UNIVERSITA
DEGLI STUDI
DI PADOVA

Modeling cognition with generative neural networks:

The case of orthographic processing

University of Padova
Department of Developmental Psychology and Socialization
Ph. D. School in Psychological Sciences - XXVII Cycle

Cognitive Science Program

January 2015
Candidate: Alberto Testolin
Supervisor: Ch.mo Prof. Marco Zorzi

School Director: Ch.ma Prof. Francesca Peressotti

Abstract

This thesis investigates the potential of generative neural networks to model
cognitive processes. In contrast to many popular connectionist models, the
computational framework adopted in this research work emphasizes the
generative nature of cognition, suggesting that one of the primary goals of
cognitive systems is to learn an internal model of the surrounding environment
that can be used to infer causes and make predictions about the upcoming
sensory information. In particular, we consider a powerful class of recurrent
neural networks that learn probabilistic generative models from experience in a
completely unsupervised way, by extracting high-order statistical structure from
a set of observed variables. Notably, this type of networks can be conveniently
formalized within the more general framework of probabilistic graphical
models, which provides a unified language to describe both neural networks and
structured Bayesian models. Moreover, recent advances allow to extend basic
network architectures to build more powerful systems, which exploit multiple
processing stages to perform learning and inference over hierarchical models, or
which exploit delayed recurrent connections to process sequential information.
We argue that these advanced network architectures constitute a promising
alternative to the more traditional, feed-forward, supervised neural networks,
because they more neatly capture the functional and structural organization of
cortical circuits, providing a principled way to combine top-down, high-level
contextual information with bottom-up, sensory evidence. We provide empirical
support justifying the use of these models by studying how efficient
implementations of hierarchical and temporal generative networks can extract
information from large datasets containing thousands of patterns. In particular,
we perform computational simulations of recognition of handwritten and
printed characters belonging to different writing scripts, which are successively
combined spatially or temporally in order to build more complex orthographic

units such as those constituting English words.

Acknowledgements

When studying adaptive systems, one realizes that their astonishing complexity
largely derives from their intimate coupling with the surrounding environment,
which often makes it difficult to draw a clear distinction between the cognitive
entity and its “external” world. My thoughts and ideas have been constantly
shaped by so many external forces that I feel indebted to hundreds of people,
who enriched my life with great insights and sources of inspiration. It would be
impossible to list all of them here, but I feel very lucky that I've had such a
stimulating, warm environment always feeding my mind. Here [will try to
mention those who have been mostly responsible for the exciting path that
allowed me to produce this modest research work. The first acknowledgement
goes to my mother Luigina, my father Giuseppe and my sister Chiara, who
always encouraged me to explore and critically analyze the world around me,
and who always strongly supports all my disparate enterprises. Many thanks
also go to the uncountable number of friends who accompany my life with
happiness, and with whom I shared my greatest joys and my saddest moments.
They are my driving force, and they constantly fill my brain with unforgettable
memories. | would also like to express my gratitude to the many teachers and
professors that contributed to all stages of my formal education. Special thanks
go to my supervisor, Marco Zorzi, who always supported my research work with
all the available resources, and who has been a great guide, helping me to
navigate the turbulent ocean of cognitive neuroscience. I would also like to
acknowledge my machine learning professor, Alessandro Sperduti, who
introduced me to the fascinating world of artificial neural networks and self-
organizing systems, which have been the starting point of my postgraduate
studies. A special mention also goes to all my lab mates, who provided me the
best environment to explore my ideas in a friendly atmosphere. In particular, the
boundless enthusiasm and optimism of Ivo Stoianov has been a great source of

inspiration, and the valuable advices of my colleagues and friends Simone Cutini

and Mario Bonato have been very useful to improve my understanding of the
challenging world of scientific research. Warm thanks also go to Jay McClelland,
who kindly welcomed me in his lab for a wonderful research period, always
encouraging me to explore my own ideas and their implications. He is a great
example of open mindedness and intellectual honesty, and our fruitful
conversations contributed to further boost my interest in cognitive science and
to consolidate my respect for academic institutions. A special mention also goes
to all the PDP lab crew, in particular to my lighthouse Michael Henry Tessler, and
to all the friends of the Stanford Italian Society, who made my stay in California

such a memorable time.

Contents

1 INtroducCtion ... s 11
1.1 HiStorical OVervieW.......sssssssssssssssssssssssssnns 12
1.2 Some neglected aspects of connectionism...........couusenmsnssnsessenns 17
1.3 Why orthographic processing? ... 20
1.4 Outline of the thesis......c.i e ——————— 21

2 Theoretical Backgroundommsmmmsssmssssssssssssssssessns 23
2.1 Parallel Distributed Processing (PDP)........ccccucinnssinsscsnsnscsnns 23

2.1.1 Artificial NEUTONS. .ottt sse s sss s saseseens 23
2.1.2 From neurons to NEtWOTIKSceereemeeneesneensesseessesseesseessessessseseens 26
2.1.3 Learning algorithms........oeeneenreeeseeeessesssessesseeseessessessessseseens 31
2.1.4 The rise of connectionist MOdelS......coomurrereenreereenreeneeseeseessersessenns 35
2.1.5 LoOKING Qhead ...t sssssssssssssessens 37
2.2 Orthographic processing—————— 41
2.2.1 Structure and function of the ventral visual stream.................. 41
2.2.2 Recognizing written Patterns ... 45
2.2.3 Computational models of orthographic processing........ccc....... 47

3 Generative Models and Deep Learning.........cc.covssesnsssnnens 49

3.1 Probabilistic graphical models.......cconnirinirscinsnsnnssnsnssssnsnsans 49
3.1.1 Graphical representation of probability distributions.............. 50
3.1.2 Inference and learning algorithmscoonennensensenseeseeneennns 52

3.2 Generative MOdels ... —————— 55
3.2.1 Restricted Boltzmann Machines ..o 56
3.2.2 Inference and learning in RBMS.......cooonneneennenceneensesseenseessesneenens 58

3.3 Hierarchical generative modelsccounnrinnscsnsssssssnsnssssnsesnns 62

3.3.1 Deep neural NetWOTrKS.....enreereneeneeseesesseesesseessesssessesssesssesssenees 62
3.3.2 Inference and learning in deep neural networks.......cccccoueesueneee 63
3.3.3 Analyzing deep neural NEtWOTrKS......cocreenrerneenrerseeneeneesseenseeseesseeees 64
3.4 Temporal generative modelsccooiinnnminnsscsnssssnssssssssssesas 68
3.4.1 The Recurrent temporal Restricted Boltzmann Machine.......68

4 EXPeriments ... 71
4.1 Parallel implementation on graphic processors..........cccouueueue 71
4.1.1 Implementation and hardware detailscccccconunreneenrereereenreeneens 72
4.1.2 Dataset and network architecture.........eonenneneeneesseneens 73
4.1.3 Results and diSCUSSION.......ccrereureererneesreeressessesseessessesssessesseessessseseens 75
4.2 Early vision: learning patches of natural images..........cccoceeeuune. 78
4.2.1 Dataset and network architecture.........eonenneeneeseeseesneens 79
4.2.2 Results and diSCUSSION......cccrereereerreeneerreesesseessesseessessessesssesseessesssesseens 81
4.3 Printed Latin letter recognition ... 84
4.3.1 Dataset and network architecture.........onnnensesneesseneens 84
4.3.2 Simulation 1: learning letters from scratch.......ceenenneneen. 87
4.3.3 Results and diSCUSSION.......ccreereureereeneerreessesseesesseesseesesssessessesssessseseens 87
4.3.4 Simulation 2: exploiting natural statiStiCS......ccumenmeereerreesserseens 91
4.3.5 Results and diSCUSSION.......ccuereureermerneerreesresseesesseesseesesssessesseessesssesseens 92
4.4 Handwritten Farsi character recognition ... 93
4.4.1 Dataset and network architecture.........neoneenneenseneesseeneens 94

L SN 1 010 =10 (0) o s SO 95
4.4.3 Results and diSCUSSION.......ccuereureemeereerseessessessesseessessesssessesseessesssesseens 96
4.5 Learning sequences of letters: Spatial arrangement.............. 100
4.5.1 Dataset and network architecture.........oneeeneenseneesnesseenennae 100
4.5.2 SIMUIAIONS oottt sses s ses s ss e 101

4.5.3 ReSUILS and diSCUSSION ...coiveeeerererererereresisrsssessseesesesesesesesesesesesessssssns 102

4.6 Learning sequences of letters: Temporal arrangement........ 106
4.6.1 Dataset and network architecture........ooneeeneenserneesnesseenennee 107
4.6.2 Simulation 1: context-dependent predictions........c.ccccreeneene. 110
4.6.3 Results and diSCUSSION......orcureererneemerseesreseeeseesseeseessessessesssesssessesnns 112
4.6.4 Simulation 2: generative abilities.......conreneerneenseseesrerseenennes 114
4.6.5 Evaluation ProCedure....... i eeeesseseessesssssesssssssssssssesnns 116
4.6.6 Results and diSCUSSION......oorureererrcereeseesreereeseesseeseesssssessesssesssessesnns 118

ST O10) 0 L] L1 03 0] 1 1 123
5.1 Discussion and summary of contributions..........cccuiiininssnns 123
5.2 Future research directions.........cmmmmmnm. 129

References ... 135

10

1 Introduction

The computational approach is one of the cornerstones of modern science,
and since its appearance its impact on the scientific method has been
tremendous. The advent of digital computers created immense, new possibilities
to explore and test scientific theories, even leading to novel epistemological
foundations for the scientific enterprise (e.g., Winsberg, 2009). At present,
computational modeling is a common practice not only in the more formal
disciplines from which it derived (e.g., physics, chemistry, mechanics), but also
in disciplines that were traditionally considered to lie far away from
computational principles, such as psychology, sociology and linguistics. By
framing a theory in computational terms, scientists are forced to adopt a precise,
formal language, because all the details of the theory should be explicitly stated
in order to simulate it on a computer. In turn, the use of mathematical principles
to describe a theory facilitates communication between researchers: ideas are
formulated using a common, abstract language that reduces ambiguities and
misunderstandings, and that should eventually make it easier to quantitatively
compare different hypotheses.

Nowadays, the need for computational theories in the “brain sciences” is
particularly pressing (Abbott, 2008). Experimental research keeps producing a
huge amount of data and facts, but we still lack a comprehensive theory that can
make sense of it. In particular, methodological advances in experimental
psychology and the modern techniques adopted in neuroscience research are
providing an increasing amount of detailed information about brain and
cognitive processes at many different levels of analysis, spanning from genetic,
molecular, cellular and physiological processes to the more high-level
phenomena investigated in psychophysics, neuroimaging and behavioral studies.
However, from a theoretical standpoint we do not yet have a clear,

comprehensive explanation about how psychological phenomena might emerge

11

from the underlying neural substrate (Bassett & Gazzaniga, 2011), and
computational simulation is considered an irreplaceable tool to bridge these
different levels of description (Churchland & Sejnowski, 1992; Gerstner,
Sprekeler, & Deco, 2012). The relevance of computational modeling in this
scenario is also highlighted by the consistent amount of resources that are being
invested to boost computational research in cognitive neuroscience. Two
examples of this trend are represented by the European Human Brain Project
(Markram, 2012) and its U.S. counterpart, the BRAIN initiative (Insel, Landis, &
Collins, 2013), which both have the ambitious goal of building a large-scale
simulation of the human brain.

At the same time, and especially in the above-mentioned brain sciences, the
notion of computational model is often opaque, and sometimes it is implicitly
used with reference to particular, restricted meanings. Interestingly, the
etymology of the term “computation” derives from the Latin com-putare, which
literally means “considering together”. The original meaning of the term is
therefore extremely general, and should not be restricted to the most popular
acceptations. This issue is particularly relevant in the field of cognitive science,
where the notion of computational model is often interpreted according to the
idea of symbolic processing proposed by cognitivism. In this thesis we will be
concerned with a much broader meaning of computation, which finds its roots in
the cybernetic movement and that later became popular with the appearance of
the parallel distributed processing approach. In order to better grasp this
distinction, it is useful to briefly review the main theoretical ideas that have been
introduced since the first attempts to understand the brain from a

computational perspective.

1.1 Historical overview

Interestingly, the first attempts to characterize cognitive systems using the
language of computation came from scientists interested in artificial intelligence

research. According to some historical reconstructions (Dupuy, 2009), the whole

12

cognitive science enterprise should be considered a consequence of the
cybernetic movement, which was initiated right after the Second World War by
some of the greatest minds of the twentieth century such as Warren McCulloch,
John von Neumann, Walter Pitts, Claude Shannon, Alan Turing, and Norbert
Wiener, just to name a few. The founders of cybernetics believed that nervous
systems - and, more generally, biological systems - could be described as a very
general type of machines, and that they could therefore be studied using the
laws of physics and mechanics. The so-called “Macy Conferences”, which took
place from 1946 to 1953 in the U.S., have been the starting place where these
scientists coming from many different disciplines, such as mathematics, logic,
engineering, physics, physiology, biology, psychology, anthropology, and
economics, meet together to build a general science of how the human mind
works. One of the characterizing aspects of these meetings was their
interdisciplinary nature, which highlighted the broad scope and the ambitious
goal of the enterprise and the necessity to draw ideas from many different
perspectives and traditions. At the same time, this heterogeneity also led to the
creation of different visions among the cyberneticians, which resulted in the
emergence of different research paradigms. In particular, two main positions
appeared to impose themselves and divide the cybernetic community.

The first one, which lately became the prevailing paradigm in cognitive
science, was also one of the major driving forces behind the following research
that more explicitly focused on artificial intelligence. According to this paradigm,
the mind can be characterized as a symbolic processor, which exploits
structured data representations to manipulate incoming information (inputs)
and produce proper responses (outputs). This type of computation is based on
rule-based constructs, like those implemented in the syntax of the newly-
invented programming languages of the era (McCarthy, 1959). Not surprisingly,
among the defenders of this approach there were John von Neumann, one of the
inventors of the modern digital computer, and Warren McCulloch, one of the

pioneers proposing how logic-based behavior could be implemented in neural

13

circuits (McCulloch & Pitts, 1943). The symbolic paradigm provided the
foundation for cognitivism (Chomsky, 1957), and soon received widespread
support from what will be called the “strong artificial intelligence” community
(Minsky, 1961; Newell & Simon, 1961). One of the distinguishing features of
cognitivism is therefore the computer metaphor, which claims that cognition is
based on internal, mental representations analogous to data structures that are
serially manipulated according to computational procedures analogous to
algorithms. Indeed, within cognitivism the most common way to represent the
flow of information processing in the brain is based on flow-charts, as is typically
done for computer programs. Importantly, according to this view the mind can
be abstracted from the underlying physical medium, just as the software level in
digital computers is independent from the hardware architecture over which it
is implemented. Cognitivism had a huge impact on the development of cognitive
science, and it allowed to create important theories about the way we think
about the mind (Anderson, 1983; Pinker, 1999). Some authors went even further
and suggested to literally conceive the mind as a special type of computer that
implements a powerful “language of thought” (Fodor, 1975; Pylyshyn, 1984).
The other major paradigm produced by the cybernetic movement
proposed a substantially different interpretation of the mind in mechanistic
terms. Its theoretical roots were not primarily grounded in logic and algorithmic
theory, but instead derived from physics and the theory of dynamical systems.
Among its stronger advocates there was Norbert Weiner, one of the founders of
control theory and the theory of adaptive systems (Wiener, 1948). According to
this view, the computational nature of nervous systems (and, more generally, of
many types of complex systems) should not be characterized in terms of
symbolic processing, but should instead be described as a form of dynamical
evolution of a system over the space of its possible configurations. Information
processing in a system thus corresponds to the dynamic change of its own
internal organization according to its current internal state and, eventually, to

perturbations coming from the external environment (principle of “self-

14

regulation”). Importantly, this definition of computation introduces the notion of
feedback as a critical feature of cognitive systems, because their behavior is
intrinsically coupled with the environment with which they interact through
circular, causal relationships (Ashby, 1956; Maturana & Varela, 1980; Von
Foerster, 1984; Wiener, 1948). According to this approach, cognitive processes
cannot be considered separately from the physical medium that implements
them, because they intrinsically emerge from it. This computational paradigm
led to the introduction of the network metaphor, which claims that cognition
should be conceived as a collection of emergent dynamics rising in networks of
interconnected units that collectively self-organize according to physical
principles. Even if many authors studied the self-organizing behavior of artificial
neural networks in the decades following the cybernetic movement (Grossberg,
1976; Hopfield, 1982; Kohonen, 1982), these ideas became popular only after
the spread of connectionism and the Parallel Distributed Processing (PDP)
approach (Rumelhart & McClelland, 1986b). Many different reasons have been
proposed to explain the slower acceptance of the network metaphor by the
scientific community compared to the computer metaphor (e.g., McClelland,
2009). However, it is interesting to note that scientists tend to formulate
descriptions of the human brain using analogies from the most powerful
technologies available at the time (Daugman, 2001); for example, brains were
often compared to windmills or to clockwork mechanisms during the 18t
century, but these metaphors were gradually replaced by the steam engine and
hydraulic machines at the beginning of the 20% century. It is therefore not
surprising that the computer metaphor imposed itself during the half of the 20t
century, and that scientists are switching to a network conception only
nowadays, in the Internet era (Graham & Rockmore, 2011).

The computational characterization of the brain provided by connectionist
and dynamical systems models is significantly different from the more popular
one based on the computer metaphor. In particular, a distinguishing concept

considered by these models is that of emergence (McClelland, 2010). Emergent

15

properties can be defined as properties that are not found in any component of
the system but are still features of the system as a whole. More precisely,
emergence is often described as the arising of novel and coherent structures,
patterns and properties during the process of self-organization in complex
systems (Goldstein, 1999). Examples of emergent phenomena abound in nature:
in physics, transitions between solid, liquid and gaseous states are interpreted as
emergent phenomena, as the formation of convection cells and whirlpools;
chemical reactions can also be described as dynamics emerging from the
interactions between molecules, and the same framework can be applied to
describe more sophisticated biological structures like cell membranes and cell
assemblies, up to very complex organizations such as ant colonies, swarms and
economic markets (Morowitz, 2002). In cognitive science, emergentist
approaches entail that the structure seen in overt behavior (macroscopic
dynamics of the system) reflects the operation of subcognitive processes
(microscopic dynamics of the system), such as the propagation of activation and
inhibition among interconnected neurons and the adjustment of their
connection strength (Beer, 2000; McClelland et al, 2010). Cognition can
therefore be described as the evolution of a system composed by many
interacting units that are connected together. Due to the presence of non-linear
interactions, the global behavior of the system can result in complex dynamics,
which are usually studied by simulating the evolution of the system starting
from an initial configuration and moving through a sequence of states.

As we will discuss in Chapter 2, cognitive models based on artificial neural
networks usually share the fundamental principles of the PDP framework, such
as the idea that knowledge underlying cognitive activity is stored in the
connections among neurons, and that learning processes adaptively change the
strength of these connections in order to improve the global behavior of the
system according to past experience. However, there are other distinguishing
features of the PDP approach that are often ignored in neural network research

and that could have a great impact on the resulting models. In the following

16

section, we will briefly discuss some critical principles that were initially
emphasized within the PDP approach, but which have not been seriously taken
into account in many subsequent models.

As a matter of terminology, it should be mentioned that most of the times
PDP models are said to be “connectionist”. Even if there is no explicit consensus
about the use of these terms, we consider them as being comparable in this
thesis due to the widespread use of the term connectionism among the cognitive

science community.

1.2 Some neglected aspects of connectionism

As we discussed before, a fundamental principle included in the first
cybernetic models was the notion of feedback. In the neural networks literature,
the term feedback is sometimes associated with that of recurrence, because they
both indicate the presence of some form of circular causation inside the system.
The relevance of feedback loops in self-organizing systems was one of the major
concerns of cyberneticians, because according to their view the processing flow
in nervous systems cannot be conceived as being unidirectional: causation
seems to occur both upwards and downwards between multiple levels of the
system, creating a complementary or mutually constraining environment
between cognitive processes and their underlying neural dynamics. In other
words, emergent phenomena can feedback to lower levels from which they
generated, causing lower level changes through what is called “downward
causation”. Within this assumption, emergence of mental properties cannot be
understood using fundamental reductionism (Bassett & Gazzaniga, 2011).
Notably, this argument is also central in other modern disciplines, such as
epigenetics and system biology, where the traditional, bottom-up notion of
“genetic program” is being replaced by a more integrated view that takes into
account the causal role of high-order structures in the organization of lower
levels, leading to an intricate interplay between different levels of biological

organization (Noble, 2006). Despite the existence of powerful recurrent neural

17

network models (Ackley, Hinton, & Sejnowski, 1985; Grossberg, 1976; Hopfield,
1982; Williams & Zipser, 1989), the most commonly adopted architectures by
cognitive modelers are feed-forward; that is, processing is directed from the
input layer to the output layer forming a bottom-up flow. Even if their
mathematical treatment appears to be more complicated, here we argue that
recurrent networks have a series of advantages compared to feed-forward
networks and that they should be considered as a primary choice to model
cognitive processes within the PDP framework.

Another important point is concerned with the nature of learning
algorithms used to adapt the connection weights in neural network models.
Indeed, the majority of connectionist models rely on a supervised training
regimen, which is usually implemented using the popular backpropagation
algorithm (Rumelhart, Hinton, & Williams, 1986). Although backpropagation
constitutes a powerful way to efficiently train feed-forward neural networks,
supervised learning alone might be insufficient to fully address the type of
learning mechanisms implemented in the brain. In particular, the assumptions
that learning is largely discriminative (e.g., classification or function learning)
and that an external teaching signal is always available at each learning event
(that is, all training data is labeled) appear to be implausible from a cognitive
perspective. Reinforcement learning (Sutton & Barto, 1998) is a valuable
alternative, but there is a broad range of situations where learning seems to be
fully unsupervised and its only objective is that of building rich internal
representations of the environment (Hinton & Sejnowski, 1999), for example by
learning a generative model that tries to explain the latent factors underlying
sensory information. Here we therefore argue that generative learning
constitute a promising alternative to feed-forward, discriminative learning,
especially considering the fact that it can be efficiently implemented in some
general classes of recurrent neural networks (Dayan, Hinton, Neal, & Zemel,

1995; Hinton & Ghahramani, 1997; Hinton, 2002).

18

A related aspect refers to another architectural principle commonly
associated with feed-forward neural networks. Due to limitations of the
backpropagation algorithm (Bengio, Simard, & Frasconi, 1994), these type of
networks usually exploit only few processing layers. However, as also suggested
by the hierarchical organization of many areas of the cerebral cortex (Felleman
& Van Essen, 1991), hierarchical architectures composed by many processing
layers are likely to improve the computational efficiency of nervous systems.
Indeed, a recent breakthrough in neural computation research has been the
introduction of powerful, hierarchical generative neural networks known as
deep learning systems (Bengio, 2009; Hinton & Salakhutdinov, 2006). Here we
argue that a promising avenue for cognitive modeling would therefore be to
investigate artificial neural networks composed by many processing layers, like
those implementing hierarchical generative models.

During the last decades, another important achievement in the formal
definition of artificial neural networks has been their characterization within a
probabilistic framework (Bishop, 1995; Jordan & Sejnowski, 2001; McClelland,
2013; Neal, 1992). At the same time, recent developments in the theory and
practice of probabilistic graphical models (Koller & Friedman, 2009) paved the
way to integrate powerful analytical techniques (such as those derived from
Bayesian statistics) into the neural computing framework. We therefore also
argue that an important step forward to improve current connectionist models
would be to replace the commonly used deterministic models with stochastic
neural networks (e.g., Ackley et al., 1985).

As a final point, we also believe that time has come to seriously consider
using alternative types of digital computers when performing PDP simulations.
While symbolic processing models are particularly suitable for being
implemented and simulated using standard digital computers, neural network
models exhibit an intrinsic parallelism that requires the use of parallel
computing architectures to properly simulate them. In other words, the

intimate coupling between structure and function in PDP models suggests that

19

we must resort to a radically different form of computing equipment in order to
study them experimentally. In turn, though small-scale, “toy” models can provide
important theoretical insights, the use of parallel computing architectures allows
to significantly scale-up connectionist models, for example by simulating large-
scale neural networks composed by thousands, or even millions, of neurons.
Here we propose to exploit recent advances in parallel computing architectures
introduced by the CUDA framework (Nickolls, Buck, Garland, & Skadron, 2008)
to perform computational simulations using low-cost graphic processing units
(GPUs). This promising hardware equipment allows to greatly reduce
computational times required to train large-scale deep learning systems
(Krizhevsky, Sutskever, & Hinton, 2012; Raina, Madhavan, & Ng, 2009), at the
same time guaranteeing simplicity and usability of the source code (Testolin,
Stoianov, De Filippo De Grazia, & Zorzi, 2013).

[t is important to reiterate that all the above-mentioned principles do not
constitute novel ideas per se, because they have been traditionally incorporated
in comprehensive PDP theories of cognition (e.g., Churchland & Sejnowski, 1992;
Rumelhart & McClelland, 1986). However, due to theoretical and/or practical
issues they did not became standard practice in connectionist modeling, and
they gradually became overshadowed by the use of simpler types of artificial
neural networks. Recent advances in neural computation research now allows
overcoming many of the original difficulties, but the highly technical knowledge
required to master these improvements tends to keep them confined inside the
machine learning community. We believe that these exciting ideas should be
spread and adopted also by cognitive scientists, and hopefully one of the

contributions of this thesis will be to make them accessible to a wider audience.

1.3 Why orthographic processing?

Since the first appearance of cognitive models inspired by the PDP
framework, orthographic processing has been a very influential domain to

investigate theoretical hypotheses by means of computational simulations

20

(McClelland & Rumelhart, 1981; Rumelhart, 1977). The appeal of orthographic
processing as a modeling domain is due to the fact that it incorporates many
sophisticated aspects of cognitive processes, at the same time providing a
simplified, controlled setting where cognitive theories can be evaluated more
accurately.

Orthographic processing requires an efficient, multilevel integration of
fine-grained visual features, which must be structurally combined and
interpreted according to detailed knowledge about letters, graphemes,
morphemes and words. Furthermore, written symbols are often represented
using a variety of different shapes and styles, thereby significantly increasing the
complexity faced by pattern recognition mechanisms. Finally, the central role of
contextual information in orthographic processing suggests that bottom-up
information should heavily interact with high-level, top-down information in
order to provide useful constraints that disambiguate sensory data. Despite the
involvement of these sophisticated forms of processing, recognition of written
symbols and words represents a much more circumscribed task compared to the
general tasks faced by cognitive systems in real-life environments.

Furthermore, during the last decades cognitive psychologists investigated
many aspects of orthographic processing using a wide variety of experimental
techniques, which include detailed electrophysiological, neuroimaging and
behavioral measures (Grainger, 2008). Orthographic processing therefore
appears to be a valuable prototypical domain to investigate many fundamental
perceptual and cognitive phenomena, and to validate the adequacy of

computational models according to experimental evidence.

1.4 Outline of the thesis

This research work is organized into four main parts. In Chapter 2 we
review and discuss some fundamental ideas behind parallel distributed
processing and their relationship with current theories of cortical computation.

The aim is to provide a comprehensive view of the major points of interest, at

21

the same time highlighting open challenges and possible ways to address them.
We then focus on the computational characterization of the ventral stream of the
visual system, with particular attention to its role in orthographic processing. In
Chapter 3 we formally present the framework of probabilistic graphical models,
which provides a clean formalism to describe the models considered in this
thesis. In particular, we focus on generative models and their implementation in
stochastic, recurrent neural networks, by also discussing the most popular
inference and learning algorithms. We then focus on recent advances in machine
learning research, which allow to effectively train large-scale, hierarchical
generative models in an unsupervised fashion, and we propose several
techniques that can be used to model cognitive processed using this powerful
class of models. We also discuss some possible extensions of generative neural
networks to sequence learning, which allow including the temporal dimension in
cognitive models. In Chapter 4 we present and discuss the experiments and the
computational simulations performed to validate the proposed modeling
framework. For each simulation, we provide details about the datasets used, the
model formulation and the methodological procedure adopted to evaluate it. In
the first set of simulations, we empirically assess the performance of an efficient
implementation of deep belief networks based on graphic processors. In the
following simulations, we exploit such implementation to investigate cognitive
processes underlying the recognition of printed Latin letters. We then test the
ability of the model to learn other types of scripts by studying the recognition of
Farsi handwritten characters, and we also test its capability to transfer a set of
learned visual features across different writing systems. Finally, we test the
performance of generative neural networks when processing multiple letters,
which can be arranged either in a spatial or in a temporal structure. Finally, in
Chapter 5 we conclude the thesis by discussing the results. We also provide links
to other important research areas, and propose critical future research
directions that should be pursued to further test — and possibly improve - the

computational framework described in this thesis.

22

2 Theoretical Background

2.1 Parallel Distributed Processing (PDP)

In this section we briefly review and discuss some critical features of the
PDP framework and their relation to current theories of cortical processing. The
interested reader could refer to several reference textbooks to have a more
comprehensive treatment of the cognitive (Rumelhart & McClelland, 1986b),
neurobiological (Churchland & Sejnowski, 1992) and mathematical (Bishop,
1995; Hertz, Krogh, & Palmer, 1991) aspects of the subject.

2.1.1 Artificial neurons

One of the central tenets in PDP models is to consider the neuron as the
basic processing unit in nervous systems. This implies that PDP models are not
too much concerned about complex dynamics emerging within single cells, but
instead assume a simplified representation of neurons in order to focus the
computational characterization at the “network level”. The first information
processing models of artificial neurons date back to the cybernetic age, when
researchers already recognized the relevance of plasticity in learning processes
to adaptively change the behavior of a system according to past experience
(Hebb, 1949; McCulloch & Pitts, 1943; Rosenblatt, 1958; Widrow & Hoff, 1960).
Artificial neurons (Fig. 1A) are characterized by a set of weighted input
connections (representing synapses located along the dendrites of the neuron),
an activity level (representing the state of polarization of the neuron) and an
output value (representing the average firing rate of the neuron, that is, the
mean electrical activity propagated along the axon in a fixed time interval). A
single neuron can therefore be conceived as a simple information processing
device, which collects inputs (encoded as activation values coming from other
neurons) and computes an output value, which can in turn be transmitted to

other neurons. Inputs can be represented as n-dimensional vectors, where each

23

bias input

Figure 1. (A) Artificial neuron scheme. (B) Heaviside step function (hard threshold).

(C) Logistic function (graded threshold).

element corresponds to an incoming activation value, thereby allowing to define
the neuron as a multivariate mapping function that associates a certain scalar
value to each input vector. The activity level of a neuron is usually computed as a
weighted sum of its input signals, which can be compactly expressed using

vector notation:

y(x) = Xiwix; + wy = wix +wy (1)

where vectors are represented using bold letters and T denotes the transpose
operator. The vector x represents the input pattern, the vector w represents the
synaptic weights and the scalar wy represents the bias of the neuron, which can
be thought as a default, internal resting level of the neuron. The output value
transmitted through the axon is usually computed by applying some type of

activation function o to the activity level resulting from Eq. 1:
out(x) = a(y(x)) = a(wlx + wy) (2)
In the simplest case, ¢ is implemented as a linear function of its input. However,

more powerful models can be obtained using non-linear, monotonic activation

functions. Early influential models (McCulloch & Pitts, 1943; Rosenblatt, 1958)

24

implemented o using a discrete threshold function, such as the Heaviside step
function (Fig. 1B). Another possibility is to use a continuous, sigmoid activation
function, such as the logistic function (Fig. 1C), which approximates a discrete

step function as the slope parameter increases:

o(y®) = 5@ (3)

Importantly, continuous activation functions such as that of Eq. 3 can be
differentiated, which is a critical prerequisite for creating more complex
network architectures and learning algorithms, as we will see below.

From a mathematical standpoint, this family of artificial neurons
implements a simple form of linear discrimination, which assigns one of two
possible classes to data points lying on an n-dimensional vector space, where n
represents the dimensionality of the input pattern. Linear discriminant functions
can be easily extended to multi-class problems by simply adding more neurons
to the network: each output neuron corresponds to a different class, and the
classification is performed by selecting the class corresponding to the neuron
with the highest output value. Linear discriminant functions, also known as
linear classifiers, have a straightforward interpretation in geometric terms. If we
consider a two-dimensional space for simplicity, a linear classifier corresponds
to a straight line that separates the data points into two distinct regions of the
plan (as shown in Fig. 2). In the general case of n dimensions, the decision
boundary becomes a hyperplane (i.e., it corresponds to a subspace of one
dimension less than its ambient space). The weight vector w of the classifier
defines the orientation of the hyperplane, while the bias wy defines the position
of the hyperplane in terms of its perpendicular distance from the origin.

Interestingly, artificial neurons that use a logistic sigmoid activation
function also have an interesting probabilistic interpretation. In particular, in

this case the output values can be interpreted as posterior probabilities, and the

25

Figure 2. Geometrical interpretation of a linear discriminant function in a
two-dimensional space, where data points belong to two classes

identified by circles and crosses.

computation performed by the neuron corresponds to a form of logistic

discrimination (Bishop, 1995).

2.1.2 From neurons to networks

Though appealing from an analytical perspective, linear classifiers have
some important drawbacks that limit their use in complex scenarios. In
particular, this type of models can perform accurate mappings only when data
points are linearly separable (Minsky & Papert, 1969). As we will discuss in
Chapter 3, this simplified behavior can often be useful to perform some
interesting analyses on internal representations extracted by deep learning
models. However, from a cognitive modeling perspective artificial networks
composed by a single-layer of linear classifiers have limited applicability. More
interesting models can be obtained by considering more powerful types of
architectures, which perform successive transformations of the input signal
and/or allow for bidirectional interactions among subsequent processing layers.

One of the most popular types of artificial neural networks is represented
by the multi-layer perceptron, which extends the basic, single-layer network

discussed above by adding several layers of adaptive weights (see Fig. 3C).

26

Figure 3. (A) Single-layer linear associator. (B) Fully recurrent, bi-directional
network. (C) Multi-layer, feed-forward network. (D) Partially recurrent network with

delayed connections.

The processing flow in multi-layer perceptrons is a generalization of that
of single-layer networks: once the output units of the first layer have been
computed using Eqg. 2, their activation values are used as input for a subsequent
network, until the top-layer activations are produced. The analytical function
corresponding to a two-layer network (such as the one represented in Fig. 3C)

can therefore be defined as:

y(x) = 6wy o(w,"x)) (4)
The term included in the inner parentheses represents the sum of the input

activations x weighted according to the first-layer connections wj, which is then

transformed according to the activation function ¢ and taken as input by the

27

second layer in order to produce the final output according to the second-layer
connections w2 (for notational simplicity, bias terms have been omitted).
Intermediate units that are not treated as final outputs are called hidden units,
and their activation function ¢ might not necessarily correspond to &, which is
that used for the output units. However, it is important to note that if the
activation function of all hidden units is taken to be linear, then for any such
network we can always find an equivalent network without hidden units. This
follows from the fact that the composition of successive linear transformations is
itself a linear transformation. More expressive mappings are obtained using
hidden units with logistic activation, which allows to create internal, non-linear
representations of the input vectors that can support more general
transformations of the incoming signal.

Multi-layer perceptrons have very powerful representational capabilities:
in fact, it has been demonstrated that networks with just two layers of weights
are capable of approximating any continuous functional mapping (Hornik,
Stinchcombe, & White, 1989). Moreover, for networks with differentiable
activation functions there exists a computationally efficient method, called error
backpropagation, for finding the derivatives of an error function with respect to
the connection weights, which constitutes the basis for a variety of learning
algorithms. However, the analytical properties of multi-layer perceptrons are
derived under the fundamental assumption that the network diagram must be
feed-forward, that is, it cannot contain feedback loops. This ensures that the
output values can be calculated as explicit, deterministic functions of the inputs
and the weights, and so the whole network represents a multivariate, non-linear
functional mapping.

Other classes of artificial neural networks allow for the presence of
feedback connections among different processing layers (see Fig. 3B and 3D).
These architectures are usually called recurrent neural networks and, despite
their more challenging analytical treatment, they also have some unique and

appealing characteristics.

28

One of the milestones in the study of recurrent networks has been their
characterization using the theory of statistical physics: in particular, it has been
shown that recurrent networks with symmetric weights can develop a point-
attractor dynamics (Hopfield, 1982), which can be modeled using techniques
inspired by the study of pattern formation in physical systems composed by
many interacting units. This allows to draw a useful analogy between physical
systems with a metastable behavior and information processing systems that
implements content-addressable associative memories. The notion of
metastability is used to characterize isolated systems that spend an extended
time in a configuration other than the system's state of lowest energy (global
minimum), that is, the energy configuration landscape is characterized by a
substantial number of locally stable states (local minima), as shown in Fig. 4A. A
prototypical example of metastable systems is constituted by spin glasses, where
complex internal structures spontaneously arise through local interactions
between the magnetic spins of the component atoms. This phenomenon is
usually unwarranted, because it prevents the system to reach a uniform,
ferromagnetic configuration where all the spins are aligned, causing instead the
formation of frustrated interactions, which are geometrical distortions in the
structure of atomic bonds. However, this richness of possible internal states has
a very useful application to address the problem of representing and storing
information in neural networks. Indeed, we can interpret each local energy
minima as an embodiment of a prototype in an associative memory, where the
aim is to store as much information as possible in the form of static
configurations of a set of variables. If each configuration is represented by a
vector, then we can recall previously stored information by giving as input to the
network a partial vector (which would correspond to a content-specific “search
key”) and letting the system settle into a stable state, thereby completing the

missing values in the vector according to the closest prototype.

29

o
B GINRO RN s

Figure 4. (A) A metastable energy landscape with many locally stable

configurations. (B) 2D projection of the corresponding attractor-point dynamics,

where each basin of attraction is bounded by a continuous line.

Interestingly, this process can also be described as a form of constraint
optimization, where local interactions among neurons in the network specify a
set of soft-constraints that must be satisfied to reach a stable, locally optimal
configuration. The presence of too many local optima can be detrimental
because it prevents the system to settle into robust, stable configurations, and a
great deal of research work indeed focuses on implementing computationally
efficient ways to reach better (if not global) optimal states. Also here, the
analogy with physical systems allows to greatly improve the analytical treatment
of the problem, for example by providing inspiration for powerful optimization
techniques like simulated annealing (Geman & Geman, 1984; Kirkpatrick, Gelatt,
& Vecchi, 1983). The interpretation of neural information processing in terms of
state phase transitions through an attractor landscape has been successively
refined and expanded by introducing more powerful, stochastic neural network
models. In particular, as we discuss at length in Chapter 3, the Boltzmann
machine (Ackley et al, 1985) represents a flexible and expressive recurrent
architecture that allows building powerful learning systems such as those used
in the present research work.

Another interesting class of recurrent neural networks includes systems

where feedback interactions are not implemented using intrinsically

30

bidirectional connections, but are instead mediated by an additional set of
variables, as shown in Fig. 3D. These networks have been shown particularly
useful when modeling temporal phenomena, because they can exploit a set of
temporally delayed recurrent connections to propagate information through
time (Elman, 1990). In Chapter 3, we discuss a recently proposed model that
exploits temporally delayed connections within a bidirectional network, thereby

combining the strengths of both the recurrent approaches.

2.1.3 Learning algorithms

Up to this point, we introduced the main formalism behind popular types
of artificial neural network models and we briefly discussed their
representational capabilities. However, one of the most interesting feature of
these systems is their ability to learn from experience, that is, to adapt their
behavior according to a set of stimuli received from the environment. The
literature on this topic is vast and multifaceted, and the discipline of machine
learning is nowadays a well-established field within the artificial intelligence
community. Here we only review and discuss some general common themes,
which will be useful to better characterize the models used in our experimental
simulations.

From a broad perspective, we can define a learning algorithm as a set of
procedures that allows to improve the performance of a system based on
experience. In general, performance is measured according to some type of error
function, and experience is represented by a set of examples (training patterns)
that are repeatedly shown to the learning system. During learning, the system is
expected to extract and encode as much information as possible from the
training patterns, with the aim of successively obtain high performance also on a
novel set of patterns, which are usually contained in a separate test dataset. This
implies that the problem of learning is not simply concerned with finding a good
representation for a fixed set of patterns, but also to generalize the acquired

knowledge to novel, previously unseen examples. In contrast with most of the

31

symbolic processing approaches, on which learning entails the extraction of a set
of rule-based, propositional constructs, learning in artificial neural networks can
be cast within the mathematical framework of statistical learning theory (Jain,
Duin, & Mao, 2000), which deals with the problem of finding predictive functions
based on available data. It is hard to provide a clean taxonomy of machine
learning techniques, but a coarse-grained classification usually distinguishes
between supervised, semi-supervised, unsupervised, and reinforcement learning
settings.

In supervised learning, the aim of the system is to extract some form of
functional mapping between a set of input patterns and a set of corresponding
output patterns. Classification, discrimination and regression problems can be
easily framed within this scenario, and feed-forward networks constitute the
most studied architecture to learn supervised tasks. Common approaches to
solve these problems consist in defining an appropriate, differentiable error
function that measures the discrepancy between the desired, target output and
the output predicted by the system, and then perform some form of gradient
descent in order to find how each weight should be changed in order to obtain
more accurate mappings. Thanks to its computational efficiency, the
backpropagation algorithm (Rumelhart et al, 1986) is probably the most
popular example of this approach. However, one of the major limits of
supervised learning is that it always requires an external “teacher” to provide
labeled information, that is, each input pattern must be associated with a
corresponding output pattern. Apart for the need to manually label huge training
datasets, this training regimen does not usually occur in real-life situations and
therefore appears to be quite implausible from a cognitive modeling perspective.
Even if asking to perform supervised tasks is a useful way to assess the
knowledge level of a cognitive system, this approach must therefore be
complemented with other learning schemes in order to better model the range

of learning processes observed in biological organisms.

32

In unsupervised learning, the system is not concerned with learning an
appropriate output response for a given input pattern. Instead, the main goal is
to extract a useful set of features from the training data, which allow to
accurately represent the input information and to support similarity judgments
among different patterns. Clustering, density estimation, feature extraction and
dimensionality reduction tasks can be framed within this scenario, and many
different types of neural network architectures can be used to solve these
problems. One successful approach exploited by a variety of neural networks
consists in extracting statistical features from the input data by trying to build an
internal model of the environment, that is, to encode the probability distribution
observed in the training dataset using a set of internal, latent variables. In this
setting, the objective of learning corresponds to find a set of parameters that
allow to accurately reconstruct the input patterns, usually by means of
maximum likelihood estimation methods. Unsupervised learning is therefore not
concerned with finding mapping functions, but instead with discovering the
hidden structure contained in the input signal. As we will discuss later, once the
hidden causes that generated the input patterns have been made explicit,
supervised mappings might be more easily established. This combination of
unsupervised and supervised methods is also usually exploited in semi-
supervised learning scenarios, where the goal is to find a mapping function but
not all the training patterns have an associated label.

It should be noted that the distinction between supervised and
unsupervised settings is not always sharp, and it might became blurred in
certain situations. For example, supervised, feed-forward networks can be
trained to perform a reconstruction of their own input, that is, the target output
vector contains an exact copy of the input vector. This type of architecture is
called autoencoder or autoassociator (Rumelhart et al., 1986), and it shares
some interesting properties with unsupervised neural networks, for example the
ability to learn compressed, distributed representations by performing

dimensionality reduction on the input signal.

33

N
physical
model

Figure 5. (A) Overfitting phenomenon and the bias-variance tradeoff.

(B) Overfitting due to noise in the data points.

On the other hand, we can also attach label information to the input pattern, for
example by simply concatenating the input and output vectors to form a single,
larger vector. By training an unsupervised network to reconstruct this
augmented input pattern, we are also creating a non-linear, stochastic mapping
between the input and its corresponding label (Hinton, Osindero, & Teh, 2006).
Another important point to mention is related to the complexity of the
learning model, which in the case of neural networks is related to the total
number of connection weights (representing the fitting parameters). Due to the
limited size of the training dataset, a network with many weights might extract
too specific statistical information from the training patterns, thereby
preventing the model to properly generalize to novel examples. This
phenomenon is known as overfitting, and can be conveniently illustrated
considering the problem of fitting a function of two variables according to some
given, observed data points. As shown in Fig. 5A, there exist many (in fact,
infinite) functions that exactly pass through the given data points. However, as
the complexity of the function increases (dark line), its behavior becomes more
instable, that is, the predictions for unseen points (either interpolation or
extrapolation) can be significantly different from the real, underlying function
from which the observed data points where collected. Simpler functions with

less degrees of variability (light line) might learn a smoother mapping, which

34

results in a better fit for unseen data points. This phenomenon is particularly
relevant in the presence of noise in the training data, because in this case more
complex models are likely to fit also the noise and produce a bad generalization
(Fig. 5B). A possible solution to control overfitting consists on restricting the
hypothesis space of the model, thereby limiting model complexity using some
form of regularization. A popular regularization technique for neural networks is
known as weight decay, which can be implemented by appending an additional
penalty term in the error function, which prevents the weights to grow
indefinitely. Overfitting can be reduced also by significantly increasing the
number of patterns contained in the training dataset, thereby allowing the
network to extract more robust statistical information during learning. As we
will discuss later, this approach has recently became particularly effective
thanks to the advent of efficient parallel computing architectures and the
availability of very large digital datasets.

The final major learning scheme is represented by reinforcement learning,
where the system is not given an explicit teaching signal from an external
supervisor, but only receives an implicit feedback from the environment through
a reward function (Sutton & Barto, 1998). In this thesis we are not concerned
with this learning regimen, though some interesting research work has recently
suggested how hierarchical neural networks can be exploited within a

reinforcement learning setting (Lange & Riedmiller, 2010; V. Mnih et al., 2013).

2.1.4 The rise of connectionist models

The popularity of PDP models significantly grew during the last decades. In
this section we try to give a general (though necessarily incomplete) overview of
the types of cognitive phenomena that have been addressed using connectionist
models.

The description of mental states in terms of (possibly dynamical) patterns
of activation arising in neural networks allowed to radically change the way we

think about knowledge, and how it is acquired and represented in nervous

35

systems. In particular, a fundamental concept adopted by many connectionist
models is that of distributed representations, which suppose that knowledge is
encoded by patterns of activity distributed over many units, and each unit is
involved in representing many different entities (Hinton, McClelland, &
Rumelhart, 1986). This powerful representational scheme is extremely efficient,
because it allows to encode an exponential number of patterns by means of
compositionality (i.e., in the simplified case of n binary neurons we can encode
up to 27 patterns). Distributed representations entail many other important
advantages over localized representations, for example by allowing the gradual
emergence of new dynamics within the network and by improving resilience to
noise (e.g., the corruption of few processing units does not compromise the
global behavior of the system). The former feature has been shown very useful
for studying cognitive development (Elman et al.,, 1996), because the learning
trajectory underlying knowledge acquisition in artificial neural networks can be
precisely measured and compared to available experimental data (e.g., Plunkett
& Marchman, 1993). Similarly, the graceful degradation property has been useful
to study acquired disorders in cognitive neuropsychology, where the
performance of a system is impaired due to some damage (either by a slow,
diffuse damage such as in dementia, or by some abrupt, localized damage such as
in brain stroke). Neural network models allow to better understand which might
be the underlying processes following brain damages, for example by simulating
the change in behavior of the system after the application of virtual lesions (e.g.,
Hinton & Shallice, 1991; Joanisse & Seidenberg, 1999). Another important
intuition stemming from these ideas concerns the nature of knowledge
representation in nervous systems: within the PDP framework, knowledge does
not need to be explicitly represented (as assumed by most of the symbolic
approaches), because it is implicitly encoded in the connections weights. Indeed,
there have been many examples of connectionist models exhibiting abstract,
“rule-based” behaviors even without relying on a set of explicitly defined rules.

In particular, these types of phenomena have been intensively studied in the

36

language domain, where neural networks have shown able to learn linguistic
structures usually described by compositional rules at the morphological (e.g.,
Rumelhart & McClelland, 1986a), phonological (e.g., Burgess & Hitch, 1999;
Nerbonne & Stoianov, 2004) and syntactic (e.g., ElIman, 1990) levels. Related
cognitive domains where connectionist models have been proven very
successful include visual word recognition and reading aloud (e.g., McClelland &
Rumelhart, 1981; Perry, Ziegler, & Zorzi, 2007; Plaut, McClelland, Seidenberg, &
Patterson, 1996; Zorzi, Houghton, & Butterworth, 1998; Zorzi, 2010). At a more
perceptual level, connectionist models have been applied to a variety of
problems, including speech perception (e.g., McClelland & Elman, 1986),
stereoscopic vision (e.g., Marr & Poggio, 1979), shape from shading (e.g., Lehky
& Sejnowski, 1988) and spatial mapping (e.g., Zipser & Andersen, 1988), just to
name a few. PDP models have been also important to investigate the specificity
and generality of memory systems (McClelland, McNaughton, & O’Reilly, 1995),
semantic cognition (McClelland & Rogers, 2003), executive control (e.g.,
Botvinick & Plaut, 2004), selective attention (e.g., Cohen, Dunbar, & McClelland,
1990) and mathematical cognition (e.g., Stoianov, Zorzi, Becker, & Umilta, 2002;

Stoianov & Zorzi, 2012; Zorzi, Stoianov, & Umilta, 2005).

2.1.5 Looking ahead

Despite the broad range of domains that have been successfully addressed
by PDP models, we believe that a deeper understanding of cognitive phenomena
requires to more seriously consider some important principles that have often
be neglected by connectionist modelers, as we already anticipated in Chapter 1.

In general, the intimate relation between structure and function in neural
systems suggests that more informative models might be obtained by taking into
account some established properties of cortical processing. In particular, the
presence of massive feedback connections between cortical areas (Sillito,
Cudeiro, & Jones, 2006) might be a critical architectural feature to improve

neural processing by means of reciprocal interaction among different sources of

37

information. At the same time, many cortical areas exhibit a certain degree of
hierarchical organization (Felleman & Van Essen, 1991), which might also
constitute a critical architectural feature to efficiently processing information by
exploiting multiple levels of representation. It therefore appears that cognition
(including its intertwined perceptual and motor aspects) entails a delicate
interplay between bottom-up, sensory information and top-down, contextual
influences, which mutually constrain each other at many levels of organization
(P. S. Churchland, Ramachandran, & Sejnowski, 1994; McClelland, Mirman,
Bolger, & Khaitan, 2014).

The effects of contextual information in perception and cognition have
been extensively studied by experimental psychologists, which accumulated a
great deal of empirical evidence describing the role of top-down, “endogenous”
processing in many domains. Well-known examples of these phenomena include
the perception of ambiguous or noisy stimuli, which can be correctly interpreted
only by using high-level, contextual information. Similarly, many of the classic
effects described by Gestalt theory (e.g., Kanizsa, 1979) can be conveniently
described as a form of top-down processing. Despite the most popular examples
come from the visual domain, it should be noted that these phenomena are
commonly found also in other sensory modalities. A striking example is
provided by speech processing, where the sensory information appears
incredibly poor and noisy given the complexity of the underlying linguistic
constructs (e.g., Marslen-Wilson & Welsh, 1978). Another intensively studied
domain is that of multi-sensory integration (e.g.,, McGurk & MacDonald, 1976),
where feedback projections are thought to support cross-modal interactions
among different cortical areas (Falchier & Clavagnier, 2002). Top-down
processing has also central relevance in attentional mechanisms, allowing to
modulate information processing according to expectations, goals, task
instructions and other types of biases (Kastner & Ungerleider, 2000). Notably,
these empirical effects find support also from physiological and functional

neuroimaging studies. For example, it has been shown that the receptive fields of

38

neurons in primary sensory areas can be dynamically adjusted according to
contextual information coming from higher processing areas: in a single cell
recording study, neurons in the macaque V1 cortex have shown to respond to
illusory contours of the Kanizsa figures, but only after the same type of response
was first generated in area V2 (T. S. Lee & Nguyen, 2001). Similarly, it has been
observed through fMRI measurements that perceptual expectation improves
stimulus representation in human early visual cortex (Kok, Jehee, & de Lange,
2012).

From a computational perspective, the problem of finding the best possible
interpretation of an ambiguous stimulus can be conveniently formalized in
probabilistic terms as an unconscious, statistical inference process (von
Helmholtz, 1925). This idea has recently regained popularity thanks to the
spread of the “Bayesian brain” hypothesis (Knill & Pouget, 2004), which
proposes to model cognitive processes using the powerful formalism of Bayesian
statistics (e.g., Chikkerur, Serre, Tan, & Poggio, 2010; Griffiths, Kemp, &
Tenenbaum, 2008; Norris, 2006; Tenenbaum, Kemp, Griffiths, & Goodman, 2011;
Yuille & Kersten, 2006). According to the Bayesian view, the brain represents
information probabilistically, by coding and computing with (possibly
approximated) probability density functions. A possible role for recurrent feed-
forward/feedback loops in the cortex might therefore be to integrate top-down,
contextual priors and bottom-up, sensory observations, so as to implement
concurrent probabilistic inference along the whole cortical hierarchy. Notably, it
has also been suggested how Bayesian inference algorithms might be actually
implemented in neural circuits (e.g., Lee & Mumford, 2003), with some relevant
proposals providing a tight link between probabilistic inference and
computation in interactive neural networks (Lochmann & Deneve, 2011;
McClelland, 2013; Rao, 2004).

However, Bayesian models often rely on explicit, structured
representations to perform inference tasks. A fundamental step forward to

characterize neural computation within a probabilistic framework also requires

39

to specify how the brain might efficiently discover such statistical structure, that
is, how learning processes might shape an internal, probabilistic model of the
environment according to experience, and which is the role of processing
constraints in efficient implementations of Bayesian reasoning systems (for a
comprehensive discussion about the strenghts and the limits of current Bayesian
models of cognition, see Jones & Love, 2011). We thus believe that a promising
direction to complement the current Bayesian treatment of cognitive processes
is to consider stochastic, recurrent neural networks that can learn probabilistic
generative models from a set of training examples (e.g., Dayan et al., 1995;
Hinton & Ghahramani, 1997). Moreover, in deep learning systems many simple
networks are stacked together in order to learn more expressive, hierarchical
generative models (Bengio, 2009; Hinton & Salakhutdinov, 2006). Deep
architectures composed by many processing layers reach impressive
performance on many difficult learning tasks (Krizhevsky et al., 2012; Mohamed,
Dahl, & Hinton, 2012) and open the way for creating cognitive models that can
infer causes and make predictions exploiting multiple levels of representation
(Hinton, 2007, 2010b, 2013). Structure discovery in deep networks can be
efficiently accomplished by means of unsupervised learning (Hinton et al., 2006),
thereby showing how abstract representations could emerge by extracting
useful statistics from the training data. As we will discuss in detail in Chapter 3,
this family of neural networks can be conveniently described within the
formalism of probabilistic graphical models (Jordan & Sejnowski, 2001; Koller &
Friedman, 2009), which therefore allows to characterize Bayesian models and
recurrent neural networks using a common language. Finally, the introduction of
efficient learning algorithms (Bengio & Lamblin, 2007; Hinton et al., 2006) that
can be easily implemented in parallel computing machines allows building large-
scale deep learning systems (Krizhevsky et al., 2012; Raina et al., 2009), which
rely on big digital datasets to extract more reliable statistical information from

the training examples.

40

2.2 Orthographic processing

Even if literate adults appear to recognize written words without any
effort, educators and developmental psychologists are well aware that learning
to read is one of the hardest challenges faced by children in school (Dehaene,
2009). Despite its apparent simplicity, the recognition of written symbols and
their combination into more complex orthographic patterns constitutes an
extremely challenging task for the visual system. In this section, we will review
some basic facts about the primate visual system, focusing on the processing
pathway usually identified as the “ventral stream” (Goodale & Milner, 1992). We
then give a computational characterization of visual object recognition, and we
discuss its relation to the related problem of recognizing written patterns. We
finally present some important characteristics of popular computational models

proposed to study written character recognition and orthographic processing.

2.2.1 Structure and function of the ventral visual stream

The visual system has a central role in acquiring and exploiting knowledge
about the environment, as exemplified by the fact that almost half of the non-
human primate cerebral cortex is devoted to processing of visual information
(Felleman & Van Essen, 1991). Visual processing entails an incredibly rich and
multifaceted variety of tasks, and despite the great amount of research focusing
on this domain we are still lacking a comprehensive picture describing the visual
system from a broad perspective. However, a certain consensus is given to the
hypothesis that visual object recognition is primarily supported by neural
circuits located in the ventral visual steam (see Fig. 6), which enable accurate
perceptual identification of objects in the visual scene by relying on a hierarchy
of processing stages (DiCarlo, Zoccolan, & Rust, 2012; Kruger et al., 2013).

Neurons in the early levels of the hierarchy extract simple visual features
over local regions of the visual field, while neurons in higher cortical areas
respond to ever more complex features, with receptive fields covering larger and

larger portions of the visual scene.

41

~10M Latency
(IT representation)

~100ms

~17M
L1

~80ms

VOT G ~15 M (V4 representation)

B | VS | ~70ms
/. ~68 M
[PIP VA)
lIl ~29 M (V2 representation)
Retin. - i ~37M (V1 representation)

~ LGN tati ~
LGN ﬁ 1™ (representation) 40 ms

a
~50ms

Retina £} ~1M (RCG reprosentation)

Figure 6. (A) Schematic representation of the ventral stream in a primate macaque
brain, covering a set of cortical areas arranged along the occipital and temporal
lobes. (B) Fine-grained parceling of the ventral stream, highlighting its hierarchical
organization and the dimensionality of each processing stage.

Adapted from (DiCarlo et al., 2012).

At the subcortical stages of processing, visual information flows from the
photoreceptors of the retina through ganglion cells to reach the lateral
geniculate nucleus of the thalamus. Though the functional role of these early
areas is still partially unknown (Niell, 2013), they appear to perform some kind
of signal filtering (Atick & Redlich, 1992), for example by computing spatial and
temporal decorrelations of the input signal (Dong & Atick, 1995), which are
usually simulated by applying whitening algorithms to input images (Simoncelli
& Olshausen, 2001). The lateral geniculate nucleus is then massively connected
to the primary visual cortex (V1), which still processes relatively simple visual
features such as edges, gratings, oriented bars and line endings (Hubel & Wiesel,
1962). Notably, it has been shown that this type of features can be captured by
trying to efficiently encode the statistical information contained in natural
images, for example by building sparse codes (Olshausen & Field, 1996), by
discovering independent components (Bell & Sejnowski, 1997; van Hateren &

van der Schaaf, 1998), or by creating predictive codes (Rao & Ballard, 1999). As

42

we will show in Section 4.2, these features can also emerge in stochastic neural
networks that learn a generative model of the input patterns. Moving up in the
hierarchy, in area V2 neurons encode more sophisticated contour
representations, including corners, junctions and illusory contours (Ffytche &
Zeki, 1996; T. S. Lee & Nguyen, 2001). Deeper levels of the extrastriate and
associative cortex eventually represent complex visual patterns such as object
parts (Orban, 2008), with some neurons becoming shape-tuned (Tanaka, 1996)
and sometimes reaching impressive levels of response specificity (Quian
Quiroga, Reddy, Kreiman, Koch, & Fried, 2005).

From a computational perspective, the task of recognizing objects
contained in a visual scene is extremely challenging, because the visual
appearance of a certain object might change drastically depending on the
circumstances. For example, changes in position, distance, illumination and
perspective significantly alter the visual pattern generated by an object in the
retina, and the recognition task is made even harder due to the presence of
occlusions, noise and many forms of perceptual ambiguity. The object
recognition pathway must therefore cope with the problem of finding useful
invariances in the sensory signals, which allow to recognize specific objects even
under a variety of identity-preserving visual transformations, and to generalize
the acquired knowledge to similar objects that have never seen before.
Importantly, the ability to exploit abstract object representations must be
efficiently implemented in neural circuits, which need to operate in real-time in
rapidly changing environments. A geometric interpretation of this computation
has been discussed in Section 2.1.1, where pattern recognition was framed as the
problem of finding a discriminant function that correctly separates a set of data
points. This mapping is achieved by placing a decision boundary in the
representational space of the data, which corresponds to a hyperplane in the

case of linear classifiers such as those implemented in single-layer networks.

43

neuronal population
h population
representation

AAAA-A
Bl
Bl

Buna /[</

nnrir-fn
response of each neuron

| @

car manifold
> .-

ventral stream O car
transform l .
(unknown) not “car”

Figure 7. (A) Images representation as points in a high-dimensional vector space.

(B) Retina representations correspond to highly tangled manifolds. (C) Disentangled
manifold representation, which supports recognition through a linear decision
boundary. Adapted from (DiCarlo et al., 2012).

However, vision operates in a high-dimensional space, which can be
conceptualized as an extension of a simple three-dimensional Cartesian space in
which each axis of the space is the response of one retinal ganglion cell (Fig. 7A).
The response vectors representing all possible identity-preserving
transformations of an object define a low-dimensional surface in this high-
dimensional space, called the “object identity manifold” (DiCarlo & Cox, 2007).
At early stages of visual processing, these manifolds are highly curved and
tangled together, like pieces of paper crumpled into a ball (Fig. 7B). To correctly
identify objects, retinal manifolds should be gradually transformed into a new
form of representation, where they might be accurately separated even by a
linear decision boundary (Fig. 7C). In order to mimic this type of transformation,
popular computational models inspired by the visual cortex exploit a series of
non-linear operations over a set of hand-coded features (Riesenhuber & Poggio,
1999; Serre, Wolf, Bileschi, Riesenhuber, & Poggio, 2007). However, as we will
discuss later, the recent advent of deep learning models now allows to exploit a
series of non-linear transformations operating over features extracted directly
from the data, which allow to reach impressive performance on challenging

visual object recognition benchmarks (Krizhevsky et al., 2012).

44

2.2.2 Recognizing written patterns

The task of recognizing written characters can be considered as a special
case of object recognition, where objects are constituted by two-dimensional
shapes drawn using a variety of writing styles. Despite the much-limited amount
of possible object classes (e.g., 26 letters in the English alphabet), this visual
recognition problem remains extremely challenging due to the large variability
of character shapes, which is particularly evident in handwritten, cursive scripts.
Moreover, the mapping between visual forms and letter identities is often quite
arbitrary, forcing us to neglect significant differences (e.g., by identifying @ and
A within the same class) while attending fine-grained visual details (e.g., by
identifying 1 and j as different classes). Finally, additional complexities come into
play when considering combinations of several individual characters to form
written words, which must be recognized despite transposition effects (such as
in dog and god) or similarities caused by shared letters (such as in confusion
and contusion).

The ability to recognize written patterns appears even more remarkable if
we consider that reading is a recent cultural invention, which has been probably
introduced less than 6000 years ago (Dehaene, 2009). This implies that
evolutionary mechanisms did not have enough time to shape the human visual
system in order to better support reading abilities, which must therefore be
acquired through education. However, an intriguing hypothesis suggests that
some cultural inventions (such as reading and arithmetic) are not learned
completely from scratch, but they instead “invade” evolutionarily older brain
circuits, thereby also inheriting many of their structural constraints. According
to this neuronal recycling hypothesis (Dehaene & Cohen, 2007), writing systems
do not rely on a set of randomly drawn strokes to encode words as two
dimensional images, but they rather exploit visual patterns whose structure can
be effectively processed by our primate visual system, and in particular by the
object recognition pathway. Indeed, it appears that visual signs used in different

scripts have been culturally selected to match the kinds of conglomeration of

45

contours found in natural scenes (Changizi, Zhang, & Ye, 2006). The recycling
hypothesis is also supported by several neuroimaging studies that identified
localized cortical circuits specifically involved in orthographic processing
(Wandell, 2011). Not surprisingly, these circuits partially overlap with the object
recognition pathway, and are usually referred to as the “visual word form area”
(L. Cohen & Dehaene, 2004; L. Cohen et al., 2000; McCandliss, Cohen, & Dehaene,
2003).

The fact that orthographic processing and visual object recognition share
many structural and functional properties suggests that also the neural code for
written words might be efficiently organized into a hierarchy of increasingly
complex representations (Dehaene, Cohen, Sigman, & Vinckier, 2005). Lower
levels might encode basic visual features such as edges, curvatures and
combinations of simple geometrical shapes that allow reliable letter
identification (Fiset et al., 2008; Grainger, Rey, & Dufau, 2008). After single
letters have been identified by their component features, their positional
information can be taken into account in order to build more structured
representations, which encode combinations of letters such as bigrams and open
bigrams (Grainger, 2008), eventually allowing to represent morphemes and
entire words. It should be stressed that this multilevel processing is supposed to
be highly interactive, with higher-level information constantly shaping and being
shaped by representations created at lower levels.

A central issue that is still intensively debated is to what extent linguistic
information is necessary to recognize written words. Indeed, reading and
writing systems have been specifically created to support and expand the
capability of human communication, thus linguistic knowledge (e.g,
phonological representations and syntactic constructs) might have an important
role in orthographic processing. At the same time, the ability to recognize
complex configurations of written patterns might be partially obtained even
without relying on linguistic information. Some preliminary evidence supporting

this view has been recently provided by a study on non-human primates, on

46

which baboons have been trained to accurately discriminate between existing
English words and nonsense sequences of letters presented through a monitor
(Grainger, Dufau, Montant, Ziegler, & Fagot, 2012). Though this finding deserves
more careful investigation, it nevertheless suggests that written word
recognition might be largely dependent on pure visual information, which in the
primate brain is efficiently represented and processed by a hierarchy of neural

circuits located in the ventral stream.

2.2.3 Computational models of orthographic processing

As we discussed in Section 1.3, recognition of printed patterns has often
been considered as a prototypical problem for validating computational theories
of cognition. In particular, one of the first attempts to apply automatic
recognition systems to printed letters dates back to the Pandemonium model
(Selfridge, 1959) whose hierarchical architecture has been a great source of
inspiration for later models such as the Neocognitron (Fukushima, 1980, shown
in Fig. 8A) and the seminal Interactive Activation Model (IAM; McClelland &
Rumelhart, 1981, shown in Fig. 8B). The fundamental contribution of the IAM
has been to explain how the context surrounding a certain letter might affect its
correct identification by means of interactive activation and mutual inhibition
among representational units organized into multiple layers. This critical
property provided a computational explanation of the puzzling word superiority
effect (Cattell, 1886; Reicher, 1969), which entails better recognition of letters
presented within words as compared to isolated letters and to letters presented
within nonwords. Even though one of the main goals of the [AM was to discuss
the relevance of interactivity and hierarchical processing in perception, it
therefore also provided a reference framework to model visual word recognition
more in general. However, a major limitation of the [IAM is the hand-coded
nature of its representational features, which makes the model unable to learn

or to adapt according to experience.

47

Figure 8. (A) The Neocognitron architecture for recognizing printed letters

(Fukushima, 1980). (B) Schematic representation of the Interactive Activation Model

for recognizing printed words (McClelland & Rumelhart, 1981).

Moreover, empirical research suggests that the letter and word representations
entailed by the IAM are likely not to be the only functional orthographic units
exploited in word recognition (Grainger, 2008). A crucial step forward to fully
characterize the nature of orthographic processing thus requires to consider
more flexible models, where learning mechanisms gradually shape the feature
hierarchy according to experience. A successful, first attempt to implement such
a system has been accomplished by convolutional neural networks, which obtain
high performance on several challenging recognition tasks involving recognition
of written text (LeCun, Bottou, Bengio, & Haffner, 1998). The subsequent advent
of deep neural networks, which reach state-of-the-art accuracy on a benchmark
task of handwritten digit recognition (Hinton & Salakhutdinov, 2006), suggests
that a complete account of the processes involved in recognizing written

characters and words might be within reach.

48

3 Generative Models and

Deep Learning

Uncertainty is a ubiquitous characteristic of real-word problems, forcing us
to consider not only certain but also possible events, and to quantify how
probable they are, that is, which situations are more likely to be observed. In this
chapter we review some useful concepts underlying the probabilistic modeling
approach, which allow dealing with uncertainty in a principled and systematic
way. Importantly, it turns out that some interesting recurrent neural network
models can be described as specific instances of a broader class of undirected
graphical models. We therefore discuss their representation, inference and
learning capabilities within the probabilistic framework, and we explain how
basic networks can be conveniently combined together in order to learn more

powerful, hierarchical generative models.

3.1 Probabilistic graphical models

The framework of probabilistic graphical models (Koller & Friedman,
2009) provides a general approach to model arbitrarily complex statistical
distributions, which can involve a large number of stochastic variables
interacting together. Graphical models allow to describe complex relations
between variables by exploiting the structure of their joint distribution, since in
general interactions are not globally defined but instead involve only a limited
subset of “neighbors”. Probabilistic graphical models are usually defined by
three main components: first, a formal structure that supports knowledge
representation in terms of probability distributions; second, a series of
inference procedures that allow to extract useful information from the

knowledge structure; and, finally, a series of learning algorithms that can be

49

used to automatically build and refine the model structure by extracting

knowledge from a given set of examples.

3.1.1 Graphical representation of probability distributions

In graphical models, probability distributions are represented using graph
data structures, where a set of nodes (also called “vertices”) represents random
variables and a set of edges (also called “arcs” or “connections”) represents their
relations. The topology of the graph explicitly defines the scope of interaction of
each variable, thereby highlighting the set of independencies that hold in the
distribution. Graphical models can have directed connections between variables,
such as in Bayesian networks (Fig. 9A), or undirected connections, such as in
Markov random fields (Fig. 9B). Both types of connections might be present in
the same graph, thereby forming a hybrid model. Though directed and
undirected models share the underlying theoretical framework, they have rather
different representational and computational capabilities. In what follows, our
discussion will primarily focus on undirected models.

In Bayesian networks, the semantic of connections defines parent-of
relationships between linked nodes. A conditional probability distribution (CPD)
is associated with each node (note that for discrete distributions it can be easily

encoded in a table).

Figure 9. (A) Example of a directed model (Bayesian network). (B) Example of an
undirected model (Markov random field). In both examples, a dashed line highlights

the Markov blanket of the blue node.

50

The direction of the arrow attached to each edge indicates the presence of a
direct dependence between variables: an arrow going from node A to node B
entails that the variable A has a direct influence on the variable B. The variable B
is referred to as a “child” of A, which in turn is referred to as a “parent” of B.
Notably, this type of relationship allows to define a local semantic criterion for
directed models: each node is conditionally independent from all the other
nodes in the graph, given its parents, its children and the parents of its children.
This set of nodes (highlighted in Fig. 9) is usually referred to as the “Markov
blanket” of the variable (Pearl, 1988). Conditional independencies greatly reduce
the number of parameters required to characterize a joint distribution, because

they allow to compactly represent it through factorization:
P(x41, X5, oy xn) =11 P(xi |Parents(xi)) (5)

As we will discuss later, factorization can be conveniently exploited to derive
efficient inference and learning procedures even in the presence of a large
number of variables, because only the Markov blanket of a certain node is
required in order to sample from its conditional distribution.

In undirected models, the symmetric nature of the connections does not
describe parent-of relationships, but instead encode a degree of correlation
between the linked variables. This leads to a different local semantic criterion to
represent independencies: each node is conditionally independent from all the
others, given the nodes directly connected to it. Moreover, instead of relying on a
separate CPD to represent the local probability distribution of each variable, in
undirected models each edge is associated with a certain function, known as
factor, which takes as input the values of the connected nodes and gives as
output a non-negative scalar value representing their affinity. A factor with high
value indicates that the two variables are strongly correlated, while a low value
indicates a weak relation. This implies that also in undirected models the

complete joint distribution can be efficiently defined as a product of local factors:

51

P(x1,Xg,) %n) = 7 [17 8:(Dy) (6)

where D; represents the scope of each factor @; (i.e., which variables it involves)
and Z is a global normalization constant called partition function, which ensures

dealing with legal probabilities summing up to 1:
Z =Yplli 8:(D:) (7)

Importantly, the factorization specified in Eq. 6 could be defined using an
equivalent notation based on a log-linear, feature-based parameterization,
where features are obtained by applying a logarithmic function to each factor
and can thus assume also negative values. In many cases, it might also be
convenient to use binary features, which can be combined using different

weights in order to specify the final degree of affinity:
P(xl) X2y weey xn) = %e_wf(D) (8)

where f(D) is the feature vector and w indicates the corresponding vector of
weights. Log-linear models provide a much more compact representation for
many distributions, especially in situations where variables have large domains.
Moreover, as we will discuss in Section 3.2.1, this representation can be

conveniently used to define energy-based models.

3.1.2 Inference and learning algorithms

The graphical representation of a probability distribution can be used to
answer queries about the behavior of specific variables. Here we focus on the
inference task arising when certain variables are observed and the goal is to
infer the conditional probabilities of a separate set of target variables. In general,
Bayes’ theorem provides a formal rule for expressing how a subjective degree of

belief (i.e., the probability associated with a certain variable) should be

52

rationally changed to account for observed evidence. In particular, the posterior
probability of a variable A conditioned on the current evidence B can be
computed as:

P(B|A)P(A
P(4|B) = ZE2E (9)

Where P(B/A) represents the likelihood (i.e., the degree of belief in B, given that
A is observed) and P(A) represents the prior (i.e., the initial degree of belief in A).
The term P(B) accounts for the prior probability of observing the evidence B.
This simple inference rule can be used in graphical models to compute
conditional probabilities over many interacting variables, and several exact
algorithms have been proposed to effectively implement it (e.g., variable
elimination and message passing schemes). However, the computational
complexity of these algorithms depends on the network structure, and it quickly
grows as more complex topologies are considered. In particular, exact inference
becomes intractable for networks with a large tree-width, where approximate
inference techniques must be adopted.

A popular family of approximate inference algorithms is that of particle-
based methods, which estimate the target conditional distribution by generating
samples according to some criteria. In particular, a widely used sampling
method is the Gibbs sampling algorithm, which can generates a sequence of
samples that progressively approximate a specified multivariate probability
distribution (Geman & Geman, 1984). Gibbs sampling belongs to the family of
Markov Chain Monte Carlo (MCMC) methods, which draw samples from a
probability distribution by constructing a Markov chain that has the desired
distribution as its equilibrium distribution, and where each state of the chain
represents a possible assignment to some variables of the network (Andrieu, De
Freitas, Doucet, Jordan, & Freitas, 2003). Although the first samples may be
inaccurate, under certain conditions the Markov chain will converge to the

stationary distribution, thereby allowing to generate samples that provably get

53

closer to the desired target distribution. During Gibbs sampling, only one
variable is sampled at each step, keeping fixed the current values of all the other
variables. However, we can exploit the structure of the graph (i.e., the
conditional independencies between the variables) to speed up the sampling
process: since the value of each node is only influenced by its Markov blanket, if
two variables are conditionally independent given the current evidence (i.e.,
their Markov blanket is observed) they can be sampled at the same time. This
parallel variant is known as block Gibbs sampling, and it is heavily used in the
recurrent neural network models that we will consider later.

Up to this point, we discussed representation and inference tasks assuming
that the graph structure and the associated model parameters are given.
However, a fundamental problem is to find effective ways to automatically learn
them from available data. For simplicity, here we focus on the case where the
graph structure is given and the goal is to estimate the model parameters
associated with each edge. Within this setting, the goal of learning is to find a
proper set of parameters such that the resulting model distribution captures the
real distribution from which training data were sampled. Due to the limited
amount of training examples, in practical settings the goal of learning is to find a
model distribution that best approximates the real distribution.

Learning algorithms are usually derived from maximum likelihood
methods, whose aim is to select the values of the model parameters that
maximize the "agreement” of the selected model with the observed data. This
can be achieved by applying gradient-based methods to maximize the likelihood
function with respect to the model parameters. Interestingly, it has been shown
(Jordan & Sejnowski, 2001) that maximizing the likelihood of the training data is
equivalent to minimize another quantity, the Kullback-Leibler (KL) divergence,
which measures the discrepancy between the model distribution and the
empirical distribution observed in the data. Learning can thus be framed in

terms of finding a model distribution Q that best approximates the real

54

distribution P, where the quality of this approximation is measured as the KL-

divergence between P and Q:

P
Dy (PIIQ) = T P(0)log 7 (10)
Intuitively, the KL-divergence (also called relative entropy) measures the extent
of the compression loss (in bits) of using Q rather than P, and it is zero when P =

Q and positive otherwise (Kullback & Leibler, 1951).

3.2 Generative models

Learning in probabilistic graphical models can be generally framed within
two different settings. In discriminative learning, the goal is to model only
conditional distributions over a set of target variables, whose values are
specified in the training set by attaching an explicit value (i.e., a label) to each
example. In generative learning, instead, the aim is to model the complete joint
distribution of all the variables in the graph, thus including also the observed
variables. Discriminative models are usually suited for classification and
regression tasks, where we are only interested in the output response produced
by the system. Generative models, instead, extract regularities from the data in
an unsupervised way, in order to construct rich and expressive representations
that can be successively exploited to perform other (possibly supervised) tasks.
As an example, we can consider the challenging task of recognizing objects in a
visual scene. The pixel values in realistic images are not randomly drawn, but
are generated by some (possibly complex) physical processes, and the
appropriate response to an image nearly always depends on the physical causes
of the image rather than the pixel intensities. This suggests that unsupervised
learning can be used to first solve the difficult problem of extracting the
underlying causes from the visual scene, and decisions about responses can be
left to a separate, supervised learning algorithm that takes the underlying causes

rather than the raw sensory data as its inputs.

55

In this section we formally describe Boltzmann machines, which are
stochastic recurrent neural networks that can learn probabilistic generative

models from a set of training examples.

3.2.1 Restricted Boltzmann Machines

A Boltzmann machine (Ackley et al, 1985) is a particular type of
undirected graphical model with a fully connected graph structure (a graphical
representation is provided in Fig. 10A). The undirected nature of the edges
implies that connections are symmetric, that is, the flow of information between

(i

the nodes (often referred to as “neurons” or “units”) is bidirectional. Each
connection is associated with a scalar value representing the synaptic strength
between the units, which corresponds to a factor in the graphical model
framework. Units can be conveniently grouped in two separate sets, usually
referred to as “layers”: a visible layer is used to provide an external input to the
network, while a hidden layer is used to encode the latent causes of the input.
Hidden variables greatly increase the expressive power of the network by
allowing to model distributions over visible variables that cannot be directly
captured by pairwise interactions. In particular, they allow to encode binary
features representing higher-order statistics observed in the data. During
learning, the strength of each connection weight is gradually adapted as to
construct an internal generative model that produces examples with the same
probability distribution as the examples contained in the training dataset. At the
end of the learning process, when shown any particular example the network
can “interpret” it by finding values of the variables in the internal model that
would generate the example.

Boltzmann machines were initially proposed as a stochastic variant of
Hopfield networks, and their original formulation was indeed inspired by
statistical mechanics: the behavior of the network is driven by an energy
function E that describes which configurations of the units are more likely to

occur by assigning them a certain probability value:

56

P(v,h) = %e‘E(”'h) (11)

where v and h are, respectively, the vectors of visible and hidden units and Z is
the partition function, which ensures that the values constitute a legal
probability distribution (i.e., summing up to 1). The network state changes in a
way that allows a gradual decrease of the associated energy, modulated by a
“temperature” parameter so that at higher temperatures an occasional increase
of energy is also permitted to avoid local minima.

Due to the full connectivity of the network, the system takes a long time
to settle into thermal equilibrium. However, in Restricted Boltzmann Machines
(RBMs; Smolensky, 1986) the connectivity of the network is constrained in order
to form a bipartite graph (see Fig. 10B), which allows to greatly improve

convergence on stable states. The energy function of an RBM is defined as:
E(v,h) = —a'v—b"h—v'Wh (12)

where W represents the matrix of connection weights and a and b represent,
respectively, the biases of the visible and hidden units.

From the perspective of probabilistic graphical models, this formulation
of RBMs in terms of an energy function is equivalent to a factorization of the
joint distribution induced by a log-linear parameterization based on binary
indicator features (see Eq. 8). Within this interpretation, we can derive the
activation probability of each hidden and visible unit in the network as a
conditional probability, which specifies how we should update the value of the

unit depending on the activation state of its neighbors:

P(hj = 1|v) = ﬁ (13)

J

1
—wTh+al-

P(v; = 11h) = — (14)

57

Figure 10. (A) A fully connected Boltzmann Machine. (B) The corresponding

Restricted Boltzmann Machine (RBM). (C) An alternative representation of an RBM
highlighting the Markov blanket of a hidden unit (dark gray), which coincides

with the whole layer of visible units (and vice versa).

By iteratively sampling each unit's state according to this conditional
probability, we are actually implementing Gibbs sampling for the Boltzmann
distribution specified in Eq. 11. Interestingly, this sampling rule corresponds to
the sigmoid activation function usually adopted in feed-forward neural networks
(see Eq. 2 and Eq. 3).

Despite RBMs might not be able to represent efficiently some distributions
that could be represented compactly with unrestricted Boltzmann machines, it
has been demonstrated that an RBM can represent any discrete distribution if
enough hidden units are used (i.e. RBMs are universal approximators of discrete
distributions), and that adding hidden units strictly improves modeling power

(Le Roux & Bengio, 2008).

3.2.2 Inference and learning in RBMs

If the visible units are externally forced or “clamped” into a particular state
corresponding to a training pattern, the network will find the minimum energy
configuration that is compatible with that input. The fundamental property of
RBMs is that hidden units are independent of each other when conditioning on
visible units (i.e. when visible units are clamped), and, vice versa, visible units

are independent of each other when conditioning on hidden units. In other

58

words, the Markov blanket of each unit coincides with the variables of the
opposite layer, as highlighted in Fig. 10C. This implies that we can infer the
conditional probabilities of an entire layer of units using Eq. 13 and Eq. 14 in

parallel, by performing block Gibbs sampling:

P(hlv) = I1; P(hi|v) (15)
P(|h) = I1; P(vi|h) (16)

This efficient inference procedure can also be used to remove noise from
corrupted patterns or to accurately reconstruct incomplete patterns, because the
noisy or missing values in the visible layer can be iteratively resampled until
they converge to a stable configuration. However, inference in RBMs becomes
less efficient when the evidence is weak, that is, when only few visible units are
observed or when the noise in the input pattern is high, because in these cases
block Gibbs sampling might require many iterations to converge. In other words,
in RBMs exact inference is fast when we condition the model on a given input
pattern, but it becomes intractable when the model is unconstrained and we
have to sample from its internal distribution. This limitation makes learning
extremely challenging.

Learning in RBMs shapes the energy function in such a way that it will
assign low values (i.e., high probability) to configurations of the variables that
are more likely to occur, and high values (i.e., low probability) to undesired
configurations. Since the form of the energy function is determined by the
weight matrix (see Eq. 12), it can be shaped by changing the weights in such a
way that the network will accurately reconstruct the observed training patterns.
As we explained in Section 3.1.2, this can be accomplished by maximizing the
log-likelihood function (i.e., the probability that the model assigns to each
training pattern), which is equivalent to minimize the KL-divergence between

the empirical data distribution and the model distribution (see Eq. 10). Because

59

the energy is a linear function of the weights, it turns out that the gradient of the

log-likelihood with respect to a weight has a particularly simple form:

v;h;

al
wLL) - < L J>data N <vihj)model

aWij

(17)

where the two terms in angle brackets indicates, respectively, expectations
under the data distribution and expectations under the unconstrained model
distribution. The first term can be easily computed by measuring the
correlations between visible and hidden activations when the variables in the
visible layer are clamped to a training pattern and the variables in the hidden
layer are inferred in a single step using Eq. 15. The second term, instead,
measures the correlations when the network is not conditioned on a data vector,
but is free to evolve according to its internal dynamics defined by the current
model parameters. As we mentioned above, this requires sampling from the
unconstrained model distribution, which might take a significant amount of
time. Once these two quantities have been computed, each weight can be
changed by using a simple update rule:
Aw;j = n(<vihj>data h <vihj>model) (18)

where 7 is a small learning rate. A surprising feature of this learning rule is that
it uses only locally available information: the change in a connection weight
depends only on the behavior of the two units it connects, even though the
change optimizes a global measure, and the best value for each weight depends
on the values of all the other weights.

The computational cost required to sample from the model distribution
initially prevented to use RBMs in practical settings. However, it has lately been
shown that this complexity can be avoided by adopting a slightly different
learning procedure, called contrastive divergence (Hinton, 2002). The basic

intuition behind contrastive divergence is that the network does not need to be

60

run until equilibrium in order to compute model’s expectations: if sampling
starts from the hidden unit activations computed in the data-driven phase,
correlations computed after only a fixed number of steps in block Gibbs
sampling are sufficient to drive the weights toward a state in which the input
data will be accurately reconstructed. Hence, contrastive divergence
approximates model’s expectations by conditioning the initial activations of
hidden units and performing only a fixed number of sampling iterations (see Fig.
11 for a graphical representation of this process). Surprisingly, in practice it has
been shown that even a single iteration can produce good results. Intuitively,
contrastive divergence works by increasing the likelihood of training data and
decreasing the likelihood of “model confabulations”, which are distortions of the
training patterns that the model produces when it is left free to modify them
according to its current parameters. This implies that contrastive divergence
learning approximates the log-likelihood gradient locally around the training
point from which the chain starts, decreasing the energy of that point and

increasing the energy of its neighborhood (Bengio, 2009).

HtO] Hill H[t~ll H(tl
[OO0O-0O] [O00O-O] O 00-0] [OOO--O]
[O00-0] [OO00-0] [OOO-0] [OO0O~0]
V(O) Vil) V(2J V(t

Figure 11. Block Gibbs sampling in an RBM. Each block in the scheme represents a
layer of units, and directed arrows indicate how the sampling proceeds over time. As
t goes to infinity, the values of visible and hidden units are guaranteed

to accurately match samples from the joint distribution P(v, h).

61

3.3 Hierarchical generative models

3.3.1 Deep neural networks

Restricted Boltzmann Machines can be used as basic blocks for building
more complex network architectures, where the hidden variables of the
generative model are hierarchically organized (Fig. 12B). The resulting
architecture is referred to as a “deep network.” The main intuition behind deep
learning is that, by training a generative model at level [using as input the
hidden causes discovered at level /-1, the network will progressively build more
structured and abstract representations of the input data, which are invariant to
most of the variations typically present in the training distribution, at the same
time preserving as much as possible of the relevant information. Importantly,
architectures with multiple processing levels efficiently structure the
representation space by promoting features reuse: simple features extracted at
lower levels can be successively combined to create more complex features,
which will eventually unveil the main causal factors underlying the data
distribution. Indeed, it has been shown that functions that can be compactly
represented by a depth k architecture might require an exponential number of
computational elements to be represented by a depth k-1 architecture (Bengio,
2009). Moreover, adding a new layer to the architecture increases a lower bound
on the log-likelihood of the generative model (Hinton et al, 2006), thus
improving the overall representational capacity of the network. After learning of
all layers, a deep network can be used as a generative model by reproducing the
data when sampling from the model, that is by feeding the activations of the
deepest layer all the way back to the input layer.

In this work we focus on deep architectures composed by a stack of RBMs,
which are usually called deep belief networks. However, it should be noted that
similar results can be obtained by stacking together single-layer autoencoders
(Bengio & Lamblin, 2007). This approach has been successful in terms of

machine learning benchmarks, but it is less appealing for cognitive modeling

62

purposes because learning is based on error backpropagation and it is not
grounded in a sound probabilistic framework. Moreover, deep autoencoders are
not used as generative models to produce predictions based on top-down

signals.

3.3.2 Inference and learning in deep neural networks

Deep belief networks are built by stacking together several RBMs, which
are learned in a greedy, layer-wise fashion as shown in Fig. 12. After the first
RBM has been learned (lower part of Fig. 12A), the activities of its hidden units
are used as input for a second RBM (higher part of Fig. 12A), with the aim of
extracting higher-order correlations from the original data. The resulting
composite generative model can be used to autonomously produce data patterns
by first performing Gibbs sampling on the undirected, associative memory
corresponding to the top two layers of the architecture and then exploiting the
top-down, directed connections in a single backward pass (Fig. 12B). Conversely,
when the units in the visible layer are clamped to a particular, observed data
pattern we can sequentially infer the states of the two hidden layers by using the
connections in a bottom-up fashion.

After a good generative model of the data has been learned, the whole
network can be fine-tuned using a supervised criterion (Hinton et al.,, 2006).
However, high-level features learned on a particular dataset might also be useful
to represent information contained in examples that are not from the same
distribution as the training distribution. In this case, instead of fine-tuning the
whole system on a specific task, an arbitrary number of different classifiers can
be trained directly on the top-level, abstract representations. This scenario can
be described as a transfer learning problem (Pan & Yang, 2010), and it can be
readily generalized to multi-task learning situations, where different labels on
the same patterns are used for different tasks (Caruana, 1998). For example,

high discriminative accuracy can be obtained even by a linear classifier applied

63

h,
h,
v
r h,
hl
v
v

Figure 12. (A) A deep belief network with two hidden layers combines two RBMs
that are learned in a greedy, layer-wise fashion, where the higher-level RBM is
trained by using the hidden layer activities of the lower RBM as input data.
(B) The resulting generative model is produced by stacking together
the two RBMs. Adapted from Hinton (2007).

to the top-level internal representations of a deep network trained to only

reconstruct the input patterns (Testolin et al., 2013).

3.3.3 Analyzing deep neural networks

In this section we briefly discuss some useful techniques that can be used
to analyze deep neural networks, especially when they are used for modeling

cognitive processes (Zorzi, Testolin, & Stoianov, 2013).

Supervised read-out

As we discussed above, an important feature of hierarchical generative
models is that learning can be performed in a completely unsupervised fashion.
However, combining generative learning with supervised tasks can be a useful
way to better understand how information is extracted and encoded within the
model hierarchy. Deep networks perform a non-linear projection of the feature

vector at each hidden layer, gradually building increasingly more complex and

64

abstract representations of the data that eventually make explicit the latent
causes of the sensory signal. This hierarchical organization suggests that a linear
“read-out” of hidden unit representations should become increasingly more
accurate as a function of layer depth. In this perspective, accuracy of linear read-
out can be considered as a coarse measure of how well the relevant features are
explicitly encoded at a given depth of the hierarchical generative model.

The linear read-out on internal representations can be easily implemented
using another connectionist module, such as a linear perceptron, thereby
preserving the biological plausibility of the model. The linear network can also
be considered as a response module that supports a particular behavioral task,
so that its responses can be assessed against the human data. For example, this
approach has been adopted to simulate human behavior in a numerosity
comparison task after training a deep network on thousands of images of sets of
objects (Stoianov & Zorzi, 2012). The internal representations at the deepest
layer provided the input to a linear network trained to decide whether the
numerosity of the input image was larger or smaller than a reference number.
Notably, the responses of this decision module were described by a
psychometric function that was virtually identical to that of human adults, with
the classic modulation by numerical ratio that is the signature of Weber’s law for

numbers.

Discovering learned representations

In the previous section we illustrated how it is possible to assess the
quality of the internal representations learned at each layer of the hierarchy of a
deep belief network by performing a discriminative task. However, this
information is tied to a given classification task and is therefore limited in scope.
Moreover, the supervised classifier operates on the pattern of activity over an
entire hidden layer, that is a distributed representation encoding a variety of
micro-features (Hinton et al, 1986) representing task-independent statistical
regularities of the data. A very simple but informative approach to investigate

the role of a particular unit in the network consists of visualizing its connection

65

weights using the original structure of the data (e.g., a bi-dimensional matrix if
the network is learning a generative model of images). This is particularly
intuitive for the first hidden layer, where the weight matrix defines how the
visible units contribute to the activation of each hidden unit. We can therefore
visualize the “receptive field” of each hidden unit by plotting the strength of its
visible-to-hidden connections. The same principle can be applied to the deeper
layers of the network, by combining their weight matrix with those of the lower
layers. A straightforward way is to use a linear combination of the weight
matrices, possibly imposing a threshold on the absolute values of the weights in
order to select only strong connections. This allows to visualize the receptive
field learned at a layer k as a weighted linear combination of the receptive fields

learned at level k-1 (H. Lee, Ekanadham, & Ng, 2008).

Sampling from the generative model

Up to this point, we only discussed methods that investigate bottom-up
processing of sensory data. However, a deep belief network is a generative
model, and it can be very useful to assess the top—-down generation of sensory
data, as well as the mixing of bottom-up and top-down signals during inference
in ambiguous situations. In one scenario, we can provide to the model a noisy
input pattern (e.g., randomly corrupted or partially occluded) and let the
network find the most likely interpretation of the data under the generative
model. In another scenario, we can study the generative capability of the
network when the visible units are not clamped to an initial state, and the
network is therefore let free to autonomously produce a sensory pattern
through a completely top-down process. This generative process can be
constrained to produce “class prototypes” by adding a multimodal RBM on the
top of the network hierarchy (Hinton et al., 2006), which is jointly trained using
two input sources, one containing the internal representation learned by the
deep network and the other encoding the corresponding label. After learning, we
can clamp the label units to a specific state and let the top RBM to settle to

equilibrium, thereby recovering the internal representation of the given class.

66

The generative connections of the model can then be used to obtain a
reconstruction of the visible layer, which can be thought of as the model’s
prototype for the corresponding abstract representation. An interesting, simpler
variant of this top-down generation can be implemented by means of an inverse
linear mapping (Zorzi et al., 2013). Instead of jointly training the top-level RBM
using the internal representation of images and the corresponding class label,
we can try to directly map the class label and the internal representation
through a linear projection. This mapping is analogous to the read-out module

discussed previously, but it works in the opposite direction.

Developmental trajectories in deep networks

As we explained in Section 3.3.2, the usual procedure to train deep neural
networks involves an initial, greedy layer-wise pre-training, so that layer n is
trained only after completing training of the n-1 layer. In this way, the
hierarchical generative model is built at separate stages, first starting with
simpler features that are kept fixed in order to subsequently learn the more
complex ones. However, from a developmental perspective this training
regimen is unrealistic, because cognitive functions are likely to be learned in an
on-line setting, with weights updated after each example is observed. Moreover,
training a hierarchical model in a greedy, layer-wise fashion does not allow to
carefully investigate how more complex, abstract representations emerge
throughout the developmental process. In order to analyze the developmental
trajectories in deep network, we can exploit a progressive learning algorithm
that allows joint training of all the layers in a deep network when only one input
pattern is observed at each learning iteration (Zou, Testolin, & McClelland, in
preparation). In the simulations presented in this work we did not investigate
the development of cognitive abilities during learning, therefore we did not

apply this progressive learning algorithm.

67

3.4 Temporal generative models

Up to this point, we have been concerned with learning generative models
of a set of data patterns represented as high-dimensional vectors that are
assumed to be independent from each other. However, in the case of temporal
data input patterns appear in a precise, sequential order. A generative model
should therefore consider not only the current observed evidence (i.e. the
vector of visible units activations), but also the history provided by the
previously presented items of the sequence. The aim is therefore to predict the
probability distribution of an element of a sequence, possibly given other
preceding elements as context. In the next section we briefly describe an
interesting extension of restricted Boltzmann machines that can process
temporal information, thereby allowing inference and learning over data vectors

organized in coherent sequences.

3.4.1 The Recurrent temporal Restricted Boltzmann Machine

The Recurrent Temporal Restricted Boltzmann Machine (RTRBM;
Sutskever, Hinton, & Taylor, 2008) extends the architecture of traditional RBMs
by adding a set of delayed recurrent connections in the hidden layer, which are
used to propagate information over time in order to keep track of past states of
the system. This augmented network can be seen as a partially directed
graphical model (see Fig. 13A), where some of the parameters are not free but
are instead parameterized functions of conditioning random variables (i.e., the
context). The internal representations created in the hidden layer can therefore
implicitly encode distal temporal interactions, which can possibly span an
arbitrary number of elements.

The joint distribution of a whole sequence of T pairs of visible and hidden

variables induced by an RTRBM is defined as:

P(UI: hD = Py(v1)P(hq|vy) H?:z P(elhe—1)P(he|ve, he—y) (19)

68

where Py(v;)P(h,|v,) specifies the distribution of the first pair of the sequence
when no context is available. In this case, the probability distribution of visible
units is not conditioned (there is no context), while the probability distribution
of hidden units is conditioned to the state of visible units, which represents the
current evidence. The conditional distributions for the successive elements
P(v¢|hi—1)P(h¢|ve, he—1) are computed step by step, conditioning the visible
activations v; on the previous hidden activations h;_; (contextual information)
and conditioning the hidden activations h; on both the previous hidden
activations h;_; and current visible activations v;. The joint distribution of
visible and hidden variables for the whole sequence is given by the product of all
these conditional distributions. During the processing of a sequence, in order to
predict the successive visible-layer activations v;,; we first infer the hidden
state h; given the current element of the sequence v, and the previous hidden

state h;_; using a mean field approximation (Peterson & Anderson, 1987):

P(he|vy, he_y) = a(VHTv, + by, + HHh,_,) (20)

where VH is the matrix of visible-to-hidden connections, b;, is the static hidden
unit bias, HH is the matrix of the additional hidden-to-hidden connections and o
is the usual logistic activation function. The term HHh;_; represents the
dynamic hidden bias, which is used to propagate contextual information over
time. Once the conditional hidden activations h; have been inferred, we can
generate a prediction of v,,; by starting from a random binary state of the pair
(V¢41, ' t+1) and performing iterative block Gibbs sampling until convergence, in
which the activation of the hidden units also accounts for the dynamic bias HHh,
(see Fig. 13B). If we do not condition the model on a given context, we can let the
network generate a sequence by starting from an initial learned bias and

sequentially generating visible and hidden states.

69

Figure 13. (A) Graphical representation of an RTRBM, which extends the basic

RBM by using an additional set of hidden-to-hidden delayed connections (curved
arrow) (B) Schematic diagram of the RTRBM processing a 3-elements sequence
(from left to right). Note that there is one hidden layer with real-valued activations (H)
that is used for inference and one with binary activations (H’) that is used during the
generative phase. The weights parameterization is reported for the last element,
where visible-to-hidden connections are indicated with VH and hidden-to-hidden

connections are indicated with HH. Adapted from Sutskever et al. (2008).

As for RBMs, RTRBMs can be efficiently trained in an unsupervised fashion by
using contrastive divergence to compute the local gradient of the prediction
error for each element of a sequence. The gradients are then propagated to
previous time steps using backpropagation through time (Werbos, 1990).

It should be noted that the network processes temporal information in a
strictly sequential way, one element at a time and only using the last hidden
activations as context. Thus, in contrast to other probabilistic language models
that introduce additional temporal connections between preceding elements and
the hidden state (e.g., Mnih & Hinton, 2007), the RTRBM only exploits local
temporal interactions, which can nonetheless allow to encode in the hidden
layer an arbitrary number of preceding elements as context. In the original work
(Sutskever et al., 2008), the network learned smooth dynamics that described
the physical behavior of bouncing balls in a constrained space. In the simulations
presented in Section 4.5 we address the intriguing question of whether the same
network can also learn discrete dynamics, like the transition probabilities

describing the orthographic structure of letter sequences.

70

4 Experiments

4.1 Parallel implementation on graphic processors

Artificial neural networks can be easily implemented on parallel computing
machines thanks to their intrinsically parallel and distributed nature, which
allows to significantly reduce training times even in the presence of large-scale
models, where a great number of parameters (e.g., millions of connection
weights) must be fit to the training data. Due to the high computational demand
of deep learning algorithms, we therefore first created an efficient
implementation of deep belief networks that can be executed on high-
performance, parallel computing hardware.

The proposed implementation exploits graphic processing units (GPUs) to
distribute the computation over many processors equipped with a shared, large-
bandwidth memory. The enormous computing power of GPUs derives from their
internal architecture, which exploits a great number of simple cores operating in
parallel. This hardware design is well suited to efficiently process graphic
information (e.g., real-time rendering of visual scenes by mapping textures and
applying lightening to geometric shapes), which is usually represented using
matrices of items that can be manipulated element-wise. The basic idea that
allows to exploit GPUs for scientific computing is that here too we often have to
apply simple functions to a large number of elements at the same time (Owens &
Houston, 2008). Moreover, the use of GPUs for scientific computing greatly
increased after the introduction of CUDA, which is an improved parallel
computing platform created by NVIDIA that gives developers direct access to
many powerful programming routines used to directly control the processing
flow inside the graphic hardware (Nickolls et al., 2008).

Deep learning algorithms largely involve simple matrix manipulations and
are therefore well suited to be implemented on GPUs. Machine learning

researchers are already adopting this powerful technology for training deep

71

networks, obtaining impressive speed-ups that allow to scale-up the size of both
networks and training databases (e.g., Ciresan, Meier, Gambardella, &
Schmidhuber, 2010; Dean et al., 2012; Krizhevsky et al., 2012; Raina et al., 2009).
At the same time, these advanced parallel implementations require to master a
certain level of technical expertise, making them less accessible to cognitive
modelers. Here we show how simulations of deep neural networks can be easily
performed even on a desktop PC equipped with an entry-level GPU without any
specific programing effort, thanks to the use of high-level programming routines
available in MATLAB or Python (Testolin et al.,, 2013). Moreover, we show that
our parallel implementation can even outperform a small high-performance
computing cluster in terms of learning time and with no loss of learning quality.
The complete source code for different software platforms is publicly available

for download?.

4.1.1 Implementation and hardware details

The recommended way to train RBMs is to split the entire dataset into
smaller, non-overlapping subsets, called mini-batches (Hinton, 2010a). Instead of
iteratively updating the network weights with the gradient computed on each
training pattern (“on-line learning”) or rather updating with the average
gradient computed across the entire dataset (“off-line learning”), the gradient in
mini-batch learning is averaged over the patterns of the mini-batch. This
improves convergence and learning speed by both varying and smoothing the
learning gradient (Wilson & Martinez, 2003). By adopting a mini-batch learning
scheme the implementation on graphic processors is straightforward, because
we can directly feed the GPU processors with the entire matrix containing the
patterns belonging to each mini-batch. All we need to do is to load the training
dataset into the GPU’s memory and to adapt the source code to specify which
operations have to be performed on the graphic card. We exploited high-level

wrappers of CUDA available in MATLAB via the Parallel-Computing Toolbox

1 http://ccnl.psy.unipd.it/research/deeplearning

72

(Sharma & Martin, 2008) and in Python via the Gnumpy module (Tieleman,
2010). The use of these high-level functions greatly simplified the parallelization,
which only required the use of gpu array data types instead of standard arrays
(i.e.,, the processing load was automatically distributed among the graphic
processors, thereby making parallelization transparent).

Both the MATLAB and the Python parallel implementations were tested on
two different graphic cards. One was an NVIDIA GeForce GTX 460 (Fermi
architecture) equipped with 336 CUDA cores (1.35 GHz) and 1 GB of DDR5
dedicated memory. The other was an NVIDIA GeForce GTX 690 (Kepler
architecture), for a total number of 1536 CUDA cores (1.41 GHz) and 2 GB of
DDR5 memory. The cluster implementation used for comparison (De Filippo De
Grazia, Stoianov, & Zorzi, 2012) was executed on a HP distributed computing
cluster composed of seven nodes, each equipped with quad-core or hexa-core
processors (2.27 GHz) and 32 GB of RAM. Overall, there were 60 cores,
interconnected with an Infiniband technology network, and the parallelization
was implemented using MPI synchronization routines. As a baseline, we also
collected running times on a PC workstation equipped with an Intel Q6600 quad-

core CPU (2.40 GHz).

4.1.2 Dataset and network architecture

As a benchmark for our parallel implementation we used a classic vision
problem, which consists in recognizing handwritten digits contained in the
popular MNIST dataset (LeCun & Cortes, 1998; some samples are reported in
Fig. 14A). The MNIST dataset contains 60,000 training images and 10,000 test
images representing handwritten digits encoded as 28x28 pixel gray-level
images, size-normalized, mass-centered, and manually classified into ten digit
classes (from 0 to 9). Notably, is has been shown that deep networks reach state-
of-the-art accuracy on this challenging machine learning problem (Hinton &

Salakhutdinov, 2006).

73

A B
600008 [2000]
AR EN

A227222z2

333323 3 500
¥ g #49a

Sss5s s Q5

66060666

77F%7277

Y PELIES

2592999

Figure 14. (A) Samples from the MNIST dataset. (B) Network architecture.

Learning parameters were selected following the original study of Hinton
and Salakhutdinov (2006). In particular, we trained a deep network with three
hidden layers composed by 500 (H1), 500 (H2) and 2000 (H3) units, for a total
of about 1.6 million connections (see Fig. 14B for a graphical representation of
the resulting architecture). Layer-wise unsupervised learning was performed
with one step contrastive divergence for 50 epochs. The final quality of the
model was assessed by training a linear classifier to recognize the test patterns
using the top-level, hidden representation as input. As a further control, we also
fine-tuned the whole network using backpropagation in order to compare the
final quality of the model with previously published, state-of-the-art results.

The parallelization becomes more effective as the size of the mini-batches
increases, because more processing resources can be allocated. However, with
larger mini-batches learning is more prone to get stuck in local minima, thus
leading to a deterioration of the final quality of the model. We investigated these
effects by systematically varying the mini-batch size, which in different runs was
set to 125, 250, 500, 1000, 2000, 5000, and 7500 patterns. Running times and
classification errors were collected and averaged over 10 different networks for

each type of parallel implementation.

74

4.1.3 Results and discussion

A comparison between learning times for the various implementations is
shown in Fig. 15A. The most impressive result is the substantially lower times
required by GPUs: on low and medium mini-batch sizes (e.g., 125, 250, 500, and
1000), even the cheap, entry-level GTX 460 outperformed the cluster by one
order of magnitude. The high-performance GTX 690 further improved the result
(as highlighted in Fig. 15B), requiring a learning time that was half of the cluster
also on the largest mini-batch size. Notably, learning times on GPUs were
between 11 and 45 times faster than on the quad-core workstation. The results
show that the parallelization on the computer cluster is competitive only when
using large mini-batches, that is when more cores are independently processing
distinct subsets of training patterns. Indeed, on very large mini-batches, the
cluster performance approaches that of GPUs. Unfortunately, this also causes a
decrease of learning quality, which is reflected by the lower classification
accuracy reached by models trained using large mini-batch sizes, as we will
discuss in the following.

The learning quality was first evaluated by measuring the classification
accuracy obtained by a linear classifier trained on the top-level (H3) hidden
layer representations of the input data extracted after the unsupervised phase.
As shown in Fig. 15C, the GPU and the cluster implementations obtained similar
results in terms of model quality. More precisely, analysis of variance on the
accuracy data (within-subject factor: mini-batch size, n = 7; between subject-
factor: parallel implementation type, n = 2) revealed a significant effect of mini-
batch size [F(6,108) = 598.5, p < 0.001] but no effect of implementation type
[F(1,18) = 1.3] or their interaction [F(6,108) = 2.0]. Linear regression analysis
with mini-batch size as a predictor (on a log scale) confirmed that the
classification error increased along with mini-batch size (slope = 0.77, r? = 0.99),

thus showing that a reduced mini-batch size is critical to learn a good model.

75

[6)]

o
o
[8)]

o
° e e e oo (Cluster “
. °
40 5% GTX 460 0.4 %
L] —_
0 . GTX 690 2
=] ° o)
2 30 . < 0.3
e % (O]
£ " £
= 20 . = 02
..
.l
[]
1.0 *e, 0.1
®e
® oo ®eo, .
0.0 0.0
125 1000 7500 125 1000 7500
C mini-batch size D mini-batch size

3.5 3.5
S 3.0 g 3.0
o
= o}
) =
E 2.5 5 2.5
% B
2 20 * = 20

15 15 s -

1.0 1.0

125 1000 7500 125 1000 7500
mini-batch size mini-batch size

Figure 15. (A) Unsupervised learning times decreases with mini-batch size for all
parallel implementations: the greater the number of patterns simultaneously
processed, the more the computational resources involved. (B) Zoom-in of learning
times highlighting the additional speed-up of the GTX 690 card. (C) Quality of
learning on the cluster and on the GTX 690 implementations, measured as a linear
read-out misclassification. (D) Quality of learning after fine-tuning

the entire network with error backpropagation.

As shown in Fig. 15D, both implementations obtained comparable
classification performance also after an additional fine-tuning phase of the whole
network. In this case the overall performance slightly improved, leading to
results comparable with the published state-of-the-art (Hinton & Salakhutdinov,

2006). Also here, a linear regression analysis demonstrated that the

76

classification error after fine-tuning increases with mini-batch size (slope = 0.28,
r? = 0.98), though in this case the effect of mini-batch size is less pronounced.

In summary, both the cluster and the GPU implementations exhibited an
exponential reduction of learning times when using mini-batches of increasing
size. However, learning large mini-batches comes at the cost of a lower
classification accuracy, which indexes a lower quality of the learned models.
These results highlight a trade-off between learning times and learning quality
and, accordingly, a clear advantage in using the parallel implementation based
on GPUs. It should be mentioned that one bottleneck in GPU computing is the
relatively slow transfer of data between the central memory (RAM) and the GPU.
We optimized the algorithm by using single- instead of double-precision data
types, which allowed to load the entire training dataset (200 MB) into the GPU
and perform the entire computation with minimal RAM-GPU communication.

A final aspect that deserves attention regards the economic cost of the
hardware required by the parallel implementations considered in our
comparison. The price of an entry-level graphic card is about 100€, while the
cost of a 60-nodes computer cluster exceeds 30,000€. Moreover, the Python
solution provides a freeware implementation on graphic cards. In conclusion,
parallelization of deep belief networks on GPUs using high-level languages can
bring medium-scale simulations on a desktop computer at a very affordable cost

and with no time investment on acquiring parallel programing skills.

77

4.2 Early vision: learning patches of natural images

The GPU implementation presented above allows to train restricted
Boltzmann machines (and their hierarchical extensions) in a very efficient way,
thereby opening the possibility to test these generative models on complex
datasets composed by thousands of training patterns. Here we applied a single-
layer RBM on a very large dataset containing patches of natural images, in order
to study what type of features can be extracted by means of generative
unsupervised learning.

During the last decades, the statistical structure of natural images has been
modeled using a variety of probabilistic approaches (Hyvarinen, Hurri, & Hoyer,
2009), which have shown able to extract many types of visual features
resembling those found in biological visual systems. Thanks to their flexibility,
learning models thus constitute a powerful alternative to hand-coded models,
which instead represent visual information using a set of carefully engineered
features (e.g., Riesenhuber & Poggio, 1999). The basic idea behind these
probabilistic approaches is that images projected on the retina are highly
redundant, that is, the value of each single “pixel” is highly correlated to the
value of many other neighboring pixels. This phenomenon is due to the
ubiquitous presence of rigid spatial structures in natural scenes, which usually
contain well-defined objects (e.g., trees, rocks, animals, etc.) displaced on well-
shaped landscapes (e.g., mountains, forests, fields, etc.). Due to the limited
representation and communication capacity of neural circuits, evolution has
shaped nervous systems in order to efficiently code sensory signals by exploiting
these redundancies (Barlow, 1961). For example, if a consistent part of the
incoming visual signal is predictable (i.e., redundant), it can be efficiently
encoded by using a set of maximally independent statistical components (ICA;
Bell & Sejnowski, 1997), or by a set of components with a sparsity constraint
(Olshausen & Field, 1996), leading to features having a remarkable affinity to the

receptive fields of neurons in the primary visual cortex.

78

A B C

EENENZ ENENENE) .AFN
ZUUSER AEIINGR =S
ElEREN ENERNE NSNS
PEEENE DESERY SZNEEi
NUSE=N NUENSN 35iizes

NEENEE DEETRE =SHins

Figure 16. Visual features extracted from natural images using
(A) Independent Component Analysis [ICA] (B) Sparse coding and
(C) Principal Component Analysis [PCA].

In particular, a set of features extracted by ICA and sparse coding are
shown, respectively, in panel A and B of Fig. 16. On the contrary, other simpler
types of statistics do not lead to this type of features, as shown by the non-local
filters corresponding to the principal components of a natural scenes dataset
(Fig. 16C). In this section we explore the type of features that can be learned by a
generative model implemented in a restricted Boltzmann machine. Interestingly,
it will turn out that the statistical features extracted by an RBM can also be very
useful not only to represent natural scenes, but also to efficiently encode other

types of visual structure, as we will show in Section 4.3.4.

4.2.1 Dataset and network architecture

The RBM was trained to accurately reconstruct a set of patches extracted
from a natural image dataset (M. Brown, Hua, & Winder, 2011) that contained
gray-scale pictures representing the Yosemite park, the Liberty state and the
Notre Dame cathedral. The photographs were taken from several different
viewpoints (see Fig. 17A for some examples). Though it might seem
counterintuitive to consider human-made artifacts (such as monuments and
buildings) to be part of natural scenes, it has been observed that all these types
of spatial structures usually give rise to similar statistical features (Hyvarinen et

al, 2009).

79

800

| 1600]

Figure 17. (A) Samples from the natural images dataset containing three subjects:
the Yosemite national park (first column) the Liberty state (second column) and the

Notre Dame cathedral (third column). (B) Network architecture.

Each patch was created by randomly placing a 40x40 pixel window on the
original image and by successively rescaling the pixel values to the interval [0,
1]. In order to increase variability, each patch was also randomly rotated of 90°.
The final patches dataset contained a total of 153,600 patterns.

The visible layer of the RBM had a total of 1600 units (40x40), while the
size of the hidden layer (H1) was varied between 500 and 1500 units (the
network architecture is represented in Fig. 17B). It appears that the size of the
hidden layer does not qualitatively change the type of features extracted, and in
the following we will refer to an RBM having 800 hidden units. Learning was
performed for 200 epochs with a learning rate of 0.03, a momentum coefficient
of 0.8 and a decay factor of 0.0001. Patterns were processed according to a mini-

batch scheme, with size 100.

Pre-processing stage: image whitening

In order to simulate the type of processing operated by the retina and the
geniculate nucleus of the thalamus, we first applied a 1/f whitening algorithm to
the patches dataset (Simoncelli & Olshausen, 2001). Basically, we designed a
filter in the frequency domain that would flatten the spectrum of a natural image
(on average). Since the power spectrum of natural images tends to fall as 1/f?,

then the amplitude spectrum will fall as 1/f.

80

Figure 18. (A) Samples of natural image patches and

(B) their corresponding whitened version.

We designed the amplitude spectrum of the filter so that it rises linearly with
frequency, to compensate for the 1/f amplitude spectrum of natural images. We
then multiplied the image matrix by a circular, Gaussian filter in order to obtain
a center-surround filter. Finally, local contrast normalization was obtained by
dividing the value of each pixel by the standard deviation of the total activity of
its neighborhood, using a Gaussian neighborhood with a diameter of 20 pixels. A

set of patches with the corresponding whitened versions is reported in Fig. 18.

4.2.2 Results and discussion

After learning, we inspected the nature of the features extracted by the
network by plotting the receptive fields of the hidden units using the procedure
described in Section 3.3.3. As shown in Fig. 19, the RBM extracted a set of
features similar to those obtained by other type of probabilistic models, such as
ICA or sparse coding. In particular, some hidden units encoded some forms of
Gabor filters with different spatial orientation and frequency, which can be
effectively used to detect edges and borders in the visual scene. However, it
seems that the network also extracted other types of features, which are not
usually found when applying other types of probabilistic models to natural
images. In particular, as highlighted in Fig. 19B, many hidden units encoded
some form of sharp, elongated Gabor filters that possibly span the whole

receptive field.

81

I SRS NS

Figure 19. (A) A subset of receptive fields developed by the hidden units of a single-
layer RBM trained to generate patches of natural images. (B) Some selected

features of the model, some of which resemble ridgelets and gratings.

These features can be better described as “ridgelets”, which differ from wavelets
(e.g., Gabor filters) because they are constant along a hyperplane, which
corresponds to a straight line in our two dimensional case. It has been shown
that ridgelets have some interesting properties that make them particularly
suited to compactly represent geometric structure and therefore process visual
information (Candes & Donoho, 1999). Moreover, other hidden units learned to
encode more complex visual structure, such as gratings with different spatial
orientation and frequency. This result is some way unexpected and certainly
requires a more careful investigation. However, it is interesting to note that
these unexpected types of features (e.g., ridgelets and gratings) also emerge by
applying a recent variant of sparse coding algorithms, where the
representational space is made highly overcomplete by using a very large
number of components (Olshausen, 2013).

In conclusion, our results show that learning a generative model of
natural patches with a single-layer RBM can produce the same type of low-level

visual features observed in the primary visual cortex and that are usually

82

extracted by applying other types of probabilistic models to natural images.
Moreover, the network also learned some other types of features, such as
ridgelets and gratings, which are also found when applying highly overcomplete
sparse codes to natural images.

These types of spatial structures are useful to efficiently encode the
statistical information contained in natural scenes, and they might constitute the
basis for encoding more complex spatial structures in the successive levels of a
processing hierarchy. In particular, these types of features could be extremely
useful to also encode other type of visual patterns, for example those found in
written symbols, which have likely be culturally selected to resemble the type of
structures commonly found in natural environments (Changizi et al., 2006). We

will further explore this hypothesis in Section 4.3.4.

83

4.3 Printed Latin letter recognition

As a starting point to model orthographic processing, we first studied
recognition of isolated characters belonging to the Latin alphabet. To this aim,
we created a synthetic dataset composed by a variety of printed letters, which
were presented to a deep network in a completely unsupervised way.

Printed letters have a series of advantages compared to the handwritten
patterns used in Section 4.1 to test our GPU implementation. Indeed, printed
patterns have a more defined shape, with a better resolution and without the
presence of noise or other confounds caused by different handwriting styles.
This ensures a better control of the experimental conditions, because stimuli can
be accurately grouped according to their visual properties. However, as we will
discuss in the following, this more controlled setting also reduces the variability
of the training dataset, which might cause problems when learning a hierarchy

of visual features in a deep neural network.

4.3.1 Dataset and network architecture

In order to create a large-scale dataset of visual images containing printed
characters, we implemented an automatic MATLAB script that exploited the
“getframe” function to create gray-scale bitmaps of the 26 Latin letters. Pattern
variability was obtained by combining different factors contributing to the visual
appearance of each letter. In particular, the script generated letters according to
14 different fonts, half of which belonged to the Serif typeface (left column of Fig.
20) and half of which belonged to the Sans Serif typeface (right column of Fig.
20). All letters were printed uppercase with 5 different sizes: 22, 24, 26, 28 and
30 pixels. Each pattern was also encoded using 2 different weights (bold and not

bold) and 2 different styles (italic and not italic).

84

Californian FB

ABCDEFGHIJKLMNOPQRST
ABCDEFGHIJKLMNOPQRSTU
ABCDEFGHIJKLMNOPQRS

Cambria

ABCDEFGHIJKLMNOPQRSTU
ABCDEFGHIJKLMNOPQRSTUV
ABCDEFGHIJKLMNOPQRST

Century

ABCDEFGHIJKLMNOPQ
ABCDEFGHIJKLMNOPQ
ABCDEFGHIJKLMNO

Georgia

ABCDEFGHIJKLMNOPQRS
ABCDEFGHIJKLMNOPQRS
ABCDEFGHIJKLMNOPQ

Lucida Bright

ABCDEFGHIJKLMNOPQR
ABCDEFGHIJKLMNOPQR
ABCDEFGHIJKLMNOPQ

Plantagenet Cherokee

ABCDEFGHIJKLMNOPQR
ABCDEFGHIJKLMNOPQR
ABCDEFGHIJKLMNOP

Times New Roman

ABCDEFGHIJKLMNOPQRS
ABCDEFGHIJKLMNOPQRS
ABCDEFGHIJKLMNOPQR

SANS SERIF

Arial

ABCDEFGHIJKLMNOPQR
ABCDEFGHIJKLMNOPQR
ABCDEFGHIJKLMNOPQR

Arial Narrow

ABCDEFGHIJKLMNOPQRSTUYV
ABCDEFGHIJKLMNOPQRSTUV
ABCDEFGHIJKLMNOPQRSTUV

Calibri

ABCDEFGHIJKLMNOPQRSTUV
ABCDEFGHIJKLMNOPQRSTUV
ABCDEFGHIJKLMNOPQRSTUV

Dotum

ABCDEFGHIJKLMNOPQA
BCDEFGHIJKLMNOPQAB
CDEFGHIJKLMNOPAQ

Gautami

ABCDEFGHIJKLMNOPQRST
ABCDEFGHIJKLMNOPQRST
ABCDEFGHIJKLMNOPQRS

Helvetica

ABCDEFGHIJKLMNOPQR
ABCDEFGHIJKLMNOPQR
ABCDEFGHIJKLMNOPQR

Tahoma

ABCDEFGHIJKLMNOPQRS
ABCDEFGHIJKLMNOPQRRS
ABCDEFGHIJKLMNOPQ

Figure 20. Font types used to populate the printed Latin letters dataset.

300
300

[1600 J] 1600]
B C D

Figure 21. (A) Samples from the printed Latin letters dataset.

(B,C,D) Considered network architectures.

Each pattern was printed in white on a 40x40 pixels black square, and its
position was varied across the visual field according to a combination of both an
x-axis offset (5 possible shifts) and a y-axis offset (5 possible shifts). Each shift
was performed only up to the point where the complete pattern was still present
in the visual field (i.e., the script was prevented to generate out-of-border
offsets). By combining all the factors of variation listed above, in total there were
14x5x2x2x5x5=7000 possible versions of the same letter, which produced
a dataset containing 182,000 training patterns (some samples are shown in Fig.
21A).

The visible layer of each tested model was composed of 1600 units
(40x40). We tested different types of architectures: a single-layer RBM with 500
hidden units (Fig. 21B), a two-layers deep network with 300 (H1) and 1000 (H2)
hidden units (Fig. 21C), and a three-layers deep network with 300 (H1), 300
(H2) and 700 hidden units (H3), represented in Fig. 21D. The rationale behind
the choice of the sizes of the hidden layers was to approximately keep constant
the total number of connections in all the networks, in order to match the

different architectures according to model complexity. In all cases, learning was

86

performed for 60 epochs with a learning rate of 0.1, a momentum coefficient of
0.8 and a decay factor of 0.0004. Patterns were processed according to a mini-

batch scheme, with size 100.

4.3.2 Simulation 1: learning letters from scratch

In the first series of simulations, the synthetic dataset was randomly split
into a training set containing 75% of the patterns (i.e.,, 136,500 examples) and a
test set containing the remaining 25% of the patterns (i.e.,, 45,500 examples).
After a first phase of unsupervised learning, each network was tested on a
classification task using the read-out method described in Section 3.3.3. It should
be noted that the recognition results presented below seem to confirm that the
training and test sets had a similar distribution (i.e., after learning each model
reached a performance on a discrimination task over the test set that
approximately matched the performance on the training set). The quality of the
three-layer network was also assessed by inspecting the type of features
extracted at different levels of the hierarchy and by letting the model to
autonomously produce class prototypes through its top-down generative

connections, using the methods described in Section 3.3.3.

4.3.3 Results and discussion

As anticipated above, all the models exhibited a good generalization when
a read-out module was trained in their top-level, internal representations.
Classification accuracy for the different network architectures is reported in Fig.
22A. As a baseline, we also computed the accuracy of the read-out module
trained directly on the raw patterns.

Results show that a single-layer RBM already obtains fairly high
recognition accuracy, approaching 95% on the test set. However, better results
are obtained by adding more hidden layers to the hierarchy, with both the two-

and three-layers networks reaching 98% on their deepest layer.

87

A Read-out accuracy
1.0

0.8 - —

B Train
O Test

0.7 - —

0.5 1

|L1|L1|L2|L1|L2|L3|

Raw |RBM-500| DBN-300-1000 | DBN-300-300-700 |

H3

H2

H1

Figure 22. (A) Read-out accuracy on different levels of representations.
(B) Receptive fields corresponding to units in different levels of representations

learned by the three-layers deep network.

88

This trend suggests that a hierarchical architecture is particularly suited to
represent the spatial structure of Latin printed letters. However, the analysis on
the features learned at different levels of the hierarchy suggests that the three-
layers network did not learn an optimal hierarchical generative model of the
patterns, as highlighted by the receptive fields reported in Fig. 22B. In particular,
low-level features encoded in the first layer do not always exhibit spatial
selectivity, and even if it seems that features get more complex as we move up in
the hierarchy, they do not closely resemble those usually extracted by deep
networks trained on datasets containing visual structure.

Despite the sub-optimal feature hierarchy found by the receptive fields
analysis, prototypes generation with top-down connections produced very
precise results. In particular, as shown in Fig. 23, the network was able to
generate high-quality visual patterns, which can even be produced according to
specific, high-level biases. For example, when the inverse linear mapping is
trained using all the available data patterns, prototypes have a fairly general
visual appearance, and critical features corresponding to line endings and other
salient letter parts are often omitted (see Fig. 23A). However, if we only select a
specific subset of patterns to train the inverse mapping, we can bias the
generation toward more specific prototypes. For example, Fig. 23B shows
prototypes obtained using only small, bold letters encoded with the Arial font
type. Fig. 23C instead reports prototypes obtained using only large, italic letters
encoded with the Times New Roman font type. It can be observed that the
network is able to generate fine-grained visual features, for example those

corresponding to the “serifs” in the Times New Roman font.

89

el Eewd N —
EEEEEEE

EEEBEERBEEBR
EEESEEE R

b

BECEREEEEEBR
ENEBEESNREREN

DEEEEEEEER
NEEEEEEER-
e
NEEEEEHERE-
NEESEEEREE-

Figure 23. Prototypes generation obtained by training the inverse linear mapping
with (A) all training patterns; (B) training patterns corresponding to small, bold letters
printed in Arial font; (C) training patterns corresponding to large, italic letters printed

in Times New Roman font.

90

4.3.4 Simulation 2: exploiting natural statistics

In a second series of simulations, we tested the hypothesis that natural
scenes and written patterns share a common statistical structure, which can be
effectively captured by a generative model implemented in a RBM. To this aim,
we used the network trained on the patches of natural images described in
Section 4.2 to create a more expressive representation of the raw letter patterns,
which might support a better read-out performance. More precisely, we first
applied the same whitening algorithm described in Section 4.2.1 to the whole
letter dataset (some samples of whitened letters are reported in Fig. 24A). We
then used the weight matrix of the network trained on natural images to
compute an internal representation of the input letters, which was successively
read-out by the linear classifier with the aim of recognizing the original pattern
(see Fig. 24B for a schematic representation of this processing architecture). In
this way, the read-out module was not trained on internal representations
obtained by unsupervised learning of written patterns (as done in the previous
experiments), but instead the read-out was performed directly on a more

general representation derived from the statistics of natural images.

A B
linear read-out

1

| 80 |

[1600]

2N

whitening
LI

Figure 24. (A) Samples of whitened printed Latin letters. (B) Processing architecture
for the task of reading-out letters from natural images representations. Note that the
connection weights of the RBM have not been trained on printed letters,

but only on patches of natural images.

91

4.3.5 Results and discussion

Quite surprisingly, the letter read-out accuracy on the representations created
by unsupervised learning of natural images was extremely high, approaching
99%. This result might be partially due to the fact that the letter patterns have
been pre-processed using a whitening algorithm, which might have improved
the perceivability of the patterns. Indeed, the read-out accuracy on the raw,
whitened patterns is slightly higher than that obtained on the raw, unwhitened
patterns (see Fig. 25). However, the extremely high recognition accuracy
obtained using the features learned from natural images suggests that the rich
statistical information extracted from natural scenes can be readily applied to
represent also to other types of spatial structures, for example those defining
written patterns. Indeed, such expressive representation was not extracted by
learning a generative model of written patterns, but anyway supported a very
accurate letter classification. Notably, it should be mentioned that certain
statistical features extracted from natural images have shown useful also in
other tasks (e.g., Cottrell, 2008; Kanan & Cottrell, 2010), therefore it would be
interesting to test the representational capability of the features extracted by the

RBM also on other challenging recognition tasks.

Read-out accuracy

1.0
0.9
0.8
0.7
0.6
0.5
N e 5 AN
Q‘Ib Q,QQ/ ’6?} \9&%
& 2 2
$\\ Q'\’ «e
> & N
@é Q &

Figure 25. Classification accuracy obtained by a read-out module applied on

different processing stages and representations.

92

4.4 Handwritten Farsi character recognition?

Besides studying the recognition of Latin digits and letters, the generality
of this modeling approach should be evaluated by also applying it to other types
of scripts. Indeed, even if different writing systems appear extremely
heterogeneous at a first glance, they might share some basic underlying
structures that can be unveiled by deep learning. At the same time, testing deep
neural networks on more challenging scripts is a useful way to better assess
their computational capabilities and their flexibility. In this section we report
and discuss a set of simulations concerned with learning a hierarchical
generative model of Farsi handwritten characters (Sadeghi & Testolin, under
review). Despite the Farsi alphabet shares many features with other alphabets,
the high similarity among particular characters and their high variation in
appearance due to different writing styles make recognition particularly
challenging.

The Farsi alphabet is based on Arabic scripts and consists of 32 letters. The
only difference between Farsi and Arabic scripts is in the character sets, with
Farsi having four more characters than the Arabic alphabet. The complexity of
the Farsi script arises from the fact that distinguishability among many letters
lies in the placement of dots or zigzag bars. Many Farsi letters have one, two or
three dots located above or below the main pattern. While the dots appear
isolated in printed documents, two or three dots are most of the time grouped
together in handwritten letters and are shaped as a caret, dash, or tilt based on
handwriting styles. Moreover, bars are joined to the main stroke in printed
alphabet, but they are most of the time separated in handwritten letters. Farsi
text is written horizontally, from right to left. Finally, besides the complexity
introduced by handwritten (instead of printed) patterns, an additional
complication derives from the fact that letters in a word are shaped differently
based on the surrounding context, i.e., the writing pattern changes depending on

the adjacent letters that will be linked to it. In particular, the first letter of a word

2 | would like to thank Zahra Sadeghi for her great contribution to these simulations.

93

is joined from left, the middle letters are joined from both sides, and the last

letter is joined from right.

4.4.1 Dataset and network architecture

In our simulations we used a freely available Farsi dataset called HODA
(Khosravi & Kabir, 2007), containing both handwritten digits and letters
collected from students registered in the Iran nationwide university entrance
exam. The digit dataset includes 60000 training and 20000 test images, while
the letter dataset includes 70645 training are 17706 test images. Each pattern is
encoded in gray-scale using a 32x32 pixel matrix, thereby requiring 1024 visible
units as input to the network. Two sample sets of handwritten digits (with 10
examples for each digit) and handwritten letters (with 3 examples for each
letter) are provided in Fig. 26.

We used the same deep architecture adopted for the MNIST simulations
presented in Section 4.1, composed by 500 (H1), 500 (H2) and 2000 (H3) hidden
units (see Fig. 14B). The unsupervised learning algorithm for the RBMs used a
learning rate of 0.0001 and a momentum coefficient of 0.9, which was initialized
to 0.5 for the first few epochs. Learning was performed using a mini-batch
scheme, with a mini-batch size of 100 patterns for the digit dataset and 300
patterns for the letter dataset. Learning continued until the reconstruction error

converged to a small, asymptotic value.

« " NoNeNel N NrN N: | L 1Dy =R@PT020
SELCEEEGEEIRT
Ao R RN AP
J oSO
VRS bb B LY
CttéC5J946éJ
SSSSTELJISIrre
PV I I s 03U

24T T T 22,2t

> LOT R AA
>LAD RIS
P 7 ¥t
> AV ALCH
SN Nt A
DRLO AR

A
Y
r}
f
Qo
%
v
A
ﬂ

ISLRDF AL
ST ATTH
AILLOMALAP

AL
Y
~
D
Y
-

Figure 26. Samples of digits (left) and letters (right) from the HODA Farsi dataset.

94

4.4.2 Simulations

In our first set of experiments, we used two separate deep networks for
learning digit and letter shapes. After learning a hierarchical generative model in
a completely unsupervised way, we performed a simple linear read-out on the
top-level internal representations extracted by the networks in order to classify
the test patterns. As a baseline, we also applied the read-out module directly on
the raw input patterns and on the top-level representations derived from a
hierarchical architecture using random connections. Indeed, it has been shown
that neural networks with random connection weights can nevertheless reach
good recognition accuracy in several recognition tasks (e.g., Widrow, Greenblatt,
Kim, & Park, 2013), and this comparison is also useful to check if the higher
dimensionality of the internal representations could be largely responsible to
the performance gain.

Following the transfer learning framework discussed in Section 3.3.2, in a
second set of simulations we tested the hypothesis that handwritten digits and
letters share many common features, and that a generative model that captures
the statistical structure of the letter distribution might also be used to support
the recognition of digits. We therefore used the deep network trained as a
generative model on the letter dataset to create a high-level representation of
the digit patterns, and then we trained the linear read-out module to classify
such representations with the correct digit label. Moreover, we also tested the
transfer ability over a different type of script by using the deep network trained
on Farsi letters to create an high-level representation of the Latin digits
contained in the MNIST dataset used in Section 4.1. This high-level
representation was then used to support classification operated by a linear read-
out module. Also in this case, baseline results were obtained by applying the
read-out directly on the raw input patterns and on the top-level representations

derived from a randomly connected deep network.

95

Read-out accuracy

1.0
0.9
M Train
0.8
OTest
0.7
0.5 S S e B I E—
Raw Random | Deep Raw | Random | Deep
Digits Letters

Figure 27. Classification accuracy for Farsi digits and letters obtained by a linear

read-out module applied on different types of representation.

4.4.3 Results and discussion

In line with previous results on Latin characters, both deep networks
reached very high classification accuracy also with the challenging Farsi script,
thereby supporting the idea that a hierarchical generative model is a natural
choice to model handwritten characters. Classification accuracy for both
datasets is reported in Fig. 27. A qualitative analysis of the receptive fields
extracted by the deep networks shows that the basic features encoded at the
lower levels of the hierarchy resemble those found in other learning problems
involving written patterns (see Fig. 28A). The features of the deepest layer,
instead, appear to represent more complex structures, sometimes becoming
tuned to specific classes.

In order to better investigate the type of errors made by the network, we
analyzed the more common mistakes revealed by the confusion matrix. It turned
out that some specific classes of Farsi letters are extremely difficult to
discriminate in the presence of noise or inaccurate writing due to their fine-

grained structure.

96

AT M<ENR
Bh. ¥ BN

g, 3 j
HE.UH RERES
SSEC EANDD
!tl&. | N /]

AN
. %S

5 N

Yoy -
. . , -
dIdEN SCBKE

SRR F

S NENES ANER4
SOVHEZ NES2N

FIEAE D2JEMK

SHNEE 2nA»2

ENCOW a2m0>
S MYBI'N 228F<

T.KBY F @ N>

" |

L

B
> & e (&6l z] ¢ & & & [&]
z & & &8 & &6 & &t b e
€& [e]l e & & ' 2 & =
¢ & & 6]l &6 el e & [&] e
z 2 2l z & & & & &
gl e & el & € & ©T &6 G
E & e & & vl 2 ¢
<« & & & €& ¢ (6] & t @
c & & &~ & & & &z o
el e & e 8 T &6l T €&

Figure 28. (A) Some representative receptive fields of the units belonging to the
different hidden layers of the deep network trained on the digits (top row) and letters
(bottom row). (B) Examples of challenging samples of the “Jim” Farsi letter. Three
situations of poorly recognizable patterns are distinguished by red (dots compressed
into a semi-circle), green (dots located below the main body), and blue (dots

attached to the main body) rectangles.

In particular, in Fig. 28B we report some extremely challenging recognition
situations, where the letter “Jim” has been written in a variety of different styles
that greatly reduce pattern discriminability. Despite these challenging

situations, the high read-out accuracy obtained by the linear classifier on the

97

deepest layer of the networks suggests that both the digit and letter generative
models discovered useful abstract structure from the data distribution, which
can be readily exploited by a simple classifier to discriminate between the
underlying classes. We therefore investigated whether the same type of
structure learned on handwritten letters can be used to also describe the
structure of handwritten digits. As expected, the read-out accuracy remains very
high, reaching 98.1% for the training patterns and 95.9% for the test patterns
(i.e, we observe a decrease of less than 3%). This result corroborates the
hypothesis that the distribution of letters and digits can be described using a
common set of features, which can be effectively extracted from the data using a
hierarchical generative model. More generally, this analysis also suggests how
knowledge extracted from one domain can be readily transferred to perform
tasks on related domains.

In order to investigate if knowledge transfer can also occur between two
domains that are apparently more distant, we applied the same method to
investigate transfer learning between different alphabets. In particular, we used
the deep network trained as a generative model on Farsi letters to compute a
high-level representation of the Latin digits contained in the MNIST dataset.
Interestingly, as reported in Table 1 also in this case the read-out classification
accuracy remains fairly high (approaching 95% in the test set), although it does

not reach state-of-the-art performance.

MNIST Digits
Train % Test %
Deep network trained on Farsi letters 95.9+0.1 949 £ 0.2
Raw data 86.8+0.0 43.0+0.0
Random deep network 79.5+23 38.7+1.0

Table 1. Classification accuracy for MINST digits obtained by a linear read-out

module applied on different representations.

98

In summary, these results suggest that despite different writing systems
have some distinguishing features, they also share many commonalities, some of
which can be effectively captured by hierarchical generative models. In
particular, our simulations show that the apparently marked visual differences
between Farsi and Latin scripts might only be present at a “surface” level, while
they might share many common features at a deeper, structural level. This
computational framework might therefore be very useful to better understand
the intimate nature of different alphabets, for example suggesting how bilinguals
could exploit their abstract similarities to improve learning and knowledge

transfer.

99

4.5 Learning sequences of letters:
Spatial arrangement

In the remaining series of simulations, we extended the single-letter
scenarios presented above by studying learning of multiple letters, which are
combined together in order to create English words. In this section we consider
sequences of letters organized into a spatial arrangement, which means that the
entire word is given as input to the network at a single timestep, thereby

allowing processing of all the letters in parallel.

4.5.1 Dataset and network architecture

Concatenating several letters encoded as raw pixel values (as done in
Sections 4.3 and 4.4) would result in a significantly larger input pattern, which
might require some form of convolutional architecture to be efficiently
processed. One possible solution to mitigate this complexity is to simply
replicate many single-letter networks at different spatial positions in order to
separately process each letter of the word. The high-level, internal
representations created by each network can then be concatenated together,
forming the input pattern for a subsequent layer that would therefore learn the
compositional structure of the letter sequence.

Another possibility, which we adopted in our experiments, is to directly
exploit a more abstract, feature-based representation of each single letter, which
allows to efficiently process the whole word as a single input pattern. We
therefore encoded each letter as a combination of simple geometric features,
which correspond to the “Siple font” used in the original IAM paper (McClelland
& Rumelhart, 1981). This encoding scheme represents each letter using 14 basic
features, as shown in Fig. 29A. However, we slightly increased the complexity of
the task by encoding each pattern using a “pixelated” version of the Siple font,
thereby implicitly representing geometric features as the simultaneous
activation of several aligned pixels arranged into a 7x7 matrix. In this setting,

each input letter was therefore represented using 49 visible units.

100

A B

HBECTEFGHI
JKLMNUOFER
STUVIWXY/Z

X

Figure 29. (A) The geometric “Siple font” used to encode each letter.

(B) Network architecture.

We then created a dataset of four-letter words, which corresponded to the
original set of 1180 English words used in the [AM simulations. The resulting
input patterns were therefore given to the network using a total of (7x7)x4 =
196 visible units, and the hierarchical architecture consisted of two layers of,

respectively, 120 (H1) and 200 (H2) hidden units (see Fig. 29B).

4.5.2 Simulations

After learning, the deep network was first tested on several inference tasks,
in which the input patterns were disrupted by means of Gaussian noise,
occlusions, or by randomly turning-off active pixels. The network was then
asked to recover the original configuration by iteratively performing top-down
reconstructions on the input values.

The network was then tested on two different discriminative problems.
The first required the identification of each of the four letters composing a word,
using as label a binary vector with one-hot (i.e., localistic) coding of the target
letter. The second problem consisted in the identification of the word itself,
using as label a binary vector with one-hot coding of the target word. To
investigate the quality of the representations extracted by deep learning, we

compared the classification accuracy on the representations learned at each of

101

the levels of the two-layer network with that of the representations learned by a
single-layer RBM, with as many hidden units as the top layer of the deep belief
network (H = 200 units). As a baseline, we also measured the classification
accuracy obtained by trying to directly categorize the raw input vectors. Note
that the read-out of the original data is trivial, due to lack of variability in the
coding of letters and words (i.e., there is a unique pattern for each letter and
word). Indeed, the raw data vectors are linearly separable as shown by the
perfect accuracy of the read-out. However, if the input patterns are degraded by
adding a certain amount of noise (i.e.,, by randomly turning to zero a certain
amount of pixels), one should expect a progressive decrease of the classification
accuracy when the input representation does not include high-level, invariant

features.

4.5.3 Results and discussion

As a preliminary analysis, we investigated the type of representations
encoded at different levels of the hierarchy by simply plotting the receptive
fields of the hidden units (see upper part of Fig. 30A). It appears that units in the
first hidden layer learn to encode simple geometric features resembling those
used in the Siple font. At the second layer, these basic features are combined into
more complex patterns, sometimes resembling entire letters or letter parts. We
also tested a sparse variant of deep belief networks, which consists in forcing the
internal representations to rely on a limited number of active hidden units. This
variant can be easily implemented by adding a penalty term on the total amount
of hidden activations (H. Lee et al., 2008). However, when applying this sparsity
constraint it appears that the features became less selective, probably because
each unit is forced to encode more information (see lower part of Fig. 30A).

The representations extracted by the deep network allowed to effectively
perform inference in the reconstruction tasks, guaranteeing good

reconstructions even in highly noisy conditions.

102

initial visible state
a " - ' F - I .-I
H o

final visible state

>[R[

Figure 30. (A) Receptive fields obtained at different levels of the hierarchy. The
lower panel shows the sparse variant. (B) Reconstruction ability of the network

under a variety of noise conditions.

Fig. 30B shows the result of inference when four different noisy versions of the
same word were given as input to the model: Gaussian random noise, moderate
level of binary noise, high level of binary noise, and a simple occlusion. Note that
the visible units always settled onto an activation state corresponding to the
correct word image.

Results about letters and word discrimination tasks are reported in Fig. 31.
When the input word image was corrupted by randomly setting to zero a certain
percentage of its pixels, read-out accuracy on the raw pixel data dropped even
with a small amount of noise (approaching zero in the word recognition task). As
expected, the hierarchical network instead extracted robust internal
representations that were less sensitive to noise. Indeed, both hidden layers sup-
ported good discrimination accuracy for letters, whereas only the deepest
hidden layer adequately supported word discrimination. Notably, the shallow
generative model (single-layer RBM) did not unfold word-level information,
thereby failing to support robust word recognition (especially for larger noise

levels).

103

letter recognition word recognition

1.0

@ Raw Data

O RBM H-200
B DBN H1-120
H DBN H2-200

0.8

0.6

accuray

0.4

0.2

0.0 -
20 30 40 50 0 10 20 30 40 50

noise level (%) noise level (%)

Figure 31. Recognition accuracy of different models in the task of (A) identifying
each component letter or (B) the whole word encoded in the input pattern, as the
level of noise increases. Raw data accuracy was obtained by directly training a linear
read-out on the input patterns, while in the other cases the classifier was applied to
the hidden layer of a single RBM (RBM H-200) or to each of the
two hidden layers of a deep belief network (DBN).

These results suggest that a hierarchical architecture is more suited to
effectively represent orthographic information contained in visual displays, with
lower levels of the hierarchy extracting simpler information that can
successively be combined into more abstract words representations. Despite its
simplicity, the emergent properties of this model revisit key aspects of the
seminal [AM and suggest a very promising research direction for developing a
full-blown deep learning model of visual word recognition.

Indeed, up-scaling the present toy model is likely to be successful because
deep learning is particularly suited to capture features hierarchies over large
training datasets with great pattern variability. We therefore expect that a
similar architecture could be exploited to study visual word recognition using
more realistic stimuli, which would also allow a more direct comparison with
empirical data. For example, a larger model would be useful to better

understand how location-invariant representations of written words might

104

emerge by hierarchical generative learning over spatially arranged letter
sequences, and what type of intermediate coding would better support
abstraction of the identity and position of letters from their eye-centered

locations (some preliminary results are reported in Di Bono & Zorzi, 2013).

105

4.6 Learning sequences of letters:
Temporal arrangement

In this section we still consider the problem of learning sequences of
letters, but to differ from the scenario discussed above here the letters have a
temporal arrangement, which means that only one letter is processed at a single
timestep. This input regimen does not allow processing all the letters of a word
in parallel, because the orthographic structure must be discovered by extracting
the transitional probabilities occurring over a dynamic input stream (Testolin,
Stoianov, Sperduti, & Zorzi, under review).

At a first analysis, this setting might appear unrelated to the traditional
notion of orthographic processing, which often assumes a parallel processing of
the letters constituting a word. However, several connectionist models of visual
word recognition and reading aloud entail a serial processing mechanism (Perry,
Ziegler, & Zorzi, 2007; Plaut, 1999; Sibley, Kello, Plaut, & Elman, 2008), and
sequential processing of letters is prominent during reading acquisition in
childhood, whereby phonological decoding bootstraps the development of
orthographic representations (Share, 1995; Ziegler, Perry, & Zorzi, 2014).
Sequential generation of letters is also a prominent feature of written spelling,
and it is a key aspect in popular computational models of spelling (Glasspool &
Houghton, 2005; Houghton, Glasspool, & Shallice, 1995). Moreover, extracting
temporal structures from sequences of elements is a ubiquitous feature of
language-related processes, which might play an important role in subsequent
stages of orthographic processing (for example, by providing support for high-
level mappings between phonological and orthographic representations).

Due to the temporal nature of the task, here we did not use deep belief
networks, but we applied the Temporal Recurrent Restricted Boltzmann
Machine (RTRBM) discussed in Section 3.4. Also in this case, computation was
significantly speeded-up by using graphic processors, and the complete source

code is publicly available for download3. Unlike models that use slot-based

3 http://ccenl.psy.unipd.it/research/RTRBM

106

representations on which visible units encode position-specific elements of a
sequence, recurrent neural networks learn to gradually integrate temporal
information over time, generalizing knowledge about letters across positions by
encoding their statistical relations in the hidden layer. In this way, the internal
representations created in the hidden layer can implicitly encode distal temporal
interactions that can span an arbitrary number of elements. A recurrent network
might therefore in principle be able to build fixed-width, internal
representations of whole sequences as static activation patterns (Sibley et al,,
2008; Stoianov, 1999). However, as we will discuss below, it appears that in the
RTRBM very similar words are internally represented by very similar activation
patterns, which might not guarantee a perfectly discriminable, static encoding of
whole sequences (Testolin, Sperduti, Stoianov, & Zorzi, 2012).

In order to learn the sequential structure of words, the RTRBM was
exposed to a corpus of English monosyllables, with each word presented one
letter at a time. After learning, the generative model was expected to have
inferred the orthographic structure underlying the training data. To assess this,
we first evaluated the accuracy of context-dependent predictions (simulation 1).
Moreover, the model should be able to reproduce the training sequences and

generalize, thus producing well-formed pseudowords (simulation 2).

4.6.1 Dataset and network architecture

We used a dataset of 6,670 English monosyllables of variable length (from
3 to 7 letters) extracted from CELEX (Baayen, Piepenbrock, & van Rijn, 1993),
which is an electronic corpus that comprises general lexicons for British English,
German and Dutch. The dataset was randomly split into a training set of 5,300
words and a test set of 1,370 words. Words were codified as sequences of letters,
represented with fixed-size binary orthogonal vectors of 27 units (one for each
possible letter, plus a termination symbol). Therefore, in this case we did not use
neither a realistic, pixel-based or a simplified, feature-based representation to

encode single letters, which were assumed to be already abstract elements. This

107

simplified representation scheme allows to isolate the problem of finding the
positional relation among letters from the problem of building an abstract
representation of each element.

Learning parameters were tuned with the aim of obtaining high prediction
accuracy on the training data. In particular, the resulting architectures had 200
hidden units, and learning was stopped when no significant improvements
occurred on the training set (after approximately 300 epochs). The performance
of the RTRBM was compared with that of another popular connectionist model
used to learn temporal data, the Simple Recurrent Network (SRN; Elman, 1990),
and with other two popular families of probabilistic generative models for
sequential data, that is n-grams (P. Brown, DeSouza, Mercer, Della Pietra, & Lai,
1992) and Hidden Markov Models (HMMs; Rabiner, 1989).

SRNs are feed-forward neural networks composed by three layers. The
input layer contains both the current element of the sequence that is being
processed and the contextual information encoded by the network, which is
simply a copy of the hidden layer activities at the previous timestep. At the
beginning of a sequence, the activations of context units are usually set to zero.
An output layer is then used to perform a prediction of the next element of the
sequence, and learning is performed by back-propagating the mismatch error
between the network prediction and the target value. In SRNs, therefore,
supervised learning is used to establish a mapping between the input (i.e., the
current element of the sequence plus contextual information) and a separate
output representation (i.e., the prediction of the following element). Processing
in SRNs is thereby inherently deterministic and essentially input-driven (i.e.,
bottom-up), while RTRBMs can autonomously produce top-down activations on
the sensory units from internal representations through their intrinsically
stochastic dynamics. As for the RTRBM, learning parameters of the SRN were
tuned to maximize accuracy on the training data. The resulting network had 200
hidden neurons, thereby the two connectionist models had about the same

number of connections (the SRN had slightly more connections due to the

108

additional set of hidden-to-output weights, as also shown in Fig. 33A). This
implies that both models have approximately the same complexity (i.e., the same
number of parameters to be fit). Learning rate was set to 0.01 and training was
performed for 250 epochs.

The n-gram models have been implemented as look-up tables, where each
row contains the successor distribution computed from the training data for
each possible context (i.e., the n-1 preceding letters), with n varying between 2
and 4 (see Fig. 32A). These models therefore treat two sequences as equivalent if
they end in the same n - 1 letters: assuming a value k 2 n, it holds that

P 17 = PUL [15,0) 21)

It 11,..1

where 1represents the sequence of letters k-1 and Ly is the k-th letter of a
word. Although this might seem a somewhat crude approximation, n-grams have
demonstrated very good performances (P. Brown et al, 1992) and still
constitute a reference framework for language modeling. One of the major
drawbacks of n-grams is caused by data sparsity: items not present in the
training set will be given a probability of zero, which motivates the use of
smoothing techniques. In our study, we used a simple form of additive
smoothing (Chen & Goodman, 1996).

We tested HMM of first- and second-order, with a number of states ranging
from 7 to 60 according to a previous study (Sang & Nerbonne, 1999). HMMs
assume that the system being studied can be modeled as a Markov process with
a certain number of unobserved (i.e., hidden) states. In first-order models, the
probability of being in a certain state at the current timestep only depends on
the state of the model at the immediately preceding timestep. In second-order
models, instead, this dependence is extended to the last two states. Each state
has an associated emission distribution that describes the probability of emitting

(i.e., observing) each symbol of the alphabet from that state. The transition

distribution, instead, specifies the probability of moving from each state to any

109

other. If two states are not connected, the corresponding transition probability
will be zero. Finally, the initial state distribution specifies the probability of
starting the generation of a sequence from each of the states of the model. The
parameters of an HMM can be estimated using an iterative procedure, known as
Baum-Welch algorithm (Rabiner, 1989), which adjusts the probability
distributions in order to raise the likelihood of the training data using an
expectation-maximization method. As for the other models, HMM hyper-
parameters were tuned to maximize accuracy on the training data. In particular,
the highest performance was obtained using a first-order model with 40 hidden
states, trained for 10000 iterations with a likelihood cut-off of 0.001 and 1000

steps in the Baum-Welch algorithm.

4.6.2 Simulation 1: context-dependent predictions

In the first set of simulations we evaluated the performance of the
considered models on predicting the next element of a sequence, given a certain
context (see Fig. 32A). Accuracy was measured as mean prediction error on both
training and test sets using a computationally efficient procedure that exploits a
tree-based data structure. In particular, we evaluated the response of each
model across all possible left contexts in the evaluation sets (i.e., variable-length,
initial parts of words). To this aim, we created a k-tree data structure, where k is
the size of the alphabet (26 letters plus one termination symbol). Words are
encoded as paths in the tree, starting from the root. Every node in the tree
represents a left context (which is the path from the root to the current node)
and it might have a number of children or alternatively constitute the end of a
word. It is possible to efficiently compute the empirical successor distribution of
each context in the dataset by counting the frequency of each child of a node (i.e,,
the frequency of each letter following that context) and normalizing the resulting
vector to sum up to 1. Once the empirical successor distribution has been
computed for all the variable-length contexts in the dataset, each model is

probed with all possible contexts in order to compute the predicted successor

110

distributions. The vectors of empirical and predicted successor distributions can
then be compared according to some metric in order to measure the discrepancy
between observed and predicted values. We used the Kullback-Leibler (KL)
divergence as distance metric (see Eq. 10). We preferred the KL-divergence
instead of other metrics (e.g., Euclidean distance or cosine similarity) because of
its sound probabilistic interpretation and its direct link to the notions of cross-
entropy and perplexity, which are two other metrics commonly used to assess
language models. Nevertheless, it is worth noting that the results reported below
are robust with respect to the type of metric (see Testolin et al., 2012, for a
preliminary study based on the Euclidean distance measure). The total error of
each model was the average KL-divergence across all possible contexts in the
evaluation datasets.

In order to compute the predicted successor distribution for the RTRBM, a
response was collected by sequentially clamping the visible units on the given
letters (i.e., left context) and letting the network generate visible-layer
activations. The normalized activations (i.e., summing up to 1) constitute the
predicted successor distribution M, which corresponds to the conditional
probability distribution of all letters in the alphabet given the context

VisVar- Vit encoded by the hidden unit activation ht—l:

M < P(v, |v,,V,,sv,)= P(v, | h_) (22)

The vector representing the predicted successor distribution for each context
was also obtained for the other models tested. For SRNs, we collected the output
values (normalized to sum up to 1) in response to a given context. For n-grams,
the successor distribution corresponded to the row associated with a particular
context. For HMMs, the optimal sequence of hidden states (i.e., the one with the
highest probability under the current context) was first computed using the
Viterbi algorithm, and then the successor distribution was read out from the

emission probabilities of the last state of the sequence.

111

Kullback - Leibler divergence

2.5
e B Training
0] .
b [oor Test
mMm— 00— d—»@---» ? < 1.0
\ .
\l ' 0.5
v I
4-gram 3-gram 2-gram \ 0.0
S &S & oL 8
IS
<& v 5 o

Figure 32. (A) A prototypical prediction problem, on which a certain context is given
(i.e. the first four letters of a word) and the aim is to predict the probability distribution
of the following letter. (B) Prediction error on training set (gray) and test set (black)
for different models, measured as the KL-divergence between

predicted and empirical distributions (small is better).

4.6.3 Results and discussion

Prediction errors for the different models are plotted in Fig. 32B. The
prediction accuracy of the RTRBM on the test set was higher than that of all n-
gram models, and just slightly lower than that of the SRN and HMM. It can be
noted that the 2-gram model is inadequate for accurately predicting which letter
will follow a given context, because it only takes into account the last letter as
context. Other models reach better accuracy thanks to their ability to consider
longer context when making predictions. Moreover, the results confirmed a
critical limitation of n-gram models, which is their poor generalization. The
longer the context of the n-gram, the greater was the prediction accuracy on the
training data. However, on test data the performance of the 4-gram model
significantly decreased due to coding of too specific contexts. This limitation

could be alleviated by using more sophisticated smoothing techniques.

112

0.3 0.20
) c
o o
c =
8 0.3 S 0.16
[2])
T 02 “i
C =
§ = 0.12
%) 0.2 GC)
© T 0.08
O 0.1 2z
@ L o004
o 0.1 S 7
= o
o
0.0 0.00
0 2 4 6 8 0 005 01 015 02 025 03 035
Levenshtein distance Representation distance

Figure 33. (A) Correlation between internal representations similarity and
Levenshtein distances of corresponding words. (B) Probability density function of

mean Euclidean distances between internal representations.

On the other hand, both connectionist models avoid the problem of
specificity by exploiting distributed representations of the context, which turns
into good generalization performance. Overall, the results show that both the
RTRBM and the SRN successfully learned the transition probabilities between
the letters of English words, yielding a level of prediction accuracy that is
comparable to that of other popular sequential language models.

Analysis of the internal (i.e., hidden layer) representations, generated after
the production of the last letter of a word, revealed that the similarity between
the representations (calculated as Euclidean distances) is correlated with the
similarity between the corresponding sequences (measured with the
Levenshtein distance), with a correlation coefficient r of 0.42 (see Fig. 33A). This
means that similar words, for example those that have Levenshtein distance 1
(i.e., they differ only by one single-character edit, where an edit can be an
insertion, a deletion or a substitution) are internally represented by highly
similar activation patterns. Inspection of the frequency distribution of mean
Euclidean distances between patterns (Fig. 33B) revealed a bimodal distribution,

best fit by a mixture of two Gaussians: G1 (p1 = 0.08, 01 = 0.04) and G2 (p2 =

113

0.21, 062 = 0.02) with mixing coefficients pI1 = 0.20 and pZ = 0.80. This means that
a consistent number of sequences are encoded using highly similar
representations (corresponding to G1), and this happens to be the case for the
majority of words with Levenshtein distance of 1. Although it is not clear how
this high similarity affects the discriminability between words, it suggests that
the RTRBM is not always producing static, holistic representations of entire

sequences.

4.6.4 Simulation 2: generative abilities

In a second set of simulations, we went on to investigate the ability of the
considered models to autonomously generate well-formed sequences of letters.
Indeed, a generative model will produce a sequence of letters even when there is

no external context to drive the generation.

Stochastic simple recurrent networks (SSRNs)

Due to the deterministic, input-driven nature of the SRN, its basic version
cannot be used to autonomously generate sequences. We therefore propose a
simple extension of the model that allows to produce sequences from the
learned probability distribution. The proposed extension can be applied to tasks
exploiting a localistic, one-hot encoding of the input pattern. In this scenario, an
external stochastic process can be used to sample the next element following a
given sequence according to learned conditional probabilities, thereby allowing
to autonomously generate sequences from the model. A graphical representation
of this Stochastic Simple Recurrent Network (SSRN) is given in Fig. 34A, while
Fig. 34B illustrates the generation process of a three-elements sequence when
the network is unfolded in time. Stochastic sampling can be implemented by first
transforming the SRN’s output activations to a (conditional) probability
distribution. A straightforward way to realize this is to calculate the
corresponding cumulative distribution, and then select the letter corresponding

to a random number drawn from the interval [0,1].

114

| : 0, 0, 0,

: | Output layer | 7 S — ‘

: 1‘_ . o
stochcj_.qt'ic normaf:zanon/\ \ | \,l-/ H
sampling copy SN . _,

: | Hidden layer | |:|‘1 N l-J‘Z | H‘3

i / \ d \\\ \\\ VH

i < <

: | Visible layer | Context layer Vv Vv V

i r'y 1 2 3

Figure 34. (A) Graphical representation of the Stochastic Simple Recurrent Network
(SSRN). The output activations are first normalized, and an external stochastic
process then samples the next element of the sequence, which is given as input to
the network at the following timestep. (B) Schematic diagram of the SSRN
generating a 3-element sequence. Note that this architecture requires an additional
set of hidden-to-output (HO) weights compared to the RTRBM.

The selected element is given as input to the network at the next timestep, and
this process is repeated until the termination symbol is produced. Even if we
used logistic sampling, it should be noted that other approaches can be used to
obtain a probability distribution in the output units, for example by using a
softmax function (see McClelland, 2013, for a discussion about the relation of
logistic and softmax sampling and their Bayesian interpretation).

We note that, although RTRBMs and SSRNs have some common
characteristics, they differ in several fundamental aspects. In SSRNs, supervised
learning is used to establish a mapping between the input (i.e., the current
element of the sequence plus contextual information) and a separate output
representation (i.e., the prediction of the following element), as illustrated in Fig.
34A. In contrast, RTRBMs use a common layer for encoding both the input and
the model’s prediction (see Fig. 13A), and learn to process sequential
information in a completely unsupervised way by trying to accurately reproduce

(i.e., generate) the training sequences. Processing in SSRNs is thereby inherently

115

deterministic and essentially input-driven (i.e., bottom-up), while RTRBMs can
autonomously produce top-down activations on the sensory units from internal

representations through their intrinsically stochastic dynamics.

4.6.5 Evaluation procedure

We evaluated the quality of the letter sequences generated by the learning
models by comparing them with those contained in the training and test sets,
and with those produced by two published pseudoword generator algorithms.
We considered the ARC pseudowords database (Rastle, Harrington, & Coltheart,
2002) and Wuggy (Keuleers & Brysbaert, 2010). The ARC database contains
310,000 non-pseudohomophonic monosyllabic pseudowords, built using a
hand-crafted grammar that defines phonological constraints on monosyllables. A
set of phoneme-to-grapheme correspondences extracted from CELEX is used to
derive possible spellings of legal phonological strings, which are then converted
back to phonological representations using a set of grapheme-phoneme
correspondences. Finally, phonological strings that differ from the initial
phonologies are excluded from the database. The Wuggy pseudoword generator
takes a different approach. Instead of combining subsyllabic elements like in the
ARC database, it starts from a given set of words, which are syllabified and used
to build a bigram chain. Pseudowords are then generated by recursively
iterating through the chain. Wuggy is particularly interesting for our
comparison, because it does not use phonological representations and it starts
the generation from a reference list of words. Thus, we could generate
pseudowords using the same training set of the RTRBM.

Each model was used to generate an arbitrary number of sequences, which
was chosen to be 300 times the size of the training set (i.e. 1,590,000 samples).
We then calculated two indexes: completeness of the generation, computed as the
ratio between the number of sampled sequences that also appeared in the
training set (without repetitions) and the total number of sequences contained

in the training set; and fidelity of the generation, computed as the ratio between

116

the sampled sequences that also appeared in the training set (possibly repeated)
and the total number of sampled sequences. The first indicator describes the
ability of the model to regenerate the training sequences and it depends on the
sampling size. Augmenting the number of the samples generally increases the
completeness of the generation. The second indicator does not depend on the
size of the sampling and gives an idea about the model tendency to generate new
wordforms instead of reproducing only previously seen sequences: the lower
the fidelity, the greater this tendency.

Given that all models generated a consistent amount of new wordforms
(as reported below), we inspected the quality of the generated strings that did
not belong to the training set. All models produced a number of real English
words that were not part of the training set, which we excluded from the
analysis in order to allow a fair comparison with the pseudoword generator
algorithms. We therefore analyzed the 20,000 most frequently generated
pseudowords composed by at least 3 letters. We randomly selected the same
number of pseudowords (with at least 3 letters) from the ARC database for a
comparison with its underlying generation algorithm. The Wuggy pseudoword
generator was supplied with the words of the training dataset as input to build
the bigram chain, and we selected the 20,000 most frequently generated
pseudowords using the following parameter set: maximal number of candidates
was set to 15, maximal search time was set to 10 seconds, and all output
restrictions were required (i.e., match length of subsyllabic segments, match
letter length, match transition frequencies and match subsyllabic segments). The
set of pseudowords generated by each model or algorithm was evaluated in
terms of the following statistical features (Duyck, Desmet, Verbeke, & Brysbaert,
2004): sequence length, that we expected to be close to the average length of
words in the training set; orthographic neighborhood, the number of
orthographic neighbors that a string has (i.e., an orthographic neighbor is a word
of the same length that differs from the original string by only one letter; for

example, given the pseudoword ‘at’, the words ‘bat’, ‘fat’, ‘cat’ and ‘tab’ are

117

orthographic neighbors); and constrained bigrams and trigrams frequency, which
are the averaged type frequency of constrained bigrams (trigrams) for the
wordform. A constrained bigram is defined as a specific two-letter combination
in a specific position and specific word length. That is, ‘es’ in ‘best’ is considered
the same as in ‘nest’, but is different both in ‘yes’ (different length) and in ‘does’

(different position).

4.6.6 Results and discussion

The results of the generation process in terms of completeness and fidelity

are shown in Table 2.

RTRBM | SSRN | HMM | 2-gram | 3-gram | 4-gram

Completeness 91% 98% 92% 67% 96% 99%

Fidelity 16% 37% 13% 5% 21% 58%

Table 2. Completeness and fidelity of the generation process for

each tested model.

With regard to the RTRBM and the SSRN, Fig. 35 shows that both indicators
improved as training proceeded and that eventually both networks were able to
generate a large fraction of the words in the training set. Nevertheless, the low
fidelity suggests that both models are not encoding entire sequences, but they
rather exploit local transition rules during the generative process. Indeed, the
networks generated many legal sequences that were not present in the training
set (a few samples generated by the RTRBM are reported in Fig. 36A). Some of
these sequences were in fact real English words that were not part of the
training set, and a similar pattern was found for the other models. It is worth
noting that the generated pseudowords might be composed by “legal” bigrams
(i.e.,, combinations of two subsequent letters that are observed in the training

set) or by novel (and potentially illegal) bigrams.

118

RTRBM SSRN
100

L 4
L 4
L 4
L 4
L 4

80
+—Fidelity

60 —&—Completeness

40 * * *

L 4

Percentage

20 o—*

0 50 100 150 200 250 300 3500 50 100 150 200 250 300 350

Learning epochs Learning epochs

Figure 35. RTRBM and SSRN completeness and fidelity (percentage) of generation

as a function of training time (in epochs).

To investigate this point, we computed the fraction of illegal bigrams produced
by the RTRBM with respect to the total generated bigrams in the considered set
of pseudowords. We found a ratio of 0.2%, which confirms that the RTRBM
generated many novel pseudowords without introducing illegal bigrams.

Results of the analysis of pseudoword quality for all models are shown in
Fig. 36. The number of pseudowords shorter than 3 letters that was excluded
from the analysis was negligible for all the models. As expected, the average
length of the pseudowords generated by the different models was similar to that
of the words in the training set, except for the 4-gram model, which produced
longer sequences. Interestingly, only the RTRBM and Wuggy never generated
words longer than 7 letters, which is the maximum length of the words in the
training data (note that Wuggy was explicitly required to respect this
constraint). All the other models, instead, generated a certain number of
pseudowords longer than 7 letters. This ranged from just 16 for the SSRN to

several thousand for the 4-gram model.

119

A

almed
braw
burms
creats
doak
drail
drit
franes
glips
hamped
hine
kidge
kumb
lains
loiked
nooth
pirch
roash
sharled
shumps
thint
toill
trake
vime
woomed

1600

1400

1200 A

1000 -

Pseudowords length

c
2
e

D Constrained bigrams frequency
(BigFreq)

7B

"Renon AE

7 E

| =

n “h=
o=

) E

1UE

Ie T T T T IA I(J I% I((/ 1
@Q_ S 3@@@@&30§ L K

Orthographic neighborhood

(OrthN)
8
7] =
6 Vi
“R=
_ /8=
4 - - /n=)
) &
2 - I / =
E
0 A T T T T T T T I—I T T 1
$§§§§$3§é§d§§?égx$ﬁ&
& TP IS
E o
Constrained trigrams frequency
(TriFreq)
280
210
140 - N
70 . [1
0 - T T T T T T T
$§§§§§@§é§é§§§§g &
& T X APLFOS

Figure 36. (A) Sample of pseudowords generated by the RTRBM. Average length

(B), average orthographic neighborhood (C), constrained bigrams frequency (D) and

constrained trigrams frequency (E) collected over 20,000 pseudowords generated by

different models and over words of the training (TR) and test (TE) datasets.

Importantly, pseudowords generated by connectionist models had the highest

mean orthographic neighborhood (4.96 for the RTRBM and 5.03 for the SSRN),

followed by those generated by the 3-gram model and Wuggy; see Fig. 36C. On

the other hand, ARC pseudowords had the lowest orthographic neighborhood

(0.56). The mean constrained bigram frequency (Fig. 36D) was higher for the

RTRBM compared to all other models, approaching the value of the words in the

training set. Both these measures indicate that the RTRBM produced high-

quality pseudowords.

120

Note also that the statistics computed over the training set are very close to
those computed over the test set (compare the last two columns in Fig. 36B-E),
thereby showing that these values are representative of the statistical
distribution in English monosyllabic words. It is also interesting to note that the
RTRBM, the SSRN and Wuggy generated pseudowords with similar statistics,
even if the latter exploits a sophisticated algorithm based on bigram chains that
are carefully constructed taking into account linguistic information and that are
processed using an optimized search procedure (Keuleers & Brysbaert, 2010).

It should finally be emphasized that our assessment of the generative
ability of the network was not performed over a sample of pseudowords
generated by human subjects. This would constitute an important research
direction, because there is no study to our knowledge that has investigated the
spontaneous production of pseudowords by humans. An empirical study on
human pseudoword generation would provide a very informative baseline to

measure the quality of different models.

121

122

5 Conclusions

5.1 Discussion and summary of contributions

Generative neural networks constitute a promising modeling approach to
study cognitive processes within a parallel distributed processing framework. In
particular, Restricted Boltzmann Machines (RBMs) are a powerful class of
recurrent neural networks that can learn a probabilistic generative model from a
set of high-dimensional patterns in a completely unsupervised fashion. The
recent introduction of efficient learning algorithms and the possibility to
implement these models on high-performance parallel computing machines
allow to effectively train large-scale networks in a reasonable amount of time.
Moreover, single-layer RBMs can be easily stacked together in order to build
multi-layer architectures known as deep learning systems, which implement
hierarchical generative models by extracting increasingly more abstract
representations from the sensory input (Hinton, 2007). Other extensions of
single-layer RBMs use a set of delayed recurrent connections to propagate
information over time, thereby allowing to extract temporal structures from
sequences of patterns (Sutskever et al., 2008).

Generative neural networks reach impressive performance on many
challenging machine learning tasks, ranging from visual object recognition
(Krizhevsky et al, 2012) and speech perception (Mohamed et al, 2012) to
completely different domains, such as optimization of wireless systems (Badia et
al., 2014; Testolin et al., 2014). However, their application as cognitive models is
still very limited (e.g. Di Bono & Zorzi, 2013; Stoianov & Zorzi, 2012; Zorzi et al,,
2013). In this thesis, we presented several techniques that can be used to study
deep learning systems from a cognitive modeling perspective. We also discussed
some critical features of this type of generative networks that make them
particularly appealing to model cortical processing. In particular, the presence of

top-down generative connections, the unsupervised nature of the learning

123

algorithm and the interactive propagation of signals across the processing
hierarchy suggest that these models constitute an important step forward to
improve current connectionist models of cognitive functions. Moreover, the
probabilistic interpretation of these recurrent networks in terms of graphical
models improves the probabilistic characterization of cognitive systems by
proposing how Bayesian computations might be actually implemented in neural
circuits.

The modeling framework proposed in this thesis is also consistent with
other recent brain theories that describe nervous systems as a sophisticated
type of predicting machines (Clark, 2013; Friston, 2010; Huang & Rao, 2011),
which not only build a probabilistic internal model of the environment, but also
optimize information encoding by only transmitting prediction errors caused by
a mismatch between model’s expectations and sensory signals. Furthermore,
this modeling framework is perfectly aligned with the growing experimental
literature highlighting the statistical nature of learning processes in human
infants and many other animal species (e.g., Fiser & Aslin, 2002; Fiser, Berkes,
Orban, & Lengyel, 2010; Krogh, Vlach, & Johnson, 2013; Saffran, Aslin, &
Newport, 1996; Toro & Trobalén, 2005).

The empirical research performed in this thesis tested the capability of
generative neural networks within the prototypical domain of orthographic
processing. Learning to recognize written patterns is a remarkable challenge for
neural circuits, which must cope with the high variability in shapes and writing
styles that characterize writing systems. A seminal proposal to model
orthographic processing exploited a hierarchy of hand-coded visual features
(McClelland & Rumelhart, 1981), while more recent learning models have shown
how supervised learning applied to convolutional architectures lead to very high
recognition accuracy (LeCun et al, 1998). Here we demonstrated that
impressive recognition accuracy could also be achieved by means of
unsupervised generative learning in deep architectures, which extract abstract

letter representations by learning a hierarchy of increasingly complex visual

124

features. We started our research work by first proposing an efficient, parallel
implementation of deep belief networks on graphic processing units (GPUs),
which allows to significantly reduce computational times required by deep
learning simulations by distributing the computation over many simple
processors equipped with a shared, large-bandwidth memory. This efficient
implementation makes it possible to learn large-scale models, which are trained
using big digital datasets containing thousands of high-dimensional patterns.

We then tested the capability of deep networks to build invariant
representations of printed letters by performing unsupervised learning over a
large dataset of visual patterns containing Latin letters printed with a variety of
fonts, sizes and styles. After learning, the model was tested on a classification
task by training a linear read-out module on different levels of representation.
The linear classifier obtained high recognition accuracy on the deepest internal
representations, while it exhibited a much lower accuracy when applied directly
on the raw input patterns. Moreover, we tested the performance of deep
networks in various generation tasks, where top-down connections are used to
produce accurate class prototypes in the sensory layer. However, a careful
inspection of the type of receptive fields developed by a deep network at
different levels revealed that unsupervised learning did not produce an optimal
hierarchical model of the training data, because the complexity of visual features
did not always increased along the hierarchy. A possible explanation for this
phenomenon is that the variability associated with printed patterns might not be
enough to build a proper hierarchy of features. Indeed, better features can be
extracted from datasets containing handwritten patterns, whose visual
appearance is more variable compared to printed ones. At the same time, an
important limitation of using handwritten patterns is that we do not obtain a
clear and controlled experimental setting, because the latent factors of
variations that are explicit in the printed form (e.g., font type, letter size, etc.)
cannot be directly manipulated when using handwritten characters. Despite this

limitation, in a second set of simulations we tested the recognition performance

125

of deep networks on a large dataset containing handwritten Farsi characters,
which represent a particularly challenging script due to the presence of fine-
grained, cursive visual features and due to the high similarities among certain
letters. Confirming the expectations discussed above, in this case the deep
network was indeed able to extract a good hierarchy of visual features: receptive
fields of the first hidden layer resembled on-centered and off-centered
combinations of Gaussian filters, while in the second layer these low-level
features were combined in order to form edge detectors and Gabor filters. In the
deepest layer receptive fields became even more complex, encoding structured
visual features and letter shapes. Notably, also here a linear read-out module
trained on the deepest internal representations exhibited very high recognition
accuracy, suggesting that hierarchical generative models constitute a promising
tool for modeling written patterns belonging to different scripts. Moreover, we
tested the hypothesis that different alphabets share a common underlying visual
structure, which can be readily captured by deep networks. To this aim, we used
a deep network trained in an unsupervised way on handwritten Farsi letters to
compute high-level representations of both Farsi and Latin handwritten digits.
Such representations were then read-out by a linear classifier, which still
exhibited surprisingly high recognition accuracy, thus supporting the idea that
visual features can be transferred across different writing domains.

In a separate set of simulations, we also tested the ability of single-layer
RBMs to extract low-level visual features from a large dataset containing patches
of natural images. We found that unsupervised learning shaped the receptive
fields of hidden units in a way that closely matches the outcome of other types of
statistical learning algorithms, such as independent component analysis (Bell &
Sejnowski, 1997; van Hateren & van der Schaaf, 1998) or sparse coding
(Olshausen & Field, 1996). In particular, hidden units learned to encode low-
level visual features resembling those observed in the primary visual cortex,
such as Gaussian filters, edge detectors and Gabor filters of different spatial

orientation and frequency. However, a quite surprising result was that RBMs

126

also extracted some qualitatively different types of filters, which might be
classified as ridgelets and gratings, and which have shown to emerge when using
highly overcomplete sparse codes (Olshausen, 2013). Furthermore, we showed
that this type of visual features can be readily used to also represent the dataset
of Latin printed letters used in the simulations discussed above, and that a linear
read-out module applied on these representations reach an impressive
recognition accuracy. This interesting result provides further evidence
supporting the hypothesis that the shapes of written patterns are not arbitrary,
but instead they have been culturally selected to closely match the statistical
structure of visual stimuli occurring in our natural environments (Changizi et al.,
2006; Dehaene & Cohen, 2007).

We then proceeded by investigating how deep networks could learn
patterns composed by multiple letters, which can be arranged in either a spatial
or in a temporal configuration. In a set of simulations we exposed a two-layers
deep network to a dataset of English words composed by four letters, which
were encoded using a simple, geometrical font and arranged in a visual display.
The entire letter sequence was therefore processed in parallel. Analyses on the
model suggested that the network was building increasingly more complex
representations along the hierarchy, with the first layer mostly encoding
information about simple features and letter identities, and the second layer
combining this information in order to build word-level representations. The
network was also successfully tested on a variety of reconstruction and
denoising tasks, which showed how top-down generative connections could be
used to disambiguate sensory information.

In a final set of simulations, we assessed the performance of a temporal
extension of RBMs, called the Recurrent Temporal Restricted Boltzmann
Machine (RTRBM), which can process sequential information by using a set of
delayed recurrent connections. In this setting, orthographic information had to
be extracted in an unsupervised way from English monosyllables presented one

letter at a time. After learning, we tested the performance of the network on a

127

prediction task, where some letters were given as a context and the model was
asked to predict the probability distribution of the successive letter. We
compared the performance of the network with that of another widely used
connectionist architecture for sequential data, the simple recurrent network
(SRN; Elman, 1990) and with that of other popular probabilistic generative
models (i.e., hidden Markov models and n-grams). We also tested the generative
abilities of the considered models, by making them generate a large number of
sequences that were confronted with a set of pseudowords generated by
popular algorithms used in psycholinguistic studies. In order to autonomously
generate sequences from the SRN, we extended its basic formulation by
introducing an external, stochastic sampling process that select the next letter to
generate according to the learned conditional probabilities. We found that both
the RTRBM and the stochastic version of SRNs exhibited good prediction and
generation performance. On the one hand, this is not surprising because both
connectionist models try to predict the next element of a sequence by learning
conditional probabilities from the training data. Indeed, there is a tight formal
relationship between probabilistic graphical models and recursive neural
networks (Baldi & Rosen-Zvi, 2005). However, the two architectures also differ
in several fundamental aspects. Learning in the SSRN is concerned with
establishing a mapping function between the current input (plus temporal
context) and a separate output representation. In contrast, the RTRBM learns an
internal model of the data (i.e., the hidden causes that generated the input
patterns) by trying to accurately reproduce the incoming information through
feedback (i.e., top-down) connections. That is, sequential information is learned
by trying to re-generate the training sequences on the same layer that is used for
providing the input. Moreover, the SSRN relies on two additional operations, one
that performs a non-local normalization over the activations of output units and
another that samples the predicted element exploiting an external, ad-hoc
stochastic process. In contrast, autonomous sequence generation from the

RTRBM is an intrinsic feature of the network: there is no need to perform

128

normalization and to sample from the corresponding distribution, because the
probabilistic behavior is caused by the stochastic dynamics that is also a crucial
part of the learning process. Nevertheless, the SSRN might be also appealing as a
cognitive modeling architecture due to its much simpler formulation and its
close relationship to the widely used SRNs. On the other hand, the SSRN cannot
be applied when the learning task involves multimodal, distributed
representations as input to the network (as in Sutskever et al., 2008) instead of
the simpler, one-hot localist scheme that we adopted in our simulations.

In summary, the theoretical contributions and the empirical results
presented in this research work provide support for a computational
characterization of cognitive systems based on generative neural networks.
Though the simulations discussed in this thesis must be expanded and carefully
validated against published experimental data, they constitute a promising
starting point to develop a comprehensive computational description of complex

cognitive processes such as those underlying orthographic processing.

5.2 Future research directions

The theoretical and methodological framework discussed in this thesis
needs to be further extended in order to address many challenging and
interesting research questions.

Regarding the empirical results on recognition of single characters,
simulations should be more accurately evaluated according to the great number
of experimental studies that have been conducted during the last decades. In
particular, the internal representations and the response errors of a deep
network can be readily used to computer letter similarities, which can then be
compared to data collected on human subjects (e.g., Gervais, Harvey, & Roberts,
1984; Grainger et al., 2008). Moreover, the performance of the network can be
tested on a variety of experimental settings, for example by adding different

types of noise in the visual display in order to more precisely identify which are

129

the most relevant visual features used to recognize each letter (e.g., Fiset et al,,
2008; Pelli, Burns, Farell, & Moore-Page, 2006).

The multiple-letters scenario can be extended to cover more challenging
input representations, for example by studying recognition of English words
encoded at the pixel level. The behavior of a deep network can then be compared
to existing data collected on human subjects, or even on non-human primates
(e.g., Grainger et al,, 2012). Moreover, the deep architecture used to process
spatially arranged sequences of letters might be combined with the temporal
extension of RBMs, which would allow to effectively process sequences of letters
exploiting both serial and parallel processing mechanisms. This would make it
possible to better investigate the extent to which unsupervised statistical
learning could generate novel word-like units (Saffran, 2001), for example by
showing how syntactic structures could emerge by first segmenting words from
a continuous stream, and subsequently discovering the permissible orderings of
the words (Saffran & Wilson, 2003). In this respect, it is worth mentioning that
there exist some other recent generative models, like the Conditional RBM
(Taylor, Hinton, & Roweis, 2011), which also allow processing of temporal
information and which might be more easily stacked into a hierarchical system.

It should also be noted that orthographic processing is an essential
component of reading, thereby incorporating our framework into popular
computational models of reading (Zorzi, 2005) would be an important step
forward to improve our current understanding of this complex cognitive task.
Indeed, reading is a fundamental skill that children must properly acquire in
order to be successful in subsequent educational levels, but despite the central
relevance of reading for modern societies its neural bases are not yet completely
understood (Dehaene, 2009). More comprehensive computational simulations
would therefore constitute a valuable tool, possibly allowing to also improve
educational practices and to design more effective reading devices. The
computational framework proposed in this thesis can serve as a starting point to

also explore other interesting phenomena, for example by suggesting how neural

130

circuits adapted to encode particular statistical features can be re-used to also
process other type of information, thereby providing important insights into the
cortical recycling hypothesis (Dehaene & Cohen, 2007).

From a broader perspective, it should be noted that sequential statistical
learning is a general phenomenon that is found across different sensory
modalities (Conway & Christiansen, 2005). Although it is not yet clear whether
the underlying mechanism is unitary or modality-constrained, it is interesting to
note that the temporal extension of RBMs used in this thesis has been previously
applied to modeling video sequences (Sutskever et al., 2008). The RTRBM was
able to capture the high-dimensional, multimodal nature of the pixels
distribution across subsequent frames, despite the complex nonlinearities
characterizing the movies of the dataset. Moreover, an extension of the RTRBM
has also been recently used to model temporal dependencies in polyphonic
music (Boulanger-Lewandowski, Bengio, & Vincent, 2012), thereby supporting
the intriguing hypothesis that music, language and statistical learning might be
tightly linked (McMullen & Saffran, 2004; Patel, 2003). Interestingly, one of the
possible common threads underlying all these cognitive phenomena might be
the involvement of anticipatory, attentive processes, which allow to effectively
use neural resources by actively predicting the sensory stream. The language of
Bayesian statistics has already provided some initial insights about how
attention can be formalized within a probabilistic framework: for example, eye
movements used to explore a visual scene have been modeled by simulating a
cognitive agent that tries to minimize a “surprise” measure (Itti & Baldi, 2009),
where the surprise of a stimulus was defined as the Kullback-Leibler divergence
between the probabilistic estimate of a hypothesis before and after the
observation of some data (if the divergence is high, it means that the observed
evidence was unexpected). A promising research direction would therefore be to
use generative, sequential neural networks to study how such attentional
mechanisms might be implemented in neural circuits, for example by

investigating how expectations are propagated over time, while the system is

131

constantly integrating incoming evidence to update the current internal model of
the environment. In this respect, it might be interesting to explore a recent
variant of deep belief networks, called deep Boltzmann machine (Salakhutdinov
& Hinton, 2012), which implements a fully recurrent deep architecture that uses
top-down feedback at each inferential step, thereby allowing to better propagate
uncertainty within the system. In a recent study (Reichert, Series, & Storkey,
2013), deep Boltzmann machines have been used to model some symptoms
observed in the Charles Bonnet syndrome, where loss of vision leads to vivid
visual hallucinations of objects, people, and whole scenes. The authors suggest
that such sensory hallucinations might be caused by an unbalanced regulation of
bottom-up and top-down neural activity, which might result in false perceptions
generated according to expectations produced by the internal model.

Furthermore, by also considering the possibility to act on the environment,
this approach might be further extended to incorporate some form of active
perception, on which the system is not passively waiting for the evidence to
come, but it also actively explores the hypothesis space in order to collect the
most informative samples. Within this broader framework, the role of attention
might be to act at the interplay of perception, action and cognition, at the same
time guaranteeing an efficient use of the available processing resources.

[t should also be mentioned that in the last few years there have been other
significant improvements in training recurrent neural networks, which allow to
more efficiently learn temporal models from sequences of patterns. In particular,
some authors proposed to extract long-term dependencies from a data stream
by exploiting Hessian-free optimization algorithms (Martens & Sutskever, 2011),
while other approaches exploit a simplified, linear model to pre-train the
recurrent connections, which are successively fine-tuned to capture more
distant dependencies (Pasa & Sperduti, 2014; Pasa, Testolin, & Sperduti, 2014,
2015).

Finally, testing this type of models in more realistic situations would also

require to further improve their hardware and software implementation, for

132

example by relying on more efficient parallel computing architectures. Graphic
processors constitute a promising technology to significantly scale-up
simulations of parallel processing biological systems, because they provide an
enormous computational power with an affordable cost. However, it is likely
that we will have to resort to even more efficient computing machines in order
to build truly large-scale simulations, where rich, high-dimensional sensory
inputs are processed in real-time by complex neural networks composed by
billions of artificial neurons. Within this respect, a promising research direction
is to exploit neuromorphic hardware, which relies on advanced processing units
that more closely mimic the physical dynamics observed in biological synapses
(e.g., Jo etal, 2010; Strukov, Snider, Stewart, & Williams, 2008).

In summary, current research on artificial neural networks and
probabilistic models is an extremely active, ever expanding field, which will
hopefully improve our understanding of cognition from a computational
perspective. However, although the path toward these promising research
directions might appear straightforward, it requires the integration of many
different, complementary approaches and research methodologies. In order to
succeed, researchers should therefore never forget the fundamentally
interdisciplinary nature of cognitive science, which takes advantage from a
variety of disciplines and schools of thought. In this thesis we focused on the
computational modeling framework, which has some distinguishing features
that make it particularly appealing to investigate many cognitive phenomena.
However, we should also keep in mind that computational models are primarily
tools for exploring the implication of ideas (McClelland, 2009), and that they
must always be complemented with other research frameworks and
perspectives if we really want to grasp the amazing complexity of nervous

systems.

133

134

References

Abbott, L. F. (2008). Theoretical neuroscience rising. Neuron, 60(3), 489-95.

Ackley, D., Hinton, G. E., & Sejnowski, T.]. (1985). A learning algorithm for
Boltzmann machines. Cognitive Science, 9(1), 147-169.

Anderson, . (1983). The architecture of cognition. Cambridge, MA: Hardward
University Press.

Andrieu, C., De Freitas, N., Doucet, A,, Jordan, M. L, & Freitas, N. De. (2003). An
introduction to MCMC for machine learning. Machine Learning, 50(1), 5-43.

Ashby, W. R. (1956). An introduction to cybernetics. London, UK: Chapman and
Hall.

Atick,]., & Redlich, A. (1992). What does the retina know about natural scenes?
Neural Computation, 4, 196-210.

Baayen, R. H., Piepenbrock, R., & van Rijn, H. (1993). The CELEX lexical database
[CD-ROM]. Philadelphia, PA: Linguistic Data Consortium, University of
Pennsylvania.

Badia, L., Munaretto, D., Testolin, A., Zanella, A., Zorzi, M., & Zorzi, M. (2014).
Cognition-based Networks: Applying Cognitive Science to Multimedia
Wireless Networking. In IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks. Sydney (AUS).

Baldi, P., & Rosen-Zvi, M. (2005). On the relationship between deterministic and
probabilistic directed Graphical models: from Bayesian networks to

recursive neural networks. Neural Networks, 18(8), 1080-1086.

Barlow, H. (1961). Possible principles underlying the transformation of sensory
messages. Sensory Communication.

Bassett, D. S., & Gazzaniga, M. S. (2011). Understanding complexity in the human
brain. Trends in Cognitive Sciences, 15(5), 200-9.

Beer, R. (2000). Dynamical approaches to cognitive science. Trends in Cognitive
Sciences, 4(3), 91-99.

Bell, A.]., & Sejnowski, T.]. (1997). The “independent components” of natural
scenes are edge filters. Vision Research, 37(23), 3327-38.

135

Bengio, Y. (2009). Learning Deep Architectures for Al. Foundations and Trends®
in Machine Learning, 2(1), 1-127.

Bengio, Y., & Lamblin, P. (2007). Greedy layer-wise training of deep networks.
Advances in Neural Information Processing Systems, 19, 153-170.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks, 5,
157-166.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Oxford
University Press.

Botvinick, M. M., & Plaut, D. C. (2004). Doing without schema hierarchies: a
recurrent connectionist approach to normal and impaired routine
sequential action. Psychological Review, 111(April), 395-441.

Boulanger-Lewandowski, N., Bengio, Y., & Vincent, P. (2012). Modeling temporal
dependencies in high-dimensional sequences: Application to polyphonic
music generation and transcription. In International Conference on Machine
Learning.

Brown, M., Hua, G., & Winder, S. (2011). Discriminative learning of local image
descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence,
33(1), 43-57.

Brown, P., DeSouza, P., Mercer, R., Della Pietra, V., & Lai, J. (1992). Class-based n-
gram models of natural language. Computational Linguistics, 18(4), 467-
479.

Burgess, N., & Hitch, G.]. (1999). Memory for serial order: A network model of
the phonological loop and its timing. Psychological Review, 106(3), 551-581.

Candes, E., & Donoho, D. (1999). Ridgelets: A key to higher-dimensional
intermittency? ... of the Royal ..., 357(1760), 2495-2509.

Caruana, R. (1998). Multitask learning. Machine Learning, 28(1), 41-75.

Cattell, J. M. (1886). The Time it Takes to See and Name Objectsm. Mind, 11, 220-
242,

Changizi, M., Zhang, Q., & Ye, H. (2006). The structures of letters and symbols
throughout human history are selected to match those found in objects in
natural scenes. The American Naturalist.

Chen, S., & Goodman, . (1996). An empirical study of smoothing techniques for

language modeling. In Proceedings of the 34th Annual Meeting of the
Association for Computational Linguistics (pp- 310-318).

136

Chikkerur, S., Serre, T., Tan, C., & Poggio, T. (2010). What and where: a Bayesian
inference theory of attention. Vision Research, 50(22), 2233-47.

Chomsky, N. (1957). Syntactic Structures. Mouton De Gruyter.

Churchland, P. S., Ramachandran, V., & Sejnowski, T.]. (1994). A Critique of Pure
Vision. In Large-scale neuronal theories of the brain (pp. 22-60).

Churchland, P. S., & Sejnowski, T. J. (1992). The computational brain. MIT press.

Ciresan, D., Meier, U., Gambardella, L. M., & Schmidhuber,]. (2010). Deep Big
Simple Neural Nets Excel on Handwritten Digit Recognition. Neural
Computation, 22(12), 3207-3220.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the
future of cognitive science. Behavioral and Brain Sciences, 36(3), 181-204.

Cohen, . D., Dunbar, K., & McClelland,]. L. (1990). On the control of automatic
processes: a parallel distributed processing account of the Stroop effect.
Psychological Review, 97(3), 332-410.

Cohen, L., & Dehaene, S. (2004). Specialization within the ventral stream: the
case for the visual word form area. Neurolmage, 22(1), 466-76.

Cohen, L., Dehaene, S., Naccache, L., Lehericy, S., Dehaene-Lambertz, G., Henaff,
M., & Michel, F. (2000). The visual word form area: Spatial and temporal
characterization of an initial stage of reading in normal subjects and
posterior split-brain patients. Brain, 123,291-307.

Conway, C. M., & Christiansen, M. H. (2005). Modality-constrained statistical
learning of tactile, visual, and auditory sequences. Journal of Experimental
Psychology. Learning, Memory, and Cognition, 31(1), 24-39.

Cottrell, G. W. (2008). Looking around the backyard helps to recognize faces and
digits. In IEEE Conference on Computer Vision and Pattern Recognition (pp.
1-8). leee.

Daugman, J. G. (2001). Brain metaphor and brain theory. In W. Bechtel, P.
Mandik,]. Mundale, & R. Stufflebea (Eds.), Philosophy and the neurosciences:
A reader (pp- 23-36). Blackwell.

Dayan, P, Hinton, G. E., Neal, R. M., & Zemel, R. S. (1995). The Helmholtz machine.
Neural Computation, 7(5), 889-904.

De Filippo De Grazia, M., Stoianov, L., & Zorzi, M. (2012). Parallelization of Deep
Networks. In European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (pp. 621-626). Bruges,
Belgium.

137

Dean,], Corrado, G. S., Monga, R., Chen, K., Devin, M., Le, Q. V, ... Ng, A. Y. (2012).
Large Scale Distributed Deep Networks. Advances in Neural Information
Processing Systems, 24, 1-9.

Dehaene, S. (2009). Reading in the brain: The new science of how we read.
Penguin.

Dehaene, S., & Cohen, L. (2007). Cultural recycling of cortical maps. Neuron,
56(2), 384-398.

Dehaene, S., Cohen, L., Sigman, M., & Vinckier, F. (2005). The neural code for
written words: a proposal. Trends in Cognitive Sciences, 9(7), 335-41.

Di Bono, M. G., & Zorzi, M. (2013). Deep generative learning of location-invariant
visual word recognition. Frontiers in Psychology, 4(September), 635.

DiCarlo, J. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends
in Cognitive Sciences, 11(8), 333-41.

DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual
object recognition? Neuron, 73(3), 415-34.

Dong, D., & Atick, J. (1995). Temporal decorrelation: a theory of lagged and
nonlagged responses in the lateral geniculate nucleus. Network:
Computation in Neural Systems, 6(2), 159-178.

Dupuy, J.-P. (2009). The mechanization of the mind: On the origins of cognitive
science. Bradford Book.

Duyck, W., Desmet, T., Verbeke, L. P. C., & Brysbaert, M. (2004). WordGen: a tool
for word selection and nonword generation in Dutch, English, German, and
French. Behavior Research Methods, 36(3), 488-99.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179-211.

Elman, J. L., Bates, E., Johnson, M., Karmiloff-smith, A., Parisi, D., & Plunkett, K.
(1996). Rethinking Innateness: A Connectionist Perspective on Development.
(J. L. Elman, Ed.). Cambridge, MA: MIT Press.

Falchier, A., & Clavagnier, S. (2002). Anatomical Evidence of Multimodal
Integration in Primate Striate Cortex. The Journal of Neuroscience, 22(13),

5749-5759.

Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in
the primate cerebral cortex. Cerebral Cortex, 1(1), 1-47.

Ffytche, D. H., & Zeki, S. (1996). Brain activity related to the perception of
illusory contours. Neuroimage, 3(3), 104-108.

138

Fiser, ., & Aslin, R. N. (2002). Statistical learning of higher-order temporal
structure from visual shape sequences. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 28(3), 458-467.

Fiser, ., Berkes, P, Orban, G., & Lengyel, M. (2010). Statistically optimal
perception and learning: from behavior to neural representations. Trends in
Cognitive Sciences, 14(3), 119-30.

Fiset, D., Blais, C., Ethier-Majcher, C., Arguin, M., Bub, D., & Gosselin, F. (2008).
Features for identification of uppercase and lowercase letters. Psychological
Science, 19(11), 1161-8.

Fodor,]. (1975). The language of thought. Cambridge, MA: Hardward University
Press.

Friston, K.]. (2010). The free-energy principle: a unified brain theory? Nature
Reviews. Neuroscience, 11(2), 127-38.

Fukushima, K. (1980). Neocognitron: a self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position.
Biological Cybernetics, 202.

Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6, 721-741.

Gerstner, W., Sprekeler, H., & Deco, G. (2012). Theory and simulation in
neuroscience. Science, 338(6103), 60-5.

Gervais, M.], Harvey, L. 0., & Roberts,]. 0. (1984). Identification confusions
among letters of the alphabet. Journal of Experimental Psychology: Human
Perception and Performance, 10(5), 655-66.

Glasspool, D. W., & Houghton, G. (2005). Serial order and consonant-vowel
structure in a graphemic output buffer model. Brain and Language, 94(3),

304-30.

Goldstein, J. (1999). Emergence as a construct: History and issues. Emergence,
49-72.

Goodale, M. a., & Milner, A. D. (1992). Separate visual pathways for perception
and action. Trends in Neurosciences, 15(1), 20-25.

Graham, D., & Rockmore, D. (2011). The packet switching brain. Journal of
Cognitive Neuroscience, 267-276.

Grainger, J. (2008). Cracking the orthographic code: An introduction. Language
and Cognitive Processes, 23(1), 1-35.

139

Grainger, |, Dufau, S., Montant, M,, Ziegler,]. C., & Fagot,]. (2012). Orthographic
processing in baboons (Papio papio). Science, 336(6078), 245-8.

Grainger, |, Rey, A., & Dufau, S. (2008). Letter perception: from pixels to
pandemonium. Trends in Cognitive Sciences, 12(10), 381-7.

Griffiths, T. L., Kemp, C., & Tenenbaum, J. B. (2008). Bayesian models of
cognition. In R. Sun (Ed.), Cambridge handbook of computational cognitive
modeling (pp. 59-100). Cambridge, MA: Cambridge University Press.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding: II.
feedback, expectation, olfaction, illusions. Biological Cybernetics, 202, 187 -
202.

Hebb, D. (1949). The Organization of Behavior: A Neuropsychological Theory.

Hertz, J. A., Krogh, A. S., & Palmer, R. G. (1991). Introduction to the theory of
neural computation. Redwood City, CA: Addison-Weasley.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive
divergence. Neural Computation, 14(8), 1771-1800.

Hinton, G. E. (2007). Learning multiple layers of representation. Trends in
Cognitive Sciences, 11(10), 428-34.

Hinton, G. E. (2010a). A practical guide to training Restricted Boltzmann
Machines. Technical Report UTML TR 2010-003, University of Toronto, 9, 1.

Hinton, G. E. (2010b). Learning to represent visual input. Philosophical
Transactions of the Royal Society of London. Series B, Biological Sciences,
365(1537), 177-84.

Hinton, G. E. (2013). Where Do Features Come From? Cognitive Science, 1-24.

Hinton, G. E., & Ghahramani, Z. (1997). Generative models for discovering sparse
distributed representations. Philosophical Transactions of the Royal Society
of London. Series B, Biological Sciences, 352(1358), 1177-1190.

Hinton, G. E., McClelland, |. L., & Rumelhart, D. E. (1986). Distributed
representations. In Parallel distributed processing: Explorations in the

microstructure of cognition (pp. 77-109). MIT Press, Cambridge, MA.

Hinton, G. E., Osindero, S., & Teh, Y. (2006). A fast learning algorithm for deep
belief nets. Neural Computation, 18(7), 1527-1554.

Hinton, G. E., & Salakhutdinov, R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786), 504-7.

140

Hinton, G. E., & Sejnowski, T.]. (1999). Unsupervised Learning: Foundations of
Neural Computation. Cambridge, MA: MIT Press.

Hinton, G. E., & Shallice, T. (1991). Lesioning an attractor network: investigations
of acquired dyslexia. Psychological Review, 98(1), 74-95.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy of
Sciences of the United States of America, 79(April), 2554-2558.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5), 359-366.

Houghton, G., Glasspool, D. W., & Shallice, T. (1995). Spelling and serial recall:
Insights from a competitive queuing model. (G. D. A. Brown & N. C. Ellis, Eds.)
(pp- 365-404). Chichester: John Wiley.

Huang, Y., & Rao, R. P. N. (2011). Predictive coding. Wiley Interdisciplinary
Reviews. Cognitive Science, 2(5), 580-593.

Hubel, D., & Wiesel, T. (1962). Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of Physiology,
160,106-154.

Hyvarinen, A., Hurri, J., & Hoyer, P. 0. (2009). Natural Image Statistics (Vol. 39).
London: Springer London.

Insel, T., Landis, S., & Collins, F. (2013). The NIH brain initiative. Science,
340(May), 687-688.

Itti, L., & Baldji, P. (2009). Bayesian surprise attracts human attention. Vision
Research, 49(10), 1295-306.

Jain, A. K, Duin, P. W., & Mao,]. (2000). Statistical pattern recognition: a review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1), 4-37.

Jo, S. H,, Chang, T., Ebong, 1., Bhadviya, B. B.,, Mazumder, P., & Lu, W. (2010).
Nanoscale memristor device as synapse in neuromorphic systems. Nano
Letters, 10(4), 1297-301.

Joanisse, M., & Seidenberg, M. S. (1999). Impairments in verb morphology after
brain injury: A connectionist model. Proceedings of the National Academy of
Sciences of the United States of America, 96(June), 7592-7597.

Jones, M., & Love, B. C. (2011). Bayesian Fundamentalism or Enlightenment? On
the explanatory status and theoretical contributions of Bayesian models of
cognition. Behavioral and Brain Sciences, 34(4), 169-88; disuccsion 188-
231.

141

Jordan, M. I,, & Sejnowski, T.]. (2001). Graphical Models: Foundations of Neural
Computation. (M. . Jordan & T.]. Sejnowski, Eds.)Pattern Analysis &
Applications (Vol. 5). Cambridge, MA: MIT Press.

Kanan, C., & Cottrell, G. W. (2010). Robust classification of objects, faces, and
flowers using natural image statistics. In IEEE Conference on Computer
Vision and Pattern Recognition (pp. 2472-2479). leee.

Kanizsa, G. (1979). Organization in vision: Essays on Gestalt perception. New
York: Praeger.

Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the
human cortex. Annual Review of Neuroscience, 315-341.

Keuleers, E., & Brysbaert, M. (2010). Wuggy: a multilingual pseudoword
generator. Behavior Research Methods, 42(3), 627-33.

Khosravi, H., & Kabir, E. (2007). Introducing a very large dataset of handwritten
Farsi digits and a study on their varieties. Pattern Recognition Letters,
28(10),1133-1141.

Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simmulated
annealing. Science, 220(4598), 671-680.

Knill, D. C., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in
neural coding and computation. Trends in Neurosciences, 27(12), 712-9.

Kohonen, T. (1982). Self-organized formation of topologically correct feature
maps. Biological Cybernetics, 69, 59-69.

Kok, P., Jehee, J. F. M., & de Lange, F. P. (2012). Less is more: expectation
sharpens representations in the primary visual cortex. Neuron, 75(2), 265-
70.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and
techniques. Cambridge, MA: The MIT Press.

Krizhevsky, A., Sutskever, 1., & Hinton, G. E. (2012). ImageNet classification with
deep convolutional neural networks. Advances in Neural Information
Processing Systems, 24, 609-616.

Krogh, L., Vlach, H. a, & Johnson, S. P. (2013). Statistical learning across
development: flexible yet constrained. Frontiers in Psychology, 3(January),

598.

Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., ... Wiskott, L.
(2013). Deep Hierarchies in the Primate Visual Cortex: What Can We Learn

142

For Computer Vision? IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8), 1847-1871.

Kullback, S., & Leibler, R. (1951). On information and sufficiency. The Annals of
Mathematical Statistics, 22(1), 79-86.

Lange, S., & Riedmiller, M. (2010). Deep auto-encoder neural networks in
reinforcement learning. In The 2010 International Joint Conference on Neural
Networks (IJCNN) (pp. 1-8). leee.

Le Roux, N., & Bengio, Y. (2008). Representational power of Restricted
Boltzmann Machines and Deep Belief Networks. Neural Computation, 20(6),
1631-1649.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11), 384-398.

LeCun, Y., & Cortes, C. (1998). MNIST Optical Character Database at AT&T
Research. Http://yann.lecun.com/exdb/mnist.

Lee, H., Ekanadham, C., & Ng, A. Y. (2008). Sparse deep belief net models for
visual area V2. Advances in Neural Information Processing Systems, 20, 873~
880.

Lee, T. S., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual
cortex. Journal of the Optical Society of America A, 20(7), 1434.

Lee, T.S., & Nguyen, M. (2001). Dynamics of subjective contour formation in the
early visual cortex. Proceedings of the National Academy of Sciences of the
United States of America, 98(4), 1907-11.

Lehky, S. R, & Sejnowski, T.]. (1988). Network model of shape-from-shading:
neural function arises from both receptive and projective fields. Nature,
333(6172), 452-4.

Lochmann, T., & Deneve, S. (2011). Neural processing as causal inference.
Current Opinion in Neurobiology, 21(5), 774-81.

Markram, H. (2012). The Human Brain Project. Scientific American, 306(6), 50-
55.

Marr, D., & Poggio, T. (1979). A Computational Theory of Human Stereo Vision.
Proceedings of the Royal Society of London. Series B, Biological Sciences,
204(1156),301-328.

Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexical

access during word recognition in continuous speech. Cognitive Psychology,
10(1), 29-63.

143

Martens, J., & Sutskever, I. (2011). Learning recurrent neural networks with
Hessian-free optimization. In International Conference on Machine Learning.

Maturana, H., & Varela, F. (1980). Autopoiesis and cognition: the realization of the
living. Dordrecht, NL: Reidel Publishing Company.

McCandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area:
expertise for reading in the fusiform gyrus. Trends in Cognitive Sciences,
7(7), 293-299.

McCarthy, J. (1959). Recursive functions of symbolic expressions and their
computation by machines. Communications of the ACM.

McClelland, J. L. (2009). The place of modeling in cognitive science. Topics in
Cognitive Science, 1(1), 11-38.

McClelland, J. L. (2010). Emergence in cognitive science. Topics in Cognitive
Science, 2, 751-770.

McClelland, J. L. (2013). Integrating probabilistic models of perception and
interactive neural networks: a historical and tutorial review. Frontiers in
Psychology, 4(August), 503.

McClelland, J. L., Botvinick, M. M., Noelle, D. C,, Plaut, D. C,, Rogers, T. T.,
Seidenberg, M. S., & Smith, L. B. (2010). Letting structure emerge:
connectionist and dynamical systems approaches to cognition. Trends in
Cognitive Sciences, 14(8), 348-56.

McClelland, J. L., & Elman, J. L. (1986). The TRACE Model of Speech Perception.
Cognitive Psychology, 18(1), 1-86.

McClelland, J. L., McNaughton, B., & O’Reilly, R. C. (1995). Why there are
complementary learning systems in the hippocampus and neocortex:
Insights from the successes and failures of connectionist models of learning
and memory. Psychological Review, 102(3), 419-457.

McClelland, J. L., Mirman, D., Bolger, D.]., & Khaitan, P. (2014). Interactive
Activation and Mutual Constraint Satisfaction in Perception and Cognition.
Cognitive Science, 38, 1139-1189.

McClelland, J. L., & Rogers, T. T. (2003). The parallel distributed processing
approach to semantic cognition. Nature Reviews. Neuroscience, 4(April),
310-322.

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of

context effects in letter perception: I. An account of basic findings.
Psychological Review, 88(5), 375-407.

144

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115-133.

McGurk, H., & MacDonald,]. (1976). Hearing lips and seeing voices. Nature,
264(December), 746-748.

McMullen, E., & Saffran, J. R. (2004). Music and language: A developmental
comparison. Music Perception: An Interdisciplinary Journal, 21(3), 289-311.

Minsky, M. (1961). Steps Toward Artificial Intelligence. Proceedings of the IRE,
(January).

Minsky, M., & Papert, S. (1969). Perceptrons: an introduction to computational
geometry. MIT Press, Cambridge, Mass. Cambridge, MA: MIT Press.

Mnih, A., & Hinton, G. E. (2007). Three new graphical models for statistical
language modelling. In International Conference on Machine Learning (pp.
641-648). New York, New York, USA: ACM Press.

Mnih, V., Kavukcuogluy, K, Silver, D., Graves, A., Antonoglou, 1., Wierstra, D., &
Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. In
Advances in Neural Information Processing Systems (pp. 1-9).

Mohamed, A., Dahl, G. E., & Hinton, G. E. (2012). Acoustic Modeling Using Deep
Belief Networks. IEEE Transactions on Audio, Speech, and Language
Processing, 20(1), 14-22.

Morowitz, H.]. (2002). The emergence of everything: How the world became
complex. Oxford University Press.

Neal, R. M. (1992). Connectionist learning of belief networks. Artificial
Intelligence, 56, 71-113.

Nerbonne,], & Stoianov, I. (2004). Learning phonotactics with simple
processors. On the Boundaries of Phonology and Phonetics, 89-121.

Newell, A., & Simon, H. (1961). Computer simulation of human thinking. Science,
134(3495), 2011-2017.

Nickolls,]., Buck, 1., Garland, M., & Skadron, K. (2008). Scalable parallel
programming with CUDA. Queue, 6(2), 40.

Niell, C. M. (2013). Vision: more than expected in the early visual system. Current
Biology, 23(16), R681-4.

Noble, D. (2006). The music of life: biology beyond the genome. Oxford: Oxford
University Press.

145

Norris, D. (2006). The Bayesian reader: explaining word recognition as an
optimal Bayesian decision process. Psychological Review, 113(2), 327-57.

Olshausen, B. A. (2013). Highly overcomplete sparse coding. In IS&T/SPIE
Electronic Imaging (Vol. 8651).

Olshausen, B. A, & Field, D.]. (1996). Emergence of simple-cell receptive field
properties by learning a sparse code for natural images. Nature, 381(6583),
607-609.

Orban, G. a. (2008). Higher order visual processing in macaque extrastriate
cortex. Physiological Reviews, 88(1), 59-89.

Owens, J., & Houston, M. (2008). GPU computing. Proceedings of the IEEE, 96(5),
879-899.

Pan, S.]., & Yang, Q. (2010). A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10), 1345-1359.

Pasa, L., & Sperduti, A. (2014). Pre-training of Recurrent Neural Networks via
Linear Autoencoders. Advances in Neural Information Processing Systems,
3572-3580.

Pasa, L., Testolin, A., & Sperduti, A. (2014). An HMM-based Pre-training
Approach for Sequential Data. In European Symposium on Artificial Neural
Networks, Computational Intelligence and Machine Learning (pp. 467-472).

Pasa, L., Testolin, A., & Sperduti, A. (2015). Neural networks for sequential data:
a pre-training approach based on Hidden Markov Models. Neurocomputing,
1-38.

Patel, A. D. (2003). Language, music, syntax and the brain. Nature Neuroscience,
6(7), 674-81.

Pearl, |. (1988). Probabilistic reasoning in intelligent systems: networks of
plausible inference. San Francisco, CA: Morgan Kaufmann.

Pelli, D. G., Burns, C. W, Farell, B., & Moore-Page, D. C. (2006). Feature detection
and letter identification. Vision Research, 46(28), 4646-74.

Perry, C,, Ziegler,]. C., & Zorzi, M. (2007). Nested incremental modeling in the
development of computational theories: The CDP+ model of reading aloud.

Psychological Review, 114(2), 273-315.

Peterson, C., & Anderson, J. R. (1987). A mean field theory learning algorithm for
neural networks. Complex Systems, 1(5), 995-1019.

146

Pinker, S. (1999). How the mind works. Annals of the New York Academy of
Sciences, 119-127.

Plaut, D. C. (1999). A Connectionist Approach to Word Reading and Acquired
Dyslexia: Extension to Sequential Processing. Cognitive Science, 23(4), 543-
568.

Plaut, D. C.,, McClelland,]. L., Seidenberg, M. S., & Patterson, K. (1996).
Understanding normal and impaired word reading: computational
principles in quasi-regular domains. Psychological Review, 103(1), 56-115.

Plunkett, K., & Marchman, V. (1993). From rote learning to system building:
acquiring verb morphology in children and connectionist nets. Cognition,
48(1), 21-69.

Pylyshyn, Z. W. (1984). Computation and cognition. Cambridge, MA: MIT Press.

Quian Quiroga, R., Reddy, L., Kreiman, G., Koch, C., & Fried, 1. (2005). Invariant
visual representation by single neurons in the human brain. Nature,
435(7045), 1102-7.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286.

Raina, R, Madhavan, A., & Ng, A. Y. (2009). Large-scale deep unsupervised
learning using graphics processors. In International Conference on Machine
Learning (pp. 1-8). New York, New York, USA: ACM Press.

Rao, R. P. N. (2004). Bayesian Computation in Recurrent Neural Circuits. Neural
Computation, 16(1), 1-38.

Rao, R. P. N,, & Ballard, D. H. (1999). Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects.
Nature Neuroscience, 2(1), 79-87.

Rastle, K., Harrington, |., & Coltheart, M. (2002). 358,534 nonwords: The ARC
nonword database. The Quarterly Journal of Experimental Psychology:
Section A, 55(4), 1339-1362.

Reicher, G. M. (1969). Perceptual recognition as a function of meaningfulness of
stimulus material. Journal of Experimental Psychology, 81(2), 275-280.

Reichert, D. P,, Series, P., & Storkey, A. (2013). Charles Bonnet syndrome:
evidence for a generative model in the cortex? PLoS Computational Biology,

9(7), e1003134.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition
in cortex. Nature Neuroscience, 2(11), 1019-25.

147

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological Review, 65(6), 386.

Rumelhart, D. E. (1977). Toward an interactive model of reading. In S. Dornic
(Ed.), Attention and performance VI (pp. 573-603). Hillsdale, NJ: Erlbaum.

Rumelhart, D. E., Hinton, G. E., & Williams, R. (1986). Learning representations
by back-propagating errors. Nature, 323(6088), 533-536.

Rumelhart, D. E., & McClelland, J. L. (1986a). On learning the past tenses of
english verbs. In J. L. McClelland & D. E. Rumelhart (Eds.), Parallel
Distributed Processing: Explorations in the Microstructure of Cognition
Volume 2: Psychological and Biological Models (pp. 216-271). Cambridge,
MA.

Rumelhart, D. E., & McClelland, J. L. (1986b). Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Volume 1: Foundations (Vol.
1). Cambridge, MA: MIT Press.

Sadeghi, Z., & Testolin, A. (n.d.). Farsi character recognition with deep neural
networks and transfer learning.

Saffran, J. R. (2001). Words in a sea of sounds: the output of infant statistical
learning. Cognition, 81(2), 149-69.

Saffran, J. R, Aslin, R. N., & Newport, E. L. (1996). Statistical learning by 8-month-
old infants. Science, 274(5294), 1926-8.

Saffran, J. R, & Wilson, D. P. (2003). From Syllables to Syntax: Multilevel
Statistical Learning by 12-Month-0ld Infants. Infancy, 4(2), 273-284.

Salakhutdinov, R., & Hinton, G. E. (2012). An efficient learning procedure for
deep Boltzmann machines. Neural Computation, 2006, 1967-2006.

Sang, E. F. T. K,, & Nerbonne, . (1999). Learning simple phonotactics. In
Proceedings of the Workshop on Neural, Symbolic, and Reinforcement
Methods for Sequence Processing, ML2 workshop at I[JCAI (Vol. 99, pp. 41-46).

Selfridge, O. (1959). Pandemonium: A paradigm for learning. Proceedings of the
Symposium on Mechanisation of Thought Processes, 1, 511-529.

Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object
recognition with cortex-like mechanisms. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 29(3), 411-26.

Share, D. L. (1995). Phonological recoding and self-teaching: sine qua non of
reading acquisition. Cognition, 55(2), 151-218; discussion 219-26.

148

Sharma, G., & Martin, J. (2008). MATLAB®: A Language for Parallel Computing.
International Journal of Parallel Programming, 37(1), 3-36.

Sibley, D. E., Kello, C. T., Plaut, D. C., & Elman, J. L. (2008). Large-Scale Modeling of
Wordform Learning and Representation. Cognitive Science, 32(4), 741-754.

Sillito, A. M., Cudeiro, J., & Jones, H. E. (2006). Always returning: feedback and
sensory processing in visual cortex and thalamus. Trends in Neurosciences,
29(6),307-16.

Simoncellj, E., & Olshausen, B. A. (2001). Natural image statistics and neural
representation. Annual Review of Neuroscience, 24, 1193-1216.

Smolensky, P. (1986). Information processing in dynamical systems: foundations
of harmony theory. In Parallel distributed processing: Explorations in the
microstructure of cognition (pp. 194-281).

Stoianov, I. (1999). Recurrent Autoassociative Networks. In L. Medsker (Ed.),
Recurrent Neural Networks: Design and Application (pp. 205-242). CRC
Press.

Stoianov, I, & Zorzi, M. (2012). Emergence of a “visual number sense” in
hierarchical generative models. Nature Neuroscience, 15(2), 194-6.

Stoianov, ., Zorzi, M., Becker, S., & Umilta, C. (2002). Associative arithmetic with
Boltzmann Machines: The role of number representations. In J. Dorronsoro
(Ed.), Lecture Notes in Computer Science: ICANN 2002 (pp- 277-283). Berlin:
Springer.

Strukov, D. B,, Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing
memristor found. Nature, 453(7191), 80-3.

Sutskever, 1., Hinton, G. E., & Taylor, G. (2008). The recurrent temporal restricted
Boltzmann machine. Advances in Neural Information Processing Systems, 20,
1601-1608.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning. Cambridge, MA: MIT
Press.

Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of
Neuroscience, 19, 109-139.

Taylor, G., Hinton, G. E., & Roweis, S. (2011). Two Distributed-State Models For
Generating High-Dimensional Time Series. Journal of Machine Learning

Research, 12,1025-1068.

Tenenbaum, . B., Kemp, C,, Griffiths, T. L., & Goodman, N. D. (2011). How to grow
a mind: statistics, structure, and abstraction. Science, 331(6022), 1279-85.

149

Testolin, A., Sperduti, A., Stoianov, I., & Zorzi, M. (2012). Assessment of
Sequential Boltzmann Machines on a Lexical Processing Task. In European
Symposium on Artificial Neural Networks, Computational Intelligence and
Machine Learning (pp. 275-280). Bruges, Belgium.

Testolin, A., Stoianov, 1., De Filippo De Grazia, M., & Zorzi, M. (2013). Deep
unsupervised learning on a desktop PC: A primer for cognitive scientists.
Frontiers in Psychology, 4(May), 251.

Testolin, A., Stoianov, 1., Sperduti, A., & Zorzi, M. (n.d.). Learning Orthographic
Structure with Sequential Generative Neural Networks.

Testolin, A., Zanforlin, M., De Filippo De Grazia, M., Munaretto, D., Zanella, A.,
Zorzi, M., & Zorzi, M. (2014). A machine learning approach to QoE-based
video admission control and resource allocation in wireless systems. In
IEEE IFIP Annual Mediterranean Ad Hoc Networking Workshop. Piran (SL).

Tieleman, T. (2010). Gnumpy: an easy way to use GPU boards in Python.
Technical Report UTML TR 2010-002, University of Toronto.

Toro, J. M., & Trobaldn, . B. (2005). Statistical computations over a speech
stream in a rodent. Perception & Psychophysics, 67(5), 867-75.

Van Hateren, J. H., & van der Schaaf, a. (1998). Independent component filters of
natural images compared with simple cells in primary visual cortex.
Proceedings. Biological Sciences / The Royal Society, 265(1394), 359-66.

Von Foerster, H. (1984). Observing systems. Seaside: Intersystems Publications.

Von Helmholtz, H. (1925). Physiological optics. Optical Society of America,
3(318).

Wandell, B. a. (2011). The neurobiological basis of seeing words. Annals of the
New York Academy of Sciences, 1224, 63-80.

Werbos, P. (1990). Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE.

Widrow, B., Greenblatt, A., Kim, Y., & Park, D. (2013). The No-Prop algorithm: a
new learning algorithm for multilayer neural networks. Neural Networks :

The Official Journal of the International Neural Network Society, 37, 182-8.

Widrow, B., & Hoff, M. (1960). Adaptive switching circuits. In IRE WESCON
Convention Record (pp. 96-140).

Wiener, N. (1948). Cybernetics or Control and Communication in the Animal and
the Machine. Vol. 25. MIT press, 1965. MIT Press, Cambridge, MA.

150

Williams, R., & Zipser, D. (1989). A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 280(1987), 1-10.

Wilson, D. R,, & Martinez, T. R. (2003). The general inefficiency of batch training
for gradient descent learning. Neural Networks, 16(10), 1429-51.

Winsberg, E. (2009). Computer Simulation and the Philosophy of Science.
Philosophy Compass, 4(5), 835-845.

Yuille, A., & Kersten, D. (2006). Vision as Bayesian inference: analysis by
synthesis? Trends in Cognitive Sciences, 10(7), 301-8.

Ziegler,]. C., Perry, C., & Zorzi, M. (2014). Modelling reading development
through phonological decoding and self-teaching: implications for dyslexia.
Philosophical Transactions of the Royal Society of London. Series B, Biological
Sciences, 369(December 2013).

Zipser, D., & Andersen, R. (1988). A back-propagation programmed network that
simulates response properties of a subset of posterior parietal neurons.
Nature.

Zorzi, M. (2005). Computational models of reading. In G. Houghton (Ed.),
Connectionist models in cognitive psychology (pp. 403-444). London:
Psychology Press.

Zorzi, M. (2010). The connectionist dual process (CDP) approach to modelling
reading aloud. European Journal of Cognitive Psychology, 22(5), 836-860.

Zorzi, M., Houghton, G., & Butterworth, B. (1998). Two routes or one in reading
aloud? A connectionist dual-process model. Journal of Experimental
Psychology: Human Perception and Performance, 24(4), 1131-1161.

Zorzi, M., Stoianov, 1., & Umilta, C. (2005). Computational modeling of numerical
cognition. In]. Campbell (Ed.), Handbook of mathematical cognition (pp. 67-
84). New York, USA: Psychology Press.

Zorzi, M., Testolin, A., & Stoianov, I. (2013). Modeling language and cognition
with deep unsupervised learning: a tutorial overview. Frontiers in

Psychology, 4(August), 515.

Zou, Y., Testolin, A., & McClelland, J. L. (n.d.). Numerosity Judgement in Deep
Neural Networks: Roles of Experience and Corpus Stucture in Development.

151

