), t) ≥


r + w − 1

r


R(t − r − w + 2).

Theorem C ([11]). For any ϵ > 0, it holds that

N((r, w), tϵ) ≥ (1 − ϵ)
(w + r − 2)w+r−2

(w − 1)w−1(r − 1)r−1
R(tϵ − r − w + 2),

for all sufficiently large tϵ .

Here is the best known lower bound for N((r, 1), t).

Theorem D ([8,15,26]). Let r ≥ 2 and t ≥ r + 1 be positive integers. Then

N((r, 1), t) ≥ Cr,t
r2

log r
log t,

where limr+t→∞ Cr,t = c for some constant c.
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Several proofs have been presented for the preceding theorem. In [8,15,26], it was shown that c is approximately 1
2 ,

1
4 , and

1
8 , respectively.

Lemma A ([31]). For any positive integers r, w, and t, where t ≥ r + w, we have

N((r, w), t) ≥ N((r, w − 1), t − 1) + N((r − 1, w), t − 1).

Stinson et al. [31], using LemmaA and TheoremD, improved the bounds of Engel in some cases and obtained the following
bounds.

Theorem E ([31]). For any positive integers r, w, and t, where t ≥ r + w, we have

N((r, w), t) ≥ 2c


w+r
r


log(w + r)

log t,

where c is a constant satisfies Theorem D.

Theorem F ([31]). For any positive integers r, w ≥ 1, there exists an integer tr,w such that for all t > tr,w

N((r, w), t) ≥ 0.7c(r + w)


w+r
r


log


w+r
r

 log t,
where c is a constant satisfies Theorem D.

In [22], it was shown tr,w ≤ max{⌊ r+w+1
2 ⌋

2
, 5}. Consider the case d = 1. The rate of (r, w) − CFF is defined by

R(r, w) = lim sup
t→∞

log t
N((r, w), t)

.

In [10], it was shown that

R(r, w) ≤ min
0<x<r

min
0<y<w

xxyyR(r − x, w − y)
(x + y)x+y

.

For a fixed w ≥ 2 and r → ∞, the previous bound gives the following lower bound.

Theorem G ([10]). For any fixed positive integer w ≥ 2 and every sufficiently large positive integers r, we have

N((r, w), t) ≥
2ew−1rw+1 log t
(w + 1)w+1 log r

.

The bound of Theorem G is better than the bound

N((r, w), t) ≥
rw+1 log t

(w + 1)! log r
,

obtained in [9], and also the bounds of Theorems E and F provided that r is sufficiently large. In [19,20], the following
recursive upper bound was proved.

Theorem H ([19,20]). Let r and w be positive integers. We have

R(r, w) ≤ min
0<x<r

min
0<y<w

R(r − x, w − y)

R(r − x, w − y) +
(x+y)x+y

xxyy

.

Theorem H improves the bound from [10] for all w and r (for a fixed w ≥ 2 and r → ∞ it also gives Theorem G). In fact,
Theorem H is currently the best known lower bound for N((r, w), t).

Here we introduce some new lower bounds for N((r, w; d), t) which improve Theorem B and also we present a lower
bound (Theorem 4) which can be considered as an improvement of Theorems E, F and G in some cases. We first prove the
following preliminary lemma which will be needed in the proof of Theorem 3.

Lemma 1. Let G be a graph and G1,G2, . . . ,Gk be some pairwise vertex disjoint subgraphs of G. Also, assume that for every four
cycle C4 of G and 1 ≤ i ≠ j ≤ k, we have E(C4) ∩ E(Gi) = ∅ or E(C4) ∩ E(Gj) = ∅. Then

bcd(G) ≥

k
i=1

bcd(Gi).

Proof. Let {H1,H2, . . . ,Hl} be an optimal d-biclique cover of G, i.e., l = bcd(G). Also, assume that H ′

i is a subgraph of
G1 ∪ G2 ∪ · · · ∪ Gk induced by Hi, i.e., E(H ′

i ) = E(G1 ∪ G2 ∪ · · · ∪ Gk) ∩ E(Hi). If H ′

i is a non-empty graph, by the assumption,
it is clear that H ′

i has exactly one non-empty connected component and this component is a biclique of exactly one of Gi’s.
Now, H ′

j ’s cover all edges of Gi’s at least d times. So bcd(G) ≥
k

i=1 bcd(Gi), as desired. �
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Before embarking on the proof of the next theorem, we need the following definition. The family F =

{(A1, B1), . . . , (Ag , Bg)} is called aweakly cross-intersecting set-pairs (resp. cross-intersecting set-pairs) of size g on a ground
set of size hwhenever all Ai’s and Bi’s are subsets of an h-set and for every i, where 1 ≤ i ≤ g, Ai and Bi are disjoint subsets,
and furthermore, for every i ≠ j, (Ai ∩ Bj)∪ (Aj ∩ Bi) ≠ ∅ (resp. (Ai ∩ Bj) ≠ ∅ and (Aj ∩ Bi) ≠ ∅). This concept is a variant of
the generalization of (r, w)-weakly cross-intersecting set-pairs which was introduced first by Tuza [32]. The weakly cross-
intersecting set-pairs F = {(A1, B1), . . . , (Ag , Bg)} is called an (r, w)-weakly cross-intersecting set-pairswhenever for every
1 ≤ i ≤ g, |Ai| = r and |Bi| = w. Hereafter, we adopt the convention that N((r, 0; d), t) = N((0, w; d), t) = 1.

Theorem 3. Suppose that g, h, r, w, and t are positive integers. Also, assume that F = {(A1, B1), . . . , (Ag , Bg)} is a weakly
cross-intersecting set-pairs on a ground set of size h such that for any 1 ≤ i ≤ g, |Ai| ≤ r and |Bi| ≤ w. If t ≥ max{h, r + w},
then

N((r, w; d), t) ≥

g
i=1

N((r − |Ai|, w − |Bi|; d), t − |Ai| − |Bi|).

Proof. Assume that F = {(A1, B1), . . . , (Ag , Bg)} is a weakly cross-intersecting set-pairs. For every 1 ≤ k ≤ g , construct
a bipartite graph Gk with vertex set (Xk, Yk), where the vertices of Xk are all r-subsets of [t] which contain Ak and their
intersectionswith Bk are empty. Also, the vertices of Yk are allw-subsets of the set [t]which contain Bk and their intersections
with Ak are empty, i.e.,

Xk = {U | U ⊆ [t], |U| = r, Ak ⊆ U, U ∩ Bk = ∅}

Yk = {V | V ⊆ [t], |V | = w, Bk ⊆ V , V ∩ Ak = ∅},

where a vertex U ∈ Xk is adjacent to a vertex V ∈ Yk if U ∩ V = ∅. Obviously, if |Ak| = r or |Bk| = w, then Gk is isomorphic
to a star graph. Otherwise, one can check that every Gk is isomorphic to It−|Ak|−|Bk|(r − |Ak|, w − |Bk|). Since if we delete the
elements of Ak from the vertices of Xk, every vertex is mapped to an (r − |Ak|)-subset of the set [t] \ (Ak ∪ Bk) and also if we
remove the elements of Bk from the vertices of Yk, every vertex is mapped to a (w − |Bk|)-subset of the set [t] \ (Ak ∪ Bk).
Clearly, this mapping is an isomorphism between Gk and It−|Ak|−|Bk|(r − |Ak|, w − |Bk|). Also, since F is a weakly cross-
intersecting set-pairs, Gk’s are pairwise vertex disjoint. On the other hand, for any 1 ≤ i ≠ j ≤ k, there is no four cycle C4 of
It(r, w) such that E(C4) ∩ E(Gi) ≠ ∅ and E(C4) ∩ E(Gj) ≠ ∅. So, in view of Lemma 1,

bcd(It(r, w)) ≥

h
k=1

bcd(Gk).

Hence, the result easily follows. �

Here, wemention some consequences of the above theorem. LetM be an s-subset of [t]. For any non-negative integers i and
j, where s − w ≤ i ≤ r and s − r ≤ j ≤ w, set

Fi = {(Ai, Bi) : Ai
⊆ M, |Ai

| = i, Bi
= M \ Ai

},

Ej = {(Aj, Bj) : Aj
⊆ M, |Aj

| = j, Bj
= M \ Aj

}.

It is easy to see that |Fi| =
 s
i


and |Ej| =


s
j


. Also, F = ∪s−w≤i≤r Fi (resp. E = ∪s−r≤j≤w Ej) is a weakly cross-intersecting

set-pairs. Therefore, in view of Theorem 3, the next corollary which is a generalization of Lemma A follows.

Corollary 1. For any positive integers 0 < s ≤ r + w and t ≥ r + w, it holds that
1. N((r, w; d), t) ≥


s−w≤i≤r

 s
i


N((r − i, w − s + i; d), t − s),

2. N((r, w; d), t) ≥


s−r≤j≤w


s
j


N((r − s + j, w − j; d), t − s).

Let T ((r, w); n) denote the maximum number of blocks in an (r, w) − CFF with n points. Erdős et al. [12] discussed (1, 2)-
CFFs in detail, and showed that

1.134n
≤ T ((1, 2); n) ≤ 1.25n.

The upper bound is asymptotic and for sufficiently large n is useful. Hence, for large n, N((1, 2); t) ≥
1

log(1.25) log t . If we set
s = r+w−3 in the above corollary, then the following bound can be concludedwhich can be considered as an improvement
of Theorem B.

Corollary 2. For any positive integers r and w, where r ≥ 2, it holds that

N((r, w), t) ≥


r + w − 2

r − 1


N((2, 1); t − r − w + 3) +


r + w − 3

r


+


r + w − 3

r − 3


.

In view of Theorem 3, if there exists an (i, j)-weakly cross-intersecting set-pairs, then the following corollary can be
concluded. We should mention that Engel [11] obtained a result that is similar to the following corollary.
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Corollary 3. Let i, j, r, and w be positive integers, where 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ w − 1. If there exists an (i, j)-weakly
cross-intersecting set-pairs of size g(i, j) on a ground set of cardinality h, then for any t, where t ≥ max{h, r + w}, we have

N((r, w; d), t) ≥ g(i, j)N((r − i, w − j; d), t − i − j).

By a lattice pathwemean a path on an i× j grid from (0, 0)to (i, j), where eachmove is to the right or up. Assume thatL(i, j)
is the set of lattice paths such that the path is strictly below the line y =

j
ix except at the two endpoints. Tuza [32] showed

that if f (i, j) is themaximum size of a weakly cross-intersecting set-pairs, then f (i, j) <
(i+j)i+j

iijj
. Recently, Király et al. [18], by

a charming idea and using lattice paths, presented an (i, j)-weakly cross-intersecting set-pairs of size (2i+2j−1)|L(i, j)| on
a ground set of size 2i+ 2j− 1. Unfortunately, for general (i, j), there is no explicit formula for |L(i, j)|. However, Bizley [3]

showed that for relatively prime numbers i and j, |L(i, j)| =


i+j
i


i+j . In [18], it is shown g(i, j) ≥ (2 − o(1))


i+j
i


, where

f ∈ o(1) means that limi+j→∞ f = 0.

Corollary 4. Let r, w, and t be positive integers, where t ≥ max{2r + 2w − 5, r + w}. Then

N((r, w), t) ≥ (2 − o(1))

r + w − 2

r − 1


R(t − r − w + 2).

Also, in [18], it is shown that there exists an (r − 1, r − 1)-weakly cross-intersecting set-pairs of size (2 −
1

2r−2 )


2r−2
r−1


on

a ground set of size 4r − 6.

Corollary 5. Assume that r and t are positive integers, where t ≥ max{4r − 6, 2r}. Then

N((r, r), t) ≥


2 −

1
2r − 2


2r − 2
r − 1


R(t − 2r + 2).

The following theorem improves Theorems F and G in some cases, e.g., whenever r0.50 ≪ w ≪ r0.65. Moreover, this bound
holds for any t ≥ r + w.

Theorem 4. For any positive integers r, w, and t, where t ≥ r + w, r ≥ w, and r ≥ 2, we have

N((r, w), t) ≥ c

 r+w

w+1


+


r+w−1
w+1


+ 3


r+w−4
w−2


log r

log(t − w + 1),

where c is a constant satisfies Theorem D.

Proof. We prove the assertion by induction on w. By Theorem D, the assertion holds for w = 1. Assume that the assertion
is true for every w′ where w′ < w. Obviously,

F = {(∅, {1}), ({1}, {2}), ({1, 2}, {3}), . . . , ({1, 2, . . . , r − w}, {r − w + 1}), ({1, 2, . . . , r − w + 1}, {∅})}

is a weakly cross-intersecting set-pairs. Hence, in view of Theorem 3,

N((r, w), t) ≥


r−w
i=0

N((r − i, w − 1), t − i − 1)


+ N((w − 1, w), t − r + w − 1)

=


r−w
i=0

N((r − i, w − 1), t − i − 1)


+ N((w, w − 1), t − r + w − 1).

Now by induction

N((r, w), t) ≥

r−w
i=0

c


r+w−i−1

w


+


r+w−i−2

w


+ 3


r+w−i−5

w−3


log(r − i)

log(t − w + 1 − i)

+ c


2w−1

w


+


2w−2

w


+ 3


2w−5
w−3


log(w)

log(t − r + 1).



3632 H. Hajiabolhassan, F. Moazami / Discrete Mathematics 312 (2012) 3626–3635

Since log x
log(x−1) is a decreasing function, it holds that

N((r, w), t) ≥ c
log(t − w + 1)

log r


r−w
i=0


r + w − i − 1

w


+


r + w − i − 2

w


+ 3


r + w − i − 5

w − 3



+ c
log(t − w + 1)

log r


2w − 1

w


+


2w − 2

w


+ 3


2w − 5
w − 3


≥ c

log(t − w + 1)
log r


r−w
i=0


r + w − i − 1

w


+


r + w − i − 2

w


+ 3


r + w − i − 5

w − 3



+ c
log(t − w + 1)

log r


2w − 1
w + 1


+


2w − 2
w + 1


+ 3


2w − 5
w − 2



= c

 r+w

w+1


+


r+w−1
w+1


+ 3


r+w−4
w−2


log r

log(t − w + 1). �

4. Fractional biclique cover

The next result concerns the fractional version of biclique cover. If R is the set of all bicliques of a graph G, then each
biclique cover of G can be described by a function φ : R → {0, 1} such that φ(Gi) = 1 if and only if Gi belongs to the cover.
Hence, bc(G) is the minimum of


Gi∈R φ(Gi) over all function φ : R → {0, 1} such that for any edge e of G,

Gi∈R:e∈E(Gi)

φ(Gi) ≥ 1. (1)

The fractional biclique covering number bc∗(G) is the minimum of


Gi∈R φ(Gi) over all functions φ : R → [0, 1] satisfying
(1).
Fractional graph theory is the modification of integer-valued graph parameters to take its value on non-integer values.
For more on fractional graph theory and other fractional graph parameters; see [27]. In the fractional cover, using linear
programming, it is proved that

bc∗(G) = inf
d

bcd(G)

d
= lim

d→∞

bcd(G)

d
.

Also, we have the following theorem.

Theorem I ([27]). For every non-empty edge-transitive graph G,

bc∗(G) =
|E(G)|

B(G)
,

where B(G) is the maximum number of edges among the bicliques of G.

It is in general a challenging problem to determine the exact value of N((r, w; d), t). Also, it is a hard problem to find tight
bound for N((r, w; d), t) and this problem has been studied in the literature; see [9–11,15,26,30,31,33]. It is known [11]
that N((r, w), t) =

 t
w


whenever t ≤ r + w +

r
w
. We should mention that this result was improved in [17].

Theorem 5. Let r, w, t, and d be positive integers such that t ≤ w + r +
r
w
. Then

N((r, w; d), t) = d


t
w


.

Proof. Easily, one can see that

B(It(r, w)) = max
t ′+t ′′=t


t ′

r


t ′′

w


.

Also, we have |E(It(r, w))| =
 t
r

  t−r
w


, and It(r, w) is an edge-transitive graph. Therefore, in view of Theorem I, we have

bc∗(It(r, w)) = min
t ′+t ′′=t

 t
r

  t−r
w


t ′
r

 
t ′′
w

 .
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By a straightforward calculation

bc∗(It(r, w)) = min
t ′+t ′′=t

 t
r

  t−r
w


t ′
r

 
t ′′
w

 = min
w≤m≤t−r

 t
m

 t−r−w

m−w

 .
The sequence {am =


t
m



t−r−w
m−w

 }t−r
m=w is an increasing sequence for t ≤ w + r +

r
w
. So bc∗(It(r, w)) =

 t
w


. Also, we have

bc∗(It(r, w)) ≤
bcd(It(r, w))

d
.

On the other hand, bcd(It(r, w)) ≤ d × bc(It(r, w)) and for t ≤ w + r +
r
w

we have bc(It(r, w)) =
 t

w


. So bcd(It(r, w)) =

d
 t

w


. �

For any graph G, the following inequality was proved in [21,27]

bc∗(G) ≥
bc(G)

1 + ln(B(G))
.

So we have the following corollary.

Corollary 6. For any positive integers r, w, and t, where t ≥ r + w, we have

N((r, w), t) ≤ min
w≤m≤t−r

 t
m

 t−r−w

m−w

 1 + ln


max
t ′+t ′′=t


t ′

r


t ′′

w


.

In [11], Engel proved that

N((r, w), t) ≥ min
w−1≤m≤t−r+1

 t
m


t−r−w+2
m−w+1

 (N((1, 1), t − r − w + 2)).

Hence, we have

N((r, w), t) ≥ min
w−1≤m≤t−r+1

 t
m


t−r−w+2
m−w+1

 log2(t − r − w + 2) +
1
2
log2 log(t − r − w + 2) + c


,

where c is a constant. In the next theorem, we specify the exact value of N((r, w; d), t) for some special value of d. In the
proof of the next theorem, by St we mean the permutation group of the set [t].

Theorem 6. For any positive integers r, w, t, d0, and d =
B(It (r,w))

|E(It (r,w))|
t!, where t ≥ r + w, we have

N((r, w; d0d), t) = d0(t!).

Proof. For every σ ∈ St , define the function fσ : V (It(r, w)) → V (It(r, w)) such that for every set A = {i1, i2, . . . , il} ∈

V (It(r, w)), we have fσ (A) = {σ(i1), . . . , σ (il)} (note that here l = r or l = w). Set G = {fσ | σ ∈ St}. Then G is a subgroup
of Aut(It(r, w)) and also G acts transitively on E(It(r, w)). Now it is simple to check that

bcd(It(r, w))

d
=

|E(It(r, w))|

B(It(r, w))
.

To see this, assume that K is a biclique of It(r, w), where |E(K)| = B(It(r, w)). Construct a biclique cover of It(r, w) as
follows. Set

C = {fσ (K) | σ ∈ St}.

It is readily seen that C is a biclique cover and every edge is covered with exactly d =
B(It (r,w))t!
|E(It (r,w))|

bicliques. So

bcd(It(r, w))

d
≤

|E(It(r, w))|

B(It(r, w))
.

On the other hand, by the definition of fractional biclique cover, for every graph G and every positive integer d we have
bc∗(G) ≤

bcd(G)

d . Particularly,

bc∗(It(r, w)) ≤
bcd(It(r, w))

d
.
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Consequently, in view of Theorem I,

bcd(It(r, w))

d
=

|E(It(r, w))|

B(It(r, w))
.

Also, for any positive integer d0,

bcd0d(It(r, w)) ≤ d0bcd(It(r, w)).

Hence,

|E(It(r, w))|

B(It(r, w))
= bc∗(It(r, w)) ≤

bcd0d(It(r, w))

d0d
≤

bcd(It(r, w))

d
=

|E(It(r, w))|

B(It(r, w))
. (2)

Consequently, using (2) we obtain the result. �

An n× nmatrix H with entries +1 and −1 is called a Hadamard matrix of order n if HH t
= nI . It is seen that any two distinct

columns of H are orthogonal. Also, if we multiply some rows or columns by −1, or if we permute rows or columns, then H
is still a Hadamard matrix. Two such Hadamard matrices are called equivalent. Easily, for any Hadamard matrix H , we can
find an equivalent one for which the first row and the first column consist entirely of+1’s. Such a Hadamardmatrix is called
normalized.

Theorem 7. Let d be a positive integer, then N((1, 1; d), 4d−1) = 4d−1 if and only if there exists a Hadamard matrix of order
4d.

Proof. Let H = [hij] be a normalized Hadamard matrix of order 4d. Delete the first row and the first column. Also, assume
that K−

4d−1,4d−1 has (X, Y ) as its vertex set where X = {v1, . . . , v4d−1} and Y = {v′

1, . . . , v
′

4d−1}. Assign to the jth column of
H , two sets Xj and Yj as follows

Xj = {vi|hij = +1} and Yj = {v′

i |hij = −1}.

Construct a complete bipartite graph Gj with vertex set (Xj, Yj). The edge viv
′

j is covered by the complete bipartite graph Gk
if and only if the corresponding entries of column k in row i is +1 and in row j is −1. It is well-known that the number of
these columns, in a normalized Hadamard matrix of order 4d, is equal to d. Hence, every edge is covered exactly d times.
So bcd(K−

4d−1,4d−1) ≤ 4d − 1. On the other hand, K−

4d−1,4d−1 is an edge-transitive graph. Therefore, in view of Theorem I, we
have

4d − 1
d

=
|E(K−

4d−1,4d−1)|

B(K−

4d−1,4d−1)
≤

bcd(K−

4d−1,4d−1)

d
.

Consequently, 4d − 1 ≤ bcd(K−

4d−1,4d−1) and the result follows. Conversely, assume that N((1, 1; d), 4d − 1) = 4d − 1.
This means that there exists a d-biclique cover of size 4d − 1 for the graph K−

4d−1,4d−1. Under the same notation in the first
part of the proof, assume that {G1,G2, . . . ,G4d−1} is the desired d-biclique cover. By a straightforward calculation, it follows
that every edge is covered exactly d times. Also, |Xi| = |Yi| + 1 = 2d or |Yi| = |Xi| + 1 = 2d. Suppose that K4d−1 has
{u1, u2, . . . , u4d−1} as its vertex set. Consider the biclique Gi and construct a biclique Hi of K4d−1 as follows. Assign to any
vertex vk (resp. v′

k) of Gi, the vertex uk. Then, {H1, . . . ,H4d−1} is a biclique cover of K4d−1 such that every edge is covered
exactly 2d times. Now, add a new vertex u4d to each Hi such that the resulting graph is isomorphic to K2d,2d. So there exists a
biclique cover for K4d that every edge is covered exactly 2d times. In [7], it was shown that existence of such biclique cover
is equivalent to the existence of a Hadamard matrix. �
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