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Abstract

We study the function M(n, k) which denotes the number of maximal k-uniform

intersecting families F ⊆
([n]
k

)
. Improving a bound of Balogh, Das, Delcourt, Liu

and Sharifzadeh on M(n, k), we determine the order of magnitude of logM(n, k)

by proving that for any fixed k, M(n, k) = nΘ((2kk )) holds. Our proof is based on
Tuza’s set pair approach.

The main idea is to bound the size of the largest possible point set of a cross-
intersecting system. We also introduce and investigate some related functions and
parameters.

1 Introduction

Many problems in extremal combinatorics ask for the maximum possible size that a com-
binatorial structure can have provided it satisfies some prescribed property P . Questions
about the size of the ‘underlying set’ of the combinatorial structure are much less fre-
quently asked. (In many cases, this size is part of property P .) This note is devoted to
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an application of Tuza’s set pair method [17] which provides good bounds for problems
of the first type through results on problems of the second type.

The starting point of Tuza’s method is the following celebrated theorem of Bollobás.

Theorem 1.1 (Bollobás, [3]). Let A1, A2, . . . , Am and B1, B2, . . . , Bm be sets such that
|Ai| 6 k and |Bi| 6 l hold for all 1 6 i 6 m. Let furthermore these sets satisfy

(1) Ai ∩Bi = ∅ for all 1 6 i 6 m,

(2) Ai ∩Bj 6= ∅ for all 1 6 i, j 6 m, i 6= j.

Then
∑m

i=1
1

(|Ai|+|Bi|
|Ai|

)
6 1, in particular m 6

(
k+l
l

)
.

Pairs satisfying the conditions of Theorem 1.1 will be called cross intersecting set
pairs and if we want to emphasize the size condition of the Ai’s and Bj’s, then we call
the system (k, l)-cross intersecting.

Modifying Lovász’s proof [15] of Theorem 1.1, Frankl [9] and later Kalai [13] obtained
the following skew version of the result.

Theorem 1.2 (Frankl). Let A1, A2, . . . , Am and B1, B2, . . . , Bm be sets such that |Ai| 6 k
and |Bi| 6 l, satisfying the conditions

(1) Ai ∩Bi = ∅ for all 1 6 i 6 m,

(2’) Ai ∩Bj 6= ∅ for all 1 6 i < j 6 m.

Still the bound m 6
(
k+l
l

)
remains valid.

Pairs satisfying the conditions of Theorem 1.2 will be called skew cross intersecting
set pairs.

The vertex set of a (skew) cross intersecting system of set pairs is V =
⋃m
i=1(Ai ∪

Bi). Tuza was interested in the maximum possible size of the vertex set of a (k, l)-cross
intersecting system. Let us write

n(k, l)

= max

{∣∣∣∣∣
m⋃
i=1

(Ai ∪Bi)

∣∣∣∣∣ : (A1, B1), . . . , (Am, Bm) is a (k, l)-cross intersecting system

}
.

Obviously, by Theorem 1.1, we have n(k, l) 6 (k+ l)
(
k+l
l

)
, but the following upper bound

was obtained in [17].

Theorem 1.3 (Tuza [17]). For positive integers k 6 l we have

1

4

(
k + l + 1

k + 1

)
< n(k, l) 6

2k−2∑
i=1

(
i

bi/2c

)
+

k+l−1∑
i=2k−1

(
i

l

)
<

(
k + l + 1

k + 1

)
.
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Section 2 is devoted to prove another application of the set pair method, the main
result of this note. Apart from antichains the most studied set families are intersecting
families. We say that F ⊆ 2[n] is intersecting if F1 ∩ F2 6= ∅ for all F1, F2 ∈ F . It
is well-known that all maximal (unextendable) intersecting families F ⊆ 2[n] have size
2n−1. (Here and thereafter [n] stands for the set {1, 2, . . . , n}.) The investigation of λ(n)
and Λ(n), the number of intersecting and maximal intersecting families, respectively, was
started in [6]. The exact values are known for small n [5] and determining the order of
magnitude of log λ(n) and log Λ(n) is an easy exercise.

Recently, Balogh, Das, Delcourt, Liu, and Sharifzadeh [2] studied the uniform version
of the problem. The famous Erdős-Ko-Rado theorem [7] states that an intersecting family
F ⊆

(
[n]
k

)
can have size at most

(
n−1
k−1

)
if 2k 6 n. Furthermore, intersecting families

achieving the extremal size consist of all k-sets containing a fixed element of [n] provided
2k < n. Balogh et al. define the function N(k) with the property that if n > N(k), then

the number of k-uniform intersecting families is 2(1+o(1))(n−1
k−1). In their proof they obtain

an upper bound on the number M(n, k) of maximal k-uniform intersecting families. Here
we improve on this bound and we determine the order of magnitude of the exponent of n
in M(n, k) for any fixed k.

Theorem 1.4. For any fixed integer k, as n tends to infinity the function M(n, k) satisfies

M(n, k) = nΘ((2k
k )).

Moreover,

1

8
6 lim sup

n

logM(n, k)(
2k
k

)
log n

6 1.1 and lim sup
k

lim sup
n

logM(n, k)(
2k
k

)
log n

6 1.

The proof of Theorem 1.4 uses the upper bound in Theorem 1.3. In Section 3 we first
prove an upper bound on n(k, l) that is weaker than that of Theorem 1.3, but its proof
technique is completely different: it involves skew cross intersecting systems. Therefore
it is natural to introduce the following analog of the function n(k, l): define n1(k, l) to be
the maximum of ∣∣∣∣∣

m⋃
i=1

(Ai ∪Bi)

∣∣∣∣∣
over all (k, l)-skew cross intersecting systems (A1, B1), . . . , (Am, Bm). We finish Section 3
by presenting lower and upper bounds on n1(k, l).

Before starting to prove our theorems let us mention that there has been recent activity
[4, 10, 11, 12] on the following problem of Balogh, Bohman and Mubayi [1] related to
maximal intersecting families: let H(n, k, p) denote the random k-uniform hypergraph
obtained from

(
[n]
k

)
by keeping each edge with probability p independently of all other

choices. What is the size of the largest intersecting family in H(n, k, p) and what its
structure looks like. The above mentioned papers settled this question for all interesting
values of k = k(n) and p = p(n).

the electronic journal of combinatorics 22(1) (2015), #P1.83 3



2 Proof of the main theorem

We start with the lower bound of Theorem 1.4. For a family F of sets its covering number
τ(F) is the minimum size that a transversal G of F can have. A transversal of F is a set
meeting all F ∈ F . Clearly, τ(F) 6 k for all intersecting k-uniform families as any set in
F is a transversal. Let us define the function f(k) by

f(k) = max{| ∪F∈F F | : F is k-uniform intersecting with τ(F) = k}.

Note that f(k) is finite (see [8] ), while the condition τ(F) = k is essential in the sense
that | ∪F∈F F | could be arbitrarily large if F was k uniform intersecting with τ(F) < k.
Many similar functions concerning k-uniform intersecting families with covering number
k were introduced and studied in [8] (and later by many other researchers). The following
example is due to Tuza [17].

Construction 2.1. Let |Y | = 2k− 2. For each partition Y as E ∪E ′ = Y , |E| = |E ′| =
k − 1 we take a new points x, and set E ∪ {x}, E ′ ∪ {x}. In this way we obtain

(
2k−2
k−1

)
k-element sets forming an intersecting family with covering number k, such that the union
of these sets consists of 2k − 2 + 1

2

(
2k−2
k−1

)
points.

Corollary 2.2. 1
8

(
2k
k

)
< 2k − 2 + 1

2

(
2k−2
k−1

)
6 f(k).

The following proposition finishes the proof of the lower bound of Theorem 1.4.

Proposition 2.3. For any positive integers k and n we have
(
n
f(k)

)
6M(n, k).

Proof. Consider a k-uniform intersecting family F with τ(F) = k and | ∪F∈F F | = f(k).
As adding more sets to F can only increase the size of the union, we may assume that F
is maximal intersecting. Every set X ∈

(
[n]
f(k)

)
contains at least one family FX isomorphic

to F . As FX 6= FY whenever ∪F∈FX
F = X 6= Y = ∪F∈FY

F , we have at least
(
n
f(k)

)
different maximal intersecting k-uniform subfamilies of

(
[n]
k

)
.

As we mentioned in the proof, the value of f(k) is attained at a maximal intersecting
family. Note that such a family is unextendable not only by any k-subsets of its underlying
set, but by any k-sets in the universe at all. This kind of maximal intersecting set systems
were studied a lot, the best known upper bound on f(k) is due to Majumder [16], stating
that f(k) 6 (1 + o(1))3

2

(
2k−2
k−1

)
.

We now turn our attention to the upper bound of Theorem 1.4. We start by describing
the basic ideas of Balogh, Das, Delcourt, Liu, and Sharifzadeh [2]. For a family F ⊆

(
[n]
k

)
of sets let I(F) = {G ∈

(
[n]
k

)
: ∀F ∈ F : F ∩ G 6= ∅}, that is if F is intersecting, then

I(F) denotes the family of those sets that can be added to F preserving the intersecting
property. Clearly, F is maximal intersecting if and only if F = I(F). For any maximal
intersecting family we can assign a subfamily F0 ⊆ F that is minimal with respect to
the property I(F0) = F (note that F0 is not necessarily unique). Then by definition, for
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every F ∈ F0 there exists a G ∈ I(F0\{F})\F , thus this G intersects all sets in F but F .
Therefore the sets of F0 and their pairs G satisfy the condition of Theorem 1.1 and thus
by above, we obtain that |F0| 6

(
2k
k

)
. Moreover, if F0 = {F1, F2, . . . , Fs} and Gi is a set in

I(F0\{Fi})\F , then the set of pairs {(Ai, Bi)}2s
i=1 with Ai = Fi, Bi = Gi for 1 6 i 6 s and

Ai = Gi−s, Bi = Fi−s for s < i 6 2s is skew cross intersecting and thus by Theorem 1.2
the inequality |F0| 6 1

2

(
2k
k

)
holds. Since the mapping of maximal intersecting families

via F 7→ F0 is injective, Balogh et al. obtained M(n, k) 6
∑ 1

2(2k
k )

j=1

((n
k)
j

)
= O(n

k
2 (2k

k )).

Comparing this to our lower bound, we see that the exponent is off only by a factor of
4k. In what follows we show how to improve the previous upper bound.

In order to obtain our upper bound, we will use the function n(k, l). As the argument
of Balogh et al. yields a cross intersecting system in which sets of the first co-ordinate
form an intersecting family on their own, we introduce the following:

g(k)

= max{| ∪si=1 Ai| : {(Ai, Bi)}si=1 is (k, k)-cross intersecting and {Ai}si=1 is intersecting}.

By definition, we have g(k) 6 n(k, k). The following lemma and proposition complete the
proof of the upper bound of Theorem 1.4.

Lemma 2.4. M(n, k) 6 22g(k)
(
n
g(k)

)
.

Proof. Let us consider a function f that maps any maximal intersecting k-uniform family
F to one of its subfamily F0 that is minimal with respect to the property that I(F0) = F .

As mentioned earlier, f is injective, F0 is intersecting and the set of pairs {(Fi, Gi)}|F0|
i=1 is

(k, k)-cross intersecting. Thus by definition | ∪F∈F0 F | 6 g(k). Therefore the set families
that can be the image of a maximal intersecting k-uniform family with respect to f are
subfamilies of 2X for some X ∈

(
[n]
g(k)

)
. The number of such families is not more than

22g(k)
(
n
g(k)

)
.

Though it was not mentioned in [17], the summation form of the upper bound of
Theorem 1.3 provides much better estimation in the case k = l.

Proposition 2.5. Let S(k) denote Tuza’s upper bound on n(k, k) in Theorem 1.3, that
is, S(k) =

∑2k−1
i=1

(
i
bi/2c

)
. Then

(i) g(k) 6 n(k, k) 6 S(k) 6 1.1 ·
(

2k
k

)
,

(ii) s(k) := S(k)

(2k
k )
→ 1 if k →∞.

Proof. Statement (i) can be confirmed easily for k 6 4, and for k > 4 simple inductive
argument works. For statement (ii), one can easily check that s(k) > 1, and the sequence
s(k) is monotone decreasing from k = 4. Moreover the limit cannot be greater than 1,

since if s(k) > (1+ε) held with a fixed ε > 0 for all k, that would imply s(k+1)
s(k)

6 4k+3
4k+2

1
(1+ε)

,
a contradiction.
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3 Bounds on the size of the vertex set

In the forthcoming section we present lower and upper bounds on n(k, l) and n1(k, l), that
is, on the maximal size of the underlying set of a (skew) cross intersecting system.

Construction 3.1 (Erdős-Lovász, [8]). Let Y be a set of 2k − 2 elements. For each
subset A′ ⊂ Y , |A′| = k− 1, we assign a set pair (A,B) such that |A| = k = |B|, A′ ⊂ A,
(Y \ A′) ⊂ B and the one element sets A \ Y , B \ Y are disjoint. In this way we obtain(

2k−2
k−1

)
set pairs such that the union of these sets consists of 2k − 2 + 2

(
2k−2
k−1

)
points.

This construction slightly improves the general lower bound of Theorem 1.3 on n(k, l)
in the special case k = l. Thus in view of Proposition 2.5, this provides

Proposition 3.2. 2k − 2 + 2
(

2k−2
k−1

)
6 n(k, k) 6 1.1 ·

(
2k
k

)
.

In the spirit of Tuza’s approach, the following upper bound is obtained on n(k, l).

Lemma 3.3. n(k, l) 6
(
k+l
l+1

)
+
(
k+l
k+1

)
.

Proof. Let {(Ai, Bi)}si=1 be a set of cross intersecting pairs with |Ai| 6 k and |Bi| 6 l for all
1 6 i 6 s. Let αt = |{i : |Ai\(∪i−1

j=1(Aj∪Bj))| > t}| and βt = |{i : |Bi\(∪i−1
j=1(Aj∪Bj))| >

t}|. Clearly, we have

|
s⋃
i=1

(Ai ∪Bi)| =
k∑
t=1

αt +
l∑

t=1

βt.

Let us bound βt. Observe that if we write B′i = Bi∩ (∪i−1
j=1(Aj ∪Bj)), then the set of pairs

{(Ai, B′i)}si=1 is skew cross intersecting. Moreover

|Bi \ (∪i−1
j=1(Aj ∪Bj))| > t

holds for i if and only if |B′i| 6 l − t. Hence βt is equal to the number of skew cross
intersecting set pairs {(Ai, B′i)} where |Ai| 6 k and |B′i| 6 l − t. Applying Theorem 1.2
we obtain βt 6

(
k+l−t
k

)
, and as the role of αt and βt is similar we also have αt 6

(
k+l−t
l

)
.

Consequently,

|
s⋃
i=1

(Ai ∪Bi)| 6
k∑
t=1

(
k + l − t

l

)
+

l∑
t=1

(
k + l − t

k

)
=

(
k + l

l + 1

)
+

(
k + l

k + 1

)
.

This slightly improves the bound
(
k+l+1
l+1

)
of Theorem 1.3 when k = l. However, in

view of Proposition 2.5, Tuza’s bound involving a summation is still better even in this
case.

Recall the definition of n1(k, l) (defined below Theorem 1.4). Our second result gives
lower and upper bounds on n1(k, l). In order to do this, we recall what a reverse lexico-
graphic order (or sometimes called colex order) is.
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Definition 3.4. A reverse lexicographic order of the k-element subsets of [n] is defined
by the relation C < D for C,D ∈

(
[n]
k

)
if and only if the largest element of the symmetric

difference C4D is in D.

Construction 3.5. Let Y be the set Y = [k+ l]. Consider the reverse lexicographic order
of all the k-element subsets of Y . Let Ai = {ai,1, ai,2, . . . , ai,k} (i = 1 . . .

(
k+l
k

)
) be the ith

set in this order with the ai,j’s enumerated in increasing order, and let Bi be defined as
follows. Bi ∩ Y = [ai,k] \ Ai and let all the sets Bi \ Y be pairwise disjoint for all i such
that |Bi| = k.

Proposition 3.6. k + l +
(
k+l
k+1

)
6 n1(k, l).

Proof. Construction 3.5 provides a (k, l)-skew cross intersecting set system. Indeed, Ai ∩
Bi = ∅, while Ai ∩ Bj 6= ∅ for i < j, since Ai ⊆ [ai,k] ⊆ [aj,k], hence Ai ∩ Bj ⊇
Ai ∩ ([aj,k] \Aj) 6= ∅. Observing that the number of k-sets Aj with aj,k = k+ c is

(
k+c−1
k−1

)
(assuming c 6 l), we get∣∣∣∣∣

m⋃
i=1

(Ai ∪Bi)

∣∣∣∣∣ = k + l +
l∑

c=0

(l − c)
(
k + c− 1

k − 1

)
.

Next notice that

l∑
c=0

(l − c)
(
k + c− 1

k − 1

)
=

l−1∑
x=0

x∑
c=0

(
k + c− 1

k − 1

)
=

l−1∑
x=0

(
k + x

k

)
=

(
k + l

k + 1

)
,

hence the result follows.

Note that Construction 3.5 shows that the calculation in Lemma 3.3 to bound βt is
tight and thus to obtain better bounds on n1(k, l) one has to use further ideas.

The proof below of the upper bound on n1(k, l) is based on Tuza’s approach [17] to
determine n(k, l).

Proposition 3.7. Let k 6 l be positive integers. Then n1(k, l) 6
(
k+l+2
k+1

)
−
(
k+l
k

)
− 2.

Proof. Let {(Ai, Bi)}si=1 be a set of skew cross intersecting pairs with |Ai| 6 k and |Bi| 6 l
for all 1 6 i 6 s and let us define S0 = [s] and M0 = {(A0

i , B
0
i )}si=1 with A0

i = Ai and
B0
i = Bi. If Sj andMj are defined for some j 6 k+ l− 2, then let Sj+1 ⊂ Sj be an index

set minimal with respect to the property that⋃
i∈Sj

(Aji ∪B
j
i ) =

⋃
i∈Sj+1

(Aji ∪B
j
i ).

By minimality for every i ∈ Sj+1 there exists a point xi ∈ (Aji ∪B
j
i )\
⋃
l∈Sj+1\{i}(A

j
l ∪B

j
l ).

Let us define Aj+1
i = Aji \ {xi}, B

j+1
i = Bj

i \ {xi} for all i ∈ Sj+1 and set Mj+1 =
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{(Aj+1
i , Bj+1

i ) : i ∈ Sj+1}. Observe that Mj is skew intersecting for all 1 6 j 6 k + l − 1
with |Aji ∪B

j
i | 6 k + l − j for all i ∈ Sj and furthermore

s⋃
i=1

(Ai ∪Bi) =
k+l−1∑
j=1

|Mj|.

In Tuza’s original proof theMj’s are cross intersecting and therefore he can use Bollobás’s

inequality to obtain |Mj| 6
( k+l−j
d k+l−j

2
e

)
for any j and |Mj| 6

(
k+l−j
k

)
if j 6 l − k. As

Bollobás’s inequality is not valid for skew intersecting pairs, therefore we partitionMj into
some subsystems indexed by the pairs (|Ai \Aji |, |Bi \Bj

i |). Note that by the construction
of the Mj’s for the index pairs (a, b) we have 0 6 a, b 6 j, a + b = j, a 6 k and b 6 l.
For such a subsystem ofMj, indexed by (a, b), we can apply Theorem 1.2 and obtain the
upper bound

(
k+l−j
k−a

)
. Thus adding these up for all Mj, j ∈ [1, k + l − 1], we get

k+l−1∑
j=1

j∑
a=0

(
k + l − j
k − a

)
=
∑
β6k
α6β+l

(
α

β

)
−
(

0

0

)
−
(
k + l

k

)
.

Here

∑
β6k
α6β+l

(
α

β

)
=

k∑
β=0

l∑
γ=0

(
β + γ

β

)
=

k∑
β=0

(
β + l + 1

β + 1

)
=

(
k + l + 2

k + 1

)
− 1,

confirming the statement.

In [18], Tuza proposed the investigation of the so-called weakly cross intersecting set
pair systems, which are closely related to the cross intersecting set pair systems.

Definition 3.8. Let A1, A2, . . . , Am and B1, B2, . . . , Bm be sets such that |Ai| = k and
|Bi| = l for all 1 6 i 6 m. Let furthermore these sets satisfy

(1) Ai ∩Bi = ∅ for all 1 6 i 6 m,

(2) Ai ∩Bj 6= ∅ or Aj ∩Bi 6= ∅ for all 1 6 i, j 6 m, i 6= j.

Then the system {(Ai, Bi)}mi=1 is called a (k, l)-weakly cross intersecting set pair system.
Let mmax(k, l) denote the largest m ∈ Z for which a (k, l)-weakly cross intersecting set

pair system {(Ai, Bi)}mi=1 exists.

Surprisingly, much less is known about the maximum size of a weakly cross intersecting
set pair system compared to the original case. Concerning the upper bound, Tuza showed

[18] that mmax(k, l) 6
(k+l)k+l

kkll
. Király, Nagy, Pálvölgyi and Visontai gave a construction

[14] that provides lim infk+l→∞mmax(k, l) > (2 − o(1))
(
k+l
k

)
. Moreover, they conjectured

the latter result to be sharp:
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Conjecture 3.9 ([14]).

mmax(k, l) 6 2

(
k + l

k

)
.

These questions motivate the investigation of n2(k, l), defined to be the maximum of∣∣∣∣∣
m⋃
i=1

(Ai ∪Bi)

∣∣∣∣∣
over all (k, l)-weakly cross intersecting systems (A1, B1), . . . , (Am, Bm).

First, observe that the idea of the proof of Proposition 3.7 works smoothly to obtain
an upper bound on n2(k, l), since we may define weakly cross intersecting set pair systems
Mj similarly from a given (k, l)-weakly cross intersecting set pair system. Thus the exact
upper bound only depends on mmax(k, l). Hence, assuming that Conjecture 3.9 holds, we
get the double of the upper bound of Proposition 3.7.

A lower bound follows from

Construction 3.10. Let Y be a set of k + l − 1 elements with k 6 l. Assign a subset
B′i ⊂ (Y \A′i) of size l−1 to each k−1 element subset A′i ⊂ Y in such a way that the sets
B′i are distinct. This can be done due to the Kőnig-Hall theorem and the fact that k 6 l.
For each A′i, assign furthermore three distinct elements xi, yi, zi 6∈ Y . Take the set pairs
(A′i ∪ {xi}, B′i ∪ {yi}), (A′i ∪ {yi}, B′i ∪ {zi}), (A′i ∪ {zi}, B′i ∪ {xi}) for all i. This way we
obtain 3

(
k+l−1
k−1

)
set pairs such that the union of these sets consists of k + l− 1 + 3

(
k+l−1
k−1

)
points.

Proposition 3.11. k + l − 1 + 3
(
k+l−1
k−1

)
6 n2(k, l).

Proof. The proposition follows from the fact that Construction 3.10 provides a weakly
cross intersecting set pair system, which is easy to see.

Acknowledgment. We would like to thank an anonymous referee for pointing out an
error in a previous version of the manuscript and for their many helpful remarks to improve
the presentation of the paper.
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