34 research outputs found

    Triangle-free intersection graphs of line segments with large chromatic number

    Full text link
    In the 1970s, Erdos asked whether the chromatic number of intersection graphs of line segments in the plane is bounded by a function of their clique number. We show the answer is no. Specifically, for each positive integer kk, we construct a triangle-free family of line segments in the plane with chromatic number greater than kk. Our construction disproves a conjecture of Scott that graphs excluding induced subdivisions of any fixed graph have chromatic number bounded by a function of their clique number.Comment: Small corrections, bibliography updat

    Piercing axis-parallel boxes

    Get PDF
    Let \F be a finite family of axis-parallel boxes in Rd\R^d such that \F contains no k+1k+1 pairwise disjoint boxes. We prove that if \F contains a subfamily \M of kk pairwise disjoint boxes with the property that for every F\in \F and M\in \M with FMF \cap M \neq \emptyset, either FF contains a corner of MM or MM contains 2d12^{d-1} corners of FF, then \F can be pierced by O(k)O(k) points. One consequence of this result is that if d=2d=2 and the ratio between any of the side lengths of any box is bounded by a constant, then \F can be pierced by O(k)O(k) points. We further show that if for each two intersecting boxes in \F a corner of one is contained in the other, then \F can be pierced by at most O(kloglog(k))O(k\log\log(k)) points, and in the special case where \F contains only cubes this bound improves to O(k)O(k)

    Coloring translates and homothets of a convex body

    Full text link
    We obtain improved upper bounds and new lower bounds on the chromatic number as a linear function of the clique number, for the intersection graphs (and their complements) of finite families of translates and homothets of a convex body in \RR^n.Comment: 11 pages, 2 figure

    Triangle-free geometric intersection graphs with large chromatic number

    Get PDF
    Several classical constructions illustrate the fact that the chromatic number of a graph can be arbitrarily large compared to its clique number. However, until very recently, no such construction was known for intersection graphs of geometric objects in the plane. We provide a general construction that for any arc-connected compact set XX in R2\mathbb{R}^2 that is not an axis-aligned rectangle and for any positive integer kk produces a family F\mathcal{F} of sets, each obtained by an independent horizontal and vertical scaling and translation of XX, such that no three sets in F\mathcal{F} pairwise intersect and χ(F)>k\chi(\mathcal{F})>k. This provides a negative answer to a question of Gyarfas and Lehel for L-shapes. With extra conditions, we also show how to construct a triangle-free family of homothetic (uniformly scaled) copies of a set with arbitrarily large chromatic number. This applies to many common shapes, like circles, square boundaries, and equilateral L-shapes. Additionally, we reveal a surprising connection between coloring geometric objects in the plane and on-line coloring of intervals on the line.Comment: Small corrections, bibliography updat

    Coloring the complements of intersection graphs of geometric figures

    Get PDF
    AbstractLet G¯ be the complement of the intersection graph G of a family of translations of a compact convex figure in Rn. When n=2, we show that χ(G¯)⩽min{3α(G)-2,6γ(G)}, where γ(G) is the size of the minimum dominating set of G. The bound on χ(G¯)⩽6γ(G) is sharp. For higher dimension we show that χ(G¯)⩽⌈2(n2-n+1)1/2⌉n-1⌈(n2-n+1)1/2⌉(α(G)-1)+1, for n⩾3. We also study the chromatic number of the complement of the intersection graph of homothetic copies of a fixed convex body in Rn
    corecore