648 research outputs found

    Counting Homomorphisms in Plain Exponential Time

    Get PDF

    Lower Bounds for the Graph Homomorphism Problem

    Full text link
    The graph homomorphism problem (HOM) asks whether the vertices of a given nn-vertex graph GG can be mapped to the vertices of a given hh-vertex graph HH such that each edge of GG is mapped to an edge of HH. The problem generalizes the graph coloring problem and at the same time can be viewed as a special case of the 22-CSP problem. In this paper, we prove several lower bound for HOM under the Exponential Time Hypothesis (ETH) assumption. The main result is a lower bound 2Ω(nloghloglogh)2^{\Omega\left( \frac{n \log h}{\log \log h}\right)}. This rules out the existence of a single-exponential algorithm and shows that the trivial upper bound 2O(nlogh)2^{{\mathcal O}(n\log{h})} is almost asymptotically tight. We also investigate what properties of graphs GG and HH make it difficult to solve HOM(G,H)(G,H). An easy observation is that an O(hn){\mathcal O}(h^n) upper bound can be improved to O(hvc(G)){\mathcal O}(h^{\operatorname{vc}(G)}) where vc(G)\operatorname{vc}(G) is the minimum size of a vertex cover of GG. The second lower bound hΩ(vc(G))h^{\Omega(\operatorname{vc}(G))} shows that the upper bound is asymptotically tight. As to the properties of the "right-hand side" graph HH, it is known that HOM(G,H)(G,H) can be solved in time (f(Δ(H)))n(f(\Delta(H)))^n and (f(tw(H)))n(f(\operatorname{tw}(H)))^n where Δ(H)\Delta(H) is the maximum degree of HH and tw(H)\operatorname{tw}(H) is the treewidth of HH. This gives single-exponential algorithms for graphs of bounded maximum degree or bounded treewidth. Since the chromatic number χ(H)\chi(H) does not exceed tw(H)\operatorname{tw}(H) and Δ(H)+1\Delta(H)+1, it is natural to ask whether similar upper bounds with respect to χ(H)\chi(H) can be obtained. We provide a negative answer to this question by establishing a lower bound (f(χ(H)))n(f(\chi(H)))^n for any function ff. We also observe that similar lower bounds can be obtained for locally injective homomorphisms.Comment: 19 page

    On retracts, absolute retracts, and folds in cographs

    Full text link
    Let G and H be two cographs. We show that the problem to determine whether H is a retract of G is NP-complete. We show that this problem is fixed-parameter tractable when parameterized by the size of H. When restricted to the class of threshold graphs or to the class of trivially perfect graphs, the problem becomes tractable in polynomial time. The problem is also soluble when one cograph is given as an induced subgraph of the other. We characterize absolute retracts of cographs.Comment: 15 page

    Querying the Guarded Fragment

    Full text link
    Evaluating a Boolean conjunctive query Q against a guarded first-order theory F is equivalent to checking whether "F and not Q" is unsatisfiable. This problem is relevant to the areas of database theory and description logic. Since Q may not be guarded, well known results about the decidability, complexity, and finite-model property of the guarded fragment do not obviously carry over to conjunctive query answering over guarded theories, and had been left open in general. By investigating finite guarded bisimilar covers of hypergraphs and relational structures, and by substantially generalising Rosati's finite chase, we prove for guarded theories F and (unions of) conjunctive queries Q that (i) Q is true in each model of F iff Q is true in each finite model of F and (ii) determining whether F implies Q is 2EXPTIME-complete. We further show the following results: (iii) the existence of polynomial-size conformal covers of arbitrary hypergraphs; (iv) a new proof of the finite model property of the clique-guarded fragment; (v) the small model property of the guarded fragment with optimal bounds; (vi) a polynomial-time solution to the canonisation problem modulo guarded bisimulation, which yields (vii) a capturing result for guarded bisimulation invariant PTIME.Comment: This is an improved and extended version of the paper of the same title presented at LICS 201

    The HOM problem is EXPTIME-complete

    Get PDF
    We define a new class of tree automata with constraints and prove decidability of the emptiness problem for this class in exponential time. As a consequence, we obtain several EXPTIME-completeness results for problems on images of regular tree languages under tree homomorphisms, like set inclusion, regularity (HOM problem), and finiteness of set difference. Our result also has implications in term rewriting, since the set of reducible terms of a term rewrite system can be described as the image of a tree homomorphism. In particular, we prove that inclusion of sets of normal forms of term rewrite systems can be decided in exponential time. Analogous consequences arise in the context of XML typechecking, since types are defined by tree automata and some type transformations are homomorphic.Peer ReviewedPostprint (published version

    Classification in finite model theory

    Get PDF

    Worst-case Optimal Query Answering for Greedy Sets of Existential Rules and Their Subclasses

    Full text link
    The need for an ontological layer on top of data, associated with advanced reasoning mechanisms able to exploit the semantics encoded in ontologies, has been acknowledged both in the database and knowledge representation communities. We focus in this paper on the ontological query answering problem, which consists of querying data while taking ontological knowledge into account. More specifically, we establish complexities of the conjunctive query entailment problem for classes of existential rules (also called tuple-generating dependencies, Datalog+/- rules, or forall-exists-rules. Our contribution is twofold. First, we introduce the class of greedy bounded-treewidth sets (gbts) of rules, which covers guarded rules, and their most well-known generalizations. We provide a generic algorithm for query entailment under gbts, which is worst-case optimal for combined complexity with or without bounded predicate arity, as well as for data complexity and query complexity. Secondly, we classify several gbts classes, whose complexity was unknown, with respect to combined complexity (with both unbounded and bounded predicate arity) and data complexity to obtain a comprehensive picture of the complexity of existential rule fragments that are based on diverse guardedness notions. Upper bounds are provided by showing that the proposed algorithm is optimal for all of them
    corecore