2,602 research outputs found

    Covering a 3D flat surface with autonomous and mobile wireless sensor nodes

    Get PDF
    International audienceWireless Sensor Networks (WSNs) are used in a wide range of applications due to their monitoring and tracking abilities. Depending on the applications goals, sensor nodes are deployed either in a two dimensional (2D) area or in a three-dimensional (3D) area. In addition, WSN deployment can be either in a distributed or a centralized manner. In this paper, we are interested in a fully distributed deployment of WSN in several 3D-flat-surface configurations using autonomous and mobile nodes. Our goal is to ensure full 3D flat surfaces coverage and maintain network connectivity for these surfaces. To reach our goal we propose 3D-DVFA-FSC, a distributed deployment algorithm based on virtual forces strategy to move sensor nodes over different 3D-flat-surface shapes. Simulation results show that 3D-DVFA-FSC provides a full coverage rate regardless of the 3D-flat-surface configuration while maintaining network connectivity

    Autonomous Vehicle Coordination with Wireless Sensor and Actuator Networks

    Get PDF
    A coordinated team of mobile wireless sensor and actuator nodes can bring numerous benefits for various applications in the field of cooperative surveillance, mapping unknown areas, disaster management, automated highway and space exploration. This article explores the idea of mobile nodes using vehicles on wheels, augmented with wireless, sensing, and control capabilities. One of the vehicles acts as a leader, being remotely driven by the user, the others represent the followers. Each vehicle has a low-power wireless sensor node attached, featuring a 3D accelerometer and a magnetic compass. Speed and orientation are computed in real time using inertial navigation techniques. The leader periodically transmits these measures to the followers, which implement a lightweight fuzzy logic controller for imitating the leader's movement pattern. We report in detail on all development phases, covering design, simulation, controller tuning, inertial sensor evaluation, calibration, scheduling, fixed-point computation, debugging, benchmarking, field experiments, and lessons learned

    3D Surface Covering with Virtual Forces

    Get PDF
    International audienceThe deployment of Wireless Sensor Network (WSNs) is widely used in monitoring applications. Depending on the entity to be monitored, sensor nodes are deployed in a two-dimension (2D) area or a three-dimension (3D) area. In addition, sensor nodes can be deployed either in a distributed way or their positions are precomputed by a central entity and they are placed at their positions using mobile robots. In this paper, we are interested in the deployment of WSN in a 3D-surface using autonomous and mobile nodes. Our goal is to ensure full 3D-surface coverage and maintain network connectivity. To reach our goal we propose 3D-DVFA-SC, a distributed deployment algorithm based on virtual forces strategy to move sensor nodes. Simulation results show that 3D-DVFA-SC provides a very good coverage rate while maintaining network connectivity

    A Context-Driven Model for the Flat Roofs Construction Process through Sensing Systems, Internet-of-Things and Last Planner System

    Get PDF
    The main causes of building defects are errors in the design and the construction phases. These causes related to construction are mainly due to the general lack of control of construction work and represent approximately 75% of the anomalies. In particular, one of the main causes of such anomalies, which end in building defects, is the lack of control over the physical variables of the work environment during the execution of tasks. Therefore, the high percentage of defects detected in buildings that have the root cause in the construction phase could be avoidable with a more accurate and efficient control of the process. The present work proposes a novel integration model based on information and communications technologies for the automation of both construction work and its management at the execution phase, specifically focused on the flat roof construction process. Roofs represent the second area where more defects are claimed. The proposed model is based on a Web system, supported by a service oriented architecture, for the integral management of tasks through the Last Planner System methodology, but incorporating the management of task restrictions from the physical environment variables by designing specific sensing systems. Likewise, all workers are integrated into the management process by Internet-of-Things solutions that guide them throughout the execution process in a non-intrusive and transparent way

    Development of a GIS-based method for sensor network deployment and coverage optimization

    Get PDF
    Au cours des dernières années, les réseaux de capteurs ont été de plus en plus utilisés dans différents contextes d’application allant de la surveillance de l’environnement au suivi des objets en mouvement, au développement des villes intelligentes et aux systèmes de transport intelligent, etc. Un réseau de capteurs est généralement constitué de nombreux dispositifs sans fil déployés dans une région d'intérêt. Une question fondamentale dans un réseau de capteurs est l'optimisation de sa couverture spatiale. La complexité de l'environnement de détection avec la présence de divers obstacles empêche la couverture optimale de plusieurs zones. Par conséquent, la position du capteur affecte la façon dont une région est couverte ainsi que le coût de construction du réseau. Pour un déploiement efficace d'un réseau de capteurs, plusieurs algorithmes d'optimisation ont été développés et appliqués au cours des dernières années. La plupart de ces algorithmes reposent souvent sur des modèles de capteurs et de réseaux simplifiés. En outre, ils ne considèrent pas certaines informations spatiales de l'environnement comme les modèles numériques de terrain, les infrastructures construites humaines et la présence de divers obstacles dans le processus d'optimisation. L'objectif global de cette thèse est d'améliorer les processus de déploiement des capteurs en intégrant des informations et des connaissances géospatiales dans les algorithmes d'optimisation. Pour ce faire, trois objectifs spécifiques sont définis. Tout d'abord, un cadre conceptuel est développé pour l'intégration de l'information contextuelle dans les processus de déploiement des réseaux de capteurs. Ensuite, sur la base du cadre proposé, un algorithme d'optimisation sensible au contexte local est développé. L'approche élargie est un algorithme local générique pour le déploiement du capteur qui a la capacité de prendre en considération de l'information spatiale, temporelle et thématique dans différents contextes d'applications. Ensuite, l'analyse de l'évaluation de la précision et de la propagation d'erreurs est effectuée afin de déterminer l'impact de l'exactitude des informations contextuelles sur la méthode d'optimisation du réseau de capteurs proposée. Dans cette thèse, l'information contextuelle a été intégrée aux méthodes d'optimisation locales pour le déploiement de réseaux de capteurs. L'algorithme développé est basé sur le diagramme de Voronoï pour la modélisation et la représentation de la structure géométrique des réseaux de capteurs. Dans l'approche proposée, les capteurs change leur emplacement en fonction des informations contextuelles locales (l'environnement physique, les informations de réseau et les caractéristiques des capteurs) visant à améliorer la couverture du réseau. La méthode proposée est implémentée dans MATLAB et est testée avec plusieurs jeux de données obtenus à partir des bases de données spatiales de la ville de Québec. Les résultats obtenus à partir de différentes études de cas montrent l'efficacité de notre approche.In recent years, sensor networks have been increasingly used for different applications ranging from environmental monitoring, tracking of moving objects, development of smart cities and smart transportation system, etc. A sensor network usually consists of numerous wireless devices deployed in a region of interest. A fundamental issue in a sensor network is the optimization of its spatial coverage. The complexity of the sensing environment with the presence of diverse obstacles results in several uncovered areas. Consequently, sensor placement affects how well a region is covered by sensors as well as the cost for constructing the network. For efficient deployment of a sensor network, several optimization algorithms are developed and applied in recent years. Most of these algorithms often rely on oversimplified sensor and network models. In addition, they do not consider spatial environmental information such as terrain models, human built infrastructures, and the presence of diverse obstacles in the optimization process. The global objective of this thesis is to improve sensor deployment processes by integrating geospatial information and knowledge in optimization algorithms. To achieve this objective three specific objectives are defined. First, a conceptual framework is developed for the integration of contextual information in sensor network deployment processes. Then, a local context-aware optimization algorithm is developed based on the proposed framework. The extended approach is a generic local algorithm for sensor deployment, which accepts spatial, temporal, and thematic contextual information in different situations. Next, an accuracy assessment and error propagation analysis is conducted to determine the impact of the accuracy of contextual information on the proposed sensor network optimization method. In this thesis, the contextual information has been integrated in to the local optimization methods for sensor network deployment. The extended algorithm is developed based on point Voronoi diagram in order to represent geometrical structure of sensor networks. In the proposed approach sensors change their location based on local contextual information (physical environment, network information and sensor characteristics) aiming to enhance the network coverage. The proposed method is implemented in MATLAB and tested with several data sets obtained from Quebec City spatial database. Obtained results from different case studies show the effectiveness of our approach

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Deployment, Coverage And Network Optimization In Wireless Video Sensor Networks For 3D Indoor Monitoring

    Get PDF
    As a result of extensive research over the past decade or so, wireless sensor networks (wsns) have evolved into a well established technology for industry, environmental and medical applications. However, traditional wsns employ such sensors as thermal or photo light resistors that are often modeled with simple omni-directional sensing ranges, which focus only on scalar data within the sensing environment. In contrast, the sensing range of a wireless video sensor is directional and capable of providing more detailed video information about the sensing field. Additionally, with the introduction of modern features in non-fixed focus cameras such as the pan, tilt and zoom (ptz), the sensing range of a video sensor can be further regarded as a fan-shape in 2d and pyramid-shape in 3d. Such uniqueness attributed to wireless video sensors and the challenges associated with deployment restrictions of indoor monitoring make the traditional sensor coverage, deployment and networked solutions in 2d sensing model environments for wsns ineffective and inapplicable in solving the wireless video sensor network (wvsn) issues for 3d indoor space, thus calling for novel solutions. In this dissertation, we propose optimization techniques and develop solutions that will address the coverage, deployment and network issues associated within wireless video sensor networks for a 3d indoor environment. We first model the general problem in a continuous 3d space to minimize the total number of required video sensors to monitor a given 3d indoor region. We then convert it into a discrete version problem by incorporating 3d grids, which can achieve arbitrary approximation precision by adjusting the grid granularity. Due in part to the uniqueness of the visual sensor directional sensing range, we propose to exploit the directional feature to determine the optimal angular-coverage of each deployed visual sensor. Thus, we propose to deploy the visual sensors from divergent directional angles and further extend k-coverage to ``k-angular-coverage\u27\u27, while ensuring connectivity within the network. We then propose a series of mechanisms to handle obstacles in the 3d environment. We develop efficient greedy heuristic solutions that integrate all these aforementioned considerations one by one and can yield high quality results. Based on this, we also propose enhanced depth first search (dfs) algorithms that can not only further improve the solution quality, but also return optimal results if given enough time. Our extensive simulations demonstrate the superiority of both our greedy heuristic and enhanced dfs solutions. Finally, this dissertation discusses some future research directions such as in-network traffic routing and scheduling issues
    corecore