2,277 research outputs found

    Multi-objective particle swarm optimization for the structural design of concentric tube continuum robots for medical applications

    Get PDF
    Concentric tube robots belong to the class of continuum robotic systems whose morphology is described by continuous tangent curvature vectors. They are composed of multiple, interacting tubes nested inside one another and are characterized by their inherent flexibility. Concentric tube continuum robots equipped with tools at their distal end have high potential in minimally invasive surgery. Their morphology enables them to reach sites within the body that are inaccessible with commercial tools or that require large incisions. Further, they can be deployed through a tight lumen or follow a nonlinear path. Fundamental research has been the focus during the last years bringing them closer to the operating room. However, there remain challenges that require attention. The structural synthesis of concentric tube continuum robots is one of these challenges, as these types of robots are characterized by their large parameter space. On the one hand, this is advantageous, as they can be deployed in different patients, anatomies, or medical applications. On the other hand, the composition of the tubes and their design is not a straightforward task but one that requires intensive knowledge of anatomy and structural behavior. Prior to the utilization of such robots, the composition of tubes (i.e. the selection of design parameters and application-specific constraints) must be solved to determine a robotic design that is specifically targeted towards an application or patient. Kinematic models that describe the change in morphology and complex motion increase the complexity of this synthesis, as their mathematical description is highly nonlinear. Thus, the state of the art is concerned with the structural design of these types of robots and proposes optimization algorithms to solve for a composition of tubes for a specific patient case or application. However, existing approaches do not consider the overall parameter space, cannot handle the nonlinearity of the model, or multiple objectives that describe most medical applications and tasks. This work aims to solve these fundamental challenges by solving the parameter optimization problem by utilizing a multi-objective optimization algorithm. The main concern of this thesis is the general methodology to solve for patient- and application-specific design of concentric tube continuum robots and presents key parameters, objectives, and constraints. The proposed optimization method is based on evolutionary concepts that can handle multiple objectives, where the set of parameters is represented by a decision vector that can be of variable dimension in multidimensional space. Global optimization algorithms specifically target the constrained search space of concentric tube continuum robots and nonlinear optimization enables to handle the highly nonlinear elasticity modeling. The proposed methodology is then evaluated based on three examples that include cooperative task deployment of two robotic arms, structural stiffness optimization under the consideration of workspace constraints and external forces, and laser-induced thermal therapy in the brain using a concentric tube continuum robot. In summary, the main contributions are 1) the development of an optimization methodology that describes the key parameters, objectives, and constraints of the parameter optimization problem of concentric tube continuum robots, 2) the selection of an appropriate optimization algorithm that can handle the multidimensional search space and diversity of the optimization problem with multiple objectives, and 3) the evaluation of the proposed optimization methodology and structural synthesis based on three real applications

    Planning for steerable needles in neurosurgery

    Get PDF
    The increasing adoption of robotic-assisted surgery has opened up the possibility to control innovative dexterous tools to improve patient outcomes in a minimally invasive way. Steerable needles belong to this category, and their potential has been recognised in various surgical fields, including neurosurgery. However, planning for steerable catheters' insertions might appear counterintuitive even for expert clinicians. Strategies and tools to aid the surgeon in selecting a feasible trajectory to follow and methods to assist them intra-operatively during the insertion process are currently of great interest as they could accelerate steerable needles' translation from research to practical use. However, existing computer-assisted planning (CAP) algorithms are often limited in their ability to meet both operational and kinematic constraints in the context of precise neurosurgery, due to its demanding surgical conditions and highly complex environment. The research contributions in this thesis relate to understanding the existing gap in planning curved insertions for steerable needles and implementing intelligent CAP techniques to use in the context of neurosurgery. Among this thesis contributions showcase (i) the development of a pre-operative CAP for precise neurosurgery applications able to generate optimised paths at a safe distance from brain sensitive structures while meeting steerable needles kinematic constraints; (ii) the development of an intra-operative CAP able to adjust the current insertion path with high stability while compensating for online tissue deformation; (iii) the integration of both methods into a commercial user front-end interface (NeuroInspire, Renishaw plc.) tested during a series of user-controlled needle steering animal trials, demonstrating successful targeting performances. (iv) investigating the use of steerable needles in the context of laser interstitial thermal therapy (LiTT) for maesial temporal lobe epilepsy patients and proposing the first LiTT CAP for steerable needles within this context. The thesis concludes with a discussion of these contributions and suggestions for future work.Open Acces

    Introduction to the Special Issue on Sustainable Solutions for the Intelligent Transportation Systems

    Get PDF
    The intelligent transportation systems improve the transportation system’s operational efficiency and enhance its safety and reliability by high-tech means such as information technology, control technology, and computer technology. In recent years, sustainable development has become an important topic in intelligent transportation’s development, including new infrastructure and energy distribution, new energy vehicles and new transportation systems, and the development of low-carbon and intelligent transportation equipment. New energy vehicles’ development is a significant part of green transportation, and its automation performance improvement is vital for smart transportation. The development of intelligent transportation and green, low-carbon, and intelligent transportation equipment needs to be promoted, a significant feature of transportation development in the future. For intelligent infrastructure and energy distribution facilities, the electricity for popular electric vehicles and renewable energy, such as nuclear power and hydrogen power, should be considered

    Planning system for the optimization of electric field delivery using implanted electrodes for brain tumor control

    Get PDF
    BACKGROUND: The use of non-ionizing electric fields from low-intensity voltage sources (\u3c 10 V) to control malignant tumor growth is showing increasing potential as a cancer treatment modality. A method of applying these low-intensity electric fields using multiple implanted electrodes within or adjacent to tumor volumes has been termed as intratumoral modulation therapy (IMT). PURPOSE: This study explores advancements in the previously established IMT optimization algorithm, and the development of a custom treatment planning system for patient-specific IMT. The practicality of the treatment planning system is demonstrated by implementing the full optimization pipeline on a brain phantom with robotic electrode implantation, postoperative imaging, and treatment stimulation. METHODS: The integrated planning pipeline in 3D Slicer begins with importing and segmenting patient magnetic resonance images (MRI) or computed tomography (CT) images. The segmentation process is manual, followed by a semi-automatic smoothing step that allows the segmented brain and tumor mesh volumes to be smoothed and simplified by applying selected filters. Electrode trajectories are planned manually on the patient MRI or CT by selecting insertion and tip coordinates for a chosen number of electrodes. The electrode tip positions and stimulation parameters (phase shift and voltage) can then be optimized with the custom semi-automatic IMT optimization algorithm where users can select the prescription electric field, voltage amplitude limit, tissue electrical properties, nearby organs at risk, optimization parameters (electrode tip location, individual contact phase shift and voltage), desired field coverage percent, and field conformity optimization. Tables of optimization results are displayed, and the resulting electric field is visualized as a field-map superimposed on the MR or CT image, with 3D renderings of the brain, tumor, and electrodes. Optimized electrode coordinates are transferred to robotic electrode implantation software to enable planning and subsequent implantation of the electrodes at the desired trajectories. RESULTS: An IMT treatment planning system was developed that incorporates patient-specific MRI or CT, segmentation, volume smoothing, electrode trajectory planning, electrode tip location and stimulation parameter optimization, and results visualization. All previous manual pipeline steps operating on diverse software platforms were coalesced into a single semi-automated 3D Slicer-based user interface. Brain phantom validation of the full system implementation was successful in preoperative planning, robotic electrode implantation, and postoperative treatment planning to adjust stimulation parameters based on actual implant locations. Voltage measurements were obtained in the brain phantom to determine the electrical parameters of the phantom and validate the simulated electric field distribution. CONCLUSIONS: A custom treatment planning and implantation system for IMT has been developed in this study and validated on a phantom brain model, providing an essential step in advancing IMT technology toward future clinical safety and efficacy investigations

    Volumetric analyses of ablation dimensions in microwave ablation for colorectal liver metastases.

    Get PDF
    BACKGROUND In thermal ablation of malignant liver tumors, ablation dimensions remain poorly predictable. This study aimed to investigate factors influencing volumetric ablation dimensions in patients treated with stereotactic microwave ablation (SMWA) for colorectal liver metastases (CRLM). METHODS Ablation volumes from CRLM ≤3 cm treated with SMWA within a prospective European multicentre trial were segmented. Correlations between applied ablation energies and resulting effective ablation volumes (EAV) and ablation volume irregularities (AVI) were investigated. A novel measure for AVI, including minimum enclosing and maximum inscribed ellipsoid ablation volumes, and a surrogate parameter for the expansion of ablation energy (EAV per applied energy), was introduced. Potential influences of tumor and patient-specific factors on EAV per applied energy and AVI were analyzed using multivariable mixed-effects models. RESULTS A total of 116 ablations from 71 patients were included for analyses. Correlations of EAV or AVI and ablation energy were weak to moderate, with a maximum of 25% of the variability in EAV and 13% in AVI explained by the applied ablation energy. On multivariable analysis, ablation expansion (EAV per applied ablation energy) was influenced mainly by the tumor radius (B = -0.03, [CI -0.04, -0.007]). AVI was significantly larger with higher applied ablation energies (B = 0.002 [CI 0.0007, 0.002]]); liver steatosis, KRAS mutation, subcapsular location or proximity to major blood vessels had no influence. CONCLUSIONS This study confirmed that factors beyond the applied ablation energy might affect volumetric ablation dimensions, resulting in poor predictability. Further clinical trials including tissue sampling are needed to relate physical tissue properties to ablation expansion

    E2CoPre: Energy Efficient and Cooperative Collision Avoidance for UAV Swarms with Trajectory Prediction

    Full text link
    This paper presents a novel solution to address the challenges in achieving energy efficiency and cooperation for collision avoidance in UAV swarms. The proposed method combines Artificial Potential Field (APF) and Particle Swarm Optimization (PSO) techniques. APF provides environmental awareness and implicit coordination to UAVs, while PSO searches for collision-free and energy-efficient trajectories for each UAV in a decentralized manner under the implicit coordination. This decentralized approach is achieved by minimizing a novel cost function that leverages the advantages of the active contour model from image processing. Additionally, future trajectories are predicted by approximating the minima of the novel cost function using calculus of variation, which enables proactive actions and defines the initial conditions for PSO. We propose a two-branch trajectory planning framework that ensures UAVs only change altitudes when necessary for energy considerations. Extensive experiments are conducted to evaluate the effectiveness and efficiency of our method in various situations

    Design-centric Method for an Augmented Reality Robotic Surgery

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Quantitative Analysis of Radiation-Associated Parenchymal Lung Change

    Get PDF
    Radiation-induced lung damage (RILD) is a common consequence of thoracic radiotherapy (RT). We present here a novel classification of the parenchymal features of RILD. We developed a deep learning algorithm (DLA) to automate the delineation of 5 classes of parenchymal texture of increasing density. 200 scans were used to train and validate the network and the remaining 30 scans were used as a hold-out test set. The DLA automatically labelled the data with Dice Scores of 0.98, 0.43, 0.26, 0.47 and 0.92 for the 5 respective classes. Qualitative evaluation showed that the automated labels were acceptable in over 80% of cases for all tissue classes, and achieved similar ratings to the manual labels. Lung registration was performed and the effect of radiation dose on each tissue class and correlation with respiratory outcomes was assessed. The change in volume of each tissue class over time generated by manual and automated segmentation was calculated. The 5 parenchymal classes showed distinct temporal patterns We quantified the volumetric change in textures after radiotherapy and correlate these with radiotherapy dose and respiratory outcomes. The effect of local dose on tissue class revealed a strong dose-dependent relationship We have developed a novel classification of parenchymal changes associated with RILD that show a convincing dose relationship. The tissue classes are related to both global and local dose metrics, and have a distinct evolution over time. Although less strong, there is a relationship between the radiological texture changes we can measure and respiratory outcomes, particularly the MRC score which directly represents a patient’s functional status. We have demonstrated the potential of using our approach to analyse and understand the morphological and functional evolution of RILD in greater detail than previously possible
    corecore