225 research outputs found

    Noisy multi-label semi-supervised dimensionality reduction

    Get PDF
    Noisy labeled data represent a rich source of information that often are easily accessible and cheap to obtain, but label noise might also have many negative consequences if not accounted for. How to fully utilize noisy labels has been studied extensively within the framework of standard supervised machine learning over a period of several decades. However, very little research has been conducted on solving the challenge posed by noisy labels in non-standard settings. This includes situations where only a fraction of the samples are labeled (semi-supervised) and each high-dimensional sample is associated with multiple labels. In this work, we present a novel semi-supervised and multi-label dimensionality reduction method that effectively utilizes information from both noisy multi-labels and unlabeled data. With the proposed Noisy multi-label semi-supervised dimensionality reduction (NMLSDR) method, the noisy multi-labels are denoised and unlabeled data are labeled simultaneously via a specially designed label propagation algorithm. NMLSDR then learns a projection matrix for reducing the dimensionality by maximizing the dependence between the enlarged and denoised multi-label space and the features in the projected space. Extensive experiments on synthetic data, benchmark datasets, as well as a real-world case study, demonstrate the effectiveness of the proposed algorithm and show that it outperforms state-of-the-art multi-label feature extraction algorithms.Comment: 38 page

    Supervised Feature Space Reduction for Multi-Label Nearest Neighbors

    Get PDF
    International audienceWith the ability to process many real-world problems, multi-label classification has received a large attention in recent years and the instance-based ML-kNN classifier is today considered as one of the most efficient. But it is sensitive to noisy and redundant features and its performances decrease with increasing data dimensionality. To overcome these problems, dimensionality reduction is an alternative but current methods optimize reduction objectives which ignore the impact on the ML-kNN classification. We here propose ML-ARP, a novel dimensionality reduction algorithm which, using a variable neighborhood search meta-heuristic, learns a linear projection of the feature space which specifically optimizes the ML-kNN classification loss. Numerical comparisons have confirmed that ML-ARP outperforms ML-kNN without data processing and four standard multi-label dimensionality reduction algorithms

    API design for machine learning software: experiences from the scikit-learn project

    Get PDF
    Scikit-learn is an increasingly popular machine learning li- brary. Written in Python, it is designed to be simple and efficient, accessible to non-experts, and reusable in various contexts. In this paper, we present and discuss our design choices for the application programming interface (API) of the project. In particular, we describe the simple and elegant interface shared by all learning and processing units in the library and then discuss its advantages in terms of composition and reusability. The paper also comments on implementation details specific to the Python ecosystem and analyzes obstacles faced by users and developers of the library

    DeepAMR for predicting co-occurrent resistance of Mycobacterium tuberculosis.

    Get PDF
    MOTIVATION: Resistance co-occurrence within first-line anti-tuberculosis (TB) drugs is a common phenomenon. Existing methods based on genetic data analysis of Mycobacterium tuberculosis (MTB) have been able to predict resistance of MTB to individual drugs, but have not considered the resistance co-occurrence and cannot capture latent structure of genomic data that corresponds to lineages. RESULTS: We used a large cohort of TB patients from 16 countries across six continents where whole-genome sequences for each isolate and associated phenotype to anti-TB drugs were obtained using drug susceptibility testing recommended by the World Health Organization. We then proposed an end-to-end multi-task model with deep denoising auto-encoder (DeepAMR) for multiple drug classification and developed DeepAMR_cluster, a clustering variant based on DeepAMR, for learning clusters in latent space of the data. The results showed that DeepAMR outperformed baseline model and four machine learning models with mean AUROC from 94.4% to 98.7% for predicting resistance to four first-line drugs [i.e. isoniazid (INH), ethambutol (EMB), rifampicin (RIF), pyrazinamide (PZA)], multi-drug resistant TB (MDR-TB) and pan-susceptible TB (PANS-TB: MTB that is susceptible to all four first-line anti-TB drugs). In the case of INH, EMB, PZA and MDR-TB, DeepAMR achieved its best mean sensitivity of 94.3%, 91.5%, 87.3% and 96.3%, respectively. While in the case of RIF and PANS-TB, it generated 94.2% and 92.2% sensitivity, which were lower than baseline model by 0.7% and 1.9%, respectively. t-SNE visualization shows that DeepAMR_cluster captures lineage-related clusters in the latent space. AVAILABILITY AND IMPLEMENTATION: The details of source code are provided at http://www.robots.ox.ac.uk/?davidc/code.php. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Modular Autoencoders for Ensemble Feature Extraction

    Get PDF
    We introduce the concept of a Modular Autoencoder (MAE), capable of learning a set of diverse but complementary representations from unlabelled data, that can later be used for supervised tasks. The learning of the representations is controlled by a trade off parameter, and we show on six benchmark datasets the optimum lies between two extremes: a set of smaller, independent autoencoders each with low capacity, versus a single monolithic encoding, outperforming an appropriate baseline. In the present paper we explore the special case of linear MAE, and derive an SVD-based algorithm which converges several orders of magnitude faster than gradient descent.Comment: 18 pages, 8 figures, to appear in a special issue of The Journal Of Machine Learning Research (vol.44, Dec 2015

    Latent representation for the characterisation of mental diseases

    Get PDF
    Mención Internacional en el título de doctorMachine learning (ML) techniques are becoming crucial in the field of health and, in particular, in the analysis of mental diseases. These are usually studied with neuroimaging, which is characterised by a large number of input variables compared to the number of samples available. The main objective of this PhD thesis is to propose different ML techniques to analyse mental diseases from neuroimaging data including different extensions of these models in order to adapt them to the neuroscience scenario. In particular, this thesis focuses on using brainimaging latent representations, since they allow us to endow the problem with a reduced low dimensional representation while obtaining a better insight on the internal relations between the disease and the available data. This way, the main objective of this PhD thesis is to provide interpretable results that are competent with the state-of-the-art in the analysis of mental diseases. This thesis starts proposing a model based on classic latent representation formulations, which relies on a bagging process to obtain the relevance of each brainimaging voxel, Regularised Bagged Canonical Correlation Analysis (RB-CCA). The learnt relevance is combined with a statistical test to obtain a selection of features. What’s more, the proposal obtains a class-wise selection which, in turn, further improves the analysis of the effect of each brain area on the stages of the mental disease. In addition, RB-CCA uses the relevance measure to guide the feature extraction process by using it to penalise the least informative voxels for obtaining the low-dimensional representation. Results obtained on two databases for the characterisation of Alzheimer’s disease and Attention Deficit Hyperactivity Disorder show that the model is able to perform as well as or better than the baselines while providing interpretable solutions. Subsequently, this thesis continues with a second model that uses Bayesian approximations to obtain a latent representation. Specifically, this model focuses on providing different functionalities to build a common representation from different data sources and particularities. For this purpose, the proposed generative model, Sparse Semi-supervised Heterogeneous Interbattery Bayesian Factor Analysis (SSHIBA), can learn the feature relevance to perform feature selection, as well as automatically select the number of latent factors. In addition, it can also model heterogeneous data (real, multi-label and categorical), work with kernels and use a semi-supervised formulation, which naturally imputes missing values by sampling from the learnt distributions. Results using this model demonstrate the versatility of the formulation, which allows these extensions to be combined interchangeably, expanding the scenarios in which the model can be applied and improving the interpretability of the results. Finally, this thesis includes a comparison of the proposed models on the Alzheimer’s disease dataset, where both provide similar results in terms of performance; however, RB-CCA provides a more robust analysis of mental diseases that is more easily interpretable. On the other hand, while RB-CCA is more limited to specific scenarios, the SSHIBA formulation allows a wider variety of data to be combined and is easily adapted to more complex real-life scenarios.Las técnicas de aprendizaje automático (ML) están siendo cruciales en el campo de la salud y, en particular, en el análisis de las enfermedades mentales. Estas se estudian habitualmente con neuroimagen, que se caracteriza por un gran número de variables de entrada en comparación con el número de muestras disponibles. El objetivo principal de esta tesis doctoral es proponer diferentes técnicas de ML para el análisis de enfermedades mentales a partir de datos de neuroimagen incluyendo diferentes extensiones de estos modelos para adaptarlos al escenario de la neurociencia. En particular, esta tesis se centra en el uso de representaciones latentes de imagen cerebral, ya que permiten dotar al problema de una representación reducida de baja dimensión a la vez que obtienen una mejor visión de las relaciones internas entre la enfermedad mental y los datos disponibles. De este modo, el objetivo principal de esta tesis doctoral es proporcionar resultados interpretables y competentes con el estado del arte en el análisis de las enfermedades mentales. Esta tesis comienza proponiendo un modelo basado en formulaciones clásicas de representación latente, que se apoya en un proceso de bagging para obtener la relevancia de cada voxel de imagen cerebral, el Análisis de Correlación Canónica Regularizada con Bagging (RBCCA). La relevancia aprendida se combina con un test estadístico para obtener una selección de características. Además, la propuesta obtiene una selección por clases que, a su vez, mejora el análisis del efecto de cada área cerebral en los estadios de la enfermedad mental. Por otro lado, RB-CCA utiliza la medida de relevancia para guiar el proceso de extracción de características, utilizándola para penalizar los vóxeles menos relevantes para obtener la representación de baja dimensión. Los resultados obtenidos en dos bases de datos para la caracterización de la enfermedad de Alzheimer y el Trastorno por Déficit de Atención e Hiperactividad demuestran que el modelo es capaz de rendir igual o mejor que los baselines a la vez que proporciona soluciones interpretables. Posteriormente, esta tesis continúa con un segundo modelo que utiliza aproximaciones Bayesianas para obtener una representación latente. En concreto, este modelo se centra en proporcionar diferentes funcionalidades para construir una representación común a partir de diferentes fuentes de datos y particularidades. Para ello, el modelo generativo propuesto, Sparse Semisupervised Heterogeneous Interbattery Bayesian Factor Analysis (SSHIBA), puede aprender la relevancia de las características para realizar la selección de las mismas, así como seleccionar automáticamente el número de factores latentes. Además, también puede modelar datos heterogéneos (reales, multietiqueta y categóricos), trabajar con kernels y utilizar una formulación semisupervisada, que imputa naturalmente los valores perdidos mediante el muestreo de las distribuciones aprendidas. Los resultados obtenidos con este modelo demuestran la versatilidad de la formulación, que permite combinar indistintamente estas extensiones, ampliando los escenarios en los que se puede aplicar el modelo y mejorando la interpretabilidad de los resultados. Finalmente, esta tesis incluye una comparación de los modelos propuestos en el conjunto de datos de la enfermedad de Alzheimer, donde ambos proporcionan resultados similares en términos de rendimiento; sin embargo, RB-CCA proporciona un análisis más robusto de las enfermedades mentales que es más fácilmente interpretable. Por otro lado, mientras que RB-CCA está más limitado a escenarios específicos, la formulación SSHIBA permite combinar una mayor variedad de datos y se adapta fácilmente a escenarios más complejos de la vida real.Programa de Doctorado en Multimedia y Comunicaciones por la Universidad Carlos III de Madrid y la Universidad Rey Juan CarlosPresidente: Manuel Martínez Ramón.- Secretario: Emilio Parrado Hernández.- Vocal: Sancho Salcedo San

    The Emerging Trends of Multi-Label Learning

    Full text link
    Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.Comment: Accepted to TPAMI 202
    • …
    corecore