Piercing axis-parallel boxes

Maria Chudnovsky*
Department of Mathematics
Princeton University
Princeton, NJ, U.S.A.
mchudnov@math.princeton.edu

Sophie Spirkl
Department of Mathematics
Princeton University
Princeton, NJ, U.S.A.
sspirkl@math.princeton.edu

Shira Zerbib
Department of Mathematics
University of Michigan
Ann Arbor, MI, U.S.A
zerbib@umich.edu

Submitted: May 20, 2017; Accepted: Mar 5, 2018; Published: Mar 29, 2018
Mathematics Subject Classifications: 05B40, 52C17, 52C15

Abstract

Let \mathcal{F} be a finite family of axis-parallel boxes in \mathbb{R}^{d} such that \mathcal{F} contains no $k+1$ pairwise disjoint boxes. We prove that if \mathcal{F} contains a subfamily \mathcal{M} of k pairwise disjoint boxes with the property that for every $F \in \mathcal{F}$ and $M \in \mathcal{M}$ with $F \cap M \neq \emptyset$, either F contains a corner of M or M contains 2^{d-1} corners of F, then \mathcal{F} can be pierced by $O(k)$ points. One consequence of this result is that if $d=2$ and the ratio between any of the side lengths of any box is bounded by a constant, then \mathcal{F} can be pierced by $O(k)$ points. We further show that if for each two intersecting boxes in \mathcal{F} a corner of one is contained in the other, then \mathcal{F} can be pierced by at most $O(k \log \log (k))$ points, and in the special case where \mathcal{F} contains only cubes this bound improves to $O(k)$.

1 Introduction

A matching in a hypergraph $H=(V, E)$ on vertex set V and edge set E is a subset of disjoint edges in E, and a cover of H is a subset of V that intersects all edges in E. The matching number $\nu(H)$ of H is the maximal size of a matching in H, and the covering number $\tau(H)$ of H is the minimal size of a cover. The fractional relaxations of these numbers are denoted as usual by $\nu^{*}(H)$ and $\tau^{*}(H)$. By LP duality we have that $\nu^{*}(H)=\tau^{*}(H)$.

[^0]Let \mathcal{F} be a finite family of axis-parallel boxes in \mathbb{R}^{d}. We identify \mathcal{F} with the hypergraph with vertex set \mathbb{R}^{d} and edge set \mathcal{F}. Thus a matching in \mathcal{F} is a subfamily of pairwise disjoint boxes (also called an independent set in the literature) and a cover in \mathcal{F} is a set of points in \mathbb{R}^{d} intersecting every box in \mathcal{F} (also called a hitting set).

An old result due to Gallai is the following (see e.g. [8]):
Theorem 1 (Gallai). If \mathcal{F} is a family of intervals in \mathbb{R} (i.e., a family of boxes in \mathbb{R}) then $\tau(\mathcal{F})=\nu(\mathcal{F})$.

For a family \mathcal{F} of axis-parallel boxes in \mathbb{R}^{d} with $\nu(\mathcal{F})=1$, Helly's theorem [9] implies that $\tau(\mathcal{F})=1$.
Observation 2 (Helly [9]). Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^{d} with $\nu(\mathcal{F})=1$. Then $\tau(\mathcal{F})=1$.

A rectangle is an axis-parallel box in \mathbb{R}^{2}. In 1965, Wegner [14] conjectured that in a hypergraph of axis-parallel rectangles in \mathbb{R}^{2}, the ratio τ / ν is bounded by 2 . Gýarfás and Lehel conjectured in [7] that the same ratio is bounded by a constant. The best known lower bound, $\tau=\lfloor 5 \nu / 3\rfloor$, is attained by a construction due to Fon-Der-Flaass and Kostochka in [6]. Károlyi [10] proved that in families of axis-parallel boxes in \mathbb{R}^{d} we have $\tau(\mathcal{F}) \leqslant \nu(\mathcal{F})(1+\log (\nu(\mathcal{F})))^{d-1}$, where $\log =\log _{2}$. Here is a short proof of Károlyi's bound.

Theorem 3 (Károlyi [10]). If \mathcal{F} is a finite family of axis-parallel boxes in \mathbb{R}^{d}, then $\tau(\mathcal{F}) \leqslant \nu(\mathcal{F})(1+\log (\nu(\mathcal{F})))^{d-1}$.
Proof. We proceed by induction on d and $\nu(\mathcal{F})$. Note that if $\nu(\mathcal{F}) \in\{0,1\}$ then the result holds for all d by Helly's theorem [9]. Now let $d, n \in \mathbb{N}$. Let $F_{d^{\prime}}: \mathbb{R} \rightarrow \mathbb{R}$ be a function for which $\tau(\mathcal{T}) \leqslant F_{d^{\prime}}(\nu(\mathcal{T}))$ for every family \mathcal{T} of axis-parallel boxes in $\mathbb{R}^{d^{\prime}}$ with $d^{\prime}<d$, or with $d=d^{\prime}$ and $\nu(\mathcal{T})<n$.

Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^{d} with $\nu(\mathcal{F})=n$. For $a \in \mathbb{R}$, let H_{a} be the hyperplane $\left\{x=\left(x_{1}, \ldots, x_{d}\right): x_{1}=a\right\}$. Write $L_{a}=\left\{x=\left(x_{1}, \ldots, x_{d}\right): x_{1} \leqslant a\right\}$, and let $\mathcal{F}_{a}=\left\{F \in \mathcal{F}: F \subseteq L_{a}\right\}$. Define $a^{*}=\min \left\{a: \nu\left(F_{a}\right) \geqslant\lceil\nu / 2\rceil\right\}$. The hyperplane $H_{a^{*}}$ gives rise to a partition $\mathcal{F}=\bigcup_{i=1}^{3} \mathcal{F}_{i}$, where $\mathcal{F}_{1}=\left\{F \in \mathcal{F}: F \subseteq L_{a^{*}} \backslash H_{a^{*}}\right\}, \mathcal{F}_{2}=$ $\left\{F \in \mathcal{F}: F \cap H_{a^{*}} \neq \emptyset\right\}$, and $\mathcal{F}_{3}=\mathcal{F} \backslash\left(\mathcal{F}_{1} \cup F_{2}\right)$. It follows from the choice of a^{*} that $\nu\left(\mathcal{F}_{1}\right) \leqslant\lceil\nu(\mathcal{F}) / 2\rceil-1, \nu\left(\mathcal{F}_{2}\right) \leqslant \nu(\mathcal{F})$, and $\nu\left(\mathcal{F}_{3}\right) \leqslant\lfloor\nu(\mathcal{F}) / 2\rfloor$.

Therefore,

$$
\begin{aligned}
F_{d}(\nu(\mathcal{F})) & \leqslant \tau\left(\mathcal{F}_{1}\right)+\tau\left(\mathcal{F}_{3}\right)+\tau\left(\left\{F \cap H_{a^{*}}: F \in \mathcal{F}_{2}\right\}\right) \\
& \leqslant F_{d}\left(\nu\left(\mathcal{F}_{1}\right)\right)+F_{d}\left(\nu\left(\mathcal{F}_{3}\right)\right)+F_{d-1}\left(\nu\left(\mathcal{F}_{2}\right)\right) \\
& \leqslant F_{d}\left(\left\lceil\frac{\nu(\mathcal{F})}{2}\right\rceil-1\right)+F_{d}\left(\left\lfloor\frac{\nu(\mathcal{F})}{2}\right\rfloor\right)+F_{d-1}(\nu(\mathcal{F})) \\
& \leqslant 2 \frac{\nu(\mathcal{F})}{2}\left(1+\log \left(\frac{\nu(\mathcal{F})}{2}\right)\right)^{d-1}+\nu(\mathcal{F})(1+\log (\nu(\mathcal{F})))^{d-2} \\
& \leqslant \nu(\mathcal{F})(1+\log (\nu(\mathcal{F})))^{d-1}
\end{aligned}
$$

implying the result.

Note that for $\nu(\mathcal{F})=2$, we have that $\mathcal{F}_{1}=\emptyset, \nu\left(\mathcal{F}_{2}\right)=1$ and so $\tau(\mathcal{F}) \leqslant F_{d-1}(2)+1$. Therefore, we have the following, which was also proved in [6].

Observation 4 (Fon-der-Flaass and Kostochka [6]). Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^{d} with $\nu(\mathcal{F})=2$. Then $\tau(\mathcal{F}) \leqslant d+1$.

The bound from Theorem 3 was improved by Akopyan [2] to $\tau(\mathcal{F}) \leqslant\left(1.5 \log _{3} 2+\right.$ $o(1)) \nu(\mathcal{F})\left(\log _{2}(\nu(\mathcal{F}))\right)^{d-1}$.

A corner of a box F in \mathbb{R}^{d} is a zero-dimensional face of F. We say that two boxes in \mathbb{R}^{d} intersect at a corner if one of them contains a corner of the other.

A family \mathcal{F} of connected subsets of \mathbb{R}^{2} is a family of pseudo-disks, if for every pair of distinct subsets in \mathcal{F}, their boundaries intersect in at most two points. In [4], Chan and Har-Peled proved that families of pseudo-disks in \mathbb{R}^{2} satisfy $\tau=O(\nu)$. It is easy to check that if \mathcal{F} is a family of axis-parallel rectangles in \mathbb{R}^{2} in which every two intersecting rectangles intersect at a corner, then \mathcal{F} is a family of pseudo-disks. Thus we have:

Theorem 5 (Chan and Har-Peled [4]). There exists a constant c such that for every family \mathcal{F} of axis-parallel rectangles in \mathbb{R}^{2} in which every two intersecting rectangles intersect at a corner, we have that $\tau(\mathcal{F}) \leqslant c \nu(\mathcal{F})$.

Here we prove a few different generalizations of this theorem. In Theorem 6 we prove the bound $\tau(\mathcal{F}) \leqslant c \nu(\mathcal{F}) \log \log (\nu(\mathcal{F}))$ for families \mathcal{F} of axis-parallel boxes in \mathbb{R}^{d} in which every two intersecting boxes intersect at a corner, and in Theorem 7 we prove $\tau(\mathcal{F}) \leqslant c \nu(\mathcal{F})$ for families \mathcal{F} of axis-parallel cubes in \mathbb{R}^{d}, where in both cases c is a constant depending only on the dimension d. We further prove in Theorem 8 that in families \mathcal{F} of axis-parallel boxes in \mathbb{R}^{d} satisfying certain assumptions on their pairwise intersections, the bound on the covering number improves to $\tau(\mathcal{F}) \leqslant c \nu(\mathcal{F})$. For $d=2$, these assumptions are equivalent to the assumption that there is a maximum matching \mathcal{M} in \mathcal{F} such that every intersection between a box in \mathcal{M} and a box in $\mathcal{F} \backslash \mathcal{M}$ occurs at a corner. We use this result to prove our Theorem 10, asserting that for every r, if \mathcal{F} is a family of axis-parallel rectangles in \mathbb{R}^{2} with the property that the ratio between the side lengths of every rectangle in \mathcal{F} is bounded by r, then $\tau(\mathcal{F}) \leqslant c \nu(\mathcal{F})$ for some constant c depending only on r.

Let us now describe our results in more detail. First, for general dimension d we have the following.

Theorem 6. There exists a constant c depending only on d, such that for every family \mathcal{F} of axis-parallel boxes in \mathbb{R}^{d} in which every two intersecting boxes intersect at a corner we have $\tau(\mathcal{F}) \leqslant c \nu(\mathcal{F}) \log \log (\nu(\mathcal{F}))$.

For the proof, we first prove the bound $\tau^{*}(\mathcal{F}) \leqslant 2^{d} \nu(\mathcal{F})$ on the fractional covering number of \mathcal{F}, and then use Theorem 11 below for the bound $\tau(\mathcal{F})=O\left(\tau^{*}(\mathcal{F}) \log \log \left(\tau^{*}(\mathcal{F})\right)\right)$.

An axis-parallel box is a cube if all its side lengths are equal. Note that if \mathcal{F} consists of axis-parallel cubes in \mathbb{R}^{d}, then every intersection in \mathcal{F} occurs at a corner. Moreover, for axis-parallel cubes we have $\tau(\mathcal{F})=O\left(\tau^{*}(\mathcal{F})\right)$ by Theorem 11, and thus we conclude the following.

Theorem 7. If \mathcal{F} is a family of axis-parallel cubes in \mathbb{R}^{d}, then $\tau(\mathcal{F}) \leqslant c \nu(\mathcal{F})$ for some constant c depending only on d.

To get a constant bound on the ratio τ / ν in families of axis-parallel boxes in \mathbb{R}^{d} which are not necessarily cubes, we make a more restrictive assumption on the intersections in \mathcal{F}.

Theorem 8. Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^{d}. Suppose that there exists a maximum matching \mathcal{M} in \mathcal{F} such that for every $F \in \mathcal{F}$ and $M \in \mathcal{M}$, at least one of the following holds:

1. F contains a corner of M;
2. $F \cap M=\emptyset$; or
3. M contains 2^{d-1} corners of F.

Then $\tau(\mathcal{F}) \leqslant\left(2^{d}+(4+d) d\right) \nu(\mathcal{F})$.
For $d=2$, this theorem implies the following corollary.
Corollary 9. Let \mathcal{F} be a family of axis-parallel rectangles in \mathbb{R}^{2}. Suppose that there exists a maximum matching \mathcal{M} in \mathcal{F} such that for every $F \in \mathcal{F}$ and $M \in \mathcal{M}$, if F and M intersect then they intersect at a corner. Then $\tau(\mathcal{F}) \leqslant 16 \nu(\mathcal{F})$.

Note that Corollary 9 is slightly stronger than Theorem 5. Here we only need that the intersections with rectangles in some fixed maximum matching \mathcal{M} occur at corners, but we do not restrict the intersections of two rectangles $F, F^{\prime} \notin \mathcal{M}$.

Given a constant $r>0$, we say that a family \mathcal{F} of axis-parallel boxes in \mathbb{R}^{d} has an r-bounded aspect ratio if every box $F \in \mathcal{F}$ has $l_{i}(F) / l_{j}(F) \leqslant r$ for all $i, j \in\{1, \ldots, d\}$, where $l_{i}(F)$ is the length of the orthogonal projection of F onto the i th coordinate.

For families of rectangles with bounded aspect ratio we prove the following.
Theorem 10. Let \mathcal{F} be a family of axis-parallel rectangles in \mathbb{R}^{2} that has an r-bounded aspect ratio. Then $\tau(\mathcal{F}) \leqslant\left(14+2 r^{2}\right) \nu(\mathcal{F})$.

A result similar to Theorem 10 was announced in [1], but to the best of our knowledge the proof was not published.

An application of Theorem 10 is the existence of weak ε-nets of size $O\left(\frac{1}{\varepsilon}\right)$ for axisparallel rectangles in \mathbb{R}^{2} with bounded aspect ratio. More precisely, let P be a set of n points in \mathbb{R}^{d} and let \mathcal{F} be a family of sets in \mathbb{R}^{d}, each containing at least εn points of P. A weak ε-net for \mathcal{F} is a cover of \mathcal{F}, and a strong ε-net for \mathcal{F} is a cover of \mathcal{F} with points of P. The existence of weak ε-nets of size $O\left(\frac{1}{\varepsilon}\right)$ for pseudo-disks in \mathbb{R}^{2} was proved by Pyrga and Ray in [12]. Aronov, Ezra and Sharir in [3] showed the existence of strong ε-nets of size $O\left(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}\right)$ for axis-parallel boxes in \mathbb{R}^{2} and \mathbb{R}^{3}, and the existence of weak ε-nets of size $O\left(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}\right)$ for all d was then proved by Ezra in [5]. Ezra also showed that for axis-parallel cubes in \mathbb{R}^{d} there exists an ε-net of size $O\left(\frac{1}{\varepsilon}\right)$. These results imply the following.

Theorem 11 (Aronov, Ezra and Sharir [3]; Ezra [5]). If \mathcal{F} is a family of axis-parallel boxes in \mathbb{R}^{d} then $\tau(\mathcal{F}) \leqslant c \tau^{*}(\mathcal{F}) \log \log \left(\tau^{*}(\mathcal{F})\right)$ for some constant c depending only on d. If \mathcal{F} consists of cubes, then this bound improves to $\tau(\mathcal{F}) \leqslant c \tau^{*}(\mathcal{F})$.

An example where the smallest strong ε-net for axis-parallel rectangles in \mathbb{R}^{2} is of size $\Omega\left(\frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}\right)$ was constructed by Pach and Tardos in [11]. The question of whether weak ε-nets of size $O\left(\frac{1}{\varepsilon}\right)$ for axis-parallel rectangles in \mathbb{R}^{2} exist was raised both in [3] and in [11].

Theorem 10 implies a positive answer for the family of axis-parallel rectangles in \mathbb{R}^{2} satisfying the r-bounded aspect ratio property:

Corollary 12. For every fixed constant r, there exists a weak ε-net of size $O\left(\frac{1}{\varepsilon}\right)$ for the family \mathcal{F} of axis-parallel rectangles in \mathbb{R}^{2} with aspect ratio bounded by r.
Proof. Given a set P of n points, there cannot be $\frac{1}{\varepsilon}+1$ pairwise disjoint rectangles in \mathcal{F}, each containing at least εn points of P. Therefore $\nu(\mathcal{F}) \leqslant \frac{1}{\varepsilon}$. Theorem 10 implies that there is a cover of \mathcal{F} of size $O\left(\frac{1}{\varepsilon}\right)$.

This paper is organized as follows. In Section 2 we prove Theorem 6. Section 3 contains definitions and tools. Theorem 8 is then proved in Section 4 and Theorem 10 is proved in Section 5.

2 Proofs of Theorems 6 and 7

Let \mathcal{F} be a finite family of axis-parallel boxes in \mathbb{R}^{d}, such that every intersection in \mathcal{F} occurs at a corner. By performing small perturbations on the boxes, we may assume that no two corners of boxes of \mathcal{F} coincide.

Proposition 13. We have $\tau^{*}(\mathcal{F}) \leqslant 2^{d} \nu(\mathcal{F})$.
Proof. We let $\nu(\mathcal{F})=k$. Since an optimal fractional matching is an optimum solution to a linear program with integer coefficients, and by [13, Theorem 10.1], there exists an optimum fractional matching $g: \mathcal{F} \rightarrow \mathbb{Q}^{+}$for \mathcal{F}. By choosing a common denominator r, we may assume that $g(F)=\frac{k_{F}}{r}$ for some $k_{F} \in \mathbb{N}$ for all $F \in \mathcal{F}$. We now let \mathcal{F}^{\prime} be the family of boxes that contains k_{F}^{r} copies of each box $F \in \mathcal{F}$. Let n be the number of boxes in \mathcal{F}^{\prime}. It follows that $\tau^{*}(\mathcal{F})=\nu^{*}(\mathcal{F})=\frac{n}{r}$, and thus our aim is to show that $\frac{n}{r} \leqslant 2^{d} k$.

For $x \in \mathbb{R}^{d}$, we let \mathcal{F}_{x} be the set of $F \in \mathcal{F}$ containing x. Since g is a fractional matching, it follows that $\sum_{F \in \mathcal{F}_{x}} g(F) \leqslant 1$. Thus, the number of boxes in \mathcal{F}^{\prime} that intersect x is at $\operatorname{most} \sum_{F \in \mathcal{F}_{x}} k_{F} \leqslant r$.

Since a matching of \mathcal{F}^{\prime} cannot contain two copies of the same box in \mathcal{F}, it follows that $\nu\left(\mathcal{F}^{\prime}\right) \leqslant \nu(\mathcal{F})$. Since $\nu\left(\mathcal{F}^{\prime}\right) \leqslant k$, it follows from Turán's theorem that there are at least $n(n-k) /(2 k)$ unordered intersecting pairs of boxes \mathcal{F}^{\prime}. Each such unordered pair contributes at least two pairs of the form (x, F), where x is a corner of a box $F^{\prime} \in \mathcal{F}^{\prime}$, F is box in \mathcal{F}^{\prime} different from F^{\prime}, and x pierces F. Therefore, since there are altogether $2^{d} n$ corners of boxes in \mathcal{F}^{\prime}, there must exist a corner x of a box $F \in \mathcal{F}^{\prime}$ that pierces at least $(n-k) / 2^{d} k$ boxes in \mathcal{F}^{\prime}, all different from F. Together with F, x intersects at least $n / 2^{d} k$ boxes of \mathcal{F}^{\prime}, implying that $n / 2^{d} k \leqslant r$. Thus $\frac{n}{r} \leqslant 2^{d} k$, as desired.

Combining this bound with Theorem 11, we obtain the proofs of Theorems 6 and 7.

3 Definitions and tools

Let R be an axis-parallel box in \mathbb{R}^{d} with $R=\left[x_{1}, y_{1}\right] \times \cdots \times\left[x_{d}, y_{d}\right]$. For $i \in\{1, \ldots, d\}$, let $p_{i}(R)=\left[x_{i}, y_{i}\right]$ denote the orthogonal projection of R onto the i-th coordinate. Two intervals $[a, b],[c, d] \subseteq \mathbb{R}$, are incomparable if $[a, b] \nsubseteq[c, d]$ and $[c, d] \nsubseteq[a, b]$. We say that $[a, b] \prec[c, d]$ if $b<c$. For two axis-parallel boxes Q and R we say that $Q \prec_{i} R$ if $p_{i}(Q) \prec p_{i}(R)$.

Observation 14. Let Q, R be disjoint axis-parallel boxes in \mathbb{R}^{d}. Then there exists $i \in$ $\{1, \ldots, d\}$ such that $Q \prec_{i} R$ or $R \prec_{i} Q$.

Lemma 15. Let Q, R be axis-parallel boxes in \mathbb{R}^{d} such that Q contains a corner of R but R does not contain a corner of Q. Then, for all $i \in\{1, \ldots, d\}$, either $p_{i}(R)$ and $p_{i}(Q)$ are incomparable, or $p_{i}(R) \subseteq p_{i}(Q)$, and there exists $i \in\{1, \ldots, d\}$ such that $p_{i}(R) \subsetneq p_{i}(Q)$.

Moreover, if $R \nsubseteq Q$, then there exists $j \in\{1, \ldots, d\} \backslash\{i\}$ such that $p_{i}(R)$ and $p_{i}(Q)$ are incomparable.

Proof. Let $x=\left(x_{1}, \ldots, x_{d}\right)$ be a corner of R contained in Q. By symmetry, we may assume that $x_{i}=\max \left(p_{i}(R)\right)$ for all $i \in\{1, \ldots, d\}$. Since $x_{i} \in p_{i}(Q)$ for all $i \in\{1, \ldots, d\}$, it follows that $\max \left(p_{i}(Q)\right) \geqslant \max \left(p_{i}(R)\right)$ for all $i \in\{1, \ldots, d\}$. If $\min \left(p_{i}(Q)\right) \leqslant \min \left(p_{i}(R)\right)$, then $p_{i}(R) \subseteq p_{i}(Q)$; otherwise, $p_{i}(Q)$ and $p_{i}(R)$ are incomparable. If $p_{i}(Q)$ and $p_{i}(R)$ are incomparable for all $i \in\{1, \ldots, d\}$, then $y=\left(y_{1}, \ldots, y_{d}\right)$ with $y_{i}=\min \left(p_{i}(Q)\right)$ is a corner of Q and $\operatorname{since} \min \left(p_{i}(Q)\right)>\min \left(p_{i}(R)\right)$, it follows that $y \in R$, a contradiction. It follows that there exists an $i \in\{1, \ldots, d\}$ such that $p_{i}(R) \subsetneq p_{i}(Q)$.

If $p_{i}(R) \subsetneq p_{i}(Q)$ for all $i \in\{1, \ldots, d\}$, then $R \subseteq Q$; this implies the result.
Observation 16. Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^{d}. Let \mathcal{F}^{\prime} arise from \mathcal{F} by removing every box in \mathcal{F} that contains another box in \mathcal{F}. Then $\nu(\mathcal{F})=\nu\left(\mathcal{F}^{\prime}\right)$ and $\tau(\mathcal{F})=\tau\left(\mathcal{F}^{\prime}\right)$.

Proof. Since $\mathcal{F}^{\prime} \subseteq \mathcal{F}$, it follows that $\nu\left(\mathcal{F}^{\prime}\right) \leqslant \nu(\mathcal{F})$ and $\tau\left(\mathcal{F}^{\prime}\right) \leqslant \tau(\mathcal{F})$. Let \mathcal{M} be a matching in \mathcal{F} of size $\nu(\mathcal{F})$. Let \mathcal{M}^{\prime} arise from \mathcal{M} by replacing each box R in $\mathcal{M} \backslash \mathcal{F}^{\prime}$ with a box in \mathcal{F}^{\prime} contained in R. Then \mathcal{M}^{\prime} is a matching in \mathcal{F}^{\prime}, and so $\nu\left(\mathcal{F}^{\prime}\right)=\nu(\mathcal{F})$. Moreover, let P be a cover of \mathcal{F}^{\prime}. Since every box in \mathcal{F} contains a box in F^{\prime} (possibly itself) which, in turn, contains a point in P, we deduce that P is a cover of \mathcal{F}. It follows that $\tau\left(\mathcal{F}^{\prime}\right)=\tau(\mathcal{F})$.

A family \mathcal{F} of axis-parallel boxes is clean if no box in \mathcal{F} contains another box in \mathcal{F}. By Observation 16, we may restrict ourselves to clean families of boxes.

4 Proof of Theorem 8

Throughout this section, let \mathcal{F} be a clean family of axis-parallel boxes in \mathbb{R}^{d}, and let \mathcal{M} be a matching of maximum size in \mathcal{F}. We let $\mathcal{F}(\mathcal{M})$ denote the subfamily of \mathcal{F} consisting of those boxes R in \mathcal{F} for which for every $M \in \mathcal{M}$, either M is disjoint from R or M contains at least 2^{d-1} corners of R. Our goal is to bound $\tau(\mathcal{F}(\mathcal{M}))$.

Lemma 17. Let $R \in \mathcal{F}(\mathcal{M})$. Then R intersects at least one and at most two boxes in \mathcal{M}. If R intersects two boxes $M_{1}, M_{2} \in \mathcal{M}$, then there exists $j \in\{1, \ldots, d\}$ such that $M_{1} \prec_{j} M_{2}$ or $M_{2} \prec_{j} M_{1}$, and for all $i \in\{1, \ldots, d\} \backslash\{j\}$, we have that $p_{i}(R) \subseteq p_{i}\left(M_{1}\right)$ and $p_{i}(R) \subseteq p_{i}\left(M_{2}\right)$.

Proof. If R is disjoint from every box in \mathcal{M}, then $\mathcal{M} \cup\{R\}$ is a larger matching, a contradiction. So R intersects at least one box in \mathcal{M}. Let M_{1} be in \mathcal{M} such that $R \cap M_{1} \neq \emptyset$. We claim that there exists $j \in\{1, \ldots, d\}$ such that M_{1} contains precisely the set of corners of R with the same j th coordinate.

By Lemma 15 , there exists $j \in\{1, \ldots, d\}$ such that $p_{j}(R)=[a, b]$ and $p_{j}\left(M_{1}\right)$ are incomparable. By symmetry, we may assume that $a \in p_{j}\left(M_{1}\right), b \notin p_{j}\left(M_{1}\right)$. This proves that M_{1} contains all 2^{d-1} corners of R with a as their j th coordinate, and our claim follows.

Consequently, $p_{i}(R) \subseteq p_{i}\left(M_{1}\right)$ for all $i \in\{1, \ldots, d\} \backslash\{j\}$. Since R has exactly 2^{d} corners, and members of \mathcal{M} are disjoint, it follows that there exist at most two boxes in \mathcal{M} that intersect R. If M_{1} is the only one such box, then the result follows. Let $M_{2} \in \mathcal{M} \backslash\left\{M_{1}\right\}$ such that $R \cap M_{1} \neq \emptyset$. By our claim, it follows that M_{2} contains 2^{d-1} corners of R; and since M_{1} is disjoint from M_{2}, it follows that M_{2} contains precisely those corners of R with j th coordinate equal to b. Therefore, $p_{i}(R) \subseteq p_{i}\left(M_{2}\right)$ for all $i \in\{1, \ldots, d\} \backslash\{j\}$. We conclude that $p_{i}\left(M_{2}\right)$ is not disjoint from $p_{i}\left(M_{1}\right)$ for all $i \in$ $\{1, \ldots, d\} \backslash\{j\}$, and since M_{1}, M_{2} are disjoint, it follows from Observation 14 that either $M_{1} \prec_{j} M_{2}$ or $M_{2} \prec_{j} M_{1}$.

For $i \in\{1, \ldots, d\}$, we define a directed graph G_{i} as follows. We let $V\left(G_{i}\right)=\mathcal{M}$, and for $M_{1}, M_{2} \in \mathcal{M}$ we let $M_{1} M_{2} \in E\left(G_{i}\right)$ if and only if $M_{1} \prec_{i} M_{2}$ and there exists $R \in \mathcal{F}(\mathcal{M})$ such that $R \cap M_{1} \neq \emptyset$ and $R \cap M_{2} \neq \emptyset$. In this case, we say that R witnesses the edge $M_{1} M_{2}$. For $i=\{1, \ldots, d\}$, we say that R is i-pendant at $M_{1} \in \mathcal{M}$ if M_{1} is the only box of \mathcal{M} intersecting R and $p_{i}(R)$ and $p_{i}\left(M_{1}\right)$ are incomparable. Note that by Lemma 17, every box R in $\mathcal{F}(\mathcal{M})$ satisfies exactly one of the following: R witnesses an edge in exactly one of the graphs $G_{i}, i \in\{1, \ldots, d\}$; or R is i-pendant for exactly one $i \in\{1, \ldots, d\}$.
Lemma 18. Let $i \in\{1, \ldots, d\}$. Let $Q, R \in \mathcal{F}(\mathcal{M})$ be such that Q witnesses an edge $M_{1} M_{2}$ in G_{i}, and R witnesses an edge $M_{3} M_{4}$ in G_{i}. If Q and R intersect, then either $M_{1}=M_{4}$, or $M_{2}=M_{3}$, or $M_{1} M_{2}=M_{3} M_{4}$.

Proof. By symmetry, we may assume that $i=1$. Let $p_{1}\left(M_{1}\right)=\left[x_{1}, y_{1}\right]$ and $p_{1}\left(M_{2}\right)=$ $\left[x_{2}, y_{2}\right]$. It follows that $p_{1}(Q) \subseteq\left[x_{1}, y_{2}\right]$. Let $a=\left(a_{1}, a_{2}, \ldots, a_{d}\right) \in Q \cap R$. It follows that $a_{j} \in p_{j}(Q) \subseteq p_{j}\left(M_{1}\right) \cap p_{j}\left(M_{2}\right)$ and $a_{j} \in p_{j}(R) \subseteq p_{j}\left(M_{3}\right) \cap p_{j}\left(M_{4}\right)$ for all $j \in\{2, \ldots, d\}$.

Figure 1: Proof of Lemma 18 for $d=2$; two possible locations for a are shown.

If $M_{1} \in\left\{M_{3}, M_{4}\right\}$ and $M_{2} \in\left\{M_{3}, M_{4}\right\}$, then $M_{1} M_{2}=M_{3} M_{4}$, and the result follows. Therefore, we may assume that this does not happen. By symmetry, we may assume that M_{1} is distinct from M_{3} and M_{4}. (If M_{2} is distinct from M_{3} and M_{4}, and M_{1} is not, then we reflect the family of boxes along the origin; this switches the roles of M_{1} and M_{2}, and of M_{3} and M_{4}.)

It follows that $a \notin M_{1}$, for otherwise R intersects three distinct members of \mathcal{M}, contrary to Lemma 17. Since R is disjoint from M_{1}, it follows that either $M_{1} \prec_{1} R$ or $R \prec_{1} M_{1}$. But $p_{1}(Q) \subseteq\left[x_{1}, y_{2}\right]$, and since $Q \cap R \neq \emptyset$, it follows that $M_{1} \prec_{1} R$ (see Figure 1).

Since $M_{3} \neq M_{1}$ and $p_{j}\left(M_{3}\right) \cap p_{j}\left(M_{1}\right) \ni a_{j}$ for all $j \in\{2, \ldots, d\}$, it follows that either $M_{1} \prec_{1} M_{3}$ or $M_{1} \prec_{1} M_{3}$. Since $M_{1} \prec_{1} R$ and $R \cap M_{3} \neq \emptyset$, it follows that $M_{1} \prec_{1} M_{3}$.

Suppose that $a \in M_{3}$. Then $Q \cap M_{3} \neq \emptyset$, and since $M_{1} \prec_{1} M_{3}$, we have that $M_{3}=M_{2}$ as desired.

Therefore, we may assume that $a \notin M_{3}$, and thus $p_{1}\left(M_{1}\right) \prec p_{1}\left(M_{3}\right) \prec\left[a_{1}, a_{1}\right]$. Since $\left[y_{1}, a_{1}\right] \subseteq p_{1}(Q)$, it follows that $p_{1}\left(M_{3}\right) \cap p_{1}(Q) \neq \emptyset$. But $p_{j}\left(M_{3}\right) \cap p_{j}(Q) \ni a_{j}$ for all $j \in\{2, \ldots, d\}$, and hence $Q \cap M_{3} \neq \emptyset$. But then $M_{3} \in\left\{M_{1}, M_{2}\right\}$, and thus $M_{3}=M_{2}$. This concludes the proof.

The following is a well-known fact about directed graphs; we include a proof for completeness.

Lemma 19. Let G be a directed graph. Then there exists an edge set $E \subseteq E(G)$ with $|E| \geqslant|E(G)| / 4$ such that for every vertex $v \in V(G)$, either E contains no incoming edge at v, or E contains no outgoing edge at v.

Proof. For $A, B \subseteq V(G)$, let $E(A, B)$ denote the set of edges of G with head in A and tail in B.

Let $X_{0}=Y_{0}=\emptyset, V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. For $i=1, \ldots, n$ we will construct X_{i}, Y_{i} such that $X_{i} \cup Y_{i}=\left\{v_{1}, \ldots, v_{i}\right\}, X_{i} \cap Y_{i}=\emptyset$ and $\left|E\left(X_{i}, Y_{i}\right)\right|+\left|E\left(Y_{i}, X_{i}\right)\right| \geqslant\left|E\left(G \mid\left(X_{i} \cup Y_{i}\right)\right)\right| / 2$, where $G \mid\left(X_{i} \cup Y_{i}\right)$ denotes the induced subgraph of G on vertex set $X_{i} \cup Y_{i}$. This holds for X_{0}, Y_{0}. Suppose that we have constructed X_{i-1}, Y_{i-1} for some $i \in\{1, \ldots, n\}$. If $\left|E\left(X_{i-1},\left\{v_{i}\right\}\right)\right|+\left|E\left(\left\{v_{i}\right\}, X_{i-1}\right)\right| \geqslant\left|E\left(Y_{i-1},\left\{v_{i}\right\}\right)\right|+\left|E\left(\left\{v_{i}\right\}, Y_{i-1}\right)\right|$, we let $X_{i}=X_{i-1}, Y_{i}=$ $Y_{i-1} \cup\left\{v_{i}\right\}$; otherwise, let $X_{i}=X_{i-1} \cup\left\{v_{i}\right\}, Y_{i}=Y_{i-1}$. It follows that X_{i}, Y_{i} still have the desired properties. Thus, $\left|E\left(X_{n}, Y_{n}\right)\right|+\left|E\left(Y_{n}, X_{n}\right)\right| \geqslant|E(G)| / 2$. By symmetry, we may assume that $\left|E\left(X_{n}, Y_{n}\right)\right| \geqslant|E(G)| / 4$. But then $E\left(X_{n}, Y_{n}\right)$ is the desired set E; it contains only incoming edges at vertices in X_{n}, and only outgoing edges at vertices in Y_{n}. This concludes the proof.

Theorem 20. For $i \in\{1, \ldots, d\},\left|E\left(G_{i}\right)\right| \leqslant 4 \nu(\mathcal{F})$.
Proof. Let $E \subseteq E\left(G_{i}\right)$ as in Lemma 19. For each edge in E, we pick one box witnessing this edge; let \mathcal{F}^{\prime} denote the family of these boxes. We claim that \mathcal{F}^{\prime} is a matching. Indeed, suppose not, and let $Q, R \in \mathcal{F}^{\prime}$ be distinct and intersecting. Let Q witness $M_{1} M_{2}$ and R witness $M_{3} M_{4}$. By Lemma 18, it follows that either $M_{1} M_{2}=M_{3} M_{4}$ (impossible since we picked exactly one witness per edge) or $M_{1}=M_{4}$ (impossible because E does not contain both an incoming and an outgoing edge at $M_{1}=M_{4}$) or $M_{2}=M_{3}$ (impossible because E does not contain both an incoming and an outgoing edge at $M_{2}=M_{3}$). This is a contradiction, and our claim follows. Now we have $\nu(\mathcal{F}) \geqslant\left|\mathcal{F}^{\prime}\right|=|E| \geqslant\left|E\left(G_{i}\right)\right| / 4$, which implies the result.

A matching \mathcal{M} of a clean family \mathcal{F} of boxes is extremal if for every $M \in \mathcal{M}$ and $R \in \mathcal{F} \backslash \mathcal{M}$, either $(\mathcal{M} \backslash\{M\}) \cup\{R\}$ is not a matching or there exists an $i \in\{1, \ldots, d\}$ such that $\max \left(p_{i}(R)\right) \geqslant \max \left(p_{i}(M)\right)$. Every family \mathcal{F} of axis parallel boxes has an extremal maximum matching. For example, the maximum matching \mathcal{M} minimizing $\sum_{M \in \mathcal{M}} \sum_{i=1}^{d} \max \left(p_{i}(M)\right)$ is extremal.

Theorem 21. For $i \in\{1, \ldots, d\}$, let \mathcal{F}_{i} denote the set of boxes in $\mathcal{F}(\mathcal{M})$ that either are i-pendant or witness an edge in G_{i}. Then $\tau\left(\mathcal{F}_{i}\right) \leqslant(4+d) \nu(\mathcal{F})$. If \mathcal{M} is extremal, then $\tau\left(\mathcal{F}_{i}\right) \leqslant(3+d) \nu(\mathcal{F})$.

Proof. By symmetry, it is enough to prove the theorem for $i=1$. For $M \in \mathcal{M}$, let \mathcal{F}_{M} denote the set of boxes in \mathcal{F}_{1} that either are 1-pendant at M, or witness an edge $M M^{\prime}$ of G_{1}. It follows that $\bigcup_{M \in \mathcal{M}} \mathcal{F}_{M}=\mathcal{F}_{1}$. For $M \in \mathcal{M}$, let $d^{+}(M)$ denote the out-degree of M in G_{1}. We will prove that $\tau\left(\mathcal{F}_{M}\right) \leqslant d^{+}(M)+d$ for all $M \in \mathcal{M}$.

We fix a box $M \in \mathcal{M}$. Let \mathcal{A} denote the set of boxes that are 1-pendant at M. Suppose that \mathcal{A} contains two disjoint boxes M_{1}, M_{2}. Then $(\mathcal{M} \backslash\{M\}) \cup\left\{M_{1}, M_{2}\right\}$ is a larger matching than \mathcal{M}, a contradiction. So every two boxes in \mathcal{A} pairwise intersect. By Observation 2 , it follows that $\tau(\mathcal{A})=1$.

Let $\mathcal{B}=\mathcal{F}_{M} \backslash \mathcal{A}$, i.e. \mathcal{B} is the set of boxes in \mathcal{F}_{1} that witness an outgoing edge $M M^{\prime}$ at M. For every edge $M M^{\prime} \in E\left(G_{1}\right)$, we let $\mathcal{B}\left(M^{\prime}\right)$ denote the set of boxes in \mathcal{F}_{1} that witness the edge $M M^{\prime}$.

Suppose that there is an edge $M M^{\prime} \in E\left(G_{1}\right)$ such that the set $\mathcal{B}\left(M^{\prime}\right)$ satisfies $\nu\left(\mathcal{B}\left(M^{\prime}\right)\right) \geqslant 3$. Then \mathcal{M} is not a maximum matching, since removing M and M^{\prime} from \mathcal{M} and adding $\nu\left(\mathcal{B}\left(M^{\prime}\right)\right)$ disjoint rectangles in $\mathcal{B}\left(M^{\prime}\right)$ yields a larger matching. Moreover, for distinct $M^{\prime}, M^{\prime \prime} \in \mathcal{M}$, every box in $\mathcal{B}\left(M^{\prime}\right)$ is disjoint from every box in $\mathcal{B}\left(M^{\prime \prime}\right)$ by Lemma 18. Thus, if there exist $M^{\prime}, M^{\prime \prime}$ such that $\nu\left(\mathcal{B}\left(M^{\prime}\right)\right)=\nu\left(\mathcal{B}\left(M^{\prime \prime}\right)\right)=2$ and $M^{\prime} \neq M^{\prime \prime}$, then removing M, M^{\prime} and $M^{\prime \prime}$ and adding two disjoint rectangles from each of $\mathcal{B}\left(M^{\prime}\right)$ and $\mathcal{B}\left(M^{\prime \prime}\right)$ yields a bigger matching, a contradiction.

Let $p_{1}(M)=[a, b]$. Two boxes in $\mathcal{B}\left(M^{\prime}\right)$ intersect if and only if their intersections with the hyperplane $H=\left\{\left(x_{1}, \ldots, x_{d}\right): x_{1}=b\right\}$ intersect. If $\nu\left(\mathcal{B}\left(M^{\prime}\right)\right)=1$, then $\tau\left(\mathcal{B}\left(M^{\prime}\right)\right)=1$ by Observation 2. If $\nu\left(\mathcal{B}\left(M^{\prime}\right)\right)=2$, then $\nu\left(\left\{F \cap H: F \in \mathcal{B}\left(M^{\prime}\right)\right\}\right)=2$ and so

$$
\tau\left(\mathcal{B}\left(M^{\prime}\right)\right)=\tau\left(\left\{F \cap H: F \in \mathcal{B}\left(M^{\prime}\right)\right\}\right) \leqslant d
$$

by Observation 4.
Therefore,

$$
\tau(\mathcal{B}) \leqslant \sum_{M^{\prime}: M M^{\prime} \in E\left(G_{1}\right)} \tau\left(\mathcal{B}\left(M^{\prime}\right)\right) \leqslant d^{+}(M)-1+d
$$

and since $\tau(\mathcal{A}) \leqslant 1$, it follows that $\tau\left(\mathcal{F}_{M}\right) \leqslant d^{+}(M)+d$ as claimed (see Figure 2).
Summing over all rectangles in \mathcal{M}, we obtain

$$
\begin{aligned}
\tau\left(\mathcal{F}_{i}\right) & \leqslant \sum_{M \in \mathcal{M}} \tau\left(\mathcal{F}_{M}\right) \leqslant \sum_{M \in \mathcal{M}}\left(d^{+}(M)+d\right) \\
& =d\left|V\left(G_{1}\right)\right|+\left|E\left(G_{1}\right)\right| \leqslant d|\mathcal{M}|+4|\mathcal{M}|=(4+d) \nu(\mathcal{F})
\end{aligned}
$$

where we used Theorem 20 for the inequality $\left|E\left(G_{1}\right)\right| \leqslant 4|\mathcal{M}|$.
If \mathcal{M} is extremal, then every 1-pendant box at M also intersects H. Let M^{\prime} be such that $\nu\left(\mathcal{B}\left(M^{\prime}\right)\right)$ is maximum. It follows that $\nu\left(\mathcal{A} \cup \mathcal{B}\left(M^{\prime}\right)\right) \leqslant 2$ and thus $\tau\left(\mathcal{A} \cup \mathcal{B}\left(M^{\prime}\right)\right) \leqslant d$, implying $\tau\left(\mathcal{F}_{M}\right) \leqslant d^{+}(M)+d-1$. This concludes the proof of the second part of the theorem.

Figure 2: Proof that $\tau\left(\mathcal{F}_{M}\right) \leqslant d^{+}(M)=d$ for $d=2$; here $d^{+}(M)=3$. The red boxes in \mathcal{A} satisfy $\tau(\mathcal{A})=\nu(\mathcal{A})=1$, since M is the only box in \mathcal{M} they intersect. There is only one M^{\prime}, namely $M^{\prime}=M_{1}^{\prime}$, such that $\nu\left(\mathcal{B}\left(M^{\prime}\right)\right)>1$; since all those boxes intersect the line $x=b, \tau\left(\mathcal{B}\left(M^{\prime}\right)\right) \leqslant d=2$. For all of the $d^{+}(M)-1$ boxes M^{\prime} such that $M^{\prime} \neq M_{1}^{\prime}$, $\tau\left(\mathcal{B}\left(M^{\prime}\right)\right)=\nu\left(\mathcal{B}\left(M^{\prime}\right)\right)=1$. So $\tau\left(\mathcal{F}_{M}\right) \leqslant 5$, as shown.

Theorem 22. Let $\mathcal{F}^{\prime} \subseteq \mathcal{F}$ be the set of boxes $R \in \mathcal{F}$ such that for each $M \in \mathcal{M}$, either $M \cap R=\emptyset$, or M contains 2^{d-1} corners of R, or R contains a corner of M. Then $\tau\left(\mathcal{F}^{\prime}\right) \leqslant\left(2^{d}+(4+d) d\right) \nu(\mathcal{F})$. If \mathcal{M} is extremal, then $\tau\left(\mathcal{F}^{\prime}\right) \leqslant\left(2^{d}+(3+d) d\right) \nu(\mathcal{F})$.

Proof. We proved in Theorem 21 that $\tau\left(\mathcal{F}_{i}\right) \leqslant(4+d) \nu(\mathcal{F})$ for $i=1, \ldots, d$. Let $\mathcal{F}^{\prime \prime}=$ $\mathcal{F}^{\prime} \backslash \mathcal{F}(\mathcal{M})$. Then $\mathcal{F}^{\prime \prime}$ consists of boxes R such that R contains a corner of some box
$M \in \mathcal{M}$. Let P be the set of all corners of boxes in \mathcal{M}. It follows that P covers $\mathcal{F}^{\prime \prime}$, and so $\tau\left(\mathcal{F}^{\prime \prime}\right) \leqslant 2^{d} \nu(\mathcal{F})$. Since $\mathcal{F}^{\prime}=\mathcal{F}^{\prime \prime} \cup \mathcal{F}_{1} \cup \cdots \cup \mathcal{F}_{d}$, it follows that $\tau\left(\mathcal{F}^{\prime}\right) \leqslant\left(2^{d}+(4+d) d\right) \nu(\mathcal{F})$. If \mathcal{M} is extremal, the same argument yields that $\tau\left(\mathcal{F}^{\prime}\right) \leqslant\left(2^{d}+(3+d) d\right) \nu(\mathcal{F})$, since $\tau\left(\mathcal{F}_{i}\right) \leqslant(3+d) \nu(\mathcal{F})$ for $i=1 \ldots, d$ by Theorem 21.

We are now ready to prove our main theorems.
Proof of Theorem 8. Let \mathcal{F} be a family of axis-parallel boxes in \mathbb{R}^{d}, and let \mathcal{M} be a maximum matching in \mathcal{F} such that for every $F \in \mathcal{F}$ and $M \in \mathcal{M}$, either $F \cap M=\emptyset$, or F contains a corner of M, or M contains 2^{d-1} corners of F. It follows that $\mathcal{F}=\mathcal{F}^{\prime}$ in Theorem 22 , and therefore, $\tau(\mathcal{F}) \leqslant\left(2^{d}+(4+d) d\right) \nu(\mathcal{F})$.

5 Proof of Theorem 10

Let \mathcal{M} be a maximum matching in \mathcal{F}, and let \mathcal{M} be extremal. Observe that each rectangle $R \in \mathcal{F}$ satisfies one of the following:

- R contains a corner of some $M \in \mathcal{M}$;
- some $M \in \mathcal{M}$ contains two corners of R; or
- there exists $M \in \mathcal{M}$ such that $M \cap R \neq \emptyset$, and $p_{i}(R) \supseteq p_{i}(M)$ for some $i \in\{1,2\}$.

By Theorem 22, $14 \nu(\mathcal{F})$ points suffice to cover every rectangle satisfying at least one of the first two conditions. Now, due to the r-bounded aspect ratio, for each $M \in \mathcal{M}$ and for each $i \in\{1,2\}$, at most r^{2} disjoint rectangles $R \in \mathcal{F}$ can satisfy the third condition for M and i. Thus the family of projections of the rectangles satisfying the third condition for M and i onto the $(3-i)$ th coordinate have a matching number at most r^{2}. Since all these rectangles intersect the boundary of M twice, by Theorem 1 , we need at most r^{2} additional points to cover them for each $i \in\{1,2\}$. We conclude that $\tau(\mathcal{F}) \leqslant\left(14+2 r^{2}\right) \nu(\mathcal{F})$.

Acknowledgments

We are thankful to Paul Seymour for many helpful discussions.

References

[1] Rudolf Ahlswede and Iskander Karapetyan. Intersection graphs of rectangles and segments. Proceedings GTIT-C, LNCS, 4123:1064-1065, 2006.
[2] Arseny Akopyan. On point coverings of boxes in \mathbb{R}^{d}. arXiv:0706.3405, 2007.
[3] Boris Aronov, Esther Ezra, and Micha Sharir. Small-size ε-nets for axis-parallel rectangles and boxes. SIAM Journal on Computing, 39(7):3248-3282, 2010.
[4] Timothy M. Chan and Sariel Har-Peled. Approximation algorithms for maximum independent set of pseudo-disks. Discrete \& Computational Geometry, 48(2):373-392, 2012.
[5] Esther Ezra. A note about weak ε-nets for axis-parallel boxes in d-space. Information Processing Letters, 110(18):835-840, 2010.
[6] Dima Fon-Der-Flaass and Alexandr Kostochka. Covering boxes by points. Discrete Mathematics, 120(1-3):269-275, 1993.
[7] András Gyárfás and Jenö Lehel. Covering and coloring problems for relatives of intervals. Discrete Mathematics, 55(2):167-180, 1985.
[8] András Hajnal and János Surányi. Über die Auflösung von Graphen in vollständige Teilgraphen. Ann. Univ. Sci. Budapest, Eötvös Sect. Math, 1:113-121, 1958.
[9] Eduard Helly. Über Mengen konvexer Körper mit gemeinschaftlichen Punkten. Jahresbericht der Deutschen Mathematiker-Vereinigung, 32:175-176, 1923.
[10] Gyula Károlyi. On point covers of parallel rectangles. Periodica Mathematica Hungarica, 23(2):105-107, 1991.
[11] János Pach and Gábor Tardos. Tight lower bounds for the size of epsilon-nets. Journal of the American Mathematical Society, 26(3):645-658, 2013.
[12] Evangelia Pyrga and Saurabh Ray. New existence proofs ε-nets. In Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, pages 199-207. ACM, 2008.
[13] Alexander Schrijver. Theory of linear and integer programming. John Wiley \& Sons, 1998.
[14] G. Wegner. Über eine kombinatorisch-geometrische Frage von Hadwiger und Debrunner. Israel Journal of Mathematics, 3(4):187-198, 1965.

[^0]: *Supported by NSF grant DMS-1550991 and US Army Research Office Grant W911NF-16-1-0404.

