32,901 research outputs found

    Counting dominating sets and related structures in graphs

    Full text link
    We consider some problems concerning the maximum number of (strong) dominating sets in a regular graph, and their weighted analogues. Our primary tool is Shearer's entropy lemma. These techniques extend to a reasonably broad class of graph parameters enumerating vertex colorings satisfying conditions on the multiset of colors appearing in (closed) neighborhoods. We also generalize further to enumeration problems for what we call existence homomorphisms. Here our results are substantially less complete, though we do solve some natural problems

    Reconfiguration of Dominating Sets

    Full text link
    We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph GG is a set SS of vertices such that each vertex is either in SS or has a neighbour in SS. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions ss and tt such that each pair of consecutive solutions is adjacent according to a specified adjacency relation. Two dominating sets are adjacent if one can be formed from the other by the addition or deletion of a single vertex. For various values of kk, we consider properties of Dk(G)D_k(G), the graph consisting of a vertex for each dominating set of size at most kk and edges specified by the adjacency relation. Addressing an open question posed by Haas and Seyffarth, we demonstrate that DΓ(G)+1(G)D_{\Gamma(G)+1}(G) is not necessarily connected, for Γ(G)\Gamma(G) the maximum cardinality of a minimal dominating set in GG. The result holds even when graphs are constrained to be planar, of bounded tree-width, or bb-partite for b3b \ge 3. Moreover, we construct an infinite family of graphs such that Dγ(G)+1(G)D_{\gamma(G)+1}(G) has exponential diameter, for γ(G)\gamma(G) the minimum size of a dominating set. On the positive side, we show that Dnm(G)D_{n-m}(G) is connected and of linear diameter for any graph GG on nn vertices having at least m+1m+1 independent edges.Comment: 12 pages, 4 figure

    Dominating sets in projective planes

    Get PDF
    We describe small dominating sets of the incidence graphs of finite projective planes by establishing a stability result which shows that dominating sets are strongly related to blocking and covering sets. Our main result states that if a dominating set in a projective plane of order q>81q>81 is smaller than 2q+2[q]+22q+2[\sqrt{q}]+2 (i.e., twice the size of a Baer subplane), then it contains either all but possibly one points of a line or all but possibly one lines through a point. Furthermore, we completely characterize dominating sets of size at most 2q+q+12q+\sqrt{q}+1. In Desarguesian planes, we could rely on strong stability results on blocking sets to show that if a dominating set is sufficiently smaller than 3q, then it consists of the union of a blocking set and a covering set apart from a few points and lines.Comment: 19 page

    On (t,r) Broadcast Domination Numbers of Grids

    Full text link
    The domination number of a graph G=(V,E)G = (V,E) is the minimum cardinality of any subset SVS \subset V such that every vertex in VV is in SS or adjacent to an element of SS. Finding the domination numbers of mm by nn grids was an open problem for nearly 30 years and was finally solved in 2011 by Goncalves, Pinlou, Rao, and Thomass\'e. Many variants of domination number on graphs have been defined and studied, but exact values have not yet been obtained for grids. We will define a family of domination theories parameterized by pairs of positive integers (t,r)(t,r) where 1rt1 \leq r \leq t which generalize domination and distance domination theories for graphs. We call these domination numbers the (t,r)(t,r) broadcast domination numbers. We give the exact values of (t,r)(t,r) broadcast domination numbers for small grids, and we identify upper bounds for the (t,r)(t,r) broadcast domination numbers for large grids and conjecture that these bounds are tight for sufficiently large grids.Comment: 28 pages, 43 figure

    Distributed Dominating Set Approximations beyond Planar Graphs

    Full text link
    The Minimum Dominating Set (MDS) problem is one of the most fundamental and challenging problems in distributed computing. While it is well-known that minimum dominating sets cannot be approximated locally on general graphs, over the last years, there has been much progress on computing local approximations on sparse graphs, and in particular planar graphs. In this paper we study distributed and deterministic MDS approximation algorithms for graph classes beyond planar graphs. In particular, we show that existing approximation bounds for planar graphs can be lifted to bounded genus graphs, and present (1) a local constant-time, constant-factor MDS approximation algorithm and (2) a local O(logn)\mathcal{O}(\log^*{n})-time approximation scheme. Our main technical contribution is a new analysis of a slightly modified variant of an existing algorithm by Lenzen et al. Interestingly, unlike existing proofs for planar graphs, our analysis does not rely on direct topological arguments.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0299
    corecore