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ABSTRACT

USING CONVOLUTIONAL NEURAL NETWORKS FOR FINE GRAINED IMAGE

CLASSIFICATION OF ACUTE LYMPHOBLASTIC LEUKEMIA

by

Richard K. Sipes

Fall 2016

Acute lymphoblastic leukemia (ALL) is a cancer of bone marrow stems cells that results in the

overproduction of lymphoblasts. ALL is diagnosed through a series of tests which includes the min-

imally invasive microscopic examination of a stained peripheral blood smear. During examination,

lymphocytes and other white blood cells (WBCs) are distinguished from abnormal lymphoblasts

through �ne-grained distinctions in morphology. Manual microscopy is a slow process with variable

accuracy that depends on the laboratorian's skill level. Thus automating microscopy is a goal in

cell biology. Current methods involve hand-selecting features from cell images for input to a variety

of standard machine learning classi�ers. Underrepresented in WBC classi�cation, yet successful in

practice, is the convolutional neural network (CNN) that learns features from whole image input.

Recently, CNNs are contending with humans in large scale and �ne-grained image classi�cation of

common objects. In light of their e�ectiveness, CNNs should be a consideration in cell biology. This

work compares the performance of a CNN with standard classi�ers to determine the validity of using

whole cell images rather than hand-selected features for ALL classi�cation.
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Chapter 1

Introduction

Acute Lymphoblastic Leukemia

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. ALL occurs when

bone marrow stem cells develop defects in their DNA that allow them to overproduce. As a result,

immature stem cells called lymphoblasts �ood the body leading to a long list of aspeci�c symptoms:

bruising, bleeding from gums or nose, infections, bone pain, fever, swollen lymph nodes, shortness

of breath, and weakness [23].

Although ALL is treatable, early detection is critical for survival. Doctors require laboratory

con�rmation through a variety of tests. Some tests are invasive and require a bone marrow biopsy

or lumbar puncture. Other tests are minimally invasive and require a single peripheral blood sam-

ple. The complete blood count (CBC) is an example of a minimally invasive test. During this test,

a blood sample passes through a hematology analyzer that yields quantitative results. Abnormal

�ndings require further investigation through microscopic examination. During the examination, a

laboratorian counts the types of cells they encounter and notes qualitative �ndings like cell mor-

phology.

Normal blood components include thrombocytes, erythrocytes (red blood cells, RBCs), and

luekocytes (white blood cells, WBCs). To di�erentiate them under a microscope, a stain is applied

to a peripheral blood smear. Thrombocytes appear as small bluish-purple fragments. RBCs appear

as greyish-pink biconcave disks in greater numbers than other components. WBCs contain a dark

blue-purple staining nucleus and are subclassed into �ve types: neutrophil, lymphocyte, eosinophil,

basophil, and monocyte. WBC subclassi�cation requires assessment of several morphological char-
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Figure 1.1: Cells commonly found in a stained peripheral blood smear [37].

acteristics including: cell size, cytoplasm color, presence of blue or red staining granules, number of

nuclear lobes, cytoplasm to nucleus ratio, and presence of subcellular components like vacuoles and

nucleoli [37].

In the case of ALL, lymphoblasts are present in the microscopic examination. Lymphoblasts

have a di�erent morphology than normal lymphocytes, but can also vary in appearance amongst

themselves. Figures 1.2 and 1.3 show the morphology of normal lymphocytes and three lymphoblast

subtypes respectively. A normal lymphocyte has a round nucleus that stains blue-purple and is

roughly the same size as a RBC. The nucleus lacks nucleoli, is dense with closed chromatin, and has

smooth boundaries. The cytoplasm stains light blue and is scanty, but may be abundant depending

on the lymphocyte's reactivity. In contrast, a lymphoblast may have a larger nucleus that stains

sparse red-purple. The nucleus may contain distinct nucleoli, have open chromatin, and be indented

with rough boundaries. The cytoplasm may stain deep blue but is otherwise scanty. Even with these

descriptions, there is considerable variation between ALL subtypes [20].
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Figure 1.2: A selection of normal lymphocytes in a peripheral blood smear.

Manually distinguishing normal lymphocytes from abnormal lymphoblasts in an objective and

consistent manner is di�cult. The accuracy of results varies with the observer's skill level and

diligence, as well as the quality of the blood sample. Furthermore, manual microscopy is a slow

process that takes several minutes to complete. To improve the speed and accuracy of this process,

automating microscopy is a goal in cell biology.

Machine Learning

In order to automate microscopic examination, the problem must be broken down into components

that can be represented in a computer program. Microscopic images are readily captured and saved

as digital �les. A computer program must then take these images, which represent structured data,

and interpret their meaning. In order to do so, the program must �nd and identify patterns in the

data�preferably in an e�cient manner. Using a computer program (algorithm) to �nd patterns in

structured data is referred to as machine learning [4].

There are two broad categories of machine learning: unsupervised and supervised [4, 33]. Unsu-

pervised learning discovers an inherent structure in the data without guidance or user interaction. In

contrast, supervised learning develops a predictive model through guidance from a labeled dataset.

The model is developed in two stages. During the learning stage, a computer algorithm infers a

predictive model from the labeled examples. During the testing stage, the model is evaluated on its

ability to complete the task.

One could hand program a predictive model by using a series of if-then rules. For example,

one rule for �nding a lymphoblast is �if the cell is a lymphocyte, then check if it has nucleoli.�

However, programming explicit rules for every possible combination of variables in a complex task

like microscopy is di�cult; the code would be brittle to change and di�cult to test. Fortunately,
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Figure 1.3: French-American-British classi�cation of lymphoblastic leukemia for subtyping ALL.
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this is unnecessary because supervised machine learning infers a predictive model from a dataset in

the absence of strict programming rules [33]. This means that the machine learning algorithm can

handle data with many variables because programming rules for every combination of variables is

unnecessary. The number of variables is also referred to as the dimensionality. During the course of

supervised learning, the algorithm feeds each example to the model in the form of an input vector

of features, and the model returns a prediction in the form of an output vector. The algorithm then

compares the output with the example's label. The label is also known as the ground truth. If the

prediction is o� from the ground truth, the algorithm tunes the model's parameters to make better

predictions.

Supervised machine learning algorithms have three components: representation, evaluation, and

optimization [5]. The representation is the class of algorithm or model that is programmed into

the computer. Examples of representations include K-nearest neighbor, support vector machine,

and neural network. The evaluation is the measure of the model's performance. Examples include

accuracy, precision and recall, and squared error. The optimization is the strategy for tuning the

model to get better performance. Optimizations include greedy search and gradient descent [5].

Supervised machine learning is widely applied to classi�cation problems [4, 5]. In classi�cation,

the predictive model (classi�er) maps an input vector to a single discrete value. An example is

recognizing hand-written digits; the classi�er's input is an image of a digit and its output is a label

from 0-9. While learning, the classi�er compares its output to the image's ground truth label and

adjusts parameters when there are discrepancies. Once the classi�er achieves an acceptable level of

accuracy, its performance is measured on a test set. The test set is disjoint from the training set

and representative of the larger set of images the classi�er will incur in the wild. By keeping distinct

training and test sets, we get a better idea of how the classi�er handles unseen data (generalizes)

[2, 5].

Machine Learning in Cell Biology

Sommer and Gerlich wrote an introduction to applied machine learning in cell biology [33]. In this

domain, the goal is to classify cells from microscopic images. The previously mentioned representa-

tions, evaluations, and optimizations still apply. Classifying cell images poses additional challenges

for which a data processing pipeline is proposed in Figure 1.4. The pipeline includes data prepro-

cessing, object detection, feature extraction, training, and classi�cation. Here the �rst three steps

are only brie�y covered because they do not constitute machine learning. Training and classi�cation
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Figure 1.4: Image processing pipeline [33].

constitute machine learning and are covered in depth later. Explanations follow where appropriate.

Data preprocessing

Data preprocessing involves translating raw data into a form suitable for the model [4]. It is also

a strategy for improving model performance by enhancing the signal of interest over background

noise. An array of general preprocessing steps exist. They include data normalization, feature

scaling, dimensionality reduction, and mean subtraction [12]. Other strategies are speci�c to the

problem being addressed. In microscopic image analysis, this may include correcting for uneven

stage illumination and smoothing �lters for reducing microscopy artifacts [3]. Quality control is

another form of data preprocessing. Examples include removing outliers or samples with missing

values [4].

Object detection

Depending on the application, isolating individual cells may be necessary. Intensity thresholding

and contour detection are two strategies for segmenting cells. Other approaches are speci�c to cell

phenotypes and rely on �uorescent markers or separate machine learning algorithms called pixel

classi�ers [32].

Feature Extraction

After isolating cells, discriminatory features are extracted for input into the learning algorithm. Such

features may include textures and contours. Deciding which features to include has great impact

on the model's performance; including most or all features is not recommended because it increases

the model's complexity, inhibits learning, and extends computational time [2, 33]. Feature selection

may constitute a trial-and-error process using subsets of training data for cross validation.
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Classi�cation Models

Most classi�ers share a common discriminative approach: during learning, a division is drawn

through the dataset and used for distinguishing classes. This division is referred to as a deci-

sion boundary. The classi�er may use a linear model to draw the decision boundary if the feature

space is two-dimensional and contains classes divisible by a straight line. For more complicated

two-dimensional class distributions, or if the feature space is three-dimensional, a linear model may

still apply. In this case, the decision boundaries are curves or hyperplanes respectively. To draw a

complex decision boundary, higher-order features are generated from the ones provided. Features

can be squared, cubed, or multiplied in combinations to achieve this. In so doing, nonlinear terms

are introduced to the model, but the model's linearity is determined by its parameters, which remain

unchanged.

Despite this added �exibility, linear models are not ideal for classi�cation; a linear model's

continuous output is unde�ned for a classi�cation problem's discrete values. Adding thresholding

rules resolves some inconsistency, but these rules break with training data that is spread out in the

feature space. In image classi�cation, every pixel in the image may serve as an input feature to

the model. This means for a small image with a height and width of 20 pixels, the input has 400

dimensions. Larger pictures have dimensions in the thousands. To address the complexity of this

higher dimensional problem, non-linear models are used.

Sommer and Gerlich consider state-of-the art models capable of non-linear classi�cation of cell

images in high-throughput cell biology and bioimage informatics [33]. These models include support

vector machine [10], adaptive boosting [6], and random forest [32]. K-nearest neighbor (KNN) and

neural network (NN) are also models applied to WBC classi�cation[18, 29, 35, 38]. Knowing which

model to use is described as a �black art� learned from experience or trial-and-error rather than

textbooks [5]. To better understand the models that appear later in this work, brief descriptions for

KNN, SVM, and NN follow.

K-Nearest Neighbor (KNN)

Of the image classi�ers, KNN is the simplest to understand and implement. This is due to the fact

that a KNN does no training. Instead, a test image is compared to all example images in the labeled

dataset. The images that are most similar to the test image serve as a simple majority vote towards

the test image's predicted label. To compare the test image to an example image, each is unrolled

into a �at vector of pixel values, It and Ie respectively. Then the di�erence d(It, Ie) between the
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images is calculated pixel-by-pixel and summed:

d(It, Ie) =
∑

p |I
p
t − Ipe |

The k example images of minimum di�erence from the test image are the test image's near-

est neighbors. KNN is most suitable for low-dimensional problems. In image classi�cation, KNN

performance serves as a baseline for other classi�ers.

Support Vector Machine (SVM)

SVMs are widely used in academia and industry because they have clean implementations suitable

for learning complex, non-linear decision boundaries. Their clean reputation is due to the fact that

an SVM uses a nonlinear mapping function that transforms input data to a higher-dimensional

feature space in a computationally e�cient manner. In this feature space, the SVM draws a decision

boundary of maximum margin. SVMs have parameters that are learned during training. SVM

implementations are readily available in scienti�c software packages.

Neural Network (NN)

NNs are another non-linear model loosely analogous to biological neurons. An NN consists of three

types of layers: an input layer for receiving data, one or more hidden layers for transforming the

data, and an output layer for delivering the classi�cation. Each layer is composed of neurons (nodes)

that are fully connected with the preceding layer. Each node in a hidden layer contains a set of

learnable parameters. These parameters are used to perform a dot product on the input it receives

from the previous layer. The dot product is followed by a non-linear function at the discretion of

the model's architect. The output layer receives the transformed data and produces classi�cation

scores for predicting the label.

The NN represents a di�erentiable function, which is signi�cant for model training. During

training, the NN's classi�cation error is measured. By taking this error and calculating the partial

derivative of each node in the NN from the output layer through the hidden layers, the model can

adjust the parameters accordingly to reduce future errors. This process of calculating derivatives

from the output layer through the hidden layers is referred to as backpropagation. Like SVMs,

NN implementations are available in software packages, but are also developed according to the

architect's needs.
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Related Work

As the data processing pipeline suggests, classifying cells is a series of problems leading up to

the training and testing of a machine learning model. Prior works on WBC segmentation and

classi�cation used a variety of approaches with performance rates approaching that of human experts.

Segmentation

WBC segmentation involves separating the cell from its background, often through identi�cation of

the cell's cytoplasm and nucleus [27]. This is readily achieved through image processing functions

available in math software. Converting the image to a di�erent color space, contrast stretching,

thresholding, clusterization, watershedding, and morphological �ltering are some steps mentioned

the in literature [19, 24, 26, 30, 31, 35]. These steps may produce a binary image of white WBC

components for masking the original color image [19, 25, 31].

In multiple works, WBC segmentation exploited morphological observations from gray-scale mi-

croscopic images[24, 30]. Since WBCs stain darker than other blood components, contrast stretching

was performed to enhance their nuclei. Then a morphological �lter was derived by averaging the

WBC diameters. Applying this morphological �lter further enhanced WBC nuclei while reducing

smaller blood components [24]. These steps produced sub-images of �xed dimension containing cen-

trally located WBCs with high accuracy [30]. Putzu et al. improved on this strategy by inserting

additional color-space conversion and thresholding steps. In addition, grouped WBCs were separated

through watershed segmentation yielding 92% accuracy [25]. Scotti described �robust� methods for

segmenting cells using L*a*b color space and fuzzy k-means clusterization to also report an accuracy

of 92% [31].

9
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In contrast to these works, Su et al. performed PCA on WBC pixels in the HSI color space to

derive ellipsoidal equations. These equations were then used to discern which pixels belonged to

WBCs. Morphological operators were applied to the resulting images to remove noise and �ll holes.

This approach yielded segmentation sensitivity and speci�city rates above 97% for most cell types

[35].

Feature Selection

Once a WBC is segmented from its background, distinctive features are extracted and fed to the

machine learning model. As previously mentioned, feature selection is an important factor in model

performance. Cross validation is often performed to �nd which combinations of features yield the

best results. WBC features typically come from the cell's nucleus, and include geometric, textural,

and color properties [35]. Geometric features include the cell's length, area, and diameter. Color

features include color distribution and histograms. Textural features include contrast, entropy, and

homogeneity. Many more features can be measured or computed using the ones listed here.

The type and number of features extracted varies in the literature. Rezato�ghi et al. used 10

textural features to classify four types of WBCs [29]. Piuri and Scotti extracted 23 features, of

which most were geometric, in their e�ort to classify �ve types of WBCs [24]. Su et al. selected

a combination of 20 geometric, color, and texture features of which most were texture for WBC

classi�cation [35]. Mohapatra et al. selected 44 features in roughly equal proportions amongst the

same geometric, color, and texture categories for binary classi�cation of ALL [20].

These works indicate no standard exists for feature selection; some authors use more features for

fewer classi�cations while others extract a single category of features to perform more classi�cations.

It is left to the experimenter to identify which features yield the best results for their models.

Model Selection

As with feature selection, the literature supports varying approaches to model selection. Some

reports optimize a single type of model. Theera-Umpon and Gader trained neural networks for

counting and classifying WBCs with accuracies in the low 80% [38]. Kazemi et al. used SVMs to

classify acute myelogenous leukemia with 96% accuracy [13].

Other reports test and evaluate several types of models which, amongst others, may include

KNN, SVM, and NN. Piuri and Scotti trained KNN and NN models for classifying WBCs. The
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best model was a feed-forward NN (FF-NN) with 92% accuracy [24]. Rezato�ghi et al. compared

the performance of an NN and SVM. The SVM yielded the best overall accuracy of 96% [29]. In

contrast, Su et al. also trained NN and SVM models. The NN had the best overall accuracy of 99%

[35].

Automating ALL Classi�cation

Few studies use microscopic images for classifying blood disorders [27]. Of the authors previously

mentioned, Scotti [30] and Mohapatra [20] proposed systems for automatic ALL classi�cation.

Scotti selected lymphocytes from gray-scale images using a �ve-step process that included canny-

based �lters and morphological operators. From the resulting binary image, cytoplasm and nucleus

features were selected using threshold segmentation. The selection process produced six sub-images

from which 21 geometric and 2 color features were extracted through measurement and computation.

KNN, linear Bayes Normal, and FF-NN classi�ers were tested. Of these classi�ers, the FF-NN yielded

the best performance with a mean error of 0.0133 [30].

Mohapatra et al. selected lymphocytes by converting the image color space from RGB to L*a*b*.

The a* and b* components were then fed to a shadowed C-means clustering algorithm that distin-

guished each image pixel into background, cytoplasm, and nucleus regions. Cytoplasm and nucleus

features were extracted through measurement and computation. In all, 44 features were extracted:

17 geometric, 15 texture, and 12 color. The 44 features were further narrowed using an independent-

sample �t� test, which found that 32 were statistically signi�cant. Naive Bayesian, KNN, NN, and

SVM classi�ers were tested. In addition, an ensemble of classi�ers (EOC) consisting of a KNN, NN,

and SVM were tested using simple majority voting. It was reported that the EOC outperformed

the individual ALL classi�ers with an average accuracy of 94.73% [20].

While the literature reports gains in automating WBC microscopy, their hand-crafted, domain-

speci�c approaches to segmentation and feature extraction are time-consuming and do not generalize

to broader microscopic classi�cation problems. Furthermore, there are no standards for segmen-

tation, feature extraction, and classi�cation. Within each step, approaches could be mixed and

matched with any number or type of classi�er, resulting in a never-ending source of work.

Underrepresented in cell biology is a classi�er designed speci�cally for image classi�cation that

provides some focus and re�nement to research e�orts. As previously mentioned, Sommer and

Gerlich list state-of-the-art classi�ers for cell biology known for decades (SVM, adaptive boosting,

and random forest) [33]. However, outside of cell biology exists an actively researched classi�er
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specialized for images. Recent work reports signi�cant improvements in image classi�cation over a

range of scale. This specialized classi�er is called the convolutional neural network (CNN).

Convolutional Neural Networks

CNNs are described as an NN with at least one convolutional layer [7]. As such, a CNN shares

a number of similarities with an NN. Both models are structured into layers that receive input,

transform the data, and deliver a classi�cation. Like an NN, a CNN has learnable parameters

spread over a number of layers. Furthermore, a CNN is a di�erentiable function that undergoes

backpropogation during learning to tune the model's parameters.

A key di�erence is that the CNN is designed to treat an image as a three-dimensional volume

rather than a one-dimensional feature vector; an image has height and width, but it also has depth

when considering each component of its color space. For example, images in the RGB color space

have a depth of three�one for each color channel. Treating an image as a volume allows the CNN to

learn features that are related spatially. A CNN also has several specialized layers that transform

the image's volume in a variety of ways. The namesake convolutional layer performs much of the

computation that goes into classifying an image. Within a convolutional layer is a series of �lters

that slide, or convolve, over an image volume. If the CNN is well trained, these �lters identify

shapes, textures, colors, and other features in the image. This is one bene�t of a CNN; important

features in the image dataset are learned by the model [12].

CNNs have success in practical applications of large scale [7]. The earliest of these successes was

reported in 1998 by Lecun et al. for handwriting recognition [17]. Most recently, the availability of

enormous datasets on the Internet and open source movement in machine learning technologies have

propelled CNNs forward in large-scale visual recognition challenges. In these challenges, researchers

develop CNNs for classifying images into 102−103 classes using benchmark datasets ranging in sizes

of 103 − 105 images. The images themselves typically represent common objects and animals. The

most successful model architectures are 101 − 102 layers deep and train for days or weeks. In 2014,

a CNN developed by Google trained with the ILSVRC dataset to achieve a top-�ve error of 6.67%

[36].

Along with common object datasets, �ne-grained benchmark datasets exist. Fine-grained refers

to the task of distinguishing classes that are very similar, such as dog and bird species [14, 39].

Fine-grained datasets are typically one to two orders of magnitude smaller than common object

datasets because they require expert labeling that is expensive to obtain [15]. Such small datasets
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are insu�cient for training deep CNNs without over�tting [40]. To combat this, one approach uses a

deep CNN pre-trained on a common object dataset. This type of o�-the-shelf transfer learning had

astounding results on �ne-grained image classi�cation (FGIC) of birds and �owers, beating highly-

tuned state-of-the-art classi�ers [28]. In another example, an o�-the-shelf CNN was further trained

on a noisy dataset consisting of publicly-available online image search results. Despite the absence of

expertly labeled data, the CNN obtained state-of-the-art accuracies for bird and dog speciation [15].

As of this writing, one report on WBC classi�cation uses an o�-the-shelf CNN. Using low resolution

gray-scale images and the model reported by Lecun et al., the CNN out performed SVMs for �ve

types of WBCs [9].

In light of growing evidence, CNNs should be a consideration for all image based classi�cation.

Even when the data set is small and noisy, and the class distinctions �ne-grained, CNNs outperform

specialized state-of-the art models. ALL classi�cation could be viewed as FGIC because of the

similarities they share with lymphocytes and the relative scarcity of cytological images. This work

examines the utility of using a CNN for FGIC of ALL.



Chapter 3

Background: Classi�cation Models

The three supervised machine learning components de�ned in the introduction (representation,

evaluation, and optimization) are now formalized with mathematical de�nitions as they apply to

classi�cation. Synonymous to the representation is a score function that takes data as input and

maps it to a class score. An evaluation is a loss function that takes the class score and compares

it to a ground truth label. The loss function returns a measure of error called the loss. The goal of

classi�er training (optimization or learning) is to learn a score function that minimizes loss.

The score function's input is the training data set xi ∈ RD where xi is training example i

of dimension D. For image classi�cation, the image is typically unrolled into a long, �at feature

vector. The vector's dimensionality is the number of pixels in the image. Each example image has

a corresponding label yi ∈ 1 . . .K where K is the number of class labels. The score function that

maps an image to a class score is thus:

f : RD 7→ RK .

Karpathy provides an in-depth guide to image classi�ers along with current best practices in this

rapidly evolving �eld [12]. Goodfellow et al. and Nielsen provide formal model representations and

proofs [7, 22]. What follows are details of the models and methods used in this work.

Linear Model

A linear model serves as an entry point for understanding other classi�ers. A simple linear model

has the score function:

f(xi,W, b) = Wxi + b

14
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W and b are the model's learnable parameters. During training, these parameters are tuned to

make an optimized score function. W is a matrix of weights with K rows and D columns. Each row

contains D parameters for producing a weighted sum for one of K classes. b is a vector of bias terms

with dimension D. Bias terms allow the model to learn decision boundaries that may not cross the

origin.

Figure 3.1 is a cartoon example of a linear model that receives an image and returns three class

scores. More speci�cally, the input is an image �attened into a feature vector of raw pixel values and

the output is the weighted sums for three classes. The scores re�ect the current model's knowledge.

Since the model received a cat image but returned the highest score for a dog, it needs training.

Figure 3.1: Graphic of a linear model mapping an image to three class scores [12].

In practice, the linear model is simpli�ed by combining the bias terms with the weights to form

a single matrix W . To facilitate this, the feature vector xi is extended by one dimension containing

the constant 1. Thus the linear model simpli�es to matrix multiplication (dot product):

f(xi,W ) = Wxi

Figure 3.2 visualizes this simpli�cation.

Figure 3.2: The simpli�ed linear model after combining bias terms and weights into W while ex-
tending xi by one dimension [12].
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SVM Loss Function

During training, the loss function calculates the model's error. Another way to think of error is how

well the model's predictions match the labels of the training examples. One type of error borrows

from an SVM's decision boundary that separates classes by a speci�ed margin. It is called the

Multiclass Support Vector Machine loss (SVM loss):

Li =
∑
j 6=yi

max(0, sj − syi
+ ∆)

Li is the loss associated with classifying example i. It is the sum of errors for class scores sj not

associated with the correct label yi that di�er from the correct class score syi
within a �xed margin

∆. In other words, the SVM loss accumulates when class scores fall within a margin of the correct

class score. If the scores fall below the margin, the loss is thresholded at zero. By minimizing this

loss, the model ensures that the score for the correct class is marginally higher than the other class

scores. Figure 3.3 visualizes this concept.

Figure 3.3: Visualizing the SVM loss margin. Class scores that fall within the red delta region
contribute to the loss. Class scores that fall below the delta contribute zero loss. During training,
the loss is minimized so that the correct class score is marginally higher than all other class scores
[12].

For a linear model, the SVM loss function is de�ned:

Li =
∑
j 6=yi

max(0, wT
j xi − wT

yi
xi + ∆)

where wj is the j-th row of W containing weights for a particular class. Taking the dot product

between wj and feature vector xi returns the class score sj . The standard value for ∆ is 1.

Cross Entropy Loss Function

Another way to calculate a model's error is through the cross-entropy loss:

Li = − log

(
efyi∑
j e

fj

)

Whereas the class scores in the SVM loss function were arbitrarily valued, the class scores in the
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cross-entropy loss are normalized log probabilities. fj(z) = ezj∑
k
ezk

is called the softmax function.

It converts class scores for a single example into probabilities that sum to one. Figure 3.4 compares

the cross-entropy loss and SVM loss functions.

Figure 3.4: Comparison of SVM and cross entropy loss functions. For the given example xi, the
correct class label yi is 2. The parameters that calculate the class 2 score are shaded blue [12].

In most scenarios, the cross-entropy loss and SVM loss are comparable. Some architects prefer

the cross-entropy's probabilistic interpretation, while others prefer the SVM for the simplicity that

comes with zero-thresholding. In this work, the cross-entropy loss was selected.

Classi�er Loss Function

The SVM and cross-entropy loss functions calculate the loss for a single training example. The

average loss of the training examples is the loss for the model. In addition, a regularization loss

is introduced. Regularization is a strategy for preventing the model from over�tting the data; it

penalizes the model for learning parameters of large magnitude. Thus the loss function for the model

is:

L =
1

N

∑
i

Li + λR(W )

where 1
N

∑
i Li is the model's data loss averaged over all N training examples and λR(W ) is

the regularization loss. λ is a value controlling the regularization strength. Speci�cally, an L2 norm

regularization sums the squared elements of the parameters in W :

R(W ) =
∑
k

∑
l

W 2
k,l
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Figure 3.5 depicts how information �ows through a generic classi�er to the loss function.

Figure 3.5: The �ow of information in a classi�er [12].

Optimization

The loss represents the classi�er's current state of knowledge. A classi�er improves its state of knowl-

edge through optimization. More speci�cally, optimization is the act of �nding weight parameters

W that minimize the loss function.

A visualization helps with understanding optimization. Imagine the loss function as a topograph-

ical map in a three-dimensional feature space (Figure 3.6). The x- and y-axis are model parameters

W and the z-axis is the elevation (loss). High elevations result from bad combinations of parameters.

Low elevations result from good combinations of parameters. Since a good combination of param-

eters is unknown at the start of optimization, they are randomly initialized. This is equivalent to

choosing a random start position on the map. During optimization, small steps are taken down the

terrain to reach lower elevations. The act of taking a step is equivalent to adjusting the parameters

W . Steps vary in direction, but by maintaining an awareness of the local gradient at any particular

location, the overall direction is downward towards the minimum elevation.

The type of optimization described above is known as gradient descent. It is an iterative

process in which the model parameters W are improved in a loop. By calculating the gradient of

the loss function for any given set of parameters, the parameters can be updated to reduce loss.

Note that the example contains two parameters while image classi�cation models require many

more parameters. Fortunately, gradient descent generalizes to models of arbitrary dimensionality.

Gradient descent does not guarantee that the global minimum is reached, but in practice reaching

a local minimum can yield good results. The gradient can be calculated numerically with �nite

di�erence approximation or analytically with calculus. With calculus, the gradient is found by

taking the derivative of the loss function. This approach is faster to compute and thus preferred for

gradient descent.
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Figure 3.6: Toy illustration of gradient descent. The model consists of two learnable parameters θ0
and θ1 along the x- and y-axis. The loss function J(θ0, θ1) is along the z-axis. The descent begins
with random placement on the map and ends at the low elevation through a series of small steps
[21].

Neural Network

Although useful for introducing concepts, a linear model is not suitable for image classi�cation

because of the problem's high dimensionality. At this point, the discussion turns to nonlinear

classi�ers. The NN is a nonlinear classi�er found in image classi�cation literature. The details of its

score function, loss function, and gradient descent are covered here.

An NN has a layered structure that includes an input layer, one or more hidden layers, and an

output layer. NNs are often described by the number of hidden layers; a network with one hidden

layer is referred to as a one-layer NN. Figure 3.7 depicts one-layer and two-layer NNs. The networks

are layered acyclic graphs where nodes are fully connected with preceding layers.

Figure 3.7: NN with one hidden layer (left) and NN with multiple hidden layers (right) [12].

Succinctly, an NN's score function is �a sequence of linear mappings with interwoven non-

linearities� [12]. Data enters the model through the input layer. Each node in the input layer

corresponds to one dimension in the feature vector. The input layer then passes these features to

the �rst hidden layer. Each node in a hidden layer contains an activation function. The activa-
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tion function takes a vector of inputs from the preceding layer and with its parameters calculates a

weighted sum. The weighted sum constitutes the linear mapping previously described in the linear

model. Next the weighted sum passes through a non-linear function and the result is propagated to

the next layer. Each node in the output layer is a class score for a single example. Figure 3.8 shows

details of a hidden layer node (activation unit).

Figure 3.8: Close-up of single node in the hidden layer of an NN. The node receives a vector
[x0, x1, x2] and calculates a weighted sum using its parameters w0, w1, w2 and b. The weighted sum
is then input to a non-linear function f(

∑
i wixi+b). Output is directed to the next layer. Analogous

terms for a biological neuron are included [12].

Without the non-linear activation functions, the NN would be an extended linear classi�er. The

non-linear functions allow the NN to learn more complex decision boundaries and are described as

giving the model �wiggle� [12]. Possible non-linear functions include sigmoid, tanh, and recti�ed

linear unit (ReLU). In practice, ReLU is found to have several bene�ts, including its simplicity and

acceleration of gradient descent. The ReLU function takes the form f(x) = max(0, x), where x is

the weighted sum of the inputs. It thresholds negative values at zero, ensuring that model training

maximizes correct class scores rather than minimizing incorrect class scores.

Neural Network Loss and Optimization

Nodes learn to recognize features in the input by tuning their parameters through gradient descent.

First, an example image is sent through the NN in a process known as forward propagation. If a

node's activation function learns to recognize some linear region of the input, a signal is propagated

to the next layer. Otherwise, a zero is propagated (if using ReLU activation function). The process

repeats for each hidden layer until class scores are computed in the output layer. Finally, the class

scores pass from the output layer to a loss function (e.g. SVM or cross-entropy) and the error is
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calculated.

Taking the derivative of the loss function approximates the gradient. This gradient is propagated

backwards through the NN to the �rst hidden layer. Along the way, the partial derivative with

respect to a given node's activation function is calculated. This partial derivative appropriates the

node's output to the model's loss. In other words, each node learns what e�ect it has on the output

of the model. The process of sending the gradient from the end of the NN to the �rst hidden

layer and calculating partial derivatives along the way is called backpropagation. The speci�cs of

backpropagation involve the calculus chain rule and are left out of this discussion. The intuition of

backpropagation is that each node learns how much e�ect it has on the model's output. Once the

node learns this, it can increase or decrease its parameters to help minimize the model's loss.

The gradient for a particular node's activation function can be more formally expressed:

δ
(l)
j = gradient of activation unit a(l)j (unit j in layer l)

δ
(l)
j =

∂

∂z
(l)
j

Li for (j >= 0)

where ∂

∂z
(l)
j

is the partial derivative, z(l)j is the node's weighted sum of inputs, and Li is the loss

for example i. Changing the z values will change the score function's output, and thus the loss

function's output. z values are changed by adjusting the node's weight parameters w(l)
j .

The parameter update for any given weight inside an activation unit takes the form

w
(l)
ji := w

(l)
ji − α

∂

∂w
(l)
ji

L(W )

where w(l)
ji is the ith weight of the jth node in network layer (l), and ∂

∂w
(l)
ji

L(W ) is the partial

derivative of the loss function with respect to the model's weights W . The update occurs in the

negative direction of the gradient proportional to the learning rate α.

Each round of parameter updates requires passing a batch of examples through the NN, averaging

their loss, and accumulating gradients via backpropogation. These steps constitute one iteration of

stochastic gradient descent (SGD). In practice, SGD occurs over many iterations. The model's

progress is observed by plotting loss over iteration number. This plot is known as a learning curve.

Learning curves are useful in determining if a model is learning correctly. If the learning curve's

trajectory is unsatisfactory, model implementation details are reconsidered. Another learning curve

is the model's accuracy (correct classi�cation percentage) over time. During training, plotting the



CHAPTER 3. BACKGROUND: CLASSIFICATION MODELS 22

accuracies for both training and validation sets can help determine if bias or variance are present.

Neural Network Architecture

The NN models depicted in Figure 3.7 are two simple architectures. The number of nodes in the

input layer equals the dimensionality of the input feature vector, and the number of nodes in the

output layer equals the number of class labels. For many scenarios, the number of nodes in a hidden

layer is comparable to or slightly more than the input layer.

However, if an NN receives whole images as input, the number of hidden layer nodes is far less

than the input layer because of computer memory limitations. For example, an NN performing

classi�cation on medium-sized color images of dimension 224x224x3 (224 pixel width, 224 pixel

height, 3 color channels) would have an input layer containing 224*224*3 = 150528 nodes. Since

each node in a hidden layer is fully connected to the previous layer, the �rst hidden layer nodes would

each contain 150,528 weights. If the hidden layer nodes equaled the number of input layer nodes,

the number of learnable weights in the �rst hidden layer would be 150, 5282. This huge number of

parameters would consume a computer's memory. To resolve this, the number of hidden layer nodes

is limited to several orders of magnitude below the input layer's.

The number of hidden layer nodes is a model hyperparameter. A hyperparameter is a feature

of the model that cannot be learned by the model itself and is instead selected by the architect.

Another hyperparameter is the number of hidden layers. Generally, an NN begins with one hidden

layer and more are added if the model is underperforming. Selecting hyperparameters is done

through a process called validation (Figure 3.9). First, training data is split into several folds.

Second, NN architectures with varying hyperparameters are trained on the data folds. Third, each

architecture is tested on a reserved data fold called the validation fold. The validation fold acts

as psuedo test data. Finally, the architecture with the best performance on the validation fold is

selected to run on the test data. Only the performance on the test data is reported. By following

these steps, we obtain a better idea of how the model performs on unseen data.

Neural Network Implementation Notes

In addition to selecting a network architecture, preprocessing image data and initializing weights

are important considerations for model performance.
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Figure 3.9: Validation is performed for hyperparameter selection. It involves splitting training data
into folds (1-5), training models with varying hyperparameters on the training folds (1-4), and testing
them on the validation fold (5). The best performing model is selected for evaluation on the test
data [12].

Image Preprocessing

As stated in the introduction, data preprocessing improves model performance. With image classi-

�cation, mean image subtraction is often performed: the average of each pixel value in the training

set is subtracted from every image pixel input to the model. This has the e�ect of zero-centering

the data, which gives the model �exibility during gradient descent (Figure 3.10).

Figure 3.10: Distribution of a two-dimensional toy data set (left). Mean subtraction zero-centers
the data (right) [12].

Weight Initialization

Before optimization begins, model parameters need to be randomly initialized. One method is to

initialize each node's parameters with small random numbers. This is called �symmetry breaking�

because it forces the node's activation functions to produce unique output from the very beginning.

These unique outputs ultimately lead to unique gradient updates, which allows the nodes to learn

distinct features. If instead every node's parameters were initialized to zero, every node would

produce the same output and contribute equally to the gradient. This would cause every node to

learn the same feature and the overall model would learn nothing.
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Convolutional Neural Network

CNNs are similar to NNs in that they have layers consisting of nodes, use loss functions to measure

their knowledge state, and learn parameters through gradient descent. A key di�erence is that a

CNN is designed for images and treats them as a three-dimensional volume. In addition, CNN nodes

are themselves arranged into three-dimensional volumes (Figure 3.11).

Figure 3.11: Neural network (left) and convolutional neural network (right) with equivalent layers
color-coded [12].

Recall that NN hidden layer nodes are fully connected to the previous layer, which greatly

increases the number of learnable weights and ultimately a�ects the architecture. In contrast, a

CNN has layers of nodes that are no longer fully connected to previous layers. Instead, they have

a localized focus on the input volume (Figure 3.12). By arranging nodes into three-dimensional

volumes with a localized focus, a CNN can limit the number of parameters needed to perform

classi�cation.

Figure 3.12: CNN nodes have a localized focus on the input but their internal functions are similar
to NN nodes. The red volume is an input image and the blue volume is a network layer. The network
layer is a 3D volume of nodes. The �ve aligned nodes have the same localized focus [12].

CNNs have a modular structure with a variety of layers. The input layer delivers the image

with its original height and width as well as depth equal to the number of color channels. This

is in contrast to an NN input layer that delivers the image as a �attened feature vector. The

convolutional (CONV) layer is a three-dimensional layer with localized nodes. Nodes in this

layer calculate the weighted sum of a small region of the input volume. The ReLU (RELU) layer
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performs the same max(0, x) operation as in the NN, providing a means for learning non-linear

decision boundaries. A pooling (POOL) layer downsizes its input volume along spatial (height

and width) dimensions, serving as another means for limiting the number of learnable parameters

in the model. Near the end of the CNN are fully connected layers (FC), which are the same as

a NN's fully connected hidden layers. By placing FC layers at the end of the network after POOL

layers have downsized the input volume, the model can learn robust features without a burdensome

amount of parameters. The output layer delivers a vector of class scores.

A CNNs learnable parameters are located in the CONV and FC layers and are tuned through

gradient descent. The POOL and RELU layers do not have parameters because they perform �xed

functions. CNNs undergo validation to select comparatively more hyperparameters than an NN.

The dimensions of a CONV layer, the amount of downsizing in a POOL layer, and the number of

FC layer nodes are just a few of the hyperparameters.

Convolutional Layer

CONV layer nodes have local connectivity on the input volume. As such, they have a spatial window

known as a receptive �eld. The depth of the receptive �eld always equals the depth of the input

volume, but the height and width are hyperparameters. Another feature of the CONV layer is that

nodes at the same depth all share the same parameters. This groups the nodes into a �depth slice,�

which is also referred to as a �lter. By sharing parameters in this way, the CNN greatly reduces the

number of parameters stored in memory.

When an input volume reaches a CONV layer, the �lters scan over the input, or convolve. As the

�lters convolve, they calculate dot products between their parameters and the image's pixel values.

The movement of the �lters is determined by their receptive �eld size and the length of their strides.

Necessarily, the �lters must convolve over the image evenly so as not to miss any detectable feature.

One method for ensuring this is zero-padding. This involves adding a layer of pixels with zero

values around the image.

The CONV layer transforms the input volume into an output volume. The output volume's

spatial size is determined by the number of spatial strides the �lters make over the input volume. The

output volume's depth is determined by the number of �lters. Figure 3.13 shows the transformation

of an input volume into an output volume using two �lters.
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Figure 3.13: Detailed view of convolutional layer �lters (red) performing dot products on the input
volume (blue) to produce the output volume (green). The layer volumes were �attened depth-wise
to better visualize the calculations. Speci�cally, the �rst �lter, W0, is performing a dot product on
the upper-left corner of the input volume along its entire depth. The input volume is zero-padded,
allowing the �lters to evenly convolve over the input [12].

Pooling Layer

Like CONV layers, POOL layers also transform their input volumes into smaller output volumes. In

this way, pooling helps further reduce the number of learnable parameters in the model. However,

POOL layers also have a destructive quality to them, so they always follow CONV and FC layers

and never precede them. A POOL layer has a receptive �eld size that makes strides over the input

volume similar to a CONV layer �lter. At each stride, the POOL layer examines the pixels in its

receptive �eld, and downsamples them by taking only the max value (Figure 3.14).

Convolutional Neural Network Architecture

Like NNs, CNNs have variable architectures. A general scheme is:

INPUT -> [CONV -> RELU]*N -> POOL?]*M -> [FC -> RELU]*K -> FC
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Figure 3.14: A pooling layer reduces the input volume size by downsampling pixels [12].

where the INPUT layer is followed by M repeating units of CONV -> RELU -> POOL layers and

K repeating units of FC -> RELU layers. In addition, N repeating units of CONV -> RELU layers

may precede an optional POOL layer. Architectures vary dramatically depending on the capabilities

of the hardware, the size of the data set, and scale of the classi�cation problem. A general heuristic

is more layers are better but with the risk of over�tting the training data.

Convolutional Neural Network Loss and Optimization

A CNN has the same options as an NN when selecting a loss function; SVM and cross-entropy loss

functions are comparable choices. In this work, the cross-entropy loss was selected.

Like an NN, a CNN represents a single di�erentiable function for which gradient descent is

performed during optimization. A key di�erence is that nodes in a depth slice of a CONV layer

share parameters. As such, they compute and combine their individual gradients to update the

shared parameters. In addition, CNNs that contain POOL layers must keep track of which pixels

they downsample in order to backpropagate the gradient. This is done by caching a matrix of

switches.
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Methods

This chapter describes the image dataset and the actions performed for binary classi�cation of

abnormal lymphoblasts and normal WBCs using supervised machine learning models.

Dataset

The dataset used in this work is a public image database assembled by Labati et al. called ALL-

IDB [16]. ALL-IDB is designed speci�cally for ALL classi�cation and contains hundreds of white

blood cell images. To obtain these images, peripheral blood samples were collected by researchers at

the M. Tettamanti Research Center for Childhood Leukemia and Hematological Diseases in Monza,

Italy. Microscopy slides were made following the Wright staining procedure. The slides were viewed

with a bright �eld illuminated microscope at a resolution of 300-500µm. From the microscope, 109

color JPGs with a resolution of 2592x1944 pixels were captured using an attached Canon PowerShot

G5 camera. From these images, 260 sub-images centered on individual WBCs were cropped to a

resolution of 257x257 and saved as TIFs. The sub-images were expertly labeled as either normal

WBCs (Y=0) or abnormal lymphoblasts (Y=1) in equal ratio. All Y=0 images came from healthy

individuals and Y=1 images came from ALL patients. The images contain o�-center RBCs and have

non-uniform background illumination.

The ALL-IDB dataset was supplemented with images from CellaVision Pro�ciency Software for

hematology laboratory training. 128 sub-images containing normal WBCs (Y=0) were cropped to

a resolution of 257x257, converted to the RGB color space, and saved as PNGs (Table 4.1).

28
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Table 4.1: Dataset Characteristics

ALL-IDB CellaVision Total

Images: 260 128 388
Lymphoblasts: 130 0 130
Resolution: 257x257 257x257

Figure 4.1: A random selection of images centered on normal WBCs (left) and abnormal lym-
phoblasts (right). The images also contain noise in the form of RBCs and non-uniform background
illumination.

Data Preprocessing

Mean cell image subtraction is a common preprocessing technique to improve model training. The

mean cell image was calculated from the training set and subtracted from every image in both

training and test sets (Figure 4.2). The images use the RGB color space with pixel values falling in

a range of 0-255. This small range eliminated the need for data normalization.

Feature Extraction

Typical feature extraction methods found in cell biology were bypassed in order to assess how well

models learn features from whole color images and their raw pixel values.
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Figure 4.2: The mean cell image was calculated from the training data and subtracted from every
image prior to classi�cation.

Classi�ers

Standard supervised machine learning models were selected for baseline comparisons. These included

KNN and NN models. In addition, a CNN was developed to examine its ability to learn cell features

for classi�cation.

The ALL-IDB and CellaVision datasets were combined for model training and testing. While

combining the datasets presumably enhanced the model's ability to generalize, it also resulted in

a 1:3 ratio of lymphoblasts to normal WBCs. Imbalanced class ratios are a reality for �ne-grained

image classi�cation in cell biology since by de�nition normal cells are more abundant. For each

round of training, the data was randomly shu�ed and split 60:20:20 into training, validation, and

test sets respectively.

Model parameters were tuned using the training data and hyperparameters selected by evalu-

ating performance on the validation data. Model training was monitored through learning curve
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assessment. Once suitable hyperparameters were selected, models were trained and performance

evaluated on the test data six times.

K-Nearest Neighbors

A KNN classi�er was implemented using the euclidean distance between two vectors:

d2(I1, I2) =

√∑
p

(Ip1 − I
p
2 )

2

Cross validation was performed to determine k neighbors (Figure 4.3). Training data was split into

�ve folds. For values of k=1...30, classi�er accuracy was measured �ve times using each fold once

for validation and the remaining folds for training. The highest average accuracy was observed for

k=15.

Figure 4.3: Cross-validation for determining k=15 neighbors.
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Neural Networks

Two NNs were developed using ReLU for the nonlinearity function and L2 regularization. Random

search validation [1] was performed for learning rate α and regularization strength λ hyperparameter

selection. Cross-entropy and SGD were selected for the loss and optimization respectively.

NN-1 architecture consisted of two fully-connected hidden layers of 50 nodes each:

NN-1: [INPUT]->[FC]->[RELU]->[FC]->[LOSS]

NN-2 extended the NN-1 architecture with batch-normalization and dropout layers:

NN-2: [INPUT]->[FC]->[BNORM]->[RELU]->[DROP]->[FC]->[LOSS]

Batch normalization addresses internal covariate shift by normalizing layer inputs [11]. Dropout

is a regularization strategy that randomly removes nodes from the network with a �xed probability

during every forward propagation. It is the equivalent of training an ensemble of NNs within one

NN. Dropout makes the NN more robust to unfortunate random weight initialization and enhances

learning [34].

Convolutional Neural Network

The two-layer NN-1 architecture was converted to a three-layer CNN by inserting convolutional,

ReLU, and pooling layers:

CNN: [INPUT]->[CONV]->[RELU]->[POOL]->[FC]->[RELU]->[FC]->[LOSS]

The CONV layer had a volume of 7x7x16 (16 �lters sized 7x7 with stride 1). The POOL layer

contained a 2x2 max pooling �lter. The FC layers each contained 50 nodes. Images entering the

CNN were spatially resized to 224x224x3 pixels and zero-padded to facilitate volume transformation

in the CONV and POOL layers.

Training

NN-1, NN-2, and CNN were trained using stochastic gradient descent with a batch size of 25 training

images. The quality of training was determined through learning curves that plotted training and

validation accuracies over rounds of gradient descent. Curves that leveled o� (or reach 100%)

indicated the model reached optimal training for the given hyperparameters and training data.

A validation accuracy that approached the training accuracy suggested the absence of over�tting.

(Figure 4.4).
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(a) NN-1

(b) NN-2

(c) CNN

Figure 4.4: Examples of learning curves from the models trained with stochastic gradient descent.



CHAPTER 4. METHODS 34

Performance Analysis

In binary classi�cation, examples are labeled as positive or negative. A confusion matrix counts the

agreements and disagreements between a classi�er's predictions and a dataset's labels (Table 4.2).

This leads to four de�ned outcomes:

True Positive (TP) : Positive prediction matches positive label

True Negative (TN) : Negative prediction matches negative label

False Positive (FP) : Positive prediction contradicts negative label

False Negative (FN) : Negative prediction contradicts positive label

Table 4.2: Confusion Matrix

Actual class
Positive Negative

Predicted class
Positive

True positive
(TP)

False positive
(FP)

Negative
False negative

(FN)
True negative

(TN)

The four outcomes in the confusion matrix are used to evaluate model performance. Accuracy is

the fraction of matching outcomes out of all outcomes. When a dataset contains comparatively fewer

positive examples than negative examples, precision, recall, and F1-score describe model performance

better than accuracy. Precision measures the model's exactness in predicting positives. It answers

the question: �Of all predicted positives, what fraction actually are positive?� Recall measures the

model's completeness in predicting positive results. It answers the question: �Of all examples, what

fraction were correctly predicted positive?� The F1-score combines precision and recall into one

value for easier comparisons between models. It does so through the harmonic mean of precision

and recall. Below are the mathematical de�nitions for these performance measures:

Accuracy =
TP + TN

TP + FP + TN + FN
× 100%

Precision =
TP

TP + FP

Recall =
TP

TP + FN
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F1− score =
2TP

2TP + FP + FN

For any of these measures, higher scores indicate better performance. Accuracies of 100% indicate

perfect predictive performance. Precision, recall, and F1-scores of 1.0 indicate the same. For the

classi�cation task in this work, a positive label was associated with a lymphoblast and a negative

label was associated with a normal WBC. The combined datasets contained fewer positive examples

than negative examples, so precision, recall, and F1-score are reported along with accuracy.
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Results & Discussion

ALL is indicated during microscopic examination of a peripheral blood smear by the presence of

abnormal lymphoblasts. Lymphoblasts are distinguished from normal WBCs and in particular

lymphocytes through �ne-grained distinctions in their morphology. Thus the examination is a binary

classi�cation problem in which lymphoblasts are positive and WBCs are negative.

Prior works focus on segmentation and feature extraction of WBC characteristics. These features

are hand-selected for input to standard supervised machine learning models. Underrepresented in

ALL classi�cation is the idea of �ne-grained image classi�cation (FGIC) and the CNN model that

assumes image input. The CNN is capable of learning features from whole color images without

hand-selection. This report sought to reframe ALL classi�cation as a FGIC problem and test the

validity of using whole images with a CNN in the absence of hand-selected features.

The dataset consisted of cell-centered images expertly labeled as normal WBCs or lymphoblasts.

The images contained noise in the form of surrounding RBCs and uneven background illumination.

In all, 388 images containing 130 lymphoblasts were split for training, validation, and testing. Three

standard classi�ers and one CNN were implemented using NumPy and Scikit-learn packages on a

computer with an Intel Core i7 2.4GHz CPU, 8GB RAM, and Window 8.1 operating system. Each

model's performance was averaged over six rounds of training/testing. Due to the skewed dataset,

precision, recall, and F1-scores were reported (Table 5.1) in addition to accuracy (Figure 5.1).

Table 5.1: Classi�er Precision, Recall, and F1-scores

Precision Recall F1-Score

KNN 0.85 0.61 0.71
NN-1 0.83 0.87 0.80
NN-2 0.78 0.87 0.82
CNN 0.88 0.90 0.89

36
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Figure 5.1: Average performance (± one std dev) of the four models.

The KNN had the lowest and most variable accuracy (81±5%). This is attributed to the model

retaining the training set for measuring nearest neighbors. This made it vulnerable to data seg-

mentation where particularly noisy images or cell populations are unequally distributed in training

or test sets. Despite this, the KNN had decent performance for the classi�cation task, making an

argument for the predictive value of raw pixels from noisy cell-centered images. NN-1 and NN-2 ac-

curacies were closely matched due to their similar architectures (85±3%; 86±2%). NN-2 had slightly

better performance and less variation due to enhanced regularization from dropout and better weight

initialization from batch-normalization. Inserting additional fully-connected layers did not improve

performance. With only modest gains following model enhancements, the models reached a limit

in whole image classi�cation. The CNN had the best accuracy of the models tested (92±3%). The

improved accuracy is the result of a single convolutional layer. Anatomic pathology error, which

includes cytology, is reported to have a mean error rate of 1-5%, although wide variability is re-

ported [8]. This indicates that the CNN is close to reaching clinical laboratory performance rates.

The precision, recall, and F1-scores corroborate the accuracies. The F1-scores show clear bene�ts

in using NNs over the KNN, and further bene�t in using a CNN.

The CNN accuracy approaches or matches previous works that used hand-selected features and

standard classi�ers. This suggests using whole cell images in combination with a CNN holds promise

for FGIC of ALL. The CNN needs improvement in light of the learned noisy �lters (Figure 5.2).

Extending training time is a possible solution, although the learning curve shows �at performance

gains. Increasing regularization strength may provide additional re�nement. Above all, a larger



CHAPTER 5. RESULTS & DISCUSSION 38

Figure 5.2: The sixteen �lters learned by the CNN had considerable noise.

dataset and deeper network would provide conclusive results.

Conclusion

This work shows that using raw pixel values from noisy cell-centered images is a viable strategy

for classifying ALL. Trading hand-selected feature extraction and specialized models in favor of a

CNN with learnable �lters may help standardize and accelerate future research e�orts. In addition,

the CNN generalizes to broader cell classi�cation tasks because it makes the explicit assumption of

image input. The models tested in this report are small in comparison to other published works.

Nonetheless, they hold promise for FGIC of WBCs. Future work should focus on reducing �lter noise

and developing deeper models to accommodate larger scale classi�cation tasks in cell biology. Using

an o�-the-shelf CNN and noisy image search results was explored in other classi�cation domains.

This approach motivates future work.



Bibliography

[1] J. Bergstra and Y. Bengio, �Random search for hyper-parameter optimization,� Journal of

Machine Learning Research, 2012.

[2] C. M. Bishop, Pattern Recognition and Machine Learning, M. Jordan, J. Kleinberg, and

B. SchoÂ²lkopf, Eds. Springer, 2006.

[3] W. Buchser, M. Collins, T. Garyantes, R. Guha, S. Haney, V. Lemmon, Z. Li, and O. J. Trask,

Assay Development Guidelines for Image-Based High Content Screening, High Content Anal-

ysis and High Content Imaging, Eli Lilly & Company and the National Center for Advancing

Translational Sciences, October 2012.

[4] D. de Ridder, J. de Ridder, and M. J. T. Reinders, �Pattern recognition in bioinformatics,�

Brie�ngs in Bioinformatics, vol. 14, no. 5, pp. 633 � 647, 2013.

[5] P. Domingos, �A few useful things to know about machine learning,� Communications in ACM,

vol. 55, pp. 78�87, 10 2012.

[6] J. Friedman, T. Hastie, and R. Tibshirani, �Additive logistic regression: A statistical view of

boosting,� The Annals of Statistics, vol. 28, no. 2, pp. 337 � 407, 2000.

[7] I. Goodfellow, Y. Bengio, and A. Courville, �Deep learning,� book in preparation for MIT Press.

[8] D. Grzybicki, B. Turcsanyi, M. Becich, D. Gupta, J. Gilbertson, and S. Raab, �Database con-

struction for improving patient safety by examining pathology errors,� American Society for

Clinical Pathology, 2005.

[9] M. Habibzadeh, A. Krzyzak, and T. Fevens, �White blood cell di�erential counts using convo-

lutional neural networks for low resolution images,� in International Conference on Arti�cial

Intelligence and Soft Computing, 2013.

39



BIBLIOGRAPHY 40

[10] M. Held, M. H. A. Schmitz, B. Fischer, T. Walter, B. Neumann, M. H. Olma, M. Peter,

J. Ellenberg4, and D. W. Gerlich, �Cellcognition: time-resolved phenotype annotation in high-

throughput live cell imaging,� Nature Methods, vol. 7, no. 9, pp. 747 � 756, September 2010.

[11] S. Io�e and C. Szegedy, �Batch normalization: Accelerating deep network training by reducing

internal covariate shift,� Google, 2015.

[12] A. Karpathy. (2015) Convolutional neural networks for visual recognition. Github.io. Stanford.

[Online]. Available: http://cs231n.github.io/

[13] F. Kazemi, T. A. Najafabadi, and B. N. Araabi, �Automatic recognition of acute myelogenous

leukemia in blood microscopic images using k-means clustering and support vector machine,�

Journal of Medical Signals & Sensors, 2016.

[14] A. Khosla, N. Jayadevaprakash, B. Yao, and L. Fei-Fei, �Novel dataset for �ne-grained image

categorization,� in IEEE Conference on Computer Vision and Pattern Recognition, 2011.

[15] J. Krause, B. Sapp, A. Howard, H. Zhou, A. Toshev, T. Duerig, J. Philbin, and F.-F. Li, �The

unreasonable e�ectiveness of noisy data for �ne-grained recognition,� CoRR, 2015.

[16] R. D. Labati, V. Piuri, and F. Scotti, �All-idb: the acute lymphoblastic leukemia image database

for image processing,� in International Conference on Image Processing, September 2011.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner, �Gradient-based learning applied to document

recognition,� Proc. of the IEEE, 1998.

[18] X. Long, W. L. Cleveland, and Y. L. Yao, �A new preprocessing approach for cell recognition,�

IEEE Transactions on Information Technology in Biomedicine, vol. 9, no. 3, pp. 407 � 412,

October 2005.

[19] M. Mohamed and B. Far, �An enhanced threshold based technique for white blood cells nu-

clei automatic segmentation,� in IEEE 14th International Conference on e-Health Networking,

Applications and Services, 2012.

[20] S. Mohapatra, D. Patra, and S. Satpathy, �An ensemble classi�er system for early diagnosis of

acute lymphoblastic leukemia in blood microscopic images,� Neural Comput & Applic, 2014.

[21] A. Ng. (2016) Machine learning. Coursera. Stanford University.

[22] M. A. Nielsen, Neural Networks and Deep Learning, M. A. Nielsen, Ed. Determination Press,

2015.



BIBLIOGRAPHY 41

[23] PDQ. (2016) Pdq childhood acute lymphoblastic leukemia treatment. National Cancer Institute.

[Online]. Available: http://www.cancer.gov/types/leukemia/patient/child-all-treatment-pdq

[24] V. Piuri and F. Scotti, �Morphological classi�cation of blood leucocytes by microscope images,�

Computationvl Intelligence for Measurement Systems and Applications, 2004.

[25] L. Putzu and C. D. Ruberto, �White blood cells identi�cation and counting from microscopic

blood image,� International Journal of Medical, Health, Biomedical, Bioengineering and Phar-

maceutical Engineering, vol. 7, no. 1, 2013.

[26] H. Ramoser, V. Laurain, H. Bischof, and R. Ecker, �Leukocyte segmentation and classi�cation

in blood-smear images,� Engineering in Medicine and Biology 27th Annual Conference, 2005.

[27] J. Rawat, H. Bhadauria, A. Singh, and J. Virmani, �Review of leukocyte classi�cation techniques

for microscopic blood images,� International Conference on Computing for Sustainable Global

Development, 2015.

[28] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, �Cnn features o�-the-shelf: an

astounding baseline for recognition,� in Proceedings of the 2014 IEEE Conference on Computer

Vision and Pattern Recognition Workshops, June 2014.

[29] S. H. Rezato�ghi, H. Soltanian-Zadeh, and K. Khaksari, �Automatic recognition of �ve types

of white blood cells in peripheral blood,� in ICIAR 2010, June 2010.

[30] F. Scotti, �Automatic morphological analysis for acute leukemia identi�cation in peripheral

blood microscope images,� Computational Intelligence for Measurement Systems and Applica-

tions, 2005.

[31] ��, �Robust segmentation and measurements techniques of white cells in blood microscope

images,� in Instrumentation and Measurement Technology Conference, 2006.

[32] C. Sommer, C. Straehle, U. Kothe, and F. A. Hamprecht, �Ilastik: Interactive learning and

segmentation toolkit,� IEEE International Symposium on Biomedical Imaging: From Nano to

Macro, pp. 230�233, 2011.

[33] C. Sommer and D. W. Gerlich, �Machine learning in cell biology - teaching computers to rec-

ognize phenotypes,� Journal of Cell Science, vol. 126, no. 24, November 2013.



BIBLIOGRAPHY 42

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, �Dropout: A

simple way to prevent neural networks from over�tting,� Journal of Machine Learning Research,

2014.

[35] M.-C. Su, C.-Y. Cheng, and P.-C. Wang, �A neural-network-based approach to white blood cell

classi�cation,� The Scienti�c World Journal, January 2014.

[36] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, �Going deeper with convolutions,� Computing Research Repository, 2014.

[37] W. Tai, R. Hu, H. Hsiao, R. Chen, and J. Tsai, �Blood cell image classi�cation based on

hierarchical svm,� IEEE International Symposium on Multimedia, 2011.

[38] N. Theera-Umpon and P. Gader, �System-level training of neural networks for counting white

blood cells,� IEEE Transactions on Systems, Man, and Cybernetics, 2002.

[39] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, �The caltech-ucsd birds-200-2011

dataset,� California Institute of Technology, Tech. Rep., 2011.

[40] S. Xie, T. Yang, X. Wang, and Y. Lin, �Hyper-class augmented and regularized deep learning

for �ne-grained image classi�cation,� Computer Vision and Pattern Recognition, 2015.



VITA

Author:

Richard K. Sipes

Place of Birth:

Knobnoster, Missouri

Schools Attended:

Eastern Washington University

Providence Sacred Heart Medical Laboratory Science Program

Degrees Awarded:

Bachelor of Science in Biochemistry, 2010, Eastern Washington University

Medical Laboratory Scientist Certi�cation, 2012, ASCP

Masters of Science in Computer Science, 2016, Eastern Washington University

Honors and Awards:

Graduate Assistantship Sept. 2014 - June 2016

Awarded 2010 Outstanding Chemistry Graduate

First Author: "Evidence that aberrant protein metabolism contributes to chemoresistance in multiple

myeloma cells," Oncology Reports, e-published March 2012

43


	Eastern Washington University
	EWU Digital Commons
	Fall 2016

	USING CONVOLUTIONAL NEURAL NETWORKS FOR FINE GRAINED IMAGECLASSIFICATION OF ACUTE LYMPHOBLASTIC LEUKEMIA
	Richard K. Sipes
	Recommended Citation


	tmp.1491942966.pdf.QLPp_

