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Abstract

Let F be a finite family of axis-parallel boxes in Rd such that F contains no
k + 1 pairwise disjoint boxes. We prove that if F contains a subfamily M of k
pairwise disjoint boxes with the property that for every F ∈ F and M ∈ M with
F ∩M 6= ∅, either F contains a corner of M or M contains 2d−1 corners of F , then
F can be pierced by O(k) points. One consequence of this result is that if d = 2 and
the ratio between any of the side lengths of any box is bounded by a constant, then
F can be pierced by O(k) points. We further show that if for each two intersecting
boxes in F a corner of one is contained in the other, then F can be pierced by at
most O(k log log(k)) points, and in the special case where F contains only cubes
this bound improves to O(k).

1 Introduction

A matching in a hypergraph H = (V,E) on vertex set V and edge set E is a subset
of disjoint edges in E, and a cover of H is a subset of V that intersects all edges in
E. The matching number ν(H) of H is the maximal size of a matching in H, and the
covering number τ(H) of H is the minimal size of a cover. The fractional relaxations of
these numbers are denoted as usual by ν∗(H) and τ ∗(H). By LP duality we have that
ν∗(H) = τ ∗(H).
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Let F be a finite family of axis-parallel boxes in Rd. We identify F with the hypergraph
with vertex set Rd and edge set F . Thus a matching in F is a subfamily of pairwise disjoint
boxes (also called an independent set in the literature) and a cover in F is a set of points
in Rd intersecting every box in F (also called a hitting set).

An old result due to Gallai is the following (see e.g. [8]):

Theorem 1 (Gallai). If F is a family of intervals in R (i.e., a family of boxes in R) then
τ(F) = ν(F).

For a family F of axis-parallel boxes in Rd with ν(F) = 1, Helly’s theorem [9] implies
that τ(F) = 1.

Observation 2 (Helly [9]). Let F be a family of axis-parallel boxes in Rd with ν(F) = 1.
Then τ(F) = 1.

A rectangle is an axis-parallel box in R2. In 1965, Wegner [14] conjectured that in
a hypergraph of axis-parallel rectangles in R2, the ratio τ/ν is bounded by 2. Gýarfás
and Lehel conjectured in [7] that the same ratio is bounded by a constant. The best
known lower bound, τ = b5ν/3c, is attained by a construction due to Fon-Der-Flaass and
Kostochka in [6]. Károlyi [10] proved that in families of axis-parallel boxes in Rd we have
τ(F) 6 ν(F) (1 + log (ν(F)))d−1, where log = log2. Here is a short proof of Károlyi’s
bound.

Theorem 3 (Károlyi [10]). If F is a finite family of axis-parallel boxes in Rd, then
τ(F) 6 ν(F) (1 + log (ν(F)))d−1.

Proof. We proceed by induction on d and ν(F). Note that if ν(F) ∈ {0, 1} then the result
holds for all d by Helly’s theorem [9]. Now let d, n ∈ N. Let Fd′ : R → R be a function
for which τ(T ) 6 Fd′(ν(T )) for every family T of axis-parallel boxes in Rd′ with d′ < d,
or with d = d′ and ν(T ) < n.

Let F be a family of axis-parallel boxes in Rd with ν(F) = n. For a ∈ R, let Ha

be the hyperplane {x = (x1, . . . , xd) : x1 = a}. Write La = {x = (x1, . . . , xd) : x1 6 a},
and let Fa = {F ∈ F : F ⊆ La}. Define a∗ = min {a : ν(Fa) > dν/2e}. The hyperplane
Ha∗ gives rise to a partition F =

⋃3
i=1Fi, where F1 = {F ∈ F : F ⊆ La∗ \Ha∗}, F2 =

{F ∈ F : F ∩Ha∗ 6= ∅}, and F3 = F \ (F1 ∪ F2). It follows from the choice of a∗ that
ν(F1) 6 dν(F)/2e − 1, ν(F2) 6 ν(F), and ν(F3) 6 bν(F)/2c.

Therefore,

Fd (ν (F)) 6 τ (F1) + τ (F3) + τ ({F ∩Ha∗ : F ∈ F2})
6 Fd (ν (F1)) + Fd (ν (F3)) + Fd−1 (ν (F2))

6 Fd

(⌈ν (F)

2

⌉
− 1

)
+ Fd

(⌊ν (F)

2

⌋)
+ Fd−1 (ν (F))

6 2
ν (F)

2

(
1 + log

(
ν (F)

2

))d−1

+ ν (F) (1 + log (ν (F)))d−2

6 ν (F) (1 + log (ν (F)))d−1 ,

implying the result.
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Note that for ν(F) = 2, we have that F1 = ∅, ν(F2) = 1 and so τ(F) 6 Fd−1(2) + 1.
Therefore, we have the following, which was also proved in [6].

Observation 4 (Fon-der-Flaass and Kostochka [6]). Let F be a family of axis-parallel
boxes in Rd with ν(F) = 2. Then τ(F) 6 d+ 1.

The bound from Theorem 3 was improved by Akopyan [2] to τ(F) 6 (1.5 log3 2 +
o(1))ν(F) (log2 (ν(F)))d−1.

A corner of a box F in Rd is a zero-dimensional face of F . We say that two boxes in
Rd intersect at a corner if one of them contains a corner of the other.

A family F of connected subsets of R2 is a family of pseudo-disks, if for every pair
of distinct subsets in F , their boundaries intersect in at most two points. In [4], Chan
and Har-Peled proved that families of pseudo-disks in R2 satisfy τ = O(ν). It is easy to
check that if F is a family of axis-parallel rectangles in R2 in which every two intersecting
rectangles intersect at a corner, then F is a family of pseudo-disks. Thus we have:

Theorem 5 (Chan and Har-Peled [4]). There exists a constant c such that for every family
F of axis-parallel rectangles in R2 in which every two intersecting rectangles intersect at
a corner, we have that τ(F) 6 cν(F).

Here we prove a few different generalizations of this theorem. In Theorem 6 we prove
the bound τ(F) 6 cν(F) log log(ν(F)) for families F of axis-parallel boxes in Rd in
which every two intersecting boxes intersect at a corner, and in Theorem 7 we prove
τ(F) 6 cν(F) for families F of axis-parallel cubes in Rd, where in both cases c is a
constant depending only on the dimension d. We further prove in Theorem 8 that in
families F of axis-parallel boxes in Rd satisfying certain assumptions on their pairwise
intersections, the bound on the covering number improves to τ(F) 6 cν(F). For d = 2,
these assumptions are equivalent to the assumption that there is a maximum matching
M in F such that every intersection between a box in M and a box in F \M occurs at
a corner. We use this result to prove our Theorem 10, asserting that for every r, if F is a
family of axis-parallel rectangles in R2 with the property that the ratio between the side
lengths of every rectangle in F is bounded by r, then τ(F) 6 cν(F) for some constant c
depending only on r.

Let us now describe our results in more detail. First, for general dimension d we have
the following.

Theorem 6. There exists a constant c depending only on d, such that for every family
F of axis-parallel boxes in Rd in which every two intersecting boxes intersect at a corner
we have τ(F) 6 cν(F) log log(ν(F)).

For the proof, we first prove the bound τ ∗(F) 6 2dν(F) on the fractional covering num-
ber of F , and then use Theorem 11 below for the bound τ(F) = O(τ ∗(F) log log(τ ∗(F))).

An axis-parallel box is a cube if all its side lengths are equal. Note that if F consists
of axis-parallel cubes in Rd, then every intersection in F occurs at a corner. Moreover,
for axis-parallel cubes we have τ(F) = O(τ ∗(F)) by Theorem 11, and thus we conclude
the following.
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Theorem 7. If F is a family of axis-parallel cubes in Rd, then τ(F) 6 cν(F) for some
constant c depending only on d.

To get a constant bound on the ratio τ/ν in families of axis-parallel boxes in Rd which
are not necessarily cubes, we make a more restrictive assumption on the intersections in
F .

Theorem 8. Let F be a family of axis-parallel boxes in Rd. Suppose that there exists a
maximum matching M in F such that for every F ∈ F and M ∈ M, at least one of the
following holds:

1. F contains a corner of M ;

2. F ∩M = ∅; or

3. M contains 2d−1 corners of F .

Then τ(F) 6 (2d + (4 + d)d)ν(F).

For d = 2, this theorem implies the following corollary.

Corollary 9. Let F be a family of axis-parallel rectangles in R2. Suppose that there
exists a maximum matching M in F such that for every F ∈ F and M ∈ M, if F and
M intersect then they intersect at a corner. Then τ(F) 6 16ν(F).

Note that Corollary 9 is slightly stronger than Theorem 5. Here we only need that
the intersections with rectangles in some fixed maximum matching M occur at corners,
but we do not restrict the intersections of two rectangles F, F ′ /∈M.

Given a constant r > 0, we say that a family F of axis-parallel boxes in Rd has an
r-bounded aspect ratio if every box F ∈ F has li(F )/lj(F ) 6 r for all i, j ∈ {1, . . . , d},
where li(F ) is the length of the orthogonal projection of F onto the ith coordinate.

For families of rectangles with bounded aspect ratio we prove the following.

Theorem 10. Let F be a family of axis-parallel rectangles in R2 that has an r-bounded
aspect ratio. Then τ(F) 6 (14 + 2r2)ν(F).

A result similar to Theorem 10 was announced in [1], but to the best of our knowledge
the proof was not published.

An application of Theorem 10 is the existence of weak ε-nets of size O
(
1
ε

)
for axis-

parallel rectangles in R2 with bounded aspect ratio. More precisely, let P be a set of n
points in Rd and let F be a family of sets in Rd, each containing at least εn points of P .
A weak ε-net for F is a cover of F , and a strong ε-net for F is a cover of F with points of
P . The existence of weak ε-nets of size O

(
1
ε

)
for pseudo-disks in R2 was proved by Pyrga

and Ray in [12]. Aronov, Ezra and Sharir in [3] showed the existence of strong ε-nets of
size O

(
1
ε

log log 1
ε

)
for axis-parallel boxes in R2 and R3, and the existence of weak ε-nets

of size O
(
1
ε

log log 1
ε

)
for all d was then proved by Ezra in [5]. Ezra also showed that

for axis-parallel cubes in Rd there exists an ε-net of size O
(
1
ε

)
. These results imply the

following.
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Theorem 11 (Aronov, Ezra and Sharir [3]; Ezra [5]). If F is a family of axis-parallel
boxes in Rd then τ(F) 6 cτ ∗(F) log log(τ ∗(F)) for some constant c depending only on d.
If F consists of cubes, then this bound improves to τ(F) 6 cτ ∗(F).

An example where the smallest strong ε-net for axis-parallel rectangles in R2 is of size
Ω
(
1
ε

log log 1
ε

)
was constructed by Pach and Tardos in [11]. The question of whether weak

ε-nets of size O(1
ε
) for axis-parallel rectangles in R2 exist was raised both in [3] and in [11].

Theorem 10 implies a positive answer for the family of axis-parallel rectangles in R2

satisfying the r-bounded aspect ratio property:

Corollary 12. For every fixed constant r, there exists a weak ε-net of size O(1
ε
) for the

family F of axis-parallel rectangles in R2 with aspect ratio bounded by r.

Proof. Given a set P of n points, there cannot be 1
ε

+ 1 pairwise disjoint rectangles in F ,
each containing at least εn points of P . Therefore ν(F) 6 1

ε
. Theorem 10 implies that

there is a cover of F of size O(1
ε
).

This paper is organized as follows. In Section 2 we prove Theorem 6. Section 3
contains definitions and tools. Theorem 8 is then proved in Section 4 and Theorem 10 is
proved in Section 5.

2 Proofs of Theorems 6 and 7

Let F be a finite family of axis-parallel boxes in Rd, such that every intersection in F
occurs at a corner. By performing small perturbations on the boxes, we may assume that
no two corners of boxes of F coincide.

Proposition 13. We have τ ∗(F) 6 2dν(F).

Proof. We let ν(F) = k. Since an optimal fractional matching is an optimum solution
to a linear program with integer coefficients, and by [13, Theorem 10.1], there exists an
optimum fractional matching g : F → Q+ for F . By choosing a common denominator r,
we may assume that g(F ) = kF

r
for some kF ∈ N for all F ∈ F . We now let F ′ be the

family of boxes that contains kF copies of each box F ∈ F . Let n be the number of boxes
in F ′. It follows that τ ∗(F) = ν∗(F) = n

r
, and thus our aim is to show that n

r
6 2dk.

For x ∈ Rd, we let Fx be the set of F ∈ F containing x. Since g is a fractional matching,
it follows that

∑
F∈Fx

g(F ) 6 1. Thus, the number of boxes in F ′ that intersect x is at
most

∑
F∈Fx

kF 6 r.
Since a matching of F ′ cannot contain two copies of the same box in F , it follows

that ν(F ′) 6 ν(F). Since ν(F ′) 6 k, it follows from Turán’s theorem that there are at
least n(n − k)/(2k) unordered intersecting pairs of boxes F ′. Each such unordered pair
contributes at least two pairs of the form (x, F ), where x is a corner of a box F ′ ∈ F ′,
F is box in F ′ different from F ′, and x pierces F . Therefore, since there are altogether
2dn corners of boxes in F ′, there must exist a corner x of a box F ∈ F ′ that pierces at
least (n− k)/2dk boxes in F ′, all different from F . Together with F , x intersects at least
n/2dk boxes of F ′, implying that n/2dk 6 r. Thus n

r
6 2dk, as desired.
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Combining this bound with Theorem 11, we obtain the proofs of Theorems 6 and 7.

3 Definitions and tools

Let R be an axis-parallel box in Rd with R = [x1, y1] × · · · × [xd, yd]. For i ∈ {1, . . . , d},
let pi(R) = [xi, yi] denote the orthogonal projection of R onto the i-th coordinate. Two
intervals [a, b], [c, d] ⊆ R, are incomparable if [a, b] 6⊆ [c, d] and [c, d] 6⊆ [a, b]. We say
that [a, b] ≺ [c, d] if b < c. For two axis-parallel boxes Q and R we say that Q ≺i R if
pi(Q) ≺ pi(R).

Observation 14. Let Q,R be disjoint axis-parallel boxes in Rd. Then there exists i ∈
{1, . . . , d} such that Q ≺i R or R ≺i Q.

Lemma 15. Let Q,R be axis-parallel boxes in Rd such that Q contains a corner of R but
R does not contain a corner of Q. Then, for all i ∈ {1, . . . , d}, either pi(R) and pi(Q) are
incomparable, or pi(R) ⊆ pi(Q), and there exists i ∈ {1, . . . , d} such that pi(R) ( pi(Q).

Moreover, if R 6⊆ Q, then there exists j ∈ {1, . . . , d} \ {i} such that pi(R) and pi(Q)
are incomparable.

Proof. Let x = (x1, . . . , xd) be a corner of R contained in Q. By symmetry, we may assume
that xi = max(pi(R)) for all i ∈ {1, . . . , d}. Since xi ∈ pi(Q) for all i ∈ {1, . . . , d}, it
follows that max(pi(Q)) > max(pi(R)) for all i ∈ {1, . . . , d}. If min(pi(Q)) 6 min(pi(R)),
then pi(R) ⊆ pi(Q); otherwise, pi(Q) and pi(R) are incomparable. If pi(Q) and pi(R) are
incomparable for all i ∈ {1, . . . , d}, then y = (y1, . . . , yd) with yi = min(pi(Q)) is a corner
of Q and since min(pi(Q)) > min(pi(R)), it follows that y ∈ R, a contradiction. It follows
that there exists an i ∈ {1, . . . , d} such that pi(R) ( pi(Q).

If pi(R) ( pi(Q) for all i ∈ {1, . . . , d}, then R ⊆ Q; this implies the result.

Observation 16. Let F be a family of axis-parallel boxes in Rd. Let F ′ arise from F
by removing every box in F that contains another box in F . Then ν(F) = ν(F ′) and
τ(F) = τ(F ′).

Proof. Since F ′ ⊆ F , it follows that ν(F ′) 6 ν(F) and τ(F ′) 6 τ(F). Let M be a
matching in F of size ν(F). Let M′ arise from M by replacing each box R in M\ F ′
with a box in F ′ contained in R. Then M′ is a matching in F ′, and so ν(F ′) = ν(F).
Moreover, let P be a cover of F ′. Since every box in F contains a box in F ′ (possibly
itself) which, in turn, contains a point in P , we deduce that P is a cover of F . It follows
that τ(F ′) = τ(F).

A family F of axis-parallel boxes is clean if no box in F contains another box in F .
By Observation 16, we may restrict ourselves to clean families of boxes.
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4 Proof of Theorem 8

Throughout this section, let F be a clean family of axis-parallel boxes in Rd, and let M
be a matching of maximum size in F . We let F(M) denote the subfamily of F consisting
of those boxes R in F for which for every M ∈ M, either M is disjoint from R or M
contains at least 2d−1 corners of R. Our goal is to bound τ(F(M)).

Lemma 17. Let R ∈ F(M). Then R intersects at least one and at most two boxes in
M. If R intersects two boxes M1,M2 ∈ M, then there exists j ∈ {1, . . . , d} such that
M1 ≺j M2 or M2 ≺j M1, and for all i ∈ {1, . . . , d} \ {j}, we have that pi(R) ⊆ pi(M1)
and pi(R) ⊆ pi(M2).

Proof. If R is disjoint from every box in M, then M ∪ {R} is a larger matching, a
contradiction. So R intersects at least one box in M. Let M1 be in M such that
R ∩M1 6= ∅. We claim that there exists j ∈ {1, . . . , d} such that M1 contains precisely
the set of corners of R with the same jth coordinate.

By Lemma 15, there exists j ∈ {1, . . . , d} such that pj(R) = [a, b] and pj(M1) are
incomparable. By symmetry, we may assume that a ∈ pj(M1), b 6∈ pj(M1). This proves
that M1 contains all 2d−1 corners of R with a as their jth coordinate, and our claim
follows.

Consequently, pi(R) ⊆ pi(M1) for all i ∈ {1, . . . , d} \ {j}. Since R has exactly 2d

corners, and members of M are disjoint, it follows that there exist at most two boxes
in M that intersect R. If M1 is the only one such box, then the result follows. Let
M2 ∈ M \ {M1} such that R ∩M1 6= ∅. By our claim, it follows that M2 contains 2d−1

corners of R; and since M1 is disjoint from M2, it follows that M2 contains precisely
those corners of R with jth coordinate equal to b. Therefore, pi(R) ⊆ pi(M2) for all
i ∈ {1, . . . , d} \ {j}. We conclude that pi(M2) is not disjoint from pi(M1) for all i ∈
{1, . . . , d} \ {j}, and since M1,M2 are disjoint, it follows from Observation 14 that either
M1 ≺j M2 or M2 ≺j M1.

For i ∈ {1, . . . , d}, we define a directed graph Gi as follows. We let V (Gi) = M,
and for M1,M2 ∈ M we let M1M2 ∈ E(Gi) if and only if M1 ≺i M2 and there exists
R ∈ F(M) such that R ∩M1 6= ∅ and R ∩M2 6= ∅. In this case, we say that R witnesses
the edge M1M2. For i = {1, . . . , d}, we say that R is i-pendant at M1 ∈ M if M1 is
the only box of M intersecting R and pi(R) and pi(M1) are incomparable. Note that by
Lemma 17, every box R in F(M) satisfies exactly one of the following: R witnesses an
edge in exactly one of the graphs Gi, i ∈ {1, . . . , d}; or R is i-pendant for exactly one
i ∈ {1, . . . , d}.

Lemma 18. Let i ∈ {1, . . . , d}. Let Q,R ∈ F(M) be such that Q witnesses an edge
M1M2 in Gi, and R witnesses an edge M3M4 in Gi. If Q and R intersect, then either
M1 = M4, or M2 = M3, or M1M2 = M3M4.

Proof. By symmetry, we may assume that i = 1. Let p1(M1) = [x1, y1] and p1(M2) =
[x2, y2]. It follows that p1(Q) ⊆ [x1, y2]. Let a = (a1, a2, . . . , ad) ∈ Q ∩ R. It follows that
aj ∈ pj(Q) ⊆ pj(M1) ∩ pj(M2) and aj ∈ pj(R) ⊆ pj(M3) ∩ pj(M4) for all j ∈ {2, . . . , d}.
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x1 y1 x2 y2

M1

Q

M2

a
a

Figure 1: Proof of Lemma 18 for d = 2; two possible locations for a are shown.

If M1 ∈ {M3,M4} and M2 ∈ {M3,M4}, then M1M2 = M3M4, and the result follows.
Therefore, we may assume that this does not happen. By symmetry, we may assume that
M1 is distinct from M3 and M4. (If M2 is distinct from M3 and M4, and M1 is not, then
we reflect the family of boxes along the origin; this switches the roles of M1 and M2, and
of M3 and M4.)

It follows that a 6∈ M1, for otherwise R intersects three distinct members of M,
contrary to Lemma 17. Since R is disjoint from M1, it follows that either M1 ≺1 R or
R ≺1 M1. But p1(Q) ⊆ [x1, y2], and since Q ∩ R 6= ∅, it follows that M1 ≺1 R (see
Figure 1).
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Since M3 6= M1 and pj(M3) ∩ pj(M1) 3 aj for all j ∈ {2, . . . , d}, it follows that either
M1 ≺1 M3 or M1 ≺1 M3. Since M1 ≺1 R and R ∩M3 6= ∅, it follows that M1 ≺1 M3.

Suppose that a ∈M3. Then Q∩M3 6= ∅, and since M1 ≺1 M3, we have that M3 = M2

as desired.
Therefore, we may assume that a 6∈ M3, and thus p1(M1) ≺ p1(M3) ≺ [a1, a1]. Since

[y1, a1] ⊆ p1(Q), it follows that p1(M3) ∩ p1(Q) 6= ∅. But pj(M3) ∩ pj(Q) 3 aj for all
j ∈ {2, . . . , d}, and hence Q ∩M3 6= ∅. But then M3 ∈ {M1,M2}, and thus M3 = M2.
This concludes the proof.

The following is a well-known fact about directed graphs; we include a proof for
completeness.

Lemma 19. Let G be a directed graph. Then there exists an edge set E ⊆ E(G) with
|E| > |E(G)|/4 such that for every vertex v ∈ V (G), either E contains no incoming edge
at v, or E contains no outgoing edge at v.

Proof. For A,B ⊆ V (G), let E(A,B) denote the set of edges of G with head in A and
tail in B.

Let X0 = Y0 = ∅, V (G) = {v1, . . . , vn}. For i = 1, . . . , n we will construct Xi, Yi such
that Xi∪Yi = {v1, . . . , vi}, Xi∩Yi = ∅ and |E(Xi, Yi)|+ |E(Yi, Xi)| > |E(G|(Xi∪Yi))|/2,
where G|(Xi ∪ Yi) denotes the induced subgraph of G on vertex set Xi ∪ Yi. This holds
for X0, Y0. Suppose that we have constructed Xi−1, Yi−1 for some i ∈ {1, . . . , n}. If
|E(Xi−1, {vi})|+|E({vi} , Xi−1)| > |E(Yi−1, {vi})|+|E({vi} , Yi−1)|, we let Xi = Xi−1, Yi =
Yi−1 ∪{vi}; otherwise, let Xi = Xi−1 ∪{vi} , Yi = Yi−1. It follows that Xi, Yi still have the
desired properties. Thus, |E(Xn, Yn)| + |E(Yn, Xn)| > |E(G)|/2. By symmetry, we may
assume that |E(Xn, Yn)| > |E(G)|/4. But then E(Xn, Yn) is the desired set E; it contains
only incoming edges at vertices in Xn, and only outgoing edges at vertices in Yn. This
concludes the proof.

Theorem 20. For i ∈ {1, . . . , d}, |E(Gi)| 6 4ν(F).

Proof. Let E ⊆ E(Gi) as in Lemma 19. For each edge in E, we pick one box witnessing
this edge; let F ′ denote the family of these boxes. We claim that F ′ is a matching. Indeed,
suppose not, and let Q,R ∈ F ′ be distinct and intersecting. Let Q witness M1M2 and
R witness M3M4. By Lemma 18, it follows that either M1M2 = M3M4 (impossible since
we picked exactly one witness per edge) or M1 = M4 (impossible because E does not
contain both an incoming and an outgoing edge at M1 = M4) or M2 = M3 (impossible
because E does not contain both an incoming and an outgoing edge at M2 = M3). This
is a contradiction, and our claim follows. Now we have ν(F) > |F ′| = |E| > |E(Gi)|/4,
which implies the result.

A matching M of a clean family F of boxes is extremal if for every M ∈ M and
R ∈ F \M, either (M\ {M}) ∪ {R} is not a matching or there exists an i ∈ {1, . . . , d}
such that max(pi(R)) > max(pi(M)). Every family F of axis parallel boxes has an
extremal maximum matching. For example, the maximum matching M minimizing∑

M∈M
∑d

i=1 max(pi(M)) is extremal.
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Theorem 21. For i ∈ {1, . . . , d}, let Fi denote the set of boxes in F(M) that either are
i-pendant or witness an edge in Gi. Then τ(Fi) 6 (4 + d)ν(F). If M is extremal, then
τ(Fi) 6 (3 + d)ν(F).

Proof. By symmetry, it is enough to prove the theorem for i = 1. For M ∈ M, let FM

denote the set of boxes in F1 that either are 1-pendant at M , or witness an edge MM ′

of G1. It follows that
⋃

M∈MFM = F1. For M ∈M, let d+(M) denote the out-degree of
M in G1. We will prove that τ(FM) 6 d+(M) + d for all M ∈M.

We fix a box M ∈ M. Let A denote the set of boxes that are 1-pendant at M .
Suppose that A contains two disjoint boxes M1,M2. Then (M\ {M}) ∪ {M1,M2} is a
larger matching thanM, a contradiction. So every two boxes in A pairwise intersect. By
Observation 2, it follows that τ(A) = 1.

Let B = FM \ A, i.e. B is the set of boxes in F1 that witness an outgoing edge MM ′

at M . For every edge MM ′ ∈ E(G1), we let B(M ′) denote the set of boxes in F1 that
witness the edge MM ′.

Suppose that there is an edge MM ′ ∈ E(G1) such that the set B(M ′) satisfies
ν(B(M ′)) > 3. Then M is not a maximum matching, since removing M and M ′ from
M and adding ν(B(M ′)) disjoint rectangles in B(M ′) yields a larger matching. More-
over, for distinct M ′,M ′′ ∈ M, every box in B(M ′) is disjoint from every box in B(M ′′)
by Lemma 18. Thus, if there exist M ′,M ′′ such that ν(B(M ′)) = ν(B(M ′′)) = 2 and
M ′ 6= M ′′, then removing M,M ′ and M ′′ and adding two disjoint rectangles from each of
B(M ′) and B(M ′′) yields a bigger matching, a contradiction.

Let p1(M) = [a, b]. Two boxes in B(M ′) intersect if and only if their intersections with
the hyperplane H = {(x1, . . . , xd) : x1 = b} intersect. If ν(B(M ′)) = 1, then τ(B(M ′)) = 1
by Observation 2. If ν(B(M ′)) = 2, then ν({F ∩H : F ∈ B(M ′)}) = 2 and so

τ(B(M ′)) = τ({F ∩H : F ∈ B(M ′)}) 6 d

by Observation 4.
Therefore,

τ(B) 6
∑

M ′:MM ′∈E(G1)

τ(B(M ′)) 6 d+(M)− 1 + d,

and since τ(A) 6 1, it follows that τ(FM) 6 d+(M) + d as claimed (see Figure 2).
Summing over all rectangles in M, we obtain

τ(Fi) 6
∑
M∈M

τ(FM) 6
∑
M∈M

(d+(M) + d)

= d|V (G1)|+ |E(G1)| 6 d|M|+ 4|M| = (4 + d)ν(F),

where we used Theorem 20 for the inequality |E(G1)| 6 4|M|.
If M is extremal, then every 1-pendant box at M also intersects H. Let M ′ be such

that ν(B(M ′)) is maximum. It follows that ν(A∪B(M ′)) 6 2 and thus τ(A∪B(M ′)) 6 d,
implying τ(FM) 6 d+(M) + d − 1. This concludes the proof of the second part of the
theorem.
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Figure 2: Proof that τ(FM) 6 d+(M) = d for d = 2; here d+(M) = 3. The red boxes in
A satisfy τ(A) = ν(A) = 1, since M is the only box in M they intersect. There is only
one M ′, namely M ′ = M ′

1, such that ν(B(M ′)) > 1; since all those boxes intersect the
line x = b, τ(B(M ′)) 6 d = 2. For all of the d+(M) − 1 boxes M ′ such that M ′ 6= M ′

1,
τ(B(M ′)) = ν(B(M ′)) = 1. So τ(FM) 6 5, as shown.

Theorem 22. Let F ′ ⊆ F be the set of boxes R ∈ F such that for each M ∈ M, either
M ∩ R = ∅, or M contains 2d−1 corners of R, or R contains a corner of M . Then
τ(F ′) 6 (2d + (4 + d)d)ν(F). If M is extremal, then τ(F ′) 6 (2d + (3 + d)d)ν(F).

Proof. We proved in Theorem 21 that τ(Fi) 6 (4 + d)ν(F) for i = 1, . . . , d. Let F ′′ =
F ′ \ F(M). Then F ′′ consists of boxes R such that R contains a corner of some box
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M ∈M. Let P be the set of all corners of boxes inM. It follows that P covers F ′′, and so
τ(F ′′) 6 2dν(F). Since F ′ = F ′′∪F1∪· · ·∪Fd, it follows that τ(F ′) 6 (2d+(4+d)d)ν(F).
If M is extremal, the same argument yields that τ(F ′) 6 (2d + (3 + d)d)ν(F), since
τ(Fi) 6 (3 + d)ν(F) for i = 1 . . . , d by Theorem 21.

We are now ready to prove our main theorems.

Proof of Theorem 8. Let F be a family of axis-parallel boxes in Rd, and let M be a
maximum matching in F such that for every F ∈ F and M ∈ M, either F ∩M = ∅, or
F contains a corner of M , or M contains 2d−1 corners of F . It follows that F = F ′ in
Theorem 22, and therefore, τ(F) 6 (2d + (4 + d)d)ν(F).

5 Proof of Theorem 10

LetM be a maximum matching in F , and letM be extremal. Observe that each rectangle
R ∈ F satisfies one of the following:

• R contains a corner of some M ∈M;

• some M ∈M contains two corners of R; or

• there exists M ∈M such that M ∩R 6= ∅, and pi(R) ⊇ pi(M) for some i ∈ {1, 2}.

By Theorem 22, 14ν(F) points suffice to cover every rectangle satisfying at least one of
the first two conditions. Now, due to the r-bounded aspect ratio, for each M ∈M and for
each i ∈ {1, 2}, at most r2 disjoint rectangles R ∈ F can satisfy the third condition for M
and i. Thus the family of projections of the rectangles satisfying the third condition for
M and i onto the (3− i)th coordinate have a matching number at most r2. Since all these
rectangles intersect the boundary of M twice, by Theorem 1, we need at most r2 additional
points to cover them for each i ∈ {1, 2}. We conclude that τ(F) 6 (14 + 2r2)ν(F).
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