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ABSTRACT Computer-aided image analysis has a pivotal role in automated counting and classification of
white blood cells (WBCs) in peripheral blood images. Due to their different characteristics, our proposed
approach is based on investigating the variations between the basophils and eosinophils in terms of their
color histogram, size, and shape before performing the segmentation process. Accordingly, we proposed
a cascaded system using a classification-based segmentation process, called classification-segmentation
reversible system (CSRS). Prior to applying the CSRS system, a Histogram-based Object to Background
Disparity (HOBD) metric was deduced to determine the most appropriate color plane for performing the
initial WBC detection (first segmentation). Investigating the local histogram features of both classes resulted
in a 92.4% initial classification accuracy using the third-degree polynomial support vector machine (SVM)
method. Subsequently, in the proposed CSRS approach, transformation-based segmentation algorithms were
developed to fit the specific requirements of each of the two predicted classes. The proposed CSRS system
is used, where the images from an initial classification process are fed into a second segmentation process
for each class separately. The segmentation results demonstrated a similarity index of 94.9% for basophils,
and 94.1% for eosinophils. Moreover, an average counting accuracy of 97.4% for both classes was achieved.
In addition, a second classification was carried out after applying the CSRS, achieving a 5.2% increase in
accuracy compared to the initial classification process.

INDEX TERMS Leukocyte segmentation, white blood cells, peripheral blood image, microscopic image

analysis, counting cells, classification, histogram-based segmentation, automatic detection.

I. INTRODUCTION

Blood circulating in the human body is composed of red
blood cells (RBCs), white blood cells (WBCs), and platelets.
In peripheral blood circulation, WBCs are most prominent.
These cells are derived from bone marrow and have a cru-
cial role in protecting the human body and maintaining its
immune system [1]. There are main five types of WBCs:
eosinophils, monocytes, lymphocytes, basophils, and neu-
trophils [2]. Both eosinophils, and basophils play a signifi-
cant role in fighting parasitic infections, mediating allergic
reactions, and preventing blood clotting.
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Blood screening is an important testing process that
enables pathologists to determine the physical well-being
of individuals. It enables them to extract vital information,
such as the WBCs type, number, and size, thereby assist-
ing pathologists in diagnosing different diseases that include
leukemia, and other blood disorders [3]. A broad series of
laboratory tests are considered for evaluating the cells’ num-
ber in the blood fluid. For example, WBC differential testing
is a commonly used medical procedure for a complete blood
count (CBC). It is used for determining the absolute count
or the relative percentage of each type of the leukocytes to
identify potential health issues such as infections, as well as
blood disorders based on the deviation of WBC count from
its reference range. Conventionally, the process of differential
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blood counting is performed by pathologists using manual
techniques, such as the blood smear examination. Counting
WBCs is performed using a microscope either directly or via
a captured image.

Inevitably, the non-uniform distribution of the WBCs
across the smear, as well as the human counting errors,
leads to inaccurate counting process. Moreover, conventional
microscopes used in the manual scanning process are limited
by their space-bandwidth product, resulting in a tradeoff
between the image’s resolution, and the microscope’s field-
of-view (FoV). For example, for a differential count, a high
magnification objective lens is required, which leads to a very
small FoV [4]. Despite the presence of more reliable auto-
mated counting techniques, such as the flow cytometry-based
instruments, these instruments are expensive and are inca-
pable of determining the morphology or shape of the cells.
Thus, image processing-based techniques provide an ade-
quate automated solution for both the quantitative and quali-
tative analysis of the microscopic images [5], [6].

Subsequently, accurate segmentation is considered a cru-
cial step in microscopic image analysis that directly affects
feature extraction, classification, and cell counting. Since cell
morphology is different in each type of WBCs, numerous
segmentation methods were developed in literature [7]-[12].
Each of these methods depends on the WBCs’ microscopic
imaging characteristics.

Typically, WBCs have a recognizable dark-violet nucleus
enclosed by a distinct lilac cytoplasm. However, WBCs have
various dimensions, edges, shapes, as well as a presence or
absence of granules in the cytoplasm, which further compli-
cates the segmentation and detection process. For example,
eosinophils and basophils are granulocytic types, but are dif-
ferent in shape and color. Eosinophils have red-orange gran-
ules that are large in size. The basophils are smaller in size
compared to the eosinophils, while having irregular shape
and dark/large granules [13]. Due to the presence of WBCs
with RBCs and platelets in the same microscopic images,
recognizing and discriminating WBCs from the surrounding
plasma becomes a challenging task using automated cell
counters [14]. Moreover, due to illumination inconsistencies,
the contrast between the cell contour and its background
varies on the basis of different image capturing conditions,
which, besides the presence of clumped clusters of overlap-
ping cells, complicates the segmentation task [15].

For peripheral blood cell microscopic image analysis,
several studies were devoted to developing a segmentation
method for each type of the WBCs, as each type has its
unique characteristics, for assisting in a better counting pro-
cess [14], [16]-[18]. Clustering methods were designed to
recognize the cluster that contains the WBCs using different
techniques, such as K-means clustering with morphological
operators [19], fuzzy C-means clustering [20], and mean-shift
clustering to generate island-clustering texture method [21].
On the other hand, the active contour models were employed
for segmenting overlapped WBCs [22]-[24]. In addition,
since the color of WBC types is different, an adjustment
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stage is recommended to improve the segmentation process
[25]. In some images, the color of the nucleus becomes
extremely different from the cytoplasm’s color. Accordingly,
for enhancing the peripheral blood smear images, several
approaches were developed for WBCs segmentation based on
color space transformation stage to transfer the color charac-
teristics of the image. A distinctive function was used in the
luminance, blue chrominance, and red chrominance (YCbCr)
color space followed by the active contour method for seg-
menting the WBCs’ nucleus [25]. Furthermore, the color
space decomposition was integrated with the K-means clus-
tering for better segmentation [9]. Considering the nonex-
istence of the Y component in the cells’ images and to
overcome the distinctive similarities between the background
components and the cytoplasm, the cyan, magenta, yellow,
and key plate (CMYK) color space was implemented [9].
Other color spaces were used in the literature, such as the
hue, saturation, and intensity (HSI) [26], the International
Commission on [llumination color space (CIELAB), where L
is the lightness from black to white, A is the value from green
to red, and B is the value from blue to yellow, and the lumi-
nance, in-phase, quadrature (YIQ) [27]. Without doubt, using
an appropriate color space is helpful in any further processes,
which includes segmentation, feature extraction/selection,
and classification.

Most techniques in the literature only use a segmentation
process for performing WBCs cells counting using the con-
nected component labeling [28]. A Gram—Schmidt orthogo-
nalization approach was integrated with the snake algorithm
for segmenting the cytoplasm and nucleus of WBCs, which
recognized five groups of WBCs in the peripheral blood
images [29]. Afterwards, several features were extracted,
including the co-occurrence matrix, and the local binary pat-
tern (LBP). Next, feature selection was carried out using the
sequential forward selection (SFS) algorithm for improved
performance. Finally, a classification process was performed
using SVM, and artificial neural network (ANN) [27]. It was
concluded that the extracted co-occurrence matrix features
required more computational time compared to the textural
LBP features. This method achieved an inclusive segmen-
tation of 93% with a classification accuracy range between
90 and 96%. However, due to the needed alignment of the ini-
tial vectors in the Gram-Schmidt technique, the main disad-
vantage of this method was the necessity of applying primary
calibration process at the initiation point. Several studies were
conducted to improve a complete detection and counting
systems for the WBCs [30], [31]. Such studies included a
classification stage to determine the different WBC types
without performing a preceding segmentation process. Since
the segmentation stage improves the accuracy of any further
classification process, other studies applied a segmentation
process prior to the classification stage, which also speeds-up
the classification process.

Inspired by the variety of WBC characteristics [32],
and since the segmentation and classification processes are
highly related, we aim to establish a new framework by
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exploiting the benefits of these variations and incorporat-
ing them in a tailored segmentation algorithm for each
class. The proposed system adopts an inverse flow compared
with traditional computer-aided detection systems. It con-
sists of several phases including two-segmentation (dual-
segmentation) processes overlapped with two-classification
(dual-classification) processes as a framework to classify a
pool of different unclassified types of the WBC’s images
and to improve the accuracy of the overall microscopic
computer-aided diagnosis (CAD) in comparison to previ-
ous work in [29]. Due to the importance of the basophils
and eosinophils image analysis, the present work applied
wavelet thresholding-based segmentation approach to seg-
ment both types of WBCs’ using different adjustments. This
was achieved by inversing the CAD sequence, such that the
classification process was executed before the segmentation
process, which enabled a tailored segmentation algorithm to
be achieved per class.

The organization of the paper is as follows. Section II
introduces the proposed system methodology as a gen-
eral framework of a CAD and counting system of two
main types of the peripheral blood smear images. Then,
in Section III, the results of the proposed system for basophils
and eosinophils detection and counting are included and inter-
preted. Finally, the conclusions are highlighted in Section I'V.

Il. METHODOLOGY OF THE PROPOSED SYSTEM FOR
BASOPHILS/EOSINOPHILS DETECTION AND COUNTING
The main challenges with designing any computer-aided
detection and counting system in microscopic peripheral
blood smear images are:

(i) the lack of a unique and efficient segmentation
approach for different types of WBCs, and

(ii) the complexity in the classification process due
to the presence of the background, which adds noise to
the extracted features. Therefore, we aim to overcome
these two main problems by developing a new general
process framework.

In the first phase, since each type of the WBCs requires
specific setting and specific color space for precise segmen-
tation, an initial segmentation process was applied before
employing an inverse of the sequence of traditional CAD
systems by applying the first classification process before
a second segmentation task. Thus, to perform CPj, an initial
segmentation process (SP;) was proposed for accurate sep-
aration of the two classes (types of WBCs). We investigated
the different images of both types (basophils and eosinophils)
in each color space, namely the red, green, and blue (RGB),
the hue, saturation, and value (HSV), the CIELAB and the
YCbCr to determine the color plane at which the initial ROI,
called ROJ; is distinguishable from the background. Then,
the intensity range of the ROI; in each specific color plane
was determined for extracting the histogram-based features.
These features were then normalized using min-max feature
normalization. Successively, the supervised infinite feature
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FIGURE 1. General framework of the inverse-based dual-segmentation
and dual-classification processes.

selection (Inf-FS) method is used for ranking. Accordingly,
the selected features included the bin location of the maxi-
mum peak at the sub-histogram, the entropy, and the mean of
the normalized green plane histogram at the range. Afterward,
CP; is performed using these three features as the input of the
cubic SVM.

In the second phase, the traditional sequence of the CAD
system is followed by using the ROI; for each type as an input
instead of the original image. A wavelet thresholding-based
segmentation approach (SP;, “second segmentation pro-
cess”’) was proposed to segment both the basophils and
eosinophils images. This segmentation process was based on
adjusting the internal parameters of the proposed segmenta-
tion method and selecting the suitable color space for each
type as follows:

« For the basophils WBCs images, the luminance compo-
nent of the LAB color space was used as the grayscale
image, while the thresholding process was based on
obtaining the thresholds from the first-level biorthogo-
nal wavelet transform components and performing the
thresholding operation on the reconstructed inverse dis-
crete wavelet transform (IDWT) image.

o For the eosinophils WBCs images, the chrominance
component (CR) of the YCbCr color space was used
as the grayscale image, where the lightly-colored cyto-
plasm commonly shares the same luminance levels of
the RBCs making them indistinguishable in the lumi-
nance color plane. Hence, the approximate compo-
nent (cA) of the wavelet transform of the Cr color plane
was used as the input of the thresholding process to
detect the WBC based on the calculated threshold.

The result of this phase is considered the final segmented
image determining final ROI;. Next, ROI; is used in the
counting process and subsequently cascaded into the second
(and final) classification process. The phases of the proposed
framework are summarized in Fig. 1.

The SP; produces ROI; which feeds CP;. Based on the
classification result, the appropriate segmentation method is
used in SP; to produce the final ROI;. Both CP; and SP,
represent the proposed reversible classification-segmentation
sub-system 1. Then, the extracted feature set after SP; is
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used to perform the final classification process, CP;. Also,
ROI; is used to feed sub-system 2 for counting the WBCs.
These two sub-systems form the whole proposed novel CSRS
computer-aided detection and counting system framework
of basophils and eosinophils cells in microscopic peripheral
blood smear images. A detailed explanation of each phase is
introduced as follows.

A. PHASE 1: INITIAL WBCS DETECTION AND
CLASSIFICATION PROCESSES

The initial WBC prediction process comprises the initial
segmentation process SP; to find the ROI;, and the initial
classification process CP;. The determination of the ROIJ;
is based on an initial estimation of the ROI location and
determining the sub-histogram of the ROI;. Hence, the his-
togram was used to find the object to background disparity
metric. This metric was then used to evaluate the different
color spaces for selecting the color space that best represents
the rough location of the ROI; with respect to the image
background. This process is performed while preserving the
cytoplasmic and nucleus characteristics within the leuko-
cyte (i.e. the ROI;). This allows the efficient separation and
identification of the basophil and eosinophil images in the
subsequent classification process CPp, which is based on the
extracted histogram-based features from the segmented ROI;.

1) HISTOGRAM-BASED OBJECT TO BACKGROUND
DISPARITY CALCULATION
The proposed histogram-based object to background dispar-
ity (HOBD) metric provides a numerical representation for
the visual difference between the ROI; and the background,
which assists in the initial estimation of the ROI location,
by determining the most appropriate color plane for this
purpose. Consequently, the suitable color channel, which rep-
resents the details of the WBCs in the image, is determined.
Afterward, the local feature extraction is performed using the
selected color plane with the highest HOBD. The HOBD is
derived by exploiting the image histogram and locating the
sub-histograms of both the ROI; and the image background.
The object of interest in our study is the WBC, which
represents the smallest area (i.e. number of pixels) in the
image compared to the background. Thus, in the color planes
where the ROJ; is significant, it can be assumed that the
sub-histogram with the small area under the curve represents
the ROI;. The ROJ; sub-histogram can be located accordingly.
Calculating the HOBD metric involved a two-fold criteria,
namely:

(i) measuring the discrepancy apart of the image back-
ground, which was the general objective; and

(ii) considering that the ROI; of both classes are presented
by a wide multi-intensity sub-histogram, which allows
the extraction of significant local features from the
RO of both classes. This allows efficient discrimina-
tion between the types of the WBC:s at the classification
process.
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Figure 2 shows the smoothed histogram of an eosinophil
image in both the RGB and the YCbCr color spaces, illustrat-
ing the parameters used for the HOBD calculation. To cal-
culate the HOBD for a certain color plane, the histogram
of the color plane was initially smoothed using a moving
average low pass filter to remove the outliers and spikes.
Therefore, the histogram contour was obtained, as shown
in Fig. 2. The number of the passed parameters to the low
pass filter was equal to the reciprocal of the span, which is the
number of input elements (data points) that are included in the
calculation of each output element in the smoothed histogram
to perform the averaging process. Based on trial and error, this
parameter was set to 5 points, which achieved a good tradeoff
between the computational time and the integrity of the small
required variations in the initial ROI sub-histogram. To ful-
fill the first criterion, two metrics were evaluated, namely
the proposed absolute distance between the highest peak at
the sub-histogram, and the highest peak at the background
sub-histogram Pp, and the traditional image contrast. The
proposed absolute peak distance Pp is calculated using the
following formula:

Pp = |b(H1) — b(H>)| ey

where b(.) is the histogram bin location of the peak. More-
over, H| and H, represent the highest peaks of the ROI;
sub-histogram and the background sub-histogram, respec-
tively. During the calculations of H; and H; values, two cases
were observed regarding the distribution of peaks across the
histogram, as shown in Fig. 2.

In the first case, the histogram peaks were distributed over
both the right and left halves of the histogram, as shown
in Fig. 2(a)-(d), indicating that the image spanned a wide
intensity range. In the second case, the histogram peaks were
located at one end of the histogram as shown in Fig. 2(e)-(f)
indicating less variation in the intensity levels between the
ROI; and the background. These two cases were then used to
identify the WBCs type in the image.

To distinguish between both cases, the peak distribution
over the intensity range was estimated by means of A, which
represents the product of the number of peaks over the
two halves of the intensity range, i.e. from 0-127 and from
128-255. Accordingly, in the first case, A # 0 and the max-
imum peaks H; and H; can be determined as the maximum
peak values of the two halves of the histogram range from
0 to 127, and from 128 to 255. However, in the second case,
where A = 0, H; and H, were estimated based on the existing
number of peaks, as these peaks may be positioned in one half
of the histogram range, as shown in Fig. 2(f). Hence, H; and
H, were calculated as follows:

_max{p(x): 0 <b(p) <127} 1 #0 2
N max {p(x) :x = 1,.., 5§} A=0
max {p(x) : 128 < b(p) < 255} A #£0
= N 3)
max {p(x) :x=5+1,.,N} 1=0
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FIGURE 2. Smoothed histogram of eosinophil cell image in different color planes: (a) Red; (b) Green; (c) Blue of RGB color space; (d) Luminance;

(e) Blue Chroma; (f) Red Chroma of YCbCr color space.

where p(x) is the peak amplitude, b(p) is the bin location of
the peak, x = [1, .., N] is the index of the peak, and N is
the total number of the existing peaks. Moreover, the image
contrast was evaluated for the intensity image Y of R rows, C
columns, and brightness level B as follows:

LA
Contrast = RC ; j:ZI[Y(l,J) — B)? 4
1 c
B = RC 2 2 (Y@, )] )
i=1 j=1

where the pixel-row index is i
pixel-column index isj =1, 2, .., C.

The second criterion aims to assign higher weight value
to the color space which provides the best representation of
the intensity variations of the ROIj;, allowing the extraction
of significant features from both WBCs’ classes for efficient
classification. Therefore, the area under the sub-histogram Ag
represents the sub-histogram distribution, which is the blue
shaded area in Fig. 2. This area under the ROI; sub-histogram
was calculated using the following proposed formula:

1,2, .., R, and the

AR = min[max(Pr o Wr), max(Ps o Ws)]

Q)

where Wr and Wy are the peak width matrices, Pr and Pg
are the matrices of the intensity levels of the peaks at the
first and second halves, respectively, and o is the Hadamard
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product operator, which ensures the element-wise multipli-
cation between each peak in the intensity level matrix and its
corresponding width. So, the peak amplitude matrices Pr and
Pg were estimated as follows:

_ Jpx):0=<bp) =127 X #0
Pr= px):ix=1.5% r=0 )
P = p(x) 128 < b(p) =255 1 #0 ®)

p(x):x:%—f-l,..,N A=0
Therefore, Ap was calculated using the element-wise
Hadamard product between each peak amplitude and its
corresponding width. A data point was considered as a
local peak if it had a larger value than its two neighboring
samples. This criterion ensured the detection of peaks within
the initial ROI sub-histogram that had small variations. The
peak’s width was defined as the distance between the points
to the right and left of the peak. The smoothed histogram
intercepted a reference line placed beneath the peak at a
vertical distance equal to half the peak prominence. There-
fore, the peak amplitude and width represent the height, and
width of a triangle, respectively, whose area was defined
by the area under the peak. The maximum area under the
peak for the sub-histogram represents the portion of the with
the highest intensity spectrum in terms of both the intensity
levels and range. Nevertheless, as the ROI; sub-histogram
could be located at either halves of the intensity range,
the maximum area under the peak was estimated at both sides
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of the histogram, representing Ag, and the area under the
background sub-histogram. In consequence, the minimum of
these two values is determined as Ag. Finally, the HOBD can
be calculated as the product of the absolute peak distance
Pp, the area under the ROI; sub-histogram Ag, and the image
contrast, as follows:

HOBD = Pp, - Ag - Contrast’ ®

Figure 2 establishes that the green channel encom-
passed the largest Ag followed by the luminance channel
of the YCbCr, while the other channels encompassed an
infinitesimal Ag.

Moreover, the highest absolute peak distances Pp were
observed, in descending order, at the red, green, blue RGB
channels, followed by the luminance channel. Based on the
calculated HOBD values including these two parameters,
and the image contrast, the green channel exhibits the high-
est HOBD, which indicates its capability to represent the
intrinsic characteristics of the ROI; in both classes, while
distinguishing the ROI; apart of the image background. Con-
sequently, the green channel was designated for the feature
extraction process to obtain the initial classification CP; of
the WBC images.

2) HISTOGRAM-BASED FEATURE EXTRACTION
Based on evaluating the ROI; at the green channel for both
classes, it was observed that the ROI; is commonly located
at intensity values ranging from «; = 0.2 and ap = 0.6.
As aresult, the histogram-based features were used to extract
information related to the gray level distribution within this
range (between a, and o) of the ROI; sub-histogram. Hence,
seven first-order statistics were used: mean, variance, skew-
ness, kurtosis, energy and entropy [33], [34], in addition to
the proposed bin location of the maximum peak at the sub-
histogram, which is derived from the HOBD calculation.
These statistics were based on the probability density of
occurrence of the intensity levels, such that the probability
density of occurrence of a certain intensity level is esti-
mated as the ratio between the number of pixels having this
intensity level to the total number of pixels, both within the
ROYI;. Based on the definition of probability density function,
the mean was calculated as follows:
Np—1
M= p@)-s (10)
8=0

where p(8) is the probability density of occurrence of the
intensity levels (6) such that 0 < § < Np — 1, where N,
is the number of the possible intensity levels. The central
moments i at k = 2, 3, 4 represent the variance, skewness,
and kurtosis, respectively, which were derived as follows:

Ni—1

we= ) @—Mf-3 (11)

§=0
Hereby, the variance measures the deviation of the intensity
levels from the mean, while the skewness measures the degree
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of the sub-histogram asymmetry around its mean, and the
kurtosis reflects the sharpness of the intensity level distribu-
tion relative to a normal distribution. Nevertheless, the energy
reflects the uniformity of the intensity level distribution,
which can be considered as follows:

Energy = Z(,o(cﬁ))2 (12)
8

In contrast, the entropy represents the randomness of
the distribution, since smooth distributions result in low
entropy values, which can be calculated using the following
expression:

Entropy = — » p(8) - log(p(8)) (13)
8

Moreover, the proposed bin location of the maximum peak
at the ROI; sub-histogram op.x was estimated using the
following proposed formula:

Umax = b(max(p(x))) (14)

Despite the extracted feature vector is low-dimensional
having only seven features, the optimal feature combina-
tion selection requires the exclusion of irrelevant and noisy
features for improving the classification CP; performance.
Consequently, feature selection was applied to select the most
significant features for further use in CP;.

3) SUPERVISED INFINITE FEATURE SELECTION
Although the extracted feature vector comprises only seven
features estimated from the ROI; which may contain noisy
irrelevant features. For that reason, a feature selection pro-
cess was applied, which targeted the selection of informative
features while excluding the irrelevant and redundant ones.
Typically, feature selection algorithms can be categorized
according to their feature subset evaluation strategy into
filter, wrapper, and embedded methods [35]. Filter meth-
ods evaluate features’ significance according to the intrinsic
statistics of the given data, which ensures wider applicability
and better generalization without exploiting the potentials
of a specific classifier. Hence, the infinite feature selection
(Inf-FS) filtering approach was used due to its flexibility
and independence from the data scenarios, especially for
the cases of noise, interclass overlap and unbalanced classes
[36]. Feature ranking using Inf-FS was performed via two
steps. Firstly, a weighted undirected fully connected graph
was developed, such that its nodes represent the features, and
its edges represent the relations between them. The adjacency
matrix Aj(fy, fn) of the graph was derived for each feature
pair (fi,, fn) to represent the significance of both features
and their eligibility to be selected as good candidates. For
the calculation of Ay (f;,,, fn), three parameters were estimated
for each feature, namely the fisher criterion #,,, the normal-
ized mutual information (u,,), and the standard deviation o,.
These three parameters were weighted linearly, resulting in
the score s,,,, which determines the uniqueness of the feature,
as in being not redundant, and its relevancy with respect to
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other classes using h,,, and both u,, and o, respectively.
Subsequently, the adjacency matrix for a feature pair is given
by [36]:

AjfnsSn) = Sm - Sn (15)

Secondly, a path of length [ was formed between the nodes
of features f,, and f, passing through generic nodes whose
number is less that the total number of given features. More-
over, several paths of length / can link the features f;,, and f;,.
At a given path [, the single feature evaluation score can be
obtained by [36]:

cim)y= " Rim.n) =Y _ Al(m,n) (16)

neVy neVy

where R; represents the overall contribution of all the possible
[ length paths, and Vy is the node set representing the given
features. The significance of a candidate feature is reflected
by the value of ¢; in a directly proportional manner. To reduce
the computational complexity, the path length was expanded
to infinity. Thus, the regularization parameter was incorpo-
rated to avoid the divergence caused by summing infinite A;
terms as c(m) = Y ;o c;(m). Subsequently, the final ranking
scores ¢(m) for each feature can be obtained by [36]:

c(m) = [Celn (17)
C=0-rA)) ' =1 (18)

where the matrix C encodes the partial scores of the extracted
features, e¢ is a one-dimensional vector of ones, while I
denotes the identity matrix, and r represents the regulariza-
tion parameter.

4) FIRST CLASSIFICATION USING SUPPORT VECTOR
MACHINE
The SVM is a supervised learning mode that analyzes the
input data for either classification or regression tasks using
its associated learning algorithms. In the training phase,
the objective of the SVM is to obtain the optimal hyper-plane
“decision boundary” providing the best separation between
the given classes. It determines the classification decision
at the testing phase based on the position of the applied
data sample with respect to the decision boundary. In most
cases, the data points are not linearly separable. The SVM
method can isolate nonlinearly separable data points by
transforming their feature vectors from low-dimensional into
high-dimensional vectors. The SVM was trained using the
high-dimensional vectors. Nevertheless, the main drawback
of this method, especially when handling a large dataset, is its
high complexity and time consumption. This leads to the use
of the kernel function method [37]. In this work, the SVM
method was considered as the main classification system
at both CP; and CP, representing the initial and second
classification processes, respectively.

Several polynomial and Gaussian kernels were also inves-
tigated for finding the optimal hyper-plane for the given
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non-linear data. For example, a 5-fold cross-validation resam-
pling method was applied to evaluate the system’s per-
formance. This CP; was considered the first stage in the
proposed reverse classification-segmentation sub-system.
Based on this first classification results, each type of the
WBCs has its main characteristics, which requires spe-
cific adjustment in the final/general segmentation SP,
which is considered the last stage in the proposed reverse
classification-segmentation sub-system to find ROI.

B. PHASE 2: FINAL WBC DETECTION BASED ON
WAVELET- BASED THRESHOLDING SEGMENTATION

The different characteristics of the basophil and eosinophil
images have motivated the development of a unique segmen-
tation algorithm for each class to best fit its inherent color
distribution. For basophils, it is difficult to distinguish the
bi-lobed nucleus from the cytoplasm, since the purplish-black
cytoplasmic granules take up the entire cell. In contrast, for
eosinophils, the bi-lobed nucleus can be distinguished from
the dark pink stained cytoplasmic granules. However, com-
paring the WBCs in both classes to the ambient RBCs makes
the eosinophil segmentation task more challenging due to the
closeness of the RBCs color to the color distribution within
the eosinophil. Hence, these inter-class variations should
be addressed using the proposed multi-class wavelet-based
thresholding segmentation. For instance, the relatively close
chrominance values between the dark-violet granules of
the basophils and the purplish surrounding RBCs imposed
the adoption of the luminance color plane for the RGB to
grayscale image conversion. In contrast, the chrominance
color plane presented an adequate solution for the segmen-
tation of the red-orange eosinophil from the surrounding
purplish RBCs. As follows the final ROI detection for both
classes, basophil and eosinophil, was presented based on the
general framework of the wavelet-based segmentation in the
SP; namely SPy_paso and SP2_cqsino respectively.

In the SP>_p,50 (Algorithm 1), the predicted RGB basophil
images Yp = [yp(1),..,yp(tp)], where tp is the number
of the predicted basophil images, are initially converted to
grayscale. Hence, for each input image yp(q) where 1 <
q < tp, the RGB image was transformed into the CIELAB
color space. Next, the dimensionality reduction technique of
principal component analysis (PCA) was applied on the lumi-
nance component L to emphasize the significant variations
among the image pixels using the scores of the principal
component that represents the maximum variance direction
through the given pixels [38], [39]. Furthermore, PCA adds
robustness against the non-uniform illumination that is com-
mon in microscopy [40], [41]. The scaled PCA score val-
ues were assigned as the intensity levels of the grayscale
image’s pixels. Afterwards, a single-level two-dimensional
(2-D) wavelet decomposition-based thresholding was applied
on the scaled grayscale image Gg using the biorthogonal
wavelet family to obtain the four wavelet coefficients, namely
the approximation cA and the horizontal cH, vertical cV,
and diagonal cD details. Then, the global threshold [42] was
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calculated for each of the four wavelet components to obtain
Ta, Ty, Ty and Tp. These four thresholds were considered in
computing the final threshold 7, which represents their sum
divided by a divisor D,, which is equal to two. The selection
of the divisor D, = 2 was experimentally validated in
section 3. Subsequently, the inverse single-level 2-D wavelet
transform was applied to obtain the recovered image V, which
was then quantized using the obtained Ty providing the binary
image that indicates the ROI;. Afterwards, morphological
post-processing operations were carried out to obtain the final
segmented image sp(q) representing the ROIf_gyg0. These
operations include:

(i) suppression of the light structures attached to the
image borders using 8-bit connectivity neighborhood
“8-connected pixels”’, which satisfies the tradeoff
between operation efficiency and the integrity of any
WBCs located near the border,

(i) finding the connected components to determine closed
areas and excluding any artifacts having a predeter-
mined area of under 500, which is deduced from exper-
imental trial and error;

(iii) applying morphological closing using a disk-shaped
structuring element to connect the disconnected regions
in the segmented region; and

(iv) applying a flood-fill operation to fill any remaining
holes in the segmented WBCs. The number of con-
nected regions np(g) in the final obtained mask sg(q)
was also counted to provide the count of the segmented
basophil cells in the original image.

The proposed approach of wavelet-based thresholding
segmentation for basophil images is outlined below in
Algorithm 1.

In the SPr_cosino (Algorithm 2), the predicted RGB
eosinophil images are denoted as Yr = [yg(l), .., ye(tg)],
where fg is the number of the predicted eosinophil images.
In this algorithm, the red chrominance plane Cr of the YCbCr
color space is considered as the grayscale representation of
the input RGB images. Subsequently, the single-level 2-D
wavelet decomposition-based thresholding was applied to the
Cr plane producing the four wavelet coefficients. Using the
same criteria as in Algorithm 1, the threshold was applied to
obtain the four thresholds 74, Ty, Ty and Tp by which the
final threshold Ty was computed, as their sum divided by a
divisor D,, = 2. In contrast to Algorithm 1, the approximation
wavelet component cA was quantized using the obtained
final threshold 7 rather than the recovered image V as per-
formed in Algorithm 2. In the morphological post-processing,
the light structures that are attached to the image borders were
suppressed based on 8-bit connectivity neighborhood, and
the connected components were determined to exclude any
closed-area artifacts of areas less than 500. Thus, the final
segmented image sg(q) representing ROIf_eosing, and its
WBC count ng(q) were obtained. The proposed approach
of wavelet-based thresholding segmentation for eosinophil
images is reported in Algorithm 2 as follows.
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Algorithm 1 Proposed Wavelet-Based Segmentation for
Basophil Images (SP2_Baso)

Input: Y = [yp(1), .., yp(ip)]
Output: Sp = [sp(1), .., sp(tp)], Np = [np(1), .., np(tp)]

// Start Processing

for g < 1totp do
Transform yz(g) RGB image into LAB color space
to obtain the L colour plane.
Apply the PCA to obtain the score of the pixels
in the L colour plane.
Obtain the grayscale pixels as the scaled PCA score
values.
Obtain the scaled grayscale image Gs by scaling the
grayscale pixels to be in the range of O to 1.
/* Two-dimensional wavelet
decomposition-based thresholding */
Apply single-level discrete 2-D wavelet
decomposition on Gy using biorthogonal wavelet to
obtain the four wavelet coefficients.
Calculate the threshold for each of the four wavelet
coefficients.
Calculate the final threshold
Tr =(Tp+ Ty + Ty +Tp)/Dy, D, = 2.
Apply the single-level inverse discrete 2-D wavelet
transform to obtain V.
Quantize V using the final threshold 7 to obtain
binary image.
/* Post-processing =/
Suppress the light structures connected to the
binary image borders using 8-bit connectivity
neighborhood.
Find the connected regions’ area and exclude
regions of area < 500.
Apply morphological closing using disk-shaped
structuring element whose radius = 2.
Apply flood-fill operation to fill any present holes in
the closed image to obtain the segmentation mask
Sg(q).
Count the number of connected regions to obtain
the number of segmented WBCs (np(g)).

end for

Find S and Np

Once the SP; is closed for both WBCs types to obtain the
ROI; of both classes, namely ROIf_p,50 and ROI¢_¢ggino as
well as obtaining the counting of the WBCs for each type
based on the inputted microscopic image, the final phase of
the classification CP, was performed to improve the initial
classification’s results of CP; using third-order polynomial
SVM. The CP; classification process was performed using
the same selected histogram-based features at CP; to show
the impact of the enhanced segmentation output at SP»
on the classification process compared to SP using the same
selected features.
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Algorithm 2 Proposed Wavelet-Based Segmentation for
Eosinophil Image (SP2—eosino )

Input: Yg = [yg(1), .., ye(7g)]
Output: Sg = [sg(1), .., se(te)],Ng = [ng(1), .., ng(tp)]

// Start Preprocessing

for g < 1totg do
Transform the yr(g) RGB image into YCbCr color
space to obtain the Cr color plane.
/+ Two-dimensional wavelet
decomposition-based thresholding =*/
Apply single-level discrete 2-D wavelet
decomposition on Cr using biorthogonal wavelet to
obtain the four wavelet coefficients.
Calculate the threshold for each of the four wavelet
coefficients.
Calculate the final threshold TF.
Quantize the cA using the final threshold 7 to
obtain binary image.
/+ Post-processing x/
Suppress the light structures connected to the
binary image borders using 8-bit connectivity
neighborhood.
Find the connected regions’ area and exclude
regions of area < 500 to obtain the segmentation
mask sg(q).
Count the number of connected regions to
obtain the number of segmented WBCs (ng(q)).

end for

Find Sg and Ng.

C. PROPOSED CLASSIFICATION-SEGMENTATION
REVERSIBLE COMPUTER-AIDED DETECTION AND
COUNTING SYSTEM FRAMEWORK FOR DETECTING AND
COUNTING BASOPHILS AND EOSINOPHILS

The proposed CSRS exploits the intrinsic characteristics of
the WBC images for tuning the segmentation process. In this
work, the basophils and the eosinophils are considered as
a case study at which the main objective is to propose the
tailored segmentation algorithms, for each microscopic spec-
imen type, which are proposed based on the initial classifica-
tion CP; prediction. Hereby, the proposed system comprises
two main stages during the implementation, the training
phase and the testing phase as demonstrated by Fig. 3. The
objectives of the training phase are to:

(i) determine the location by evaluating the different color
spaces and selecting the most significant one by cal-
culating the proposed histogram-based object to back-
ground disparity metric;

(i) segment the original microscopic image to find ROI; by
using the histogram bins that represent the upper and
lower boundaries of its sub-histogram;

(iii) extract and select the most distinctive histogram-based
features from ROI; to be used in the initial classification
process CPq; and
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FIGURE 3. Detailed block diagram of the proposed classification-
segmentation reversible system: (a) training phase; (b) testing phase.

(iv) train the CP; and CP; classification systems to set their
hyper parameters for the best performance.

The training process of the CP; is based on inputting the
selected histogram-based features from the segmented ROI;.
The proposed classification-segmentation reversible system
for detecting and counting the WBC:s is illustrated in Fig.3.

Accordingly, the intention of the first classification pro-
cess was to accurately determine the WBC class based on
the extracted features from the ROI;, which involves assign-
ing each class to its corresponding segmentation algorithm.
Moreover, the second classifier by applying CP, would effi-
ciently provide the final classification decision based on the
extracted features from the segmented ROI;. In the testing
phase, the initial trained classifier uses the extracted selected
features from ROI; to decide the subsequent segmentation
algorithm based on the classification decision. Afterward,
the number of WBCs in the segmented image was counted to
aid the diagnostic procedure of the hematologist. Therefore,
the second trained classifier exploits the extracted features
from ROI; to efficiently determine the class of the input
WBCs.

Ill. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed system was evaluated using the basophil and
eosinophil images from the leukocyte images for segmen-
tation and classification (LISC) dataset [43]. This dataset
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FIGURE 4. Sample images from the dataset: (a) Baso (Image #6); (b) Baso
(Image #7); (c) Eosino (Image #12); (d) Eosino (Image #13).

includes digital images of the peripheral blood samples
from microscopic slides. It includes manually segmented
ground-truth images for proper system evaluation. The used
dataset consists of 53 basophil (Baso) and 39 eosinophil
(Eosino) images having a resolution of 720 x 576 pixels.
However, images were initially resized by half to decrease
the run time, while sustaining adequate resolution. Sample
images from the applied dataset are displayed in Fig. 4.

A. PHASE 1: INITIAL WBC DETECTION AND
CLASSIFICATION PROCESSES

The initial classification process is geared towards distin-
guishing the images of the two given classes apart to feed
the classified image into its specific segmentation criteria
(i.e. Algorithm 1 or Algorithm 2) based on the given clas-
sification result. The main challenge was to find an approach
to extract local features from the WBCs only, excluding the
background, while using the whole image. Thus, several color
spaces, such as the RGB, HSV, CIELAB and YCbCr were
investigated to determine the color plane at which the highest
discrepancy occurs between the ROI and the image back-
ground. Subsequently, the color plane whose histogram had
the highest HOBD was used to extract the histogram-based
features, which was performed after estimating the lower
and upper boundaries (o1, «p) of the histogram bin locations
where the ROI; resides in between.

Figure 5 illustrates a sample eosinophil image displayed in
the RGB, HSV, CIELAB and YCbCr color spaces. The visual
observation of the images in Fig. 5 showed that the green
RGB (G-RGB) color plane presented the highest HOBD,
followed by the L- CIELAB and the B- CIELAB color
planes, respectively. This observation matches the observa-
tion from Fig. 2 for the same image. On the other hand,
the H-HSV color plane demonstrated the least visual discrep-
ancy between ROI; and the image background, as the ROI;
presents similar hue level to the remaining blood cells.
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FIGURE 5. Color planes of sample image (Eosino image #13) in different
color spaces: (a) RGB color space; (b) HSV color space; (c) CIELAB color
space; (d) YCbCr color space where the left column represent the first
plane of each color space, the middle column represent the second plane,
and the right column represent the third plane.

These findings were numerically established by the
calculation of the HOBD metric, as shown in Table 1 in
correspondence to the sample images displayed in Fig. 4.
Table 1 established that the G-RGB color plane had the
highest HOBD followed by the Y-YCbCr color plane, which
is the same conclusion obtained from the histogram plots
at Fig. 2. However, the H-HSV color plane was excluded
from the HOBD calculation. As demonstrated in Fig. 5b, both
the WBCs (i.e. ROI;) and the surrounding RBCs exhibit the
same hue, which impairs the initial localization of the ROI;.
Hence, CP; used this color plane. Accordingly, the seven
extracted features were derived from the intensity values of
the G-RGB color plane. To select the most relevant features
and improve the classification performance, the extracted
features were ranked using the supervised Inf-FS method.
Accordingly, the ranked feature vector from the highest to
the least significant feature was ordered as follows: omax.,
Entropy, Energy, M, 12, 3 and p4.

This order establishes the superiority of the proposed
amax as a distinctive feature for the classification of the
basophil and eosinophil WBC classes based only on the
initial estimated ROI;. The significance of these features in
distinguishing the basophils and eosinophils resides in the
intrinsic characteristics of these classes. Basophils are iden-
tified by their distinctive coarse texture due to the presence
of dense dark-violet granules within the cytoplasm, which
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TABLE 1. HOBD calculation for the color spaces for the given sample of
basophil and eosinophil images.

Image ID

Color

First ~ plane  Second plane  Third plane
Space HOBD HOBD HOBD
Baso RGB 461.73 (R) 4646.40 (G) 368.72 (B)
image HSV NA+ (H) 880.12 (S) 344.23 (V)
#6 CIELAB  36.62 (L) 194.18 (A) 502.21 (B)
YCbCr 1747.60 (Y) 0.0348 (Cb) 1.06 (Cr)
Baso RGB 766.96 (R) 4710.08 (G) 276.25 (B)
image HSV NA+ (H) 1220.36 (S) 224.67 (V)
#7 CIELAB  43.72 (L) 351.25 (A) 262.23 (B)
YCbCr 2528.35 (Y) 14.48 (Cb) 0 (Cr)
Eosino RGB 385.33 (R) 518.39 (G) 304.31 (B)
image HSV NA+ (H) 264.83 (S) 353.81 (V)
#12 CIELAB  26.01 (L) 107.95 (A) 219.98 (B)
YCbCr 186.99 (Y) 0.0042 (Cb) 3.29 (Cr)
Eosino RGB 350.50 (R) 2566.48 (G) 169.95 (B)
image HSV NA+ (H) 17.61 (S) 341.58 (V)
#13 CIELAB  97.59 (L) 108.83 (A) 935.13 (B)
YCbCr 1132.61 (Y) 0.0107 (Cb) 2.77 (Cr)

hide the nucleus. In contrast, eosinophils have more uniform
red-orange granules that do not obstruct the nucleus, which
leads to a smoother texture.

Accordingly, these brighter eosinophil granules resulted
in smaller intensity values as shown in Fig. 6. Therefore,
the bin location of the maximum peak at the initial ROI
sub-histogram helped discriminate between the two classes.
Fig. 6 shows am,x = 0.4 for the sample eosinophil
image compared to omax < 0.3 for the sample basophil
image. Moreover, the variation in texture between the two
classes was reflected in the entropy, which describes the
homogeneity of the given texture. Thus, the entropy was
higher in the basophils due to its coarse granules compared
to the eosinophils. The average normalized entropy over
the basophil dataset was 0.3937 compared to 0.2420 for
eosinophils. As for the mean intensity, the basophils showed
higher mean values due to the presence of darker intensities
in the WBC, which resulted in average normalized value
of 0.39 over the basophil dataset compared with 0.34 for
eosinophils.

A sample of the normalized extracted features is shown in
2 for both WBC classes. Moreover, to find the optimum num-
ber of ranked features, Ry, the effect of different R;, values on
the CP; classification performance was investigated.

Several SVM kernels were trained using the Rj features,
including the first-order, second-order, third-order polynomi-
als, and Gaussian functions, as shown in Fig. 7. The SVMs
were all trained using 5-fold cross-validation for better gen-
eralization. So, the dataset was divided into 5 equal folds to
find the classifier’s overall performance as the average of the
5 runs.

Figure 7 shows that the optimal number of the selected
features varies with the characteristics of the SVM kernels,
which is an expected outcome, especially with filter-based
feature selection approaches. Nonetheless, highest classifica-
tion performance was obtained using the third-order SVM
with the top three features, namely the proposed &max,
Entropy, and M, reflecting the location of the histograms’
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FIGURE 6. Smoothed histogram of green color plane for sample:
(a) basophil image (Baso image #13); (b) eosinophil image
(Eosi image #13).

TABLE 2. Sample of the normalized extracted features at the initial
classification for the given sample of basophil and eosinophil images.

Image M o us Ha
ID

Energy Entropy Q‘max

Baso 0.610
image
#6

Baso 0.764
image
#7

0.472 0.108 0.063 0.597 0.298 0.293

0.557 0.052 0.032 0.774 0.522 0.32

Eosino
image
#12

0.566 0.539 0.142 0.079 0.411 0.199 0.8

Eosino 0.569
image

#13

0.494 0.118 0.065 0.427 0.237 0.64

maximum peak, the distributions’ randomness, and the dis-
tributions’ mean value, respectively. In contrast, weakest
performance was obtained using the coarse Gaussian SVM
with the proposed omax only. Therefore, a third-order SVM
was chosen as the initial classifier of the proposed system
with Ry = 3. Table 3 validates the classifier’s selection

78893



IEEE Access

A.S. Ashour et al.: Cascaded CSRS for Computer-Aided Detection and Cells Counting

TABLE 3. Classification performance metrics of CP, using third-order
SVM for different numbers of top ranked features.

Accuracy Sensitivity ~ Specificity F- AUC

measure  (ROC)

R =1 80.4% 82.1% 79.2% 78.1% 0.86

Ry =2 82.6% 76.9% 86.7% 78.9% 0.85

R =3 92.4% 92.3% 92.4% 91.1% 0.95

R =4 88.0% 89.7% 86.7% 86.4% 0.88

R, =5 88.0% 87.1% 88.6% 86.1% 0.90

Ry, =6 87.0% 84.6% 88.6% 84.6% 0.90

Ry =7 80.4% 84.6% 90.5% 85.7% 0.91
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FIGURE 7. Classification accuracy of CP; using several SVM kernels for
different numbers of top ranked features.

by reporting its classification performance metrics, while
demonstrating their values for different R values.

The classification performance metrics in Table 3 demon-
strate the designated classifier’s ability to differentiate
between the positive and negative classes, which in our
context, are set to be the eosinophil and basophil classes,
respectively. Hence, the sensitivity or the ‘recall’ represents
the percentage of the eosinophil images, which are correctly
identified, while the specificity holds the same definition
but for the basophil images. The F-measure is the weighted
harmonic mean of the classifier’s precision and recall, where
the precision measures the false positives. Generally, these
two metrics are commonly in a trade-off. A high F-measure
reflects that both precision and recall are equally high values.

B. PHASE 2: FINAL WBC DETECTION BASED ON
WAVELET- BASED THRESHOLDING SEGMENTATION
According to the classification predictions, the input pool
of WBC images was classified into either basophil or
eosinophil, which indicates four probable outcomes for the
predicted image. These are:

1) the Baso image is correctly identified (TN);

ii) the Eosino image is correctly identified (TP);

iii) Baso image is falsely classified as Eosino (FP); and

iv) the Eosino image is falsely classified as Baso (FN).

Therefore, the classification decision dictates the applica-
tion of segmentation Algorithm 1 for the negative predictions
(i.e., TN and FN) and Algorithm 2 for the positive predic-
tions (i.e., TP and FP). Figure 8 shows the progression of

78894

(€3] (h)

FIGURE 8. Segmented Baso image #41 using algorithm1: (a) input RGB
image; (b) C; complemented L component of CIELAB color space;

(c) V inversed DWT image after biorthogonal decomposition;

(d) quantized V using the final threshold T¢; (e) after removing
border-attached structures; (f) after excluding connected regions with
area < 500; (g) after morphological closing and hole filling; (h) the
detected boundary of the WBC displayed in blue.

segmentation Algorithm 1 for a TN basophil image (Baso
image #41) indicating the processes performed at the pre-
processing, the 2-D wavelet decomposition-based thresh-
olding, and the post-processing, while, Fig. 9 shows the
progression of segmentation Algorithm 2 for a TP eosinophil
image (Eosino image #13).

Table 4 shows sample values of the four thresholds as
well as the final threshold. The final threshold was deter-
mined by halving the sum of the four thresholds. The max-
imum threshold was 145.431, which was threshold 1 for
Eosino image #10, and its corresponding final threshold was
111.071. Furthermore, for the basophil dataset, a maximum
threshold of 66.741 was obtained for threshold 1 in Baso
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FIGURE 9. Segmented Eosino image #13 using algorithm 2: (a) input RGB
image; (b) Cr color plane; (c) cA component of biorthogonal DWT
decomposition; (d) quantized cA using the final threshold 7¢; (e) after
removing border-attached structures and excluding connected regions
with area < 500; (f) the detected boundary of the WBC displayed in blue.

image #3, while the maximum final threshold was 90.153 for
Baso image #42. Also, for the eosinophil dataset, a maxi-
mum threshold of 146.428 was obtained for threshold 1 in
Eosino image #14, while the maximum final threshold was
124.269 for Eosino image #3. The values of thresholds 2 to
4 were consistently low (below 60), since the histograms
of the wavelet details (i.e. horizontal, vertical, diagonal)
were concentrated near the low end of the histogram due to
the high presence of low intensity pixels in these images.
Thus, the final threshold value will never exceed 255. Hence,
the final threshold was used to obtain the segmented image
shown in Fig. 8(d) and Fig. 9(d) using the IDWT image and
the approximate component for basophils and eosinophils.

Moreover, Fig. 10 shows a sample of the correctly clas-
sified images from both classes, where Fig. 10(c) shows
the estimated based on the proposed HOBD metric, which
indicated the superiority of the G-RGB channel in this
process. As previously mentioned, the ROI; is typically
located between oy = 0.2 and oo = 0.6. Nevertheless,
Fig. 10(d) subjectively evaluates the segmentation process
as the segmented ROI; contour is shown in blue against the
ground-truth contour, which is given in red.

For the objective evaluation of the proposed CSRS, the seg-
mentation evaluation metrics are shown in Fig. 11. It demon-
strates the effect of the D,, value on the proposed system, as it
was varied from 2 to 4, in addition to the segmentation per-
formance in case of applying the same algorithm (1 or 2) for
both WBC classes. The illustrated segmentation metrics were
computed based on comparing the segmented mask to the
ground truth mask. Hence, the definitions of TP, TN refer to
the number of correctly identified ROI, or background pixels,
respectively. Conversely, the accuracy and specificity does
not effectively represent the segmentation performance due
to the presence of TN in their equations, which is typically of
large value compared to TP, FP, or FN leading to neglecting
these terms at the summations. In consequence, the sensitiv-
ity, Jaccard index (JAC), and the Dice coefficient are of higher
significance. The JAC is the intersection between the ROIs
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TABLE 4. Sample and average values of the four wavelet thresholds
(thresh.) and the final threshold for the two classes.

Image ID Thresh. Thresh. Thresh. Thresh.  Final
1 2 3 4 thresh.
Sample Baso 63.752 35.863 36.859 27.894 82.184
threshold  image #1
values for  Baso 55.784 22914 24906 16.937 60.271
different image #10
Baso Baso 49.808 18.929 23.909 52.796 72.722
images image #11
Baso 53.792 17.933 21918 49.808 71.725
image #12
Average threshold 52.702 23.722 27.349 29.229 66.501
values over the whole
Baso dataset
Sample Eosino im-  120.529 12.953 18.930 18.929 85.671
threshold  age #1
values for  Eosino im- 145431 22914 32.875 20.922 111.071
different age #10
Eosino Eosino im-  108.576 15.941 22.914 24.906 86.169
images age #11
Eosino im-  136.467 21.918 30.882 18.929 104.098
age #12
Average threshold 119.648 20.564 23.629 23.374 93.607

values over the whole
Eosino dataset

of the segmented and ground-truth images divided by their
union, while the Dice is twice the overlap area divided by the
total number of pixels in both images, so in a perfect scenario
these metrics score a 100%.

Figure 11 shows the improved performance of the pro-
posed CSRS with D, = 2 in comparison to D,, = 3 or 4, since
it demonstrated 86% JAC, 92% Dice, and 96% sensitivity.
Moreover, it is evident that applying the same algorithm for
both classes reduces the segmentation performance. The pro-
posed reverse classification-segmentation process was per-
formed, where the proposed CSRS was implemented using
DWT-based thresholding with D, = 2 in the upcoming eval-
uations. The detected ROI; after the final SP> segmentation
process was applied to a counting process in addition to the
CP, classification process. The aim of this process was to
obtain the number of the detected WBCs in the microscopic
images to assist hematological experts in the quantitative
analysis of the blood smear images. The counting accuracy of
the proposed CSRS method was calculated as the percentage
of the class images at which the number of WBCs was
accurately detected. Table 5 shows the detected and the true
number of WBCs in sample basophil and eosinophil images,
in addition to the counting accuracy of both classes.

C. SECOND CLASSIFICATION & COMPUTATIONAL
RUNTIME OF PROPOSED SYSTEM

The second classification process was performed to improve
the initial classification performance metrics shown at
Table 3. This process was performed based on extracting
the pre-selected top three features from the segmented ROIL.
Subsequently, using the third-order SVM, the classification
accuracy has increased by nearly 5.2% compared to the ini-
tial classification accuracy. The second classification perfor-
mance metrics are displayed in Table 6.
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FIGURE 10. Sample WBC segmentation for correctly classified cases,
the first three rows are for basophils, and the last three rows are for
eosinophils: (a) image ID; (b) original RGB image; (c) ROI; obtained from
initial segmentation process; (d) segmented ROI¢ contour represented in
blue and ground truth contour represented in red.
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TABLE 5. Counting accuracy of detected WBCS using the proposed CSRS.

Class Image ID True # of Detected # of
WBCs WBCs

Sample Baso image #7 2 2

basophil Baso image #31 2 2

ima gs Baso image #51 1 1

9 Baso image #52 1 1
Basophils counting accuracy 100%

Eosino image #13 1 1

Sc?;?r?cl)ehil Eosino image #15 1 6

ima esp Eosino image #7 1 1

9 Eosino image #8 1 1
Eosinophils counting accuracy 94.8%

Also, the average runtime of the training and testing
phases in seconds were estimated as shown in Table 7,
following the sequential processes illustrated at Fig. 3. The
training time included the time of the initial ROI feature
extraction and selection, where seven features were extracted,
and then the top three features were selected, the initial
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FIGURE 11. Segmentation performance metrics for the proposed CSRS
with Dy = 2,3 and 4 compared to applying algorithm 1 or 2 for both
WBC classes.

TABLE 6. Third-order SVM second classification CP, performance.

Accuracy Sensitivity Specificity F-measure AUC
(ROC)
97.6% 97.1% 98.0% 97.1% 99%

TABLE 7. Average runtime of the training and testing phases of the
proposed system.

Process Training Testing time for
time (s) ten images (s)

Initial ROI feature extraction & selection 1.779 0.011

Initial classification process 12.582 0.055

ROI segmentation process 41.105 5.629

ROl feature extraction process 1.881 0.258

Second classification process 8.102 0.022

Total 65.449 5.975

classifier training time, the ROI segmentation process using
the selected algorithm, the extraction of the top three features
from the segmented ROI, and the second classifier training
time. For the testing time calculation, ten images were applied
as the testing input, and the time of each of the pre-mentioned
processes were included. However, the initial ROI feature
selection process was bypassed at the testing phase. Further-
more, the classifiers testing time was incorporated instead of
the training time.

Table 7 establishes that the proposed CSRS is a
fast-performing algorithm, where the training process has
taken only 65.45 seconds with an average of 5.98 seconds
for testing ten input images.

D. COMPARATIVE STUDY OF THE PROPOSED
SEGMENTATION WITH OTHER WELL-KNOWN METHODS
The proposed method was also compared with some other
segmentation techniques, namely the K-means [44] algorithm
and the fuzzy C-means (FCM) [45] algorithm with different
number of cluster centers N, as shown in Fig. 12 which
demonstrates their performance metrics. Figure 12 shows that
the proposed CSRS method achieved more precise segmen-
tation results in comparison to both the K-means and the
fuzzy C-means at different number of clusters. The displayed
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TABLE 8. Average segmentation performance metrics of each class using
the proposed CSRS compared to applying each segmentation algorithm
on its targeted class.

Class Method JAC Dice Sensitivity Specificity Accuracy

Basophils ProPosed 0851 0819 0940 0999 0999
P CSRS

Algorithm 1 0.851 0.919 0.937 0.999 0.999

. ... Proposed 0.859 0.924 0.989 0.999 0.999
Eosinophils CSRS

Algorithm2  0.796 0.860 0.962 0.998 0.998

segmentation metrics indicated that for the K-means algo-
rithm the JAC, Dice, specificity, and accuracy peaked at
N, = 3 compared to N, = 2, and N, = 5. While for the
fuzzy C-means, the highest segmentation performance was
obtained at N, = 10, where the JAC, Dice, and sensitivity
were 12%, 9%, and 26% less than their values using the
proposed CSRS method.

It is worth noting that the proposed CSRS method accom-
plished better segmentation performance in comparison
to applying each segmentation algorithm on its targeted
class, i.e. Algorithm 1 on basophils, and Algorithm 2 on
eosinophils. This is due to the dependency of the proposed
method on the image characteristics, which are based on
the extracted histogram-based features, rather than the WBC
class. Despite the majority of class images following their
designated segmentation algorithm, some cases achieved
better results using the other segmentation algorithm. For
example, Fig. 13 illustrates two basophil images which were
misclassified as eosinophil in the initial classification process
and subsequently followed segmentation Algorithm 2 instead
of segmentation Algorithm 1.

From Fig. 13, it can be concluded that the misclassi-
fication has aided the segmentation process, as the initial
classification process considers the rough categorization of
the input WBC images based on their characteristics, which
leads each classified image to follow the suitable segmenta-
tion criteria out of the two given algorithms. Nonetheless,
the classification performance would also be improved at
the subsequent, second classification step CP; to accurately
determine the WBC classes. Table 8 compares the individual
segmentation performance of each class while applying the
proposed CSRS against the application of either Algorithm 1
or Algorithm 2 for its given class. Hence, the average seg-
mentation metrics of each class is reported.

IV. PERFORMANCE EVALUATION COMPARISON WITH
STATE-OF- THE-ART WORK

Table 9 demonstrates a comparative analysis for highlighting
the segmentation performance of the given two WBC classes
from the LISC database across some state-of-art studies.
Studies that have included the basophils and eosinophils,
while evaluating the segmentation performance for each class
separately were only considered for comparison. The Similar-
ity Measure was calculated to compare against these studies,
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FIGURE 12. Segmentation performance metrics for the proposed
CSRS compared to k-means with N¢ = 2, 3, 5 and FCM with
N¢ =3,5,6 and 10.
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FIGURE 13. Detected boundary of misclassified basophil images: (a) Baso
image #48, and (b) Baso image #47 where the red boundary contours the
detected area using the proposed CSRS, while the green boundary
contours the segmented area using algorithm 1.

which was computed as follows [29]:
Aseg NAgr

Similarity Measure = ————
max(Aseg, AGT)

x 100  (19)
where Ageg is the segmented area using the automated seg-
mentation method, while Agr is the segmented area by the
hematological expert. Yet, in studies [32], [46], [47], the seg-
mentation process mainly targeted the WBC nuclei in order to
discriminate between the WBC classes. But, in our study we
have considered the segmentation of the whole leukocyte cell
(i.e. nucleus and cytoplasm) and extracting global features
from the segmented cell to determine its class. In [29], [46],
[47], both the cytoplasm and nucleus were segmented, and
their average Similarity Measure is reported in Table 9.

V. DISCUSSION

In comparison with state-of-art studies using the LISC
dataset, our proposed system performs better in terms
of segmentation, counting and classification tasks. It is
also worth noting that previous studies have adopted deep
learning techniques for the detection and classification of
WBCs in microscopic images [31], [48]-[51]. However,
deep learning techniques usually require large datasets
to avoid over-fitting the proposed model. For instance,
Kutlu et al. [50] combined the LISC dataset and the Blood
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TABLE 9. Performance metrics comparative study against the state-of-art
studies using the lisc dataset.

Reference WBC Similarity JAC  Dice Sensitivity Counting

Class Measure Accuracy
Proposed Basophils 94.9%  0.851 0.920 0.941 100%
method Eosinophils 94.1%  0.859 0.887 0.989 94.8%
[29] Basophils 94.7% - - - -
Eosinophils 93.2%
[46] Basophils 90.6%
Eosinophils 84.3% - -
[32] Basophils 92.5% - 0.934
Eosinophils 82.8% - 0.864
[47] Basophils 91.4% - -
Eosinophils 86.9%

Cell Count and Detection (BCCD) dataset to develop
a CNN-based WBC detection and classification model.
Accordingly, the ResNet50 architecture achieved 98.48%,
and 96.16% accuracies for basophils and eosinophils. Their
deep learning methods achieved an average classifica-
tion accuracy of 97.32% for both classes using a larger
dataset, higher computational complexity and processing
time. However, our proposed system achieved a 97.6% clas-
sification accuracy using the LISC dataset. Additionally,
Baydilli et al. [51] developed a capsule network for WBC
classification, which achieved an average classification accu-
racy of 96.12% for both classes, which is less than our
achieved classification accuracy by nearly 2% using the LISC
dataset.

However, it is worth noting that the proposed system failed
to handle five images, where some specific cases of micro-
scopic images occurred. These cases included the presence
of the WBC at the image corner, as shown in Fig. 14(a) and
staining with cytochemical dyes resulting in a comparable
chromaticity between the WBC and the surrounding RBCs,
as shown in Fig. 14(b).

In addition, we assessed our proposed segmentation
system for further verification using the well-known
acute lymphoblastic leukemia image database (ALL-IDB)
[52]-[54]. The database is composed of two parts: ALL-
IDB1, which includes microscopic blood samples from both
ALL and non-ALL patients, and ALL-IDB2, which includes
the cropped ROI of both normal and lymphoblast cells of
ALL-IDB1. However, this database presents a different clas-
sification problem, which involves detecting leukemia blast
cells. Hence, in the present work, we used the ALL-IDBI1
dataset to evaluate our system’s segmentation performance
in the presence of a large number of WBCs and different
illumination conditions, as shown in Fig. 15 compared to the
K-means and fuzzy C-means methods applied on ALL-IDBI1.

Fig. 15 demonstrates that our proposed method achieved
improved segmentation accuracy in comparison to the
K-means, while the fuzzy C-means was least accurate. More-
over, Fig. 16 provides further evidence regarding the segmen-
tation accuracy of our proposed method in comparison to the
K-means and fuzzy C-means using the ALL-IDB2 dataset.

Fig. 16 shows the improved performance of our method
in comparison to the K-means and fuzzy C-means.

78898

I ST

L ! -
(a) (b)

FIGURE 14. Failed segmentation cases due to: (a) the WBC touching the
image borders; (b) the WBC chromaticity being comparable to
surrounding RBCs.
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FIGURE 15. Segmentation of sample images from the ALL-IDB1 dataset
(given the image ID at the last row): (a) original image; (b) segmentation
mask using the proposed method; (c) segmentation mask using K-means;
and (d) segmentation mask using fuzzy C-means.

The proposed method achieved an average 96.95% seg-
mentation accuracy, 96.8% sensitivity, 95.5% specificity,
96.% F-measure for both parts of the dataset. In terms of
computational complexity, an intel-core i5 computer with
8 GB RAM needed 3.5 seconds to segment the images in
the ALL-IDB1 dataset using our proposed algorithms, while
1.2 seconds were required for the images in ALL-IDB2.

On the other hand, our proposed system proved more
effective in comparison to other state-of-the-art methods
on the ALL-IDB dataset. Scotti [20] proposed an image
enhancement-based adaptive method for segmenting white
blood cells, which resulted in 92% segmentation accuracy.
Moreover, Safuan et al. [55] combined color analysis of
different color spaces including the RGB, CMYK, and
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FIGURE 16. Detected WBC contour for sample images from
ALL-IDB2 dataset (given the image ID at the last row): (a) using the
proposed method; (b) using K-means; and (c) using fuzzy C-means.

HSV with Otsu thresholding followed by morphological
filtering and connected component labeling for detecting
WBCs. Their results showed that the highest segmentation
accuracy was 96.92% using the S component of the HSV
color space. Moreover, Li et al. [56] proposed a weighted
cross-entropy loss function based on class weight and dis-
tance transformation weight for deep learning using U-Net
for the WBC segmentation using ALL-IDB1, which resulted
in 94.92% segmentation accuracy without data augmentation.
In addition, our counting accuracy was 93.7% using the
entire ALL-IDB dataset, which is 12.7% higher than the
accuracy reported by Mahmood et al. [57], where color
space conversion and Hough transform were used for WBC
detection. However, further and future investigations regard-
ing cell overlapping are necessary to improve our counting
accuracy. Moreover, a careful investigation into the failed
cases is also highly recommended for improving the proposed
system performance. Furthermore, an extension to this work
may involve developing deep learning-based approaches to
mitigate the previously mentioned limitations and drawbacks.

VI. CONCLUSION

Automatic detection, counting and recognition of white blood
cells in peripheral blood smear microscopic images can
highly contribute to the diagnosis of many blood diseases.
However, the morphological variations between the differ-
ent types of WBCs usually complicate their segmentation
process and affect its accuracy. In this study, the basophil
and eosinophil were considered as a case study from which
these variations were employed to perform an initial clas-
sification process prior to deploying the final segmenta-
tion algorithm for each class. Accordingly, the proposed
HOBD metric determined the green RGB color plane as the
most appropriate color plane for performing an initial ROI
detection.
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After using the green channel histogram-based features
that were derived from the initially segmented WBCs, the ini-
tial classification process resulted in a 92.4% classification
accuracy using the third-order polynomial SVM. Hence,
the proposed cascaded classification-segmentation reversible
system (CSRS) provided a tailored wavelet transform-based
segmentation algorithm for each of these classes. In compar-
ison to current state of the art, which achieved a similarity
index of 94.70% for basophils and 93.22% for eosinophils,
our segmentation process demonstrated a higher similarity
index of 94.9% for basophils and 94.1% for eosinophils for
the same dataset. Moreover, an average counting accuracy
of 97.4% for both classes was achieved. A second stage
classification was carried out after applying the CSRS based
on the final segmentation results, which achieved a 5.2%
increase in accuracy compared with the initial classification
process. Moreover, thanks to the effectiveness and accuracy
of the proposed framework, it can be adopted in differ-
ent image processing applications such as telemedicine, and
remote monitoring systems.
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