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Abstract— A modeling technique to analyze the radiation onto
arbitrary 1-D periodic metallizations residing on a microstrip
substrate is presented. In particular, straight and meandering
lines are being studied. The method is based on a boundary
integral equation (BIE), more specifically on a mixed potential
integral equation (MPIE), that is solved by means of the Method
of Moments (MoM). A plane wave excites the microstrip struc-
ture, and according to the Floquet-Bloch theorem, the analysis
can be restricted to one single unit cell. Thereto, the MPIE must
be constructed using the pertinent 1-D periodic layered medium
Green’s functions. Here, these Green’s functions are obtained
in closed form by invoking the Perfectly Matched Layer (PML)-
paradigm. The proposed method is applied to assess the radiation
onto (i) a semi-infinite plate, (ii) a straight microstrip li ne, and
(iii) a serpentine delay line. These three types of examplesclearly
illustrate and validate the method. Also, its efficiency, compared
to a previously developed fast microstrip analysis technique, is
demonstrated.

Index Terms— Green’s function, periodic structure, Perfectly
Matched Layer, electromagnetic radiation, integral equation,
Method of Moments, microstrip structure, meandering lines

I. I NTRODUCTION

Frequency selective surfaces [1], [2], metamaterials [3],
electromagnetic bandgap and defected ground structures [4],
[5], leaky wave antennas [6], antenna arrays [7], and wire-
medium screens [8] are some typical examples of structures
that can exhibit a one-dimensional (1-D), a two-dimensional
(2-D), or a three-dimensional (3-D) periodicity. Also, a 1-D
periodic meandering character of interconnect structurescan
be exploited (or introduced) to make them stretchable [9]
or to use them as delay lines [10]. Often, techniques to
analyze the electromagnetic properties of periodic structures
with an infinite extent are based on the Floquet-Bloch theorem,
allowing to consider one single representative unit cell. When
constructing boundary integral equation (BIE) techniques, the
pertinentperiodicGreen’s function of the background medium
under consideration needs to be computed in order to deter-
mine the unknown fields or current distributions within this
unit cell. Upon knowledge of the Green’s function, the BIE
can be solved by the Method of Moments (MoM) [11]. An
overview of techniques is provided in [12]. Additionally, a
new interesting method based on fast periodic interpolations
is reported in [13].
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Many structures reside in a layered dielectric background
medium. Hence, layered medium periodic Green’s func-
tions and BIE-MoM based solution schemes leveraging these
Green’s functions are of particular interest. Unfortunately,
cumbersome Sommerfeld-type integrals then have to be dealt
with, leading to a time-consuming numerical evaluation of
the layered medium Green’s functions. The evaluation of the
Sommerfeld-integrals is a challenging research topic. In [14]
an efficient sum of inverse Fourier transforms is constructed
to tackle the Sommerfeld-integrals. In [15] a novel application
of the Perfectly Matched Layer (PML) has been presented.
Whereas the PML was originally conceived to serve as an
absorbing boundary condition to terminate the simulation
domain in finite element and finite difference based full-
wave solvers, in [15] the PML is used to constructclosed-
form expressions of layered medium Green’s functions. Apart
from a rapid evaluation of the pertinent Green’s functions,
these closed-from expressions can also be used, for example,
to construct Fast Multipole Methods [16]–[18]. In [19] the
PML-paradigm was applied to conceive 3-D layered medium
1-D periodic Green’s functions. As the PML-based periodic
Green’s functions can be constructed in an elegant and natural
way, it is very beneficial to implement them within a BIE-
MoM scheme. This technique has been successfully applied
in [12] to analyze the scattering and radiation from/by 1-D
periodic microstrip antenna arrays. However, the technique
presented in [12] can only be applied to antenna arrays as
a completely arbitrary shape of the metallization within one
unit cell was not allowed. In contrast, the method presented
in this paper allows to rapidly evaluate the current densityon
arbitrary 1-D periodic microstrip metallizations, illuminated by
a plane wave. In particular, lines with a 1-D periodicity, such
as serpentine delay lines [10], are considered. The analysis
of such structures is of specific importance to assess possible
electromagnetic interference (EMI) issues.

This paper is organized as follows. In Section II the for-
malism is presented. The PML-paradigm and the periodic
Green’s functions resulting from it are briefly revisited and the
implementation of the PML-based Green’s functions in a BIE-
MoM scheme is presented. Special attention is devoted to the
construction of the MoM in order to allow a continuous current
flow across the unit cell’s borders. The formalism is validated
and illustrated in Section III by considering the radiationonto
(i) a large, semi-infinite, perfect electrically conducting (PEC)
plate, (ii) a straight microstrip line, and (iii) a serpentine delay
line. Conclusions are summarized in Section IV.
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In the sequel, all sources and fields are assumed to be
time-harmonic with angular frequencyω and time dependen-
cies ejωt are suppressed. Also, transverse toz restrictions of
vectorsv are denoteďv ≡ vxx̂ + vyŷ = −ẑ × [ẑ × v]; here
x̂, ŷ, and ẑ are unit Cartesian vectors.

II. D ESCRIPTION OF THE TECHNIQUE

A. Geometry
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Fig. 1: A 1-D periodic microstrip structure, i.e. a meandering
line, illuminated by a plane waveEPW.

Consider the microstrip geometry of Fig. 1. It consists of a
substrate of thicknessd, relative permittivityǫr, and relative
permeabilityµr, that resides on a perfect electrically conduct-
ing (PEC) ground plate. At the substrate-air interfacez = d, a
PEC metallizationM is placed. This metallization exhibits a
1-D periodicity with periodb along thex-direction. Themth
unit cell is denotedSuc,m = {ρ ≡ xx̂+ yŷ+ dẑ : mb ≤ x <
(m+1)b , −∞ < y <∞},m ∈ Z. In contrast to our previous
work [12], which only allowed the analysis of antenna arrays,
here the metallization extends across the borders of the unit
cells, allowing a continuous current flow in thex-direction. A
plane waveEPW(r ≡ xx̂+yŷ+zẑ) = E0e

−jk0k̂·r illuminates
the structure. Here,k0 = ω/c is the free-space wavenumber,
with c = 1/

√
ǫ0µ0 the speed of light in vacuum. The unit

vector k̂ = − sin θ cosφ x̂− sin θ sinφ ŷ− cos θ ẑ determines
the plane wave’s spherical angles of incidenceθ andφ.

B. 1-D periodic BIE-MoM Formalism

Due to the plane wave, an incident fieldEi(r) is present,
which induces an unknown current density̌J(ρ) on the
metallization. In turn, a scattered fieldEs(r) is produced. A
BIE, and more specifically a mixed potential integral equation
(MPIE), is now constructed by demanding that the total
tangential electric field, i.e.̌Et(r) = Ěi(r) + Ěs(r), vanishes
at the metallizationMuc,m = M∩ Suc,m that resides within
themth unit cell:

Ěi(ρ) = jω

∫∫

Muc,m

Gper
A (ρ|ρ′)J̌(ρ′) dρ′

− 1

jω
∇̌

∫∫

Muc,m

Gper
V (ρ|ρ′)(∇̌′ · J̌(ρ′)) dρ′,

∀ρ ∈ Muc,m, (1)

with ∇̌ = ∂
∂x

x̂ + ∂
∂y

ŷ. The pertinent 1-D periodic Green’s
functionsGper

A (ρ|ρ′) andGper
V (ρ|ρ′) will be discussed later

(see Section II-C). The MPIE (1) is solved by the MoM.
Thereto, the metallization is approximated by a rectilinear
mesh, as indicated in Fig. 2 (where the depicted metalliza-
tion Muc,m is chosen to be a rectangle of lengthb and
width w). The unknown current density̌J(ρ) is expanded
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Fig. 2: Discretization of the metallization within themth
unit cell into a rectilinear mesh and some corresponding
vector rooftop basis functions. In this example, the metalliza-

tion Muc,m is a rectangle of lengthb and widthw.

into a set ofx- and y-oriented vector rooftop basis func-
tions [20]. The supportMj of each basis function comprises
two patchesM−

j and M+
j that are joined by the mesh’s

jth edge. As indicated in Fig. 2, three cases can be distin-
guished:

1) the edge is anx-oriented edge (e.g., edgej in Fig. 2);
2) the edge is ay-oriented edge that does not reside on the

bordersx = mb or x = (m+ 1)b of the unit cell (e.g.,
edgek in Fig. 2);

3) the edge is ay-oriented edge that resides on the bor-
derx = (m+1)b of the unit cell (e.g., edgel in Fig. 2).
In this case, it is noticed that, within this unit cell, the
supportM−

l for the falling part of the vector rooftop
function does not reside next to the supportM+

l .
Edges residing on the borderx = mb have to be neglected,
i.e. no basis function should be introduced for these edges,
as otherwise the matrix system (see further) would become
overdetermined. This is because it is required that the current
density is periodic, apart from a phase differenceψ, as follows:

J̌(ρ+ bx̂) = J̌(ρ)ejψ , (2)

with

ψ = −b k0 sin θ cosφ. (3)

The property (2) is a direct consequence of the Floquet-Bloch
theorem. To enforce this property, first, the supportMl of the
rooftop basis functions corresponding to edges that resideon
the borderx = (m + 1)b consists of a first cellM+

l that
is adjacent to this border (rising flank of the function) and
a second cellM−

l that is adjacent to the borderx = mb
(falling flank of the function) (see Fig. 2). Next, assuming that
there areN edges after discretization of the metallization, the
unknown current density is expanded as follows:

J̌(ρ) =

N
∑

j=1

Ijw̌
per
j (ρ). (4)
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For edges that are not on the borderx = (m + 1)b, in
the above expansion (4) the basis functionsw̌

per
j (ρ) are the

classic well-known rooftop basis functions. For edges that
are on the borderx = (m + 1)b, the falling flank of the
rooftop function (e.g., with supportM−

l in Fig. 2) is subjected
to a phase shift so that the requirement (2) is fulfilled. A
similar procedure was applied in [21] to develop a 2-D hybrid
finite-element (FE)/BIE solver for periodic absorbers. For
completeness, note that this procedure can also be applied
using Rao-Wilton-Glisson (RWG) basis functions, as described
in [14]. Inserting (4) into the MPIE (1) and applying a Galerkin
testing procedure [22] results in anN × N linear system in
the unknown expansion coefficientsIj , j = 1, . . . , N :

V = Z · I. (5)

The N -vector V, with elementsVi, i = 1, . . . , N , and the
N × N matrix Z, with elementsZij , i = 1, . . . , N , j =
1, . . . , N , are given by:

Vi =

∫∫

Mi

Ěi(ρ) · w̌per
i (ρ) dρ, (6)

Zij = jω

∫∫

Mi

∫∫

Mj

Gper
A (ρ|ρ′)

(

w̌
per
i (ρ) · w̌per

j (ρ′)
)

dρ′ dρ

+
1

jω

∫∫

Mi

∫∫

Mj

Gper
V (ρ|ρ′)(∇̌ · w̌per

i (ρ))

× (∇̌′ · w̌per
j (ρ′)) dρ′ dρ. (7)

The linear system (5) can be solved by means of direct or
iterative schemes.

C. 1-D periodic Green’s functions

Upon knowledge of the 1-D periodic layered medium
Green’s functionsGper

A (ρ|ρ′) andGper
V (ρ|ρ′) for the magnetic

vector potential and for the electric scalar potential respec-
tively, the MoM system (5) is fully determined. Unfortunately,
the computation of these Green’s functions is rather cumber-
some and time-consuming when applying a classic procedure.
As stated in [14], such a procedure involves an inverse Fourier
Transform of a discrete sum of Floquet modes, as follows:

Gper
A,V (ρ|ρ′) =

+∞
∑

m=−∞
e−jξ(x−x

′)

+∞
∫

−∞

G̃per
A,V (ξ, ky)e

−jky(y−y′)dky ,

(8)

with

ξ =
ψ

b
+

2πm

b
. (9)

This series (8) converts the well-known spectral Green’s
functionsG̃per

A (ξ, ky) and G̃per
V (ξ, ky) (see [23]) into spatial

Green’s functionsGper
A (ρ|ρ′) andGper

V (ρ|ρ′). No analytical
expressions are available for (8). This is due to the presence
of the semi-infinite layer of airz > d (Fig. 1). This layer cor-
responds to a continuous set of radiation modes in the modal
spectrum of the microstrip substrate, necessitating the cum-
bersome, numerical evaluation of Sommerfeld-integrals [24]–
[26]. Here, we adopt the PML-paradigm [15], which is detailed
in [19] for 1-D periodic layered medium Green’s functions.

The semi-infinite layer of air above the microstrip substrate is
terminated by a PEC plate placed at acomplexdistancez =
d + D (Fig. 3). It can be shown [15] that a proper choice
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Fig. 3: A 1-D periodic configuration of point sources on the
substrate-air interfacez = d. The air-filled half-space is closed

by a PEC-backed PML at complex distanceD.

of D leads to a so-called PML-closed waveguide that very
closely mimics the behavior of the original, open waveguide,
as the original modal spectrum is now replaced by adiscrete
set of TE- and TM-polarized modes of the PML-closed
substrate. Consequently, the Green’s functions of the PML-
closed waveguide have the interesting property that they can
be written as analytical sums of transverse electric (TE) and
transverse magnetic (TM) PML-modes. As such, the following
expressions for the pertinent spatial 3-D Greens function for
a 1-D periodic grid of point sources are obtained:

Gper
A (ρ|ρ′) =− j

2

∞
∑

n=1

+∞
∑

m=−∞

e−jmψH
(2)
0 (βTE,n∆m)

MTE(βTE,n)
, (10)

Gper
V (ρ|ρ′) =− jω2

2

∞
∑

n=1

+∞
∑

m=−∞

e−jmψH
(2)
0 (βTE,n∆m)

β2
TE,nM

TE(βTE,n)

− j

2

∞
∑

n=1

+∞
∑

m=−∞

e−jmψH
(2)
0 (βTM,n∆m)

β2
TM,nM

TM(βTM,n)
,

(11)

where∆m =
√

(x− x′ −mb)2 + (y − y′)2 and with

MTE(β) =
d

µ0µr

1

sin2 γ1d
− cot γ1d

µ0µrγ1

+
D
µ0

1

sin2 γ0D
− cot γ0D

µ0γ0
, (12)

MTM(β) =
ǫ0ǫr cotγ1d

γ31
+

ǫ0ǫrd

γ21 sin
2 γ1d

+
ǫ0 cotγ0D

γ30
+

ǫ0D
γ20 sin

2 γ0D
, (13)

where γ0 =
√

k20 − β2 and γ1 =
√

k20ǫrµr − β2. In (10)
and (11),H(2)

0 (·) is the zeroth-order Hankel function of the
second kind. Although the summations over the modesn
in (10) and (11) have an infinite extent, because of the fact
that the modal propagation constantsβTE,n and βTM,n are
located in the fourth quadrant of the complex plane, only a
limited set of these modes needs to be retained. In all examples
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presented below (Section III), less than 100 modes are used.
It was explained in [16] that these modes come in three
flavors, which exhibit different behavior. The choice of the
PML-parameters, i.e., the choice of the complex thicknessD,
has to be appropriate to provide sufficient damping of the
modal fields inside the PML for each of these modes. The
influence ofD was also discussed in [27], along with an
indicator of the quality of this choice. For largen, the series
in (10) and (11) converge at a rate proportional toe−nC1∆m ,
with C1 a constant. Hence, given this exponential decay as a
function of n and provided that the distance∆m is not too
small, these are fast converging series. For smalln or for small
distances∆m, however, a combination of techniques — such
as Poisson summation, Shank’s acceleration, and/or Ewald
splitting — has to be applied to improve the convergence. A
rigorous description of these techniques is outside the scope
of this work, but they are described in detail in [19] and
the references therein. In summary, it has been shown that
the PML-paradigm allows computing layered medium Green’s
functions, and 1-D periodic layered medium Green’s functions
in particular, in a very efficient and elegant way, this in contrast
to more classical Sommerfeld-approaches. In this paper, for the
first time, the PML-based approach is adopted to construct
a 1-D periodic BIE-MoM for the analysis of straight and
meandering microstrip lines.

III. N UMERICAL EXAMPLES

The 1-D periodic BIE-MoM technique is now validated and
illustrated by considering representative (application)exam-
ples. First, the currents induced on a large semi-infinite PEC
plate are studied, leading to a validation of the technique.Sec-
ond, the radiation onto a straight microstrip line is modeled.
It is shown that, for straight lines, the periodb has no signifi-
cant influence. Third, a serpentine delay line is investigated
and compared to another efficient BIE-MoM technique for
large, but finite structures, showing excellent agreement and
demonstrating the efficiency of the new periodic technique.
All computations are performed using a Linux-based 64-bit
AMD Opteron 2350 computer with 32 GB of RAM running
at 2 GHz. A BiCGstab iterative scheme [28] was used to solve
linear system (5).

A. Semi-infinite plate

As a first example a large PEC plate is considered. The
metallization within one unit cellm = 0 is shown in Fig. 2
with b = 5 mm andw = 300 mm. So, the length of the
plate along they-dimension is 10 free-space wavelengthsλ0 =
2π/k0. The plate has an infinite extent along thex-axis. The
metallization resides on a PEC-backed non-magnetic substrate
of thicknessd = 3.17 mm and with relative permittivityǫr =
11.7. The PEC plate is illuminated by a plane waveEPW(r) =
(x̂ + ŷ)ejk0z V

m , i.e. under perpendicular incidence (θ = 0◦),
and with an angular frequency ofω = 2π10 GHz. The current
density on this PEC plate, induced by the plane wave, is
computed using the technique described in Section II. The
magnitude and the phase of thex- and they-oriented current
densities are shown in Figs. 4 and 5 respectively. In Fig. 6

the magnitude of thex- and they-oriented current densities
is shown along the cross-sectionx = (m+ 1/2)b = 2.5 mm.
The results are explained as follows. Given the perpendicular
incidence of the plane wave, the situation can be considered
as a pure 2-D situation, i.e. there is no variation along the
x-dimension. In this case, Maxwell’s equations can be split
into a TE- and a TM-part w.r.t. thex-axis. This was clearly
described in [29], where the corresponding 2-D PEC plate was
simulated. The results obtained here with the periodic BIE-
MoM are exactly the same as those presented in [29]: (i) For
the x-oriented current (corresponding to a 2-D TM-solution)
the plane wave is completely reflected at the nearly infinitely
large PEC plate. Hence, apart from some expected edge effects
at y = 0 andy = 10λ0, the magnitude of the induced currents
equals twice the incidentx-component of the magnetic field,
i.e. |Jx| = 2

√

ǫ0
µ0

A
m = 5.3 mA

m . (ii) The y-oriented currents

can be explained as the currents that correspond to the
TEM-wave that is excited inside the parallel-plate waveguide
consisting of the PEC ground plate and the PEC metallization,
filled with a dielectric. The wavelength of the TEM-wave then
equalsλTEM = λ1 = λ0/

√
ǫr = 8.77 mm. This wavelength

nicely corresponds to the number of oscillations observed in
the y-oriented current.
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Fig. 4:x-oriented current densityJx on the semi-infinite plate
(perpendicular illumination).

In the next example, the same substrate and metallization
are used, but the plane wave now impinges obliquely. The
angles of incidence are chosen as follows:θ = 30◦ and
φ = 0◦, and hence, the plane wave is defined asEPW(r) =

(
√
3
2 x̂+ ŷ− 1

2 ẑ)e
jk0(

1
2
x+

√
3

2
z) V

m . This situation can no longer
be decomposed into a 2-D TM- and TE-problem. There will
be a strong coupling between thex- andy-oriented currents,
as can be seen in Figs. 7 and 8, and also in Fig. 9 where
a cross-section is made alongx = (m + 1/2)b = 2.5 mm.
It is observed from Figs. 7 and 8 that there is no variation
of the current density’s magnitude along thex-dimension, as
expected. There is, however, a variation of its phase. This
is clearly illustrated in Fig. 10, where the phase of thex-
and they-oriented current density is shown along the cross-
sectiony = 5λ0 = 17.1λ1 = 150 mm. This phase varies
linearly betweenx = 0 andx = b (from 0.57 rad to 1.09 rad
for Jx, and from 0.97 rad to 1.49 rad forJy). Using (3), it
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Fig. 5: y-oriented current densityJy on the semi-infinite plate
(perpendicular illumination).
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Fig. 6: Magnitude of thex- and they-oriented current density
alongx = (m + 1/2)b = 2.5 mm on the semi-infinite plate

(perpendicular illumination).

is validated that this phase variation of 0.52 rad is in perfect
agreement with the predicted value ofψ = −b k0 sin θ cosφ =
−0.52.

The results obtained for this semi-infinite plate validate the
proposed 1-D periodic BIE-MoM technique.

B. Straight microstrip line

As an important but simple application example, we con-
sider a straight microstrip line residing on the same substrate
as presented above in Section III-A. The metallization within
the unit cell is also the one shown in Fig. 2, but now,
the width is much smaller, i.e.w = 4.5 mm. Again, the
plane waveEPW(r) = (

√
3
2 x̂ + ŷ − 1

2 ẑ)e
jk0(

1
2
x+

√
3

2
z) V

m
with angular frequencyω = 2π10 GHz impinges upon the
structure. Although the geometry is invariant w.r.tx-axis, the
excitation exhibits a variation of the phase, and hence, this
situation cannot be decomposed into a pure 2-D TM- and TE-
problem (there is a coupling between thex- and y-oriented
currents). For a periodb = 10 mm, the magnitude of thex- and
y-oriented current density along the cross-sectionx = b/2 =
5 mm is presented in Fig. 11. As explained above (Section III-
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Fig. 7:x-oriented current densityJx on the semi-infinite plate
(oblique illumination).
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Fig. 8: y-oriented current densityJy on the semi-infinite plate
(oblique illumination).
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Fig. 9: Magnitude of thex- and they-oriented current density
alongx = (m + 1/2)b = 2.5 mm on the semi-infinite plate

(oblique illumination).
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Fig. 10: Phase of thex- and they-oriented current density
alongy = 5λ0 = 17.1λ1 = 150 mm on the semi-infinite plate

(oblique illumination).

A), there is no variation of the magnitude of the current density
along thex-direction, but there is, however, a linear variation
of its phase. This is clearly illustrated in Fig. 12, where the
phase of thex- and they-oriented current density is shown
along the cross-sectiony = 2.25 mm. The phase varies linearly
betweenx = 0 andx = b (from 0.06 rad to 1.11 rad forJx,
and from 0.30 rad to 1.35 rad forJy). Using (3), it is validated
that this phase variation of 1.05 rad is in perfect agreement
with the predicted value ofψ = −b k0 sin θ cosφ = −1.05.
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Fig. 11: Magnitude of thex- and they-oriented current density
alongx = b/2 = 5 mm on the straight microstrip line.

Besides demonstrating, a.o., the linear phase variation ofthe
current density, another interesting way to validate the method
is proposed next, using the microstrip example. We simulate
the same microstrip configuration, but now for ten different
values of the periodb, i.e. for b varying from 10 mm to 1 mm
in steps of 1 mm. Taking the result of Fig. 11, whereb =
bref = 10 mm, as a reference result, the relative error between
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Fig. 12: Phase of thex- and they-oriented current density
alongy = 2.25 mm on the straight microstrip line.

the magnitude of the current densities is calculated as follows:

δx(b) =

∣

∣

∣

∣

∣

∣

∣

∣

w
∫

0

|J ref
x (bref/2, y, d)| dy −

w
∫

0

|Jvar
x (b/2, y, d)| dy

w
∫

0

|J ref
x (bref/2, y, d)| dy

∣

∣

∣

∣

∣

∣

∣

∣

,

(14)

δy(b) =

∣

∣

∣

∣

∣

∣
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∫

0

|J ref
y (bref/2, y, d)| dy −
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|Jvar
y (b/2, y, d)| dy
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∫
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|J ref
y (bref/2, y, d)| dy

∣

∣

∣

∣

∣

∣

∣

∣

,

(15)

whereJ ref
x (bref/2, y, d)| and J ref

y (bref/2, y, d)| are the refer-
ence results presented in Fig. 11, and withJvar

x (b/2, y, d)|
and Jvar

y (b/2, y, d)| the current densities obtained for the
same microstrip configuration, but using another value for the
periodb. The relative errors (14) and (15) are shown in Fig. 13.
It is observed that reducing the periodb yields the same result,
at least, within a margin of error that is smaller than0.01%.
Hence, apart from using this result as a validation, it is also
clear that for straight configurations, it is beneficial to take b
small, as this reduces the number of unknownsN in the MoM.
Note, however, that when the number of discretization cells
along thex-direction becomes too small, say less than three,
this methods breaks down. In the above case forb = 1 mm,
there are four discretization cells along thex-direction.

C. Serpentine delay line

The last application example, presented in this section, is
the serpentine delay line configuration shown in Fig. 1. The
PEC metallization within one unit cell, indicating all detailed
dimensions, is shown in Fig. 14. This metallization resides
on top of a PEC-backed, non-magnetic, lossy substrate of
thicknessd = 1.5 mm, relative permittivityǫr = 4.3, and
loss tangenttan δ = 0.02. A similar serpentine delay line
was proposed in [10], where its signal integrity properties
were studied. Here, we evaluate the effects of radiation onto
the serpentine delay line at an angular frequency ofω =
2π20 GHz by letting a plane waveEPW(r) = (x̂ + ŷ −√
2ẑ)ejk0(

1
2
x+ 1

2
y+

√
2

2
z) V

m obliquely impinge upon it (θ = 45◦

andφ = 45◦). The magnitude of thex- andy-oriented current
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Fig. 14: Metallization of the serpentine delay line within the
unit cell m = 0. The geometrical parameters are as follows:
b = 9 mm,W = 67 mm,w = 3 mm, ands = 1.5 mm.

density induced on the unit cell’s metallization is shown in
Figs. 15(a) and 16(a) respectively. To obtain this result, the
1-D periodic BIE-MoM, presented in this paper, is used. For
comparison, a finite serpentine line consisting of seven unit
cells and illuminated by the same plane wave, is simulated
using the SVD-PML-MLFMA technique [18]. This technique
was especially conceived to rapidly analyze large, butfinite,
non-periodic structures residing on microstrip substrates. In
Figs. 15(b) and 16(b) the magnitude of thex- and they-
oriented induced current density that flows within the center
unit cell (i.e. the fourth unit cell) is shown. There is an
excellent agreement with the results obtained by the new
1-D periodic BIE-MoM. Of course, increasing the number
of unit cells in the SVD-PML-MLFMA further increases the
accuracy. The convergence rate as a function of the number
of periods depends on the convergence rate of the series (10)
and (11), as presented in Section II-C. Furthermore, it takes
only 0.55 seconds to perform one matrix-vector multiplica-
tion in the iterative solution of the linear system (5) using
the 1-D periodic BIE-MoM, leading to the results presented

in Figs. 15(a) and 16(a). In contrast, although the matrix-
vector multiplications are hugely accelerated by the SVD-
PML-MLFMA, it takes 5.57 seconds to perform one matrix-
vector multiplication in the iterative solution scheme to achieve
the results presented in Fig. 15(b) and 16(b). This speed-up
factor of 10.20 is significant and it is of course thanks to
the fact that the number of unknowns in the periodic BIE-
MoM scheme is rather small, as only one representative unit
cell needs to be considered. More specifically, there were
N = 3770 unknowns in the 1-D periodic BIE-MoM scheme
andN = 26383 ≈ 7·3770 in the SVD-PML-MLFMA scheme.
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Fig. 15: Magnitude of thex-oriented current density on (a) a
unit cell of the serpentine delay line, computed using the 1-D
periodic BIE-MoM technique, and (b) the center unit cell of
the finite length serpentine delay line consisting of seven unit

cells, computed using the SVD-PML-MLFMA [18].

As the analysis can be restricted to one single unit cell,
the technique presented here allows a rapid evaluation of the
distributed currents induced on (multiconductor) transmission
lines, such as straight microstrip lines, coupled microstrip
lines, serpentine delay lines, etc. The results can be used for
further analysis purposes. Using the Baum-Liu-Tesche (BLT)
equation, which was first introduced in [30], for describing
(multiconductor) transmission lines, the voltages and currents
at loads connected to the lines can be estimated. Also, conjunc-
tion with advanced EMI analysis techniques for plane wave
excitation [31], or even for near-zone illumination [32], can be
investigated. The (application) examples given above validate
the presented technique but represent idealized scenarios,
using perfect terminations and plane-wave illumination. The
extension of the technique to non-perfect terminations of the
lines and finite-sized electromagnetic sources is definitely of
interest to the EMC/EMI community.

IV. CONCLUSIONS

An MPIE is constructed to model the current density in-
duced on 1-D periodic metallizations residing on a microstrip
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Fig. 16: Magnitude of they-oriented current density on (a) a
unit cell of the serpentine delay line, computed using the 1-D
periodic BIE-MoM technique, and (b) the center unit cell of
the finite length serpentine delay line consisting of seven unit

cells, computed using the SVD-PML-MLFMA [18].

substrate. The periodic structure can be analyzed by merely
considering one single representative unit cell, this in accor-
dance with the Floquet-Bloch theorem. Thereto, the pertinent
1-D periodic layered medium Green’s functions have to be
used. Here, we obtain these Green’s function in closed form
by invoking the PML-paradigm. The MPIE is solved by means
of the MoM. Special attention is devoted to basis functions
residing adjacent to the borders of the unit cell, as a continuous
current flow across these borders should be guaranteed without
destroying the periodicity.

The theory is illustrated by simulating the induced current
density onto three different metallizations, illuminatedby
plane waves, and residing on microstrip substrates. First,the
radiation onto a semi-infinite PEC plate is considered. For a
perpendicular incidence of the plane wave, it is demonstrated
that this situation can be decomposed into a pure 2-D TM-
and TE-problem, and the results obtained with the new 1-D
periodic BIE-MoM are compared with results from literature.
For oblique illumination, it is demonstrated that the phase
of the current density varies linearly within the unit cell,
as expected from the Floquet-Bloch theorem. Second, the
radiation onto a straight microstrip line is modeled. In addition
to observing a linear phase variation within the unit cell, it is
also shown, by varying the periodb, that only a small section
of the microstrip line, making up one unit cell, needs to be
considered without loosing accuracy (and with a considerable
gain in simulation speed). Third, a serpentine delay line
is studied. These structures have already been the subject
of signal integrity studies, but of course, determination of
their susceptibility to electromagnetic radiation is of equal
importance. The current density induced onto such a line,
which is illuminated by a plane wave obliquely impinging

upon it, is accurately simulated and compared to the previ-
ously developed (and validated) SVD-PML-MLFMA, showing
excellent agreement. Although this SVD-PML-MLFMA was
especially constructed to rapidly assess the radiation onto large
but finite microstrip structures, the 1-D periodic BIE-MoM is
still faster, as only a single unit cell needs to be considered.
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