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Abstract: This paper presents a framework to utilize multivariate time series data to automatically
identify reoccurring events, e.g., resembling failure patterns in real-world manufacturing data by
combining selected data mining techniques. The use case revolves around the auxiliary polymer
manufacturing process of drying and feeding plastic granulate to extrusion or injection molding
machines. The overall framework presented in this paper includes a comparison of two different
approaches towards the identification of unique patterns in the real-world industrial data set.
The first approach uses a subsequent heuristic segmentation and clustering approach, the second
branch features a collaborative method with a built-in time dependency structure at its core (TICC).
Both alternatives have been facilitated by a standard principle component analysis PCA (feature fusion)
and a hyperparameter optimization (TPE) approach. The performance of the corresponding approaches
was evaluated through established and commonly accepted metrics in the field of (unsupervised)
machine learning. The results suggest the existence of several common failure sources (patterns)
for the machine. Insights such as these automatically detected events can be harnessed to develop
an advanced monitoring method to predict upcoming failures, ultimately reducing unplanned
machine downtime in the future.

Keywords: smart manufacturing; Industry 4.0; polymer processing; polymer manufacturing;
smart maintenance; unsupervised learning; segmentation; clustering; time series analysis

1. Introduction

The manufacturing industry is currently in the midst of the fourth industrial revolution. This digital
transformation towards smart manufacturing systems (SMS) is based on the three pillars connectivity,
virtualization, and data utilization [1]. This circumstance is fueled by the rapid development in
both information technology (IT) and operational technology (OT), which has led to an increasingly
connected and automated world: in essence, a merging of both worlds (IT/OT). Technologies like sensor
technology, cloud computing, and AI/big data analytics lead not only to a dramatic increase in the
amount of (manufacturing) data, but also to rapidly developing data processing capabilities, which have
raised interest in data mining approaches for automating repetitive processes [2]. Time series data,
thereby, are one of the most common information representation variants in a variety of different
business areas. Advanced process monitoring, on which we rely regularly in SMS, typically yields
multidimensional data to increase its effectiveness. A specific branch in time series analysis deals with
the recognition of reoccurring patterns within the data (see Figure 1). Time series data analysis generally
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utilizes established pattern recognition methods in order to identify the steady state, anomalies and
characteristic failure patterns. However, the identification of such distinct patterns in multivariate time
series represents a highly complex problem due to the interactions (correlation) between variables,
time dependency and the usually nonlinear nature of the regarded data [3,4]. Furthermore, real-word
data are usually noisy and, thus, require pre-processing to become a valuable input for analytical
algorithms. Pre-processing enhances the ability of the overall approach to be flexible enough to detect
various disturbances, such as missing values, noise or outliers, within the data set, but also sufficiently
restrictive so that not all insignificant fluctuations (e.g., measurement errors) are labeled as irregularities.
Standard distance-based similarity metrics, which are often used in related unsupervised learning
approaches, can therefore not be applied without adaptation for different types of problems [4,5].
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Figure 1. Abstract schematic to illustrate different patterns in a time series.

There is a growing interest in the field of pattern recognition, especially for multivariate time
series data due to, on the one hand, increasing availability of potent algorithms and easy-to-use tools,
and on the other hand, the realization of the potential valuable impact of insights derived from such
data sets. Most of the recent work on clustering, however, focuses on grouping different time series
into similar batches [6,7]. The paper by [8] for instance presents a popular approach using fuzzy
clustering combined with a dynamic time warping technique resulting in an enhance performance
when compared to previous methods. There are only a few authors focusing on pattern recognition
within a single time series, such as we regularly are confronted in maintenance applications [4].

This paper presents a framework to utilize multivariate data to identify reoccurring patterns in
real-world manufacturing data. The objective is to identify failure patterns for new applications in the
area of maintenance.

We analyze the drying process of plastic granulate in an industrial drying hopper equipped with
multiple sensors. The number of different failure patterns (sources for defects) is not known beforehand
and the sensor readings are subject to natural fluctuations (noise). The overall work presented in this
manuscript includes a comparison of two different approaches towards the identification of unique
patterns in the data set. One processing path includes the sequential use of common segmentation
and clustering algorithms to identify patterns, which might lead to a better respective (both steps
of the chain) and, therefore, overall performance. The second approach features a collaborative
method with a built-in time dependency structure, thereby avoiding a multiplication of losses due to
a sequential processing chain. The better performing method is fine-tuned afterwards in terms of its
hyperparameters. The resulting patterns (clusters) that are identified by the framework can then serve
as input for advanced monitoring methods predicting upcoming failures and ultimately reducing
unplanned machine downtime in the future.
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The outline of this paper features a short introduction to the topic of plastic granulate drying and
time series clustering in Section 2, followed by the proposed framework in Section 3. Finally, the results
are presented in Section 4 and consequently discussed in Section 5.

2. State of the Art

Industry 4.0, machine learning, and artificial intelligence (AI) are popular topics in the current
scientific discourse and, therefore, the current state of the art is subject to frequent changes or
newly arising theories and topics [1]. Thus, we chose to apply the Grounded Theory Approach,
originally developed by Glaser and Strauss in 1967 [9], to gather and subsequently analyze the
existing knowledge on the topic of pattern recognition on time series data in the context of Smart
Manufacturing Systems (SMS). The approach encourages inductive reasoning for the formulation of the
experimental setup and, hence, fosters the development of a practical state of the art framework [10].
The corresponding literature was selected from the results of a search term optimization identifying
comparable research approaches and problems. We used established academic research databases,
in particular Scopus, Web of Science, IEEE Xplore, and ScienceDirect, to execute the keyword-based
literature search process. The most relevant papers were selected according to their degree of relation
to subject of patter recognition in time series for SMS.

In order to establish an automated event detection method for SMS through an unsupervised
machine learning framework, we need to take a closer look at the data and its underlying manufacturing
process. Domain knowledge is key to developing successful machine learning applications in
a manufacturing context. Data mining process phases, such as feature extraction and the selection
of suitable algorithms and machine learning models, benefit form process understanding and the
appropriate application of these insights [4]. The following chapter introduces the general drying
process of plastic granulates and presents respective data usable for the analysis.

2.1. Manufacturing Process

Drying hoppers are industrial machines, which are mostly used to dry and remove moisture from
non-hygroscopic and slightly hygroscopic plastic pellets. They are especially effective for the process
of drying the surface area of non-hygroscopic resin pellets prior to further fabrication [11] to avoid
quality issues further down the process chain such as voids caused by gasification of moisture in the
final parts. The drying process in general is a vital step in the chain of manufacturing for diverse types
of polymers since the excess moisture will otherwise react during the melting process. This might
result in a loss of molecular weight and subsequently to changes in regard of the physical properties,
such as reduced tensile and impact strength of the material [12,13].

Thereby, most of the modern drying hoppers are structured similarly, in order to ensure an even
temperature distribution while also maintaining an even mass material flow. They feature a vertically
cylindric body with a conical hole at the bottom, as depicted in Figure 2. The spreader tubes inside the
hopper then inject hot and dry air into the chamber, while the granulate is slowly moving from the top
to the bottom valve [11,13].

After the hot air has passed the material, it is cleared, dried, (re-)heated (if necessary) and then
again reinjected into the drying chamber. For a drying process to be successful in achieving the targeted
humidity, there are three major factors that need to be considered: Drying time, drying temperature,
and the dryness of the circulating air [13]. The most intuitive factor might be the drying time since
the circulating air can only take a certain amount of humidity from the material until it is saturated.
The specific amount of time that the material needs to stay in the machine in order to achieve a defined
humidity can be calculated as a function of air temperature, input dryness of the material and target
humidity. In general, the drying process has a concave form insofar as the percentage humidity
reduction is steep and flattens during later stages [12,14]. Both air dryness and temperature also
play decisive roles for the drying process and are usually coordinated in dependency of one another.
By drying the air, the relative humidity is reduced and consequently the moisture holding capacity
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increases, whereas a higher temperature speeds up the drying process, since it facilitates the diffusion
of water from the interior to the surface of the material [11,14]. However, there might be adverse effects
of too high temperatures on materials quality depending on the plastic itself that need to be considered.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 4 of 19 
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Figure 2. Schematic view of a drying hopper with temperature probe.

Due to the critical implications of a malfunctioning drying hopper system, the corresponding
process is usually monitored round the clock. In our use case, a six-zoned temperature probe for the
monitoring process, which continuously measures the temperature at different locations (heights) of the
vertically aligned drying chamber (see Figure 1), is applied. Doing so facilitates the indirect detection
of a variety of different reoccurring disruptions in the drying process, such as over- or under-dried
material, heater malfunctions, and many more since most of those incidents are directly connected or
at least can be derived indirectly from the temperature of the circulating air [13]. This is also the reason
why these six temperature zones play a major role in determining the performances of the different
pattern recognition approaches presented in this paper.

The data set used for this analysis is based on two separate data sources, two individually controlled,
yet identical, drying hopper machines located in the same manufacturing plant. Each drying hopper
was monitored over a specific time, 6 months for machine one (M1) and 4 months for machine two
(M2), whereby an automatic reading of the sensor output was conducted every 60 s over the entire
monitoring period. In addition to the different temperature zones, the data set contains a variety of other
operational process related sensor data. After the initial preprocessing of the data set, which involves
the removal of missing, damaged, and severely fragmented data objects, the resulting data set consists
of 31 (M1) and 37 (M2) different features and 263,479 (M1) and 176,703 (M2) instances. The signals from
the sensors are partly continuous, such as the real time temperature measurements of the circulating
air or panel, as well as partly binary for information on the status of different components such as
heater or blower (on/off). The following Figure 3 illustrates the different events involved, by displaying
the steady state of the machine (left) in comparison to a typical disruption (right).
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2.2. Analytical Approaches

There is a plethora of scientific work available focused on the topic of time series analysis,
in particular within the last decades. Two major themes among the published research that are strongly
related to the practical application of those algorithms are (i) fault (anomaly) detection within time
series and (ii) clustering of different time series [4]. Since both of these areas are comparably well
developed evidenced by the large amount of available scientific contributions, some pattern recognition
approaches employed this to construct a pipeline-like processing framework to cluster time series
data. The works [15–17] are comprehensive reviews and applications focused on this topical area
and used segmentation and clustering methods subsequently. The majority of these papers apply
correlation analysis, wavelet transformation, and principle component analysis (PCA) based metrics to
identify homogeneous segments and to assign the data points to each cluster. Classical distance-based
metrics (e.g., Euclidean distance) are still used in various scientific works today, most often to provide
a benchmark for the evaluation process [4,5]. A more recent work by [8] presented an approach using
fuzzy clustering combined with a dynamic time warping technique to identify the different clusters
after the segmentation has been completed.

Another reoccurring theme in the field of pattern recognition in times series is the domain those
approaches are applied mostly. The majority of datasets that has been used to evaluate theoretical
frameworks stem from the medical domain (e.g., ECG and biological signals), the financial sector
(e.g., exchange rates and stock trade), and speech recognition applications [3–5]. Significantly fewer
works focus on manufacturing applications and the analysis of industrial machines (e.g., gas turbine
and water level monitoring), especially in a maintenance context [4]. Most recent contributions to the
maintenance discourse focus on the prediction and classification of previously defined failure patterns,
thereby solely relying on the preceding groundwork of experts.

Hence, the use of time series analysis in SMS itself provides a multitude of opportunities for
further research. Additionally, the effectiveness of cutting-edge event detection methods is examined
for industrial applications, which later can be used to assist or even replace expert centered error
recognition systems. Most importantly, the adaption and usage of advanced pattern recognition
algorithms for SMS serves as a stepping stone into further studies combining domain expertise
and novel machine learning algorithms for solving advanced industrial problems, therefore moving
towards a more automated data processing chain overall.

To achieve this goal, this paper aims to combine the best of both worlds: the latest findings
from the general time series analysis literature as well as complex, real-world industrial data to put
those cutting-edge approaches to the test. In doing so, we also use feature fusion [4] and sequential
pattern recognition methods [18], which have been successfully applied previously within an industrial
context. However, an important distinction to comparable works in this field is that we start without
any prior expert knowledge on the characteristics (e.g., type, frequency, and shape) of the failure
patterns. Furthermore, we also chose a quantitative method to compare competing time series
analysis approaches by implementing various methods in combination of different cost function,
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while comparable papers often select promising configurations beforehand without further examination.
This rigorous (in-depth) proceeding, however, results in a trade-off so that only a limited number of
different algorithms (or rather pathways) could be implemented in the scope of this scientific work,
which is admittedly smaller than comparable studies, such as [19,20] produced.

3. Research Methodology

An overview of the novel framework proposed in this paper is illustrated in Figure 4. It is
important to note that it includes two separate approaches to pattern recognition that were conducted
separately and then compared to identify the superior process given the unique characteristics of the
data set. This is intentionally included in the framework as data sets differ significantly in their nature
and providing options to the user that allow to compare the performance as part of the framework is
a promising way of leveraging these differences in data sets today.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 6 of 19 
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3.1. Principle Component Analysis (PCA)

The first step, after generally checking and cleaning the data (pre-processing), involves a PCA
to identify irrelevant features to reduce the dimensionality (feature reduction) and therefore overall
complexity of the data set. In doing so, the implemented algorithm is successively constructing
“artificial variables” (principle components) as linear combination of the original variables, so that
those new vectors are orthogonally aligned to each other. This new representation of the data with
linear independent vectors can subsequently be used, instead of the singular vectors, as input data for
the affiliated analysis processes (segmentation and clustering) [4]. After the data has been cleared and
rearranged, we can start with the first step (of the first pathway) of segmenting the time series.

3.2. Heuristic Segmentation

Following the first branch of the pattern recognition pathway, we consider the multivariate
signal X = {xt}

T
t=1 with xt ∈ Rm being a m-dimensional (number of sensors) observation. T. stands

for the total number of observations and t is the index of the measurements in time. Consequently,
the multivariate time series can also be expressed as the following m× T matrix:

X =


x11 . . . x1m

...
. . .

...
xT1 . . . xTm


In order to identify sections of the time series with similar trajectories (patterns), we first need to

partition the signal into internal homogeneous segments. Ideally, the time series will be automatically
split into segments representing (i) regular machine behavior (steady state) on the one side and
(ii) segments with a variety of events (including failure events) on the other side as the final output.

An event or segment in this case can therefore be formulated as Xi = {xt}
b
t=a+1, with Xi being the

i− th overall segment of the partition and (b− a) with 1 ≤ a < b ≤ T denoting the length and location
of the interval. For a less formal notation, it can also be denoted as Xa..b. The points t, in which the
state of the signal changes, are usually referred to as change points or break points and are given as
B = {b1, b2, . . . , bn} with b1 being the chronologically first break point in the time series. The set of
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true break points, which was acquired by manually labeling the time series, is denoted as B∗ with its

corresponding elements
{
b∗1, b∗2, . . . , b∗n

}
, while

ˆ
B =

{
ˆ

b1,
ˆ

b2, . . . ,
ˆ

bn

}
is used to record the approximated

break points retuned by the algorithm.
To solve this problem, we will apply the heuristic changepoint detection method implemented in

a package called ruptures [5], which can be described as a combination of three defining elements:
cost function, search method, and (penalty) constraint (see Figure 5).
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Formally the change point detection (segmentation) can be viewed as model selection problem,
which tries to choose the best possible partition of the time series given a quantitative criterion.
This criterion is most often expressed through the form of cost functions and is therefore denoted
as C(B), which needs to be minimized during this process of optimization [5]. In fact, the criterion
function consists of a sum of costs of all segments that define the segmentation:

C(B) :=
n∑

i=1

c
(
xbi ; xbi+1

)
(1)

For this formulation we also need to define the dummy indices b0 as the first index and bn+1

as the end of the time series. Furthermore, we need to introduce a penalty function for our overall
minimization problem, since the algorithm would otherwise always converge to an oversegmentation,
where all points are ultimately represented in their own individual segment and therefore minimizing
the overall sum of costs [5]. The final optimization problem for the segmentation is therefore given by:

min
B

C(B) + pen(B) (2)

The penalty function (constraint) can also be interpreted as complexity measure for the
segmentation and needs to be adjusted for each heuristic, respectively. In this case we choose a linear
penalty function given by penl0(B) := β|B| with β > 0. Choosing a linear penalty function thereby
aligns with successful implementations from recent literature [5,21–23] and with well-known model
selection criterions such as the Akaike’s information criterion and the Bayesian information criterion.

After our problem has been defined, we need to choose a search method to calculate the break
points of the time series. There are a variety of different solving algorithms available from which we
will explore three approaches (also featured in ruptures) in more depth in the following section.

3.2.1. Sliding Window Segmentation

The core idea of the sliding window algorithm is to approach the partitioning (segmentation)
problem by moving a fix sized window over the time series. The window basically represents the
area of vision or rather area of focus of the algorithm for a given iteration [6]. Thereby, the approach
implemented by ruptures is not directly dividing the times series in each iteration solely based on
the information given in the window, but rather by calculating a so-called discrepancy measure for
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each point in the signal. To do so, the window is split in two parts (“left” and “right”) along its center
point [5]. The discrepancy measure is defined as following:

d(xa..t, xt..b) = c(xa..b) − c(xa..t) − c(xt..b) (1 ≤ a < t < b ≤ T) (3)

Given a cost function c(·) and interval [a, b], the discrepancy measure is basically computing
the difference in cost between treating the sub-signal xa..b as one segment in comparison to splitting
the interval up into two separate segments (xa..t and xt..b) at point t. Consequently, the discrepancy
function is reaching high values when the two sub-windows contain dissimilar segments according
to the cost function. After the values of the discrepancy function have been computed for all points
of the time series, the algorithm analyses the discrepancy curve to identify the maximum values
(peak search). The peaks of the function correspond to the incidents, in which the window was holding
two highly dissimilar segments in each sub-window and therefore gives us the break points of the
signal [5]. Figure 6 provides a schematic overview of the algorithm to provide more clarification of its
functionality and objective.
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3.2.2. Top-Down Segmentation

The top-down method is a greedy-like approach to partition the time series iteratively. To do so,
it considers the whole time series and calculates the total cost for each possible binary segmentation of
the signal at first. After the most cost-efficient partitioning has been found, the time series is split at the
identified change point and the procedure repeats for each sub-signal, respectively [5,6]. The calculation
on which the partitioning decision of each stage of the iterative algorithm is based on can be easily
displayed with the following formula:

ˆ
b (1) := argmin

1≤t≤T−1
c(xo..t) + c(xt..T) (4)

It represents the decision mechanism for the first iteration of the algorithm. However, it can be
applied to each sub-signal after the initial time series has been divided initially. The stopping criterion
of the approach depends entirely on the previously defined penalty function of the overall problem
(2). Thereby, the cost-savior of each partitioning is compared to the penalty of introducing another
break point to the existing set of change points. The algorithm terminates when there is no partitioning
within the iteration that has a higher cost-savior compared to the penalty value [5]. The schematic
depiction in Figure 7 provides an overview over the whole process.
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3.2.3. Bottom-Up Segmentation

The bottom-up segmentation can be best described as the counterpart to the previously
discussed top-down approach. Herby, the start of the algorithm is characterized by the creation
of a fine, evenly distributed partitioning (all segments have the same length) of the entire time series.
Subsequently, the algorithm merges the most cost-efficient pair of adjacent segments in a greedy-like
fashion [5,6]. To clarify the overall process, a schematic overview of the process is depicted in Figure 8.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 9 of 19 
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In contrast to other bottom-up methods covered in the current literature on segmentation [6],
the approach we used in this case also harnesses the discrepancy measure defined above (see sliding
window) in order to determine the most cost-efficient pairs to merge. During each iteration,
all temporary change points are ranked according to the discrepancy measure, which takes into
account all of the points in both adjacent segments. Consequently, the break point with the lowest
discrepancy measure is deleted from the set of potential break points. This process continuous until
the increase in costs, due to the removal of a break point, cannot be compensated by the reduction of
the penalty and the algorithm terminates [5].

After completing the heuristic segmentation, standard clustering approaches such as k-means or
Gaussian mixture models can be applied (in combination with DTW) to sort the time series snippets
into equal groups [8]. These approaches work similarly to parts of the TICC algorithm and are therefore
relevant to the depictions in the following chapter as indicated by the ‘*’ in Figure 4.

3.3. Toeplitz inverse-Covariance Clustering (TICC)

In contrary to the heuristic approaches that start by partitioning the signal first and then conduct
the clustering, the alternative method we explored to tackle the problem includes the algorithm TICC,
which approaches the problem by simultaneously segmenting and clustering the multivariate time series
through the use of Markov random fields (MRF). The reason for using Markov networks is that they
denote relationships between variables generally much stronger than more simple correlation-based
models. Thereby, each cluster is defined as a dependency network, which is taking into account both
the interdependencies of all dimensions (features) of an observation xt ∈ Rm and the dependency to
near neighbor point

{
. . . , xt−2, xt−1, xt+1, xt+2, . . .

}
. Each cluster network can be described as a multilayer

undirected graph, were the vertices are representing the random variables and the edges indicate
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a certain dependency among them [3]. The layers of each network correspond to the number of
consecutive observations (instances) and therefore to the receptive field of the model (see Figure 9).
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Another important differentiating quality of MRFs is that, under certain criteria, they can be used
to mimic a multivariate Gaussian model with respect to the graphical representation of the multivariate
distribution. Since this applies in our case, we can use the precision matrix (inverse covariance matrix)
as a formal representation of the graphical structure, where a zero (conditional independence) in the
matrix corresponds to a missing edge between two variables. The benefits of using the precision
matrix Θ over the covariance matrix are manifold and include computational advantages as the result
of a tendency of being sparse. Furthermore, the sparsity of the MRFs also prevents overfitting and
therefore increase the robustness of the overall approach [3,24].

3.3.1. Problem Formulation

In addition to the preciously established notation, we need to introduce a few modifications for
the formulation of the TICC problem. First, we are interested in a short subsequence (with w � T),
rather than just one point in time xt. Therefore, to assign the data points to the corresponding clusters,
we need to address those points as nw− dimensional vectors Xt =

{
xt−w+1, . . . , xt

}
. The number of

clusters, which has to be defined beforehand, will be denoted as K ∈ N and the time horizon of the
short subsequence will be set by the window size w.

A challenge of the TICC approach is to address the assignment problem of matching the data
points to one of the K clusters and thus determining the assignment sets P = {P1, . . . , PK} with
Pi ⊂ {1, 2, . . . , T}. Furthermore, the algorithm must update the cluster parameters Θ = {Θ1, . . . , ΘK}

based on the previously calculated assignment mappings [3]. The overall optimization problem can be
formulated as:

argmin
Θ∈T , P

K∑
i=1

‖λ ◦Θi‖1 +
∑

Xt∈Pi

(−``(Xt, Θi) + β 1{Xt−1 < Pi})

 (5)

This entire problem is called Toeplitz inverse covariance-based clustering (TICC).T in the formula
reflects the set of symmetric block Toeplitz nw × nw matrices, which adds an additional constraint
for the construction of the MRFs. The enforced structure ensures the time-invariant property of each
cluster so that the cluster assignments do not depend on gate-events. This implies that any edge
between two layers l and l+ 1 must also exist for the layers l+ 1 and l+ 2. The first expression ‖λ ◦Θi‖1
represents an additional sparsity constraint based on the Hadamard product of the inverse covariance
matrix with the regularization parameter λ ∈ Rnw×nw. The second part of the formula ``(Xt, Θi) states
the core optimization problem of cluster parameter fitting, given assignment set Pi (log likelihood).
The last part of the overall problem addresses the desired property of temporal consistency. By adding
a penalty β for each time that two consecutive observations are assigned to two different cluster
Xt−1 < Pi, the overall algorithm is incentivized to hold those instances to a minimum [3].

The method to handle this complex problem can be described as a variation of the expectation
maximization (EM) algorithm, which is commonly used to solve related clustering issues by applying
Gaussian Mixture Models [25].
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3.3.2. Cluster assignment (Expectation)

Similar to the expectation step in the common EM algorithm, TICC starts with the assignment
of observations to the given clusters. However, to begin this process we need a prior distribution
to which the data points can be assigned to. Hence, the overall TICC algorithm is initialized by
conducting a k-means clustering to calculate the initial cluster parameters Θ. After the initialization
phase, the points are assigned to the most suitable cluster by fixing the values of the precision matrix
Θ [3]. This leaves us with the following combinatorial optimization problem for P:

argmin
P

K∑
i=1

∑
Xt∈Pi

−``(Xt, Θi) + β 1{Xt−1 < Pi} (6)

The sparsity constraint is not directly relevant for this step since the shape of the precision matrix
Θ is automatically fixed with its values. Thus, the resulting constant term of the Hadamard product
can be neglected. Each of the short subsequences Xi is therefore primarily assigned to a cluster K
based on its maximum likelihood under the regard of temporal consistency (minimize number of
“break points”). The problem (6) is subsequently solved by harnessing the dynamic programming
approach of the Viterbi algorithm [26]. The problem is translated into a graphical representation
(Figure 10), which represents each decision (per instance) the algorithm can make to assign the data
points consecutively [3].
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Subsequently, the Viterbi algorithm is returning the minimum cost path (Viterbi path) by
calculating the total cost values of each vertex recursively while remembering the minimum cost path
simultaneously [26].

3.3.3. Updating Cluster Parameters (Maximization)

The maximization step of the EM algorithm concerns the updating of the inverse covariance
matrices of the clusters once the assignments of the E-step have been given. For this step, the assignment
sets P are frozen and the precision matrices Θi are adjusted based on the corresponding observations.
Similar to the assignment problem before, the overall TICC problem (5) can be simplified for this step,
since the temporal consistency is strongly tied to the assignment of the datapoints. As seen before,
the whole term can therefore be dropped while solving the newly arising subproblem (7), which is
expressed in the following formula [3]:

argmin
Θ∈T

K∑
i=1

‖λ ◦Θi‖1 +
∑

Xt∈Pi

−``(Xt, Θi)

 (7)
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Another relevant property of this optimization function is that the updating problem for each
cluster can be calculated independently since there is no reliance on previous or cross-connected
results of other clusters as in problem (6). Therefore, all updates can be done in parallel rather than
sequentially [3]. In order to bring the overall problem into an easier to handle form, we need to rearrange
the previously established formula. The negative log likelihood can be expressed as following:∑

Xt∈Pi

−``(Xt, Θi) = −|Pi|(log det Θi + tr(SiΘi)) + C (8)

Thereby, |Pi| stands for the number of observations assigned to each cluster and det for the
determinant of the matrix Θi. The term tr(·) is the abbreviation for the trace of a quadratic matrix.
The included value Si stands for the empirical covariance of the random sample, which is often used
to approximate the true covariance matrix Σ of a stochastic problem [27]. The remaining term C
represents all other constant (variable independent) terms of the problem, which can also be neglected
according to the argumentation above. We can now substitute the log likelihood expression of the
initial updating problem (7) with the new representation in (8) and ultimately (after a few adjustments)
reach the following identical optimization problem for each cluster (9) [3]:

minimize − log det Θi + tr(SiΘi) +
1
|Pi |
‖λ ◦Θi‖1

subject to Θi ∈ T
(9)

Note, that the coefficient of the sparsity constraint is permanently constant and therefore can
be incorporated into the regularization parameter λ by scaling the values accordingly. For further
simplifications we will hence remove the coefficient and furthermore also neglect the indices of the
variables and parameters to highlight the independence of each subproblem from the others [3].

Many problems can be efficiently solved (time) sequentially by using the alternating direction
method of multipliers (ADMM). This algorithm, aimed at solving convex problems, has constantly
shown promising results and performed especially well on large-scale tasks [28]. However, in order
to make this approach applicable, we need to reformulate our problem once more to align it with
the ADMM requirements. Therefore, a consensus variable Z is introduced to allow the optimization
function to be split into two (variable-) independent target functions [3].

minimize − log det Θ + tr(SΘ) + ‖λ ◦Z‖1
subject to Θ = Z, Z ∈ T (10)

Similar to the EM algorithm, ADMM is approximating the optimal result of the primal optimization
problem in an alternating manner, by updating one variable while the others are fixed. For a sufficiently
large number of iterations, the solution of the algorithm converges to the optimal solution of the
problem (9). In practice, the method is stopped when the residual variables reach values close to zero
(equality constraint is almost met), indicating a nearly feasible solution [3,28].

Those two alternating steps of datapoint (to cluster) assignment and updating the cluster
parameters repeat until the cluster assignments become repetitive (stationary) and the overall TICC
algorithm terminates [3]. Finally, the high-level outline for the TICC method is provided in the
following Algorithm 1.



J. Manuf. Mater. Process. 2020, 4, 88 13 of 20

Algorithm 1: TICC (high-level)

initialization Cluster parameters Θ, cluster assignments P
repeat

E-step: Assign points to clusters→ P
M-step: Update cluster parameters→Θ

until Stationarity
return Θ,P

4. Results

In this chapter, the results of the two alternative analytical pathways are presented. For the
comparison of the two pathways, an evaluation systematic is introduced that allows for a problem
centric comparison of the results.

The performance evaluation of individual approaches and their corresponding configuration,
consisting of search method and cost function, is implemented by applying a variety of established and
commonly accepted evaluation metrics from different fields of machine learning, which are adjusted
for the segmentation problem. The first metric is the Hausdorff measure, which is measuring the
greatest temporal distance between a true change point and a predicted change point. It is therefore
measuring the accuracy of the approximated break points [5,29]. The second measure is the Rand index
and basically measures the number of agreements between two segmentations. It is commonly used
for the evaluation of clustering performances and is also related to the (mathematical) accuracy [5].
The final evaluation metric, which is commonly used in the field of classification, is the F1-Score. It is
a combination of the precision (reliability) and recall (completeness) of a classification. For the F1-Score
calculation no element is prioritized over another and therefore the total value is given as the harmonic
mean of both measure components [5]. The true change points that are required input to use the
evaluation metrics were determined manually leveraging domain experts’ input.

The first aspect of the experimental results deals with the problem of choosing a proper cost
function in order to identify homogeneous segments. Therefore, a variety of different cost functions
have been applied to the dataset by using the Sliding window approach discussed earlier. The results
are displayed in Figure 11.
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Since both the Rand index and the F1-score are measures in the range [0, 1], the Hausdorff metric
is scaled accordingly. This is done by measuring the pairwise percentage difference of a given cost
function in comparison to the worst result of the whole set of cost functions. Therefore, the approach
with the worst Hausdorff metric always scores a zero, while the other scores display the percentage
superiority of each approach in comparison to that. For the analytics problem used in this paper,
we compared four different cost functions in total:

• least absolute deviation (L1),
• least squared deviation (L2),
• linear model change based on a piecewise linear regression (Linear),
• function to detect shifts in the means and scale of a Gaussian time series (Gaussian).

The findings displayed in Figure 11 were found to show mixed results. While the L2 function
scores superior in the field of temporal distance and recall, it is inferior in regard of the precision and
ultimately in the total F1-Score. The L1 cost function on the other hand scores poorly in terms of the
Hausdorff metric (L2 is relatively more than 60% better) but dominates the other approach in terms
of precision and consequently scores best in term of the F1-Score. The two remaining cost functions
remain unremarkable, since they consistently score significantly worse than the leasing approach
for each metric category, except for the recall since all of the approaches are close there. In the end,
the classical L2 cost function was chosen as benchmark for the comparison of the pathway methods
based on its superiority in two out of three measures (Hausdorff and Rand index). This was also used
in the following analysis and discussion of the results.

The second area of investigation is the comparison of the different searching methods with each
other. The TICC algorithm was also included into this comparison by dropping the cluster labels from
the results and therefore turning the multi-cluster output into a binary clustering (“steady mode” and
“event”). The results are presented in Figure 12.J. Manuf. Mater. Process. 2020, 4, x FOR PEER REVIEW 14 of 19 
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The most striking result of the experiment is the superiority of the TICC approach in comparison
to all heuristic methods. Even the best historical approach, namely sliding window, which has
constantly outperformed the other two approaches except for the recall, is surpassed by the TICC
algorithm remarkably.

The pattern recognition approach provided by TICC identified a total of 32 events (disturbances
of steady state), which in turn were broken down into four different clusters (patterns). Furthermore,
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it revealed the existence of not one but two steady states of the machine, which could not be identified
by solely monitoring the temperature zones. The remaining three clusters were identified as actual
disturbances of the drying process. An overview over all major events is given in the following Figure 13.
The pattern in the top left of the diagram represents a section of the steady state (cluster A) of the
machine and depicts the natural fluctuations, especially of the sixth temperature zone (material input).

Figure 13. Graphical depiction of most frequent clusters.

The first disturbance of this natural state can be seen in the bottom left of the diagram and will
be referred to as cluster C or “canyon”. The disturbance occurred in total 10 times during the whole
monitoring period with a mean duration of about 3000 min, which corresponds to approximately 46 h
from start to the finish. The shortest duration of a cluster C events was 1530 min (25.5 h) and the
longest duration was 3210 min (53.5 h).

The second recorded disturbance can be seen in the bottom right and is referred to as cluster D or
“shark fin”. It appeared in total six times and was more fluctuant in terms of its durations, varying from
approximately 1500 min (25 h) to 7300 min (121 h). The duration with the highest density (3 of 6) was
thereby 1500 min (median).

The last common disturbance can be seen in the top right of the diagram and is referred to as
cluster B or “random spike”. This disturbance appears less systematic then the events presented before
since its durations range from 50 min to 400 min, which is notably shorter than the other common
disturbance durations identified. The shape of the events of cluster B, which appeared a total of nine
times, also can be seen to be less homogeneous in comparison to cluster C and D.

However, in addition to correct assignments the algorithm has made automatically, there have
been some events which raised doubt in terms of their affiliation to the assigned failure clusters.
Those irregularities are presented in the following Figure 14.
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Figure 14. Graphical depiction of rare events (steady state for scale).

The top left of the diagram shows the steady state as a comparison. The other three events show
a characteristic pattern respectively but were still all assigned to the cluster C (“canyon”). However,
in a later step of the manual analyzing process they have been found to be significantly different
from the corresponding evens in the cluster C, therefore declared as related subclusters. Each of the
subclusters occurred a total of two times within the entire dataset.

5. Discussion

This paper presents a functional framework to automatically analyze multivariate times series
data in order to identify reoccurring patterns within a manufacturing setting. In doing so, we have
tested two different pathways to approach the pattern recognition problem in time series applications
and thereby displayed their strengths and weaknesses. As the data sets and their requirements vary
significantly even within the manufacturing domain, the option to quickly apply and evaluate different
approaches is a key feature towards a robust framework. However, to truly reflect the full wealth of
different data sets and time series, additional alternatives might have to be included in the future.
Nevertheless, the process and evaluation enable the principle scalability of the presented framework.

We have shown that a two-step approach of using a segmentation before clustering the data
appears to be inferior to a collaborative method. The obtained results from our manufacturing time
series data set have shown that even the first step of the sequential approach (heuristic segmentation)
has already returned a worse performance for all possible searching methods when compared to the
TICC approach in this case. This can be observed in the Figure 12 of the results, since the TICC algorithm
scored significantly higher in almost all statistical evaluation metrics. The only indictor where TICC
scored below the alternative BU and TD approaches was the recall metric. This can, however, be easily
explained in this context due to the low precision scores of both heuristic methods, since they have
a tendency to oversegment the data. A rather fine partitioning consequently increases the probability
that the true change points will be among the predicted set, but consequently increase the number
of false (unnecessary) break points, reducing the precision drastically. The better performance of the
TICC approach could also not be explained through an unproper cost function, since we have vetted
various homogeneity metrics in order to identify the most suiting failure function for the given dataset
(see Figure 11). All in all, the finding indicates that the second processing pathway is the superior
approach in this application case.
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We have also shown that the TICC featuring pathway is capable of returning strong results,
since all of the three major events in the times series have been found and furthermore assigned to
different clusters. Even though it was not able to recognize the events displayed in Figure 14, this can
be explained though the low frequency of those disturbances and therefore a lack of significance in
order to define a new cluster based on only a few available examples.

A further dissection of the cluster C and D suggests that those clusters correspond to the
real-world activity of shutting the machine down for the weekend. National holidays were also taken
into consideration and made it possible to explain a significant number of events that took part over
the cause of a day or two. Furthermore, the differences in the cluster C and D might be the result of
the difference between a rapid machine shutdown, were the material is removed immediately and
a cooling process, were the material remained in the machine. This could also indicate an unproper
shutdown, were the material was supposed to be removed for the weekend break but forgotten
inside the dryer. The events assigned to cluster B (random spikes) could, however, not be tied to
related real-world events at this point and most likely correspond to random disturbances caused for
example by an improper handling of the machine or related short-term issues. However, the insights
from the analysis can now be used to investigate the root cause and then return with a correct label
for these events in the future after further consultation with domain experts. Like most analytics
projects, the continuous cycle is key for a long-term sustainable solution and providing real value to
the application area.

All in all, our results show that the multivariate clustering approach displayed in the second
pathway is able to return strong results for the time series data set in this case. It is safe to say that the
new framework can identify common events, which in some cases correspond with relevant sources of
failure. Therefore, these insights can subsequently be used to implement a near real-time warning
system (or as input for a more sophisticated predictive maintenance system) that is capable of not only
identifying and correctly clustering disturbances, but also tying it to a real-world activity.

6. Conclusions and Future Work

This paper presents a framework to utilize multivariate time series data to automatically identify
reoccurring failure patterns in a real-world smart manufacturing system. To do so, the mixed binary
(on/off) and continuous (temperature) data provided by the monitoring system of an industrial
drying hopper was analyzed following two different processing pathways. The first approach was
built-up using a subsequent segmentation and clustering approach, the second branch featured
a collaborative method at its core (TICC). Both pathways have been facilitated by a standard PCA
analysis (feature fusion) and a hyperparameter optimization (TPE) approach.

The second procedure featuring TICC returned constantly superior results in comparison to all
heuristic segmentation methods for the available time series data set. It was therefore expanded
and finally enabled the recognition of three major (most frequent) failure patterns in the time series
(“canyon”, “shark fin”, and “random spike”). Furthermore, it was also able to recognize all disruptions
of the steady state but failed to identify all of the less frequent failure patterns as stand-alone clusters.
Besides evaluating the statistical accuracy, we furthermore leveraged domain expertise to verify the
results and were, e.g., able to identify one event (canyon) as a shutdown process that aligns with
weekends and holidays.

Nevertheless, the identified cluster can be used subsequently to enhance the monitoring process
of the drying machine even further and to establish a predictive maintenance system in order to
foresee potential upcoming machine downtimes. This framework can also be applied to other (related)
problems in the field of preventive maintenance and pattern recognition in time series in general.
Industrial monitoring and maintenance systems can therefore be extended by adding a failure detection
component to enhance the machine restoration process (speed) further. Such algorithms can also be
used to automatically analyze large amounts of data generated by the machinery pool, thereby reducing
the manual workload necessary for this process.
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The presented framework can contribute to reducing unnecessary machine downtimes in the
future, improve the troubleshooting process in case a failure occurs, and consequently increase the
effective machine running time and overall productivity of the plant. An additional advantage from
a managerial point of view is the possibility to automate the process and improved transparency of the
production process.

However, there also ethical implications that need to be considered aside of the overall impact of
the presented research findings on the business process and workflow. On the one hand, the increase
in efficiency is not only favorable for the business objectives overall due to the potential cost reduction,
but also to the society in general given potential improvement of environmental (e.g., reduction in
co2-emissions and overall waste of energy) and working atmosphere (e.g., reduction of unnecessary
stress from unplanned machine failure) benefits. On the other hand, those techniques may also present
an opportunity for being abused when other types of time-series data, such as personal data, of workers,
are analyzed. For instance, biometric and behavioral data can be monitored and analyzed automatically,
potentially leading to issues with regard to privacy and other negative implications for workers. Thus,
it is necessary to investigate policy implications hindering inappropriate application of such time-series
analytics conflicting with individuals’ privacy rights.

The presented process and analytical model are influenced by design and thus to a certain extend
limited. Since the whole performance measuring process (correct number of clusters) is dependent on
the manual determination of the true change points and clusters (or subclusters) it reflects a certain
subjectivity and dependence on domain knowledge and metadata. Furthermore, the overall clustering
approach is initialized through a distance-based algorithm (k-means), which makes it biased in terms of
its priors and the subsequent estimation of the Gaussian mixture distributions. The effectiveness of the
proposed framework can also not be guaranteed for the entirety of industrial domains since it was only
tested on one specific dataset from a particular field. In order to address these challenges, future research
should focus on follow up studies to improve the framework in respect to the algorithmic initialization
and study the applicability of the underlying concept on similar use-cases in the industrial domain.
Additionally, comparing the methodology to other approaches in further studies using a comparable
data set will increase the transparency and understanding of its value.
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