6,562 research outputs found

    Entire domain basis function expansion of the differential surface admittance for efficient broadband characterization of lossy interconnects

    Get PDF
    This article presents a full-wave method to characterize lossy conductors in an interconnect setting. To this end, a novel and accurate differential surface admittance operator for cuboids based on entire domain basis functions is formulated. By combining this new operator with the augmented electric field integral equation, a comprehensive broadband characterization is obtained. Compared with the state of the art in differential surface admittance operator modeling, we prove the accuracy and improved speed of the novel formulation. Additional examples support these conclusions by comparing the results with commerical software tools and with measurements

    Direct and Inverse Computational Methods for Electromagnetic Scattering in Biological Diagnostics

    Full text link
    Scattering theory has had a major roll in twentieth century mathematical physics. Mathematical modeling and algorithms of direct,- and inverse electromagnetic scattering formulation due to biological tissues are investigated. The algorithms are used for a model based illustration technique within the microwave range. A number of methods is given to solve the inverse electromagnetic scattering problem in which the nonlinear and ill-posed nature of the problem are acknowledged.Comment: 61 pages, 5 figure

    Modeling elastic wave propagation in fluid-filled boreholes drilled in nonhomogeneous media: BEM – MLPG versus BEM-FEM coupling

    Get PDF
    The efficiency of two coupling formulations, the boundary element method (BEM)-meshless local Petrov–Galerkin (MLPG) versus the BEM-finite element method (FEM), used to simulate the elastic wave propagation in fluid-filled boreholes generated by a blast load, is compared. The longitudinal geometry is assumed to be invariant in the axial direction (2.5D formulation). The material properties in the vicinity of the borehole are assumed to be nonhomogeneous as a result of the construction process and the ageing of the material. In both models, the BEM is used to tackle the propagation within the fluid domain inside the borehole and the unbounded homogeneous domain. The MLPG and the FEM are used to simulate the confined, damaged, nonhomogeneous, surrounding borehole, thus utilizing the advantages of these methods in modeling nonhomogeneous bounded media. In both numerical techniques the coupling is accomplished directly at the nodal points located at the common interfaces. Continuity of stresses and displacements is imposed at the solid–solid interface, while continuity of normal stresses and displacements and null shear stress are prescribed at the fluid–solid interface. The performance of each coupled BEM-MLPG and BEM-FEM approach is determined using referenced results provided by an analytical solution developed for a circular multi-layered subdomain. The comparison of the coupled techniques is evaluated for different excitation frequencies, axial wavenumbers and degrees of freedom (nodal points).Ministerio de Economía y Competitividad BIA2013-43085-PCentro Informático Científico de Andalucía (CICA

    Quantum Emitters near Layered Plasmonic Nanostructures: Decay Rate Contributions

    Full text link
    We introduce a numerical framework for calculating decay rate contributions when excited two-level quantum emitters are located near layered plasmonic nanostructures, particularly emphasizing the case of plasmonic nanostructures atop metal substrates where three decay channels exist: free space radiation, Ohmic losses, and excitation of surface plasmon polaritons (SPPs). The calculation of decay rate contributions is based on Huygen's equivalence principle together with a near-field to far-field transformation of the local electric field, thereby allowing us to discern the part of the electromagnetic field associated with free propagating waves rather than SPPs. The methodology is applied to the case of an emitter inside and near a gap-plasmon resonator, emphasizing strong position and orientation dependencies of the total decay rate, contributions of different decay channels, radiation patterns, and directivity of SPP excitation

    An efficient 1-D periodic boundary integral equation technique to analyze radiation onto straight and meandering microstrip lines

    Get PDF
    A modeling technique to analyze the radiation onto arbitrary 1-D periodic metallizations residing on a microstrip substrate is presented. In particular, straight and meandering lines are being studied. The method is based on a boundary integral equation, more specifically on a mixed potential integral equation (MPIE), that is solved by means of the method of moments. A plane wave excites the microstrip structure, and according to the Floquet-Bloch theorem, the analysis can be restricted to one single unit cell. Thereto, the MPIE must be constructed using the pertinent 1-D periodic layered medium Green's functions. Here, these Green's functions are obtained in closed form by invoking the perfectly matched layer paradigm. The proposed method is applied to assess the radiation onto 1) a semi-infinite plate, 2) a straight microstrip line, and 3) a serpentine delay line. These three types of examples clearly illustrate and validate the method. Also, its efficiency, compared to a previously developed fast microstrip analysis technique, is demonstrated

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3 and reports on seven research projects.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Contract ECS 86-20029Schlumberger- Doll ResearchU.S. Army Research Office Contract DAAL03 88-K-0057National Aeronautics and Space Administration Contract NAGW-1617U.S. Navy - Office of Naval Research Contract N00014-89-J-1107National Aeronautics and Space Administration Contract NAGW-1272National Aeronautics and Space Administration Contract 958461Simulation Technologies Contract DAAH01-87-C-0679U.S. Army Corp of Engineers Contract DACA39-87-K-0022WaveTracer, Inc.U.S. Navy - Office of Naval Research Contract N00014-89-J-1019U.S. Air Force Systems - Electronic Systems Division Contract F19628-88-K-0013Digital Equipment CorporationInternational Business Machines CorporationU.S. Department of Transportation Contract DTRS-57-88-C-0007
    • …
    corecore