64,164 research outputs found

    Counting Circles Without Computing Them

    Get PDF
    In this paper we engineer a fast algorithm to count the number of triangles defined by three lines out of a set of n lines whose circumcircle contains the origin. The trick is not to compute any triangles or circles

    Geometry of Discrete Quantum Computing

    Full text link
    Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2^{n} infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields Fp^2 (based on primes p congruent to 3 mod{4}) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space CP{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p+1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to DCP{2^{n}-1}, the discrete analog of the complex projective space, which has p^{2^{n}-1} (p-1)\prod_{k=1}^{n-1} (p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field Fp^2 have p^{n} (p-1)^{n} unentangled states (the product of the tally for a single qubit) with purity 1, and they have p^{n+1}(p-1)(p+1)^{n-1} maximally entangled states with purity zero.Comment: 24 page

    Cognitive Deficit of Deep Learning in Numerosity

    Full text link
    Subitizing, or the sense of small natural numbers, is an innate cognitive function of humans and primates; it responds to visual stimuli prior to the development of any symbolic skills, language or arithmetic. Given successes of deep learning (DL) in tasks of visual intelligence and given the primitivity of number sense, a tantalizing question is whether DL can comprehend numbers and perform subitizing. But somewhat disappointingly, extensive experiments of the type of cognitive psychology demonstrate that the examples-driven black box DL cannot see through superficial variations in visual representations and distill the abstract notion of natural number, a task that children perform with high accuracy and confidence. The failure is apparently due to the learning method not the CNN computational machinery itself. A recurrent neural network capable of subitizing does exist, which we construct by encoding a mechanism of mathematical morphology into the CNN convolutional kernels. Also, we investigate, using subitizing as a test bed, the ways to aid the black box DL by cognitive priors derived from human insight. Our findings are mixed and interesting, pointing to both cognitive deficit of pure DL, and some measured successes of boosting DL by predetermined cognitive implements. This case study of DL in cognitive computing is meaningful for visual numerosity represents a minimum level of human intelligence.Comment: Accepted for presentation at the AAAI-1

    Comparing MapReduce and pipeline implementations for counting triangles

    Get PDF
    A common method to define a parallel solution for a computational problem consists in finding a way to use the Divide and Conquer paradigm in order to have processors acting on its own data and scheduled in a parallel fashion. MapReduce is a programming model that follows this paradigm, and allows for the definition of efficient solutions by both decomposing a problem into steps on subsets of the input data and combining the results of each step to produce final results. Albeit used for the implementation of a wide variety of computational problems, MapReduce performance can be negatively affected whenever the replication factor grows or the size of the input is larger than the resources available at each processor. In this paper we show an alternative approach to implement the Divide and Conquer paradigm, named dynamic pipeline. The main features of dynamic pipelines are illustrated on a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To evaluate the properties of pipeline, a dynamic pipeline of processes and an ad-hoc version of MapReduce are implemented in the language Go, exploiting its ability to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different topologies, sizes, and densities. Observed results suggest that dynamic pipelines allows for an efficient implementation of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.Peer ReviewedPostprint (published version

    Reducing multi-photon rates in pulsed down-conversion by temporal multiplexing

    Full text link
    We present a simple technique to reduce the emission rate of higher-order photon events from pulsed spontaneous parametric down-conversion. The technique uses extra-cavity control over a mode locked ultrafast laser to simultaneously increase repetition rate and reduce the energy of each pulse from the pump beam. We apply our scheme to a photonic quantum gate, showing improvements in the non-classical interference visibility for 2-photon and 4-photon experiments, and in the quantum-gate fidelity and entangled state production in the 2-photon case.Comment: 8 pages, 6 figure
    • …
    corecore