700 research outputs found

    Human Reading Based Strategies for off-line Arabic Word Recognition

    Get PDF
    International audienceThis paper summarizes some techniques proposed for off-line Arabic word recognition. The point of view developed here concerns the human reading favoring an interactive mechanism between global memorization and local checking making easier the recognition of complex scripts as Arabic. According to this consideration, some specific papers are analyzed and their strategies commente

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    Character Recognition

    Get PDF
    Character recognition is one of the pattern recognition technologies that are most widely used in practical applications. This book presents recent advances that are relevant to character recognition, from technical topics such as image processing, feature extraction or classification, to new applications including human-computer interfaces. The goal of this book is to provide a reference source for academic research and for professionals working in the character recognition field

    Infinite feature selection: a graph-based feature filtering approach

    Get PDF
    We propose a filtering feature selection framework that considers a subset of features as a path in a graph, where a node is a feature and an edge indicates pairwise (customizable) relations among features, dealing with relevance and redundancy principles. By two different interpretations (exploiting properties of power series of matrices and relying on Markov chains fundamentals) we can evaluate the values of paths (i.e., feature subsets) of arbitrary lengths, eventually go to infinite, from which we dub our framework Infinite Feature Selection (Inf-FS). Going to infinite allows to constrain the computational complexity of the selection process, and to rank the features in an elegant way, that is, considering the value of any path (subset) containing a particular feature. We also propose a simple unsupervised strategy to cut the ranking, so providing the subset of features to keep. In the experiments, we analyze diverse setups with heterogeneous features, for a total of 11 benchmarks, comparing against 18 widely-known yet effective comparative approaches. The results show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori, or when the decision of the subset cardinality is part of the process

    Modeling cognition with generative neural networks: The case of orthographic processing

    Get PDF
    This thesis investigates the potential of generative neural networks to model cognitive processes. In contrast to many popular connectionist models, the computational framework adopted in this research work emphasizes the generative nature of cognition, suggesting that one of the primary goals of cognitive systems is to learn an internal model of the surrounding environment that can be used to infer causes and make predictions about the upcoming sensory information. In particular, we consider a powerful class of recurrent neural networks that learn probabilistic generative models from experience in a completely unsupervised way, by extracting high-order statistical structure from a set of observed variables. Notably, this type of networks can be conveniently formalized within the more general framework of probabilistic graphical models, which provides a unified language to describe both neural networks and structured Bayesian models. Moreover, recent advances allow to extend basic network architectures to build more powerful systems, which exploit multiple processing stages to perform learning and inference over hierarchical models, or which exploit delayed recurrent connections to process sequential information. We argue that these advanced network architectures constitute a promising alternative to the more traditional, feed-forward, supervised neural networks, because they more neatly capture the functional and structural organization of cortical circuits, providing a principled way to combine top-down, high-level contextual information with bottom-up, sensory evidence. We provide empirical support justifying the use of these models by studying how efficient implementations of hierarchical and temporal generative networks can extract information from large datasets containing thousands of patterns. In particular, we perform computational simulations of recognition of handwritten and printed characters belonging to different writing scripts, which are successively combined spatially or temporally in order to build more complex orthographic units such as those constituting English words

    Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Full text link
    Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.Comment: 17 pages, 8 figures. Minor further revisions. As published in Phys. Rev.
    corecore