2,008 research outputs found

    Compression and Conditional Emulation of Climate Model Output

    Full text link
    Numerical climate model simulations run at high spatial and temporal resolutions generate massive quantities of data. As our computing capabilities continue to increase, storing all of the data is not sustainable, and thus it is important to develop methods for representing the full datasets by smaller compressed versions. We propose a statistical compression and decompression algorithm based on storing a set of summary statistics as well as a statistical model describing the conditional distribution of the full dataset given the summary statistics. The statistical model can be used to generate realizations representing the full dataset, along with characterizations of the uncertainties in the generated data. Thus, the methods are capable of both compression and conditional emulation of the climate models. Considerable attention is paid to accurately modeling the original dataset--one year of daily mean temperature data--particularly with regard to the inherent spatial nonstationarity in global fields, and to determining the statistics to be stored, so that the variation in the original data can be closely captured, while allowing for fast decompression and conditional emulation on modest computers

    Cross-layer design for single-cell OFDMA systems with heterogeneous QoS and partial CSIT

    Get PDF
    Abstract— This paper proposes a novel cross-layer scheduling scheme for a single-cell orthogonal frequency division multiple access (OFDMA) wireless system with partial channel state information (CSI) at transmitter (CSIT) and heterogeneous user delay requirements. Previous research efforts on OFDMA resource allocation are typically based on the availability of perfect CSI or imperfect CSI but with small error variance. Either case consists to typify a non tangible system as the potential facts of channel feedback delay or large channel estimation errors have not been considered. Thus, to attain a more realistic resolution our cross-layer design determines optimal subcarrier and power allocation policies based on partial CSIT and individual user’s quality of service (QoS) requirements. The simulation results show that the proposed cross-layer scheduler can maximize the system’s throughput and at the same time satisfy heterogeneous delay requirements of various users with significant low power consumption

    Efficient Radio Resource Allocation Schemes and Code Optimizations for High Speed Downlink Packet Access Transmission

    No full text
    An important enhancement on the Wideband Code Division Multiple Access (WCDMA) air interface of the 3G mobile communications, High Speed Downlink Packet Access (HSDPA) standard has been launched to realize higher spectral utilization efficiency. It introduces the features of multicode CDMA transmission and Adaptive Modulation and Coding (AMC) technique, which makes radio resource allocation feasible and essential. This thesis studies channel-aware resource allocation schemes, coupled with fast power adjustment and spreading code optimization techniques, for the HSDPA standard operating over frequency selective channel. A two-group resource allocation scheme is developed in order to achieve a promising balance between performance enhancement and time efficiency. It only requires calculating two parameters to specify the allocations of discrete bit rates and transmitted symbol energies in all channels. The thesis develops the calculation methods of the two parameters for interference-free and interference-present channels, respectively. For the interference-present channels, the performance of two-group allocation can be further enhanced by applying a clustering-based channel removal scheme. In order to make the two-group approach more time-efficient, reduction in matrix inversions in optimum energy calculation is then discussed. When the Minimum Mean Square Error (MMSE) equalizer is applied, optimum energy allocation can be calculated by iterating a set of eigenvalues and eigenvectors. By using the MMSE Successive Interference Cancellation (SIC) receiver, the optimum energies are calculated recursively combined with an optimum channel ordering scheme for enhancement in both system performance and time efficiency. This thesis then studies the signature optimization methods with multipath channel and examines their system performances when combined with different resource allocation methods. Two multipath-aware signature optimization methods are developed by applying iterative optimization techniques, for the system using MMSE equalizer and MMSE precoder respectively. A PAM system using complex signature sequences is also examined for improving resource utilization efficiency, where two receiving schemes are proposed to fully take advantage of PAM features. In addition by applying a short chip sampling window, a Singular Value Decomposition (SVD) based interference-free signature design method is presented

    The Application of Nature-inspired Metaheuristic Methods for Optimising Renewable Energy Problems and the Design of Water Distribution Networks

    Get PDF
    This work explores the technical challenges that emerge when applying bio-inspired optimisation methods to real-world engineering problems. A number of new heuristic algorithms were proposed and tested to deal with these challenges. The work is divided into three main dimensions: i) One of the most significant industrial optimisation problems is optimising renewable energy systems. Ocean wave energy is a promising technology for helping to meet future growth in global energy demand. However, the current technologies of wave energy converters (WECs) are not fully developed because of technical engineering and design challenges. This work proposes new hybrid heuristics consisting of cooperative coevolutionary frameworks and neuro-surrogate optimisation methods for optimising WECs problem in three domains, including position, control parameters, and geometric parameters. Our problem-specific algorithms perform better than existing approaches in terms of higher quality results and the speed of convergence. ii) The second part applies search methods to the optimization of energy output in wind farms. Wind energy has key advantages in terms of technological maturity, cost, and life-cycle greenhouse gas emissions. However, designing an accurate local wind speed and power prediction is challenging. We propose two models for wind speed and power forecasting for two wind farms located in Sweden and the Baltic Sea by a combination of recurrent neural networks and evolutionary search algorithms. The proposed models are superior to other applied machine learning methods. iii) Finally, we investigate the design of water distribution systems (WDS) as another challenging real-world optimisation problem. WDS optimisation is demanding because it has a high-dimensional discrete search space and complex constraints. A hybrid evolutionary algorithm is suggested for minimising the cost of various water distribution networks and for speeding up the convergence rate of search.Thesis (Ph.D.) -- University of Adelaide, School of Computer Science, 202
    corecore