47 research outputs found

    Counting of RBCs and WBCs in noisy normal blood smear microscopic images

    Get PDF
    This work focuses on the segmentation and counting of peripheral blood smear particles which plays a vital role in medical diagnosis. Our approach profits from some powerful processing techniques. Firstly, the method used for denoising a blood smear image is based on the Bivariate wavelet. Secondly, image edge preservation uses the Kuwahara filter. Thirdly, a new binarization technique is introduced by merging the Otsu and Niblack methods. We have also proposed an efficient step-by-step procedure to determine solid binary objects by merging modified binary, edged images and modified Chan-Vese active contours. The separation of White Blood Cells (WBCs) from Red Blood Cells (RBCs) into two sub-images based on the RBC (blood’s dominant particle) size estimation is a critical step. Using Granulometry, we get an approximation of the RBC size. The proposed separation algorithm is an iterative mechanism which is based on morphological theory, saturation amount and RBC size. A primary aim of this work is to introduce an accurate mechanism for counting blood smear particles. This is accomplished by using the Immersion Watershed algorithm which counts red and white blood cells separately. To evaluate the capability of the proposed framework,experiments were conducted on normal blood smear images. This framework was compared to other published approaches and found to have lower complexity and better performance in its constituent steps; hence, it has a better overall performance

    A survey on automated detection and classification of acute leukemia and WBCs in microscopic blood cells

    Full text link
    Leukemia (blood cancer) is an unusual spread of White Blood Cells or Leukocytes (WBCs) in the bone marrow and blood. Pathologists can diagnose leukemia by looking at a person's blood sample under a microscope. They identify and categorize leukemia by counting various blood cells and morphological features. This technique is time-consuming for the prediction of leukemia. The pathologist's professional skills and experiences may be affecting this procedure, too. In computer vision, traditional machine learning and deep learning techniques are practical roadmaps that increase the accuracy and speed in diagnosing and classifying medical images such as microscopic blood cells. This paper provides a comprehensive analysis of the detection and classification of acute leukemia and WBCs in the microscopic blood cells. First, we have divided the previous works into six categories based on the output of the models. Then, we describe various steps of detection and classification of acute leukemia and WBCs, including Data Augmentation, Preprocessing, Segmentation, Feature Extraction, Feature Selection (Reduction), Classification, and focus on classification step in the methods. Finally, we divide automated detection and classification of acute leukemia and WBCs into three categories, including traditional, Deep Neural Network (DNN), and mixture (traditional and DNN) methods based on the type of classifier in the classification step and analyze them. The results of this study show that in the diagnosis and classification of acute leukemia and WBCs, the Support Vector Machine (SVM) classifier in traditional machine learning models and Convolutional Neural Network (CNN) classifier in deep learning models have widely employed. The performance metrics of the models that use these classifiers compared to the others model are higher

    Red blood cell segmentation and classification method using MATLAB

    Get PDF
    Red blood cells (RBCs) are the most important kind of blood cell. Its diagnosis is very important process for early detection of related disease such as malaria and anemia before suitable follow up treatment can be proceed. Some of the human disease can be showed by counting the number of red blood cells. Red blood cell count gives the vital information that help diagnosis many of the patient’s sickness. Conventional method under blood smears RBC diagnosis is applying light microscope conducted by pathologist. This method is time-consuming and laborious. In this project an automated RBC counting is proposed to speed up the time consumption and to reduce the potential of the wrongly identified RBC. Initially the RBC goes for image pre-processing which involved global thresholding. Then it continues with RBCs counting by using two different algorithms which are the watershed segmentation based on distance transform, and the second one is the artificial neural network (ANN) classification with fitting application depend on regression method. Before applying ANN classification there are step needed to get feature extraction data that are the data extraction using moment invariant. There are still weaknesses and constraints due to the image itself such as color similarity, weak edge boundary, overlapping condition, and image quality. Thus, more study must be done to handle those matters to produce strong analysis approach for medical diagnosis purpose. This project build a better solution and help to improve the current methods so that it can be more capable, robust, and effective whenever any sample of blood cell is analyzed. At the end of this project it conducted comparison between 20 images of blood samples taken from the medical electronic laboratory in Universiti Tun Hussein Onn Malaysia (UTHM). The proposed method has been tested on blood cell images and the effectiveness and reliability of each of the counting method has been demonstrated

    Counting of RBC’s and WBC’s Using Image Processing Technique

    Get PDF
    The measure of WBC and RBC Cells are very important for the doctor to diagnose various diseases such as anaemia, leukaemia etc. So, precise counting of blood cells plays very important role. The old conventional method used in hospital laboratories involves manual counting of blood cells using a device called Haemocytometer. But this process is extremely monotonous, time consuming, and leads to inaccurate results. Even though hardware solutions such as the Automated Haematology Counter exits, they are very expensive machines and unaffordable in every hospital laboratory. In order to overcome these problems, this paper presents an image processing technique to detect and to count the number of red blood & white blood cells in the blood sample image using circular Hough transform and thresholding techniques. Detection and counting of blood cells have been done on three microscopic blood images of each patient which resulted in accuracy of 93.1%. The use of image processing technique helps in improving the effectiveness of the analysis in term of accuracy and time consumption. DOI: 10.17762/ijritcc2321-8169.15059

    Automatic Segmentation and Classification of Red and White Blood cells in Thin Blood Smear Slides

    Get PDF
    In this work we develop a system for automatic detection and classification of cytological images which plays an increasing important role in medical diagnosis. A primary aim of this work is the accurate segmentation of cytological images of blood smears and subsequent feature extraction, along with studying related classification problems such as the identification and counting of peripheral blood smear particles, and classification of white blood cell into types five. Our proposed approach benefits from powerful image processing techniques to perform complete blood count (CBC) without human intervention. The general framework in this blood smear analysis research is as follows. Firstly, a digital blood smear image is de-noised using optimized Bayesian non-local means filter to design a dependable cell counting system that may be used under different image capture conditions. Then an edge preservation technique with Kuwahara filter is used to recover degraded and blurred white blood cell boundaries in blood smear images while reducing the residual negative effect of noise in images. After denoising and edge enhancement, the next step is binarization using combination of Otsu and Niblack to separate the cells and stained background. Cells separation and counting is achieved by granulometry, advanced active contours without edges, and morphological operators with watershed algorithm. Following this is the recognition of different types of white blood cells (WBCs), and also red blood cells (RBCs) segmentation. Using three main types of features: shape, intensity, and texture invariant features in combination with a variety of classifiers is next step. The following features are used in this work: intensity histogram features, invariant moments, the relative area, co-occurrence and run-length matrices, dual tree complex wavelet transform features, Haralick and Tamura features. Next, different statistical approaches involving correlation, distribution and redundancy are used to measure of the dependency between a set of features and to select feature variables on the white blood cell classification. A global sensitivity analysis with random sampling-high dimensional model representation (RS-HDMR) which can deal with independent and dependent input feature variables is used to assess dominate discriminatory power and the reliability of feature which leads to an efficient feature selection. These feature selection results are compared in experiments with branch and bound method and with sequential forward selection (SFS), respectively. This work examines support vector machine (SVM) and Convolutional Neural Networks (LeNet5) in connection with white blood cell classification. Finally, white blood cell classification system is validated in experiments conducted on cytological images of normal poor quality blood smears. These experimental results are also assessed with ground truth manually obtained from medical experts

    Review on Photomicrography based Full Blood Count (FBC) Testing and Recent Advancements

    Get PDF
    With advancements in related sub-fields, research on photomicrography in life science is emerging and this is a review on its application towards human full blood count testing which is a primary test in medical practices. For a prolonged period of time, analysis of blood samples is the basis for bio medical observations of living creatures. Cell size, shape, constituents, count, ratios are few of the features identified using DIP based analysis and these features provide an overview of the state of human body which is important in identifying present medical conditions and indicating possible future complications. In addition, functionality of the immune system is observed using results of blood tests. In FBC tests, identification of different blood cell types and counting the number of cells of each type is required to obtain results. Literature discuss various techniques and methods and this article presents an insightful review on human blood cell morphology, photomicrography, digital image processing of photomicrographs, feature extraction and classification, and recent advances. Integration of emerging technologies such as microfluidics, micro-electromechanical systems, and artificial intelligence based image processing algorithms and classifiers with cell sensing have enabled exploration of novel research directions in blood testing applications.

    USING CONVOLUTIONAL NEURAL NETWORKS FOR FINE GRAINED IMAGECLASSIFICATION OF ACUTE LYMPHOBLASTIC LEUKEMIA

    Get PDF
    Acute lymphoblastic leukemia (ALL) is a cancer of bone marrow stems cells that results in the overproduction of lymphoblasts. ALL is diagnosed through a series of tests which includes the minimally invasive microscopic examination of a stained peripheral blood smear. During examination, lymphocytes and other white blood cells (WBCs) are distinguished from abnormal lymphoblasts through fine-grained distinctions in morphology. Manual microscopy is a slow process with variable accuracy that depends on the laboratorian\u27s skill level. Thus automating microscopy is a goal in cell biology. Current methods involve hand-selecting features from cell images for input to a variety of standard machine learning classi ers. Underrepresented in WBC classi cation, yet successful in practice, is the convolutional neural network (CNN) that learns features from whole image input. Recently, CNNs are contending with humans in large scale and ne-grained image classi cation of common objects. In light of their e ectiveness, CNNs should be a consideration in cell biology. This work compares the performance of a CNN with standard classi ers to determine the validity of using whole cell images rather than hand-selected features for ALL classification

    A cascaded classification-segmentation reversible system for computer-aided detection and cells counting in microscopic peripheral blood smear basophils and eosinophils images

    Get PDF
    Computer-aided image analysis has a pivotal role in automated counting and classification of white blood cells (WBCs) in peripheral blood images. Due to their different characteristics, our proposed approach is based on investigating the variations between the basophils and eosinophils in terms of their color histogram, size, and shape before performing the segmentation process. Accordingly, we proposed a cascaded system using a classification-based segmentation process, called classification-segmentation reversible system (CSRS). Prior to applying the CSRS system, a Histogram-based Object to Background Disparity (HOBD) metric was deduced to determine the most appropriate color plane for performing the initial WBC detection (first segmentation). Investigating the local histogram features of both classes resulted in a 92.4% initial classification accuracy using the third-degree polynomial support vector machine (SVM) method. Subsequently, in the proposed CSRS approach, transformation-based segmentation algorithms were developed to fit the specific requirements of each of the two predicted classes. The proposed CSRS system is used, where the images from an initial classification process are fed into a second segmentation process for each class separately. The segmentation results demonstrated a similarity index of 94.9% for basophils, and 94.1% for eosinophils. Moreover, an average counting accuracy of 97.4% for both classes was achieved. In addition, a second classification was carried out after applying the CSRS, achieving a 5.2% increase in accuracy compared to the initial classification process

    Automated Low-Cost Malaria Detection System in Thin Blood Slide Images Using Mobile Phones

    Get PDF
    Malaria, a deadly disease which according to the World Health Organisation (WHO) is responsible for the fatal illness in 200 million people around the world in 2010, is diagnosed using peripheral blood examination. The work undertaken in this research programme aims to develop an automated malaria parasite-detection system, using microscopic-image processing, that can be incorporated onto mobile phones. In this research study, the main objective is to achieve the performance equal to or better than the manual microscopy, which is the gold standard in malaria diagnosis, in order to produce a reliable automated diagnostic platform without expert intervention, for the effective treatment and eradication of the deadly disease. The work contributed to the field of mathematical morphology by proposing a novel method called the Annular Ring Ratio transform for blood component identification. It has also proposed an automated White Blood Cell and Red Blood Cell differentiation algorithm, which when combined with ARR transform method, has wide applications not only for malaria diagnosis but also for many blood related analysis involving microscopic examination. The research has undertaken investigations on infected cell identification which aids in the calculation of parasitemia, the measure of infection. In addition, an automated diagnostic tool to detect the sexual stage (gametocytes) of the species P.falciparum for post-treatment malaria diagnosis was developed. Furthermore, a parallel investigation was carried out on automated malaria diagnosis on fluorescent thin blood films and a WBC and infected cell differentiation algorithm was proposed. Finally, a mobile phone application based on the morphological image processing algorithms proposed in this thesis was developed. A complete malaria diagnostic unit using the mobile phones attached to a portable microscope was set up which has enormous potential not only for malaria diagnosis but also for the blood parasitological field where advancement in medical diagnostics using cellular smart phone technology is widely acknowledged
    corecore