21 research outputs found

    Entire choosability of near-outerplane graphs

    Get PDF
    It is proved that if G is a plane embedding of a K4-minor-free graph with maximum degree Δ, then G is entirely 7-choosable if Δ≤4 and G is entirely (Δ+ 2)-choosable if Δ≥ 5; that is, if every vertex, edge and face of G is given a list of max{7,Δ+2} colours, then every element can be given a colour from its list such that no two adjacent or incident elements are given the same colour. It is proved also that this result holds if G is a plane embedding of a K2,3-minor-free graph or a (K2 + (K1 U K2))-minor-free graph. As a special case this proves that the Entire Colouring Conjecture, that a plane graph is entirely (Δ + 4)-colourable, holds if G is a plane embedding of a K4-minor-free graph, a K2,3-minor-free graph or a (K2 + (K1 U K2))-minor-free graph

    List Coloring Some Classes of 1-Planar Graphs

    Get PDF
    In list coloring we are given a graph G and a list assignment for G which assigns to each vertex of G a list of possible colors. We wish to find a coloring of the vertices of G such that each vertex uses a color from its list and adjacent vertices are given different colors. In this thesis we study the problem of list coloring 1-planar graphs, i.e., graphs that can be drawn in the plane such that any edge intersects at most one other edge. We also study the closely related problem of simultaneously list coloring the vertices and faces of a planar graph, known as coupled list coloring. We show that 1-planar bipartite graphs are list colorable whenever all lists are of size at least four, and further show that this coloring can be found in linear time. In pursuit of this result, we show that the previously known edge partition of a 1-planar graph into a planar graph and a forest can be found in linear time. A wheel graph consists of a cycle of vertices, all of which are adjacent to an additional center vertex. We show that wheel graphs are coupled list colorable when all lists are of size five or more and show that this coloring can be found in linear time. Possible extensions of this result to planar partial 3-trees are discussed. Finally, we discuss the complexity of list coloring 1-planar graphs, both in parameterized and unparameterized settings

    List-colourings of near-outerplanar graphs

    Get PDF
    A list-colouring of a graph is an assignment of a colour to each vertex v from its own list L(v) of colours. Instead of colouring vertices we may want to colour other elements of a graph such as edges, faces, or any combination of vertices, edges and faces. In this thesis we will study several of these different types of list-colouring, each for the class of a near-outerplanar graphs. Since a graph is outerplanar if it is both K4-minor-free and K2,3-minor-free, then by a near-outerplanar graph we mean a graph that is either K4-minor-free or K2,3-minor-free. Chapter 1 gives an introduction to the area of graph colourings, and includes a review of several results and conjectures in this area. In particular, four important and interesting conjectures in graph theory are the List-Edge-Colouring Conjecture (LECC), the List-Total-Colouring Conjecture (LTCC), the Entire Colouring Conjecture (ECC), and the List-Square-Colouring Conjecture (LSCC), each of which will be discussed in Chapter 1. In Chapter 2 we include a proof of the LECC and LTCC for all near-outerplanar graphs. In Chapter 3 we will study the list-colouring of a near-outerplanar graph in which vertices and faces, edges and faces, or vertices, edges and face are to be coloured. The results for the case when all elements are to be coloured will prove the ECC for all near-outerplanar graphs. In Chapter 4 we will study the list-colouring of the square of a K4-minor-free graph, and in Chapter 5 we will study the list-colouring of the square of a K2,3-minor-free graph. In Chapter 5 we include a proof of the LSCC for all K2,3-minor-free graphs with maximum degree at least six

    The strong chromatic index of 1-planar graphs

    Full text link
    The chromatic index χ(G)\chi'(G) of a graph GG is the smallest kk for which GG admits an edge kk-coloring such that any two adjacent edges have distinct colors. The strong chromatic index χs(G)\chi'_s(G) of GG is the smallest kk such that GG has a proper edge kk-coloring with the condition that any two edges at distance at most 2 receive distinct colors. A graph is 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. In this paper, we show that every graph GG with maximum average degree dˉ(G)\bar{d}(G) has χs(G)(2dˉ(G)1)χ(G)\chi'_{s}(G)\le (2\bar{d}(G)-1)\chi'(G). As a corollary, we prove that every 1-planar graph GG with maximum degree Δ\Delta has χs(G)14Δ\chi'_{\rm s}(G)\le 14\Delta, which improves a result, due to Bensmail et al., which says that χs(G)24Δ\chi'_{\rm s}(G)\le 24\Delta if Δ56\Delta\ge 56

    An analysis between different algorithms for the graph vertex coloring problem

    Get PDF
    This research focuses on an analysis of different algorithms for the graph vertex coloring problem. Some approaches to solving the problem are discussed. Moreover, some studies for the problem and several methods for its solution are analyzed as well. An exact algorithm (using the backtracking method) is presented. The complexity analysis of the algorithm is discussed. Determining the average execution time of the exact algorithm is consistent with the multitasking mode of the operating system. This algorithm generates optimal solutions for all studied graphs. In addition, two heuristic algorithms for solving the graph vertex coloring problem are used as well. The results show that the exact algorithm can be used to solve the graph vertex coloring problem for small graphs with 30-35 vertices. For half of the graphs, all three algorithms have found the optimal solutions. The suboptimal solutions generated by the approximate algorithms are identical in terms of the number of colors needed to color the corresponding graphs. The results show that the linear increase in the number of vertices and edges of the analyzed graphs causes a linear increase in the number of colors needed to color these graphs
    corecore