
Counting Circles Without Computing Them
Rudolf Fleischer

GUtech, Muscat, Oman; and
Fudan University, Shanghai, China
rudolf.fleischer@gutech.edu.om

Abstract
In this paper we engineer a fast algorithm to count the number of triangles defined by three lines
out of a set of n lines whose circumcircle contains the origin. The trick is not to compute any
triangles or circles.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Lines arrangement, triangle, circumcircle, inscribed angle theorem

Digital Object Identifier 10.4230/LIPIcs.FUN.2016.17

1 Introduction

I am a lousy programmer. I think I have a solid theoretical knowledge of basic and clever data
structures and algorithms, but solving problems quickly and implementing them error-free on
the first attempt (versus finding logical and programming errors incrementally in repeated
rounds of trial-and-error) is a completely different story. I am in good company here, even
experienced algorithmicists can, even without the pressure of a relentlessly ticking clock,
blunder and design (and sometimes publish) wrong algorithms [5].

Since we recently started to train student teams for the ACM Collegiate Programming
Contest [1], We found it appropriate to do a little bit of programming training ourselves to
better understand why our students sometimes do not manage in a contest to solve problems
that are seemingly straightforward to solve. Simple answer: even problems that appear
simple from the elevated viewpoint of a theoretician can be tricky to solve in a contest if the
contestant lacks programming experience.

The best way to gain experience is to solve many problems from previous contests, and one
platform that provides an excellent training environment is the Codeforces website [10] that
not only gives access to many old contest problems but also regularly hosts contests with newly
designed problem sets. Usually, no model solutions are provided for the contest problems,
and reverse engineering participants solutions to understand the underlying algorithms can
be frustratingly difficult because submissions are often highly optimized and nearly always
without any comments.

In a recent Codeforces contest [10] the following problem, titled Ruminations on Rumi-
nants, was given in category D, the second highest difficulty level [2].

Kevin Sun is ruminating on the origin of cows while standing at the origin of the
Cartesian plane. He notices n lines `1, , `2, . . . , `n on the plane, each representable by
an equation of the form ax+ by = c. He also observes that no two lines are parallel
and that no three lines pass through the same point.

For each triple (i, j, k) such that 1 ≤ i < j < k ≤ n, Kevin considers the triangle
formed by the three lines `i, `j , `k. He calls a triangle original if the circumcircle
of that triangle passes through the origin. Since Kevin believes that the circles of

© Rudolf Fleischer;
licensed under Creative Commons License CC-BY

8th International Conference on Fun with Algorithms (FUN 2016).
Editors: Erik D. Demaine and Fabrizio Grandoni; Article No. 17; pp. 17:1–17:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62921328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FUN.2016.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Counting Circles Without Computing Them

bovine life are tied directly to such triangles, he wants to know the number of original
triangles formed by unordered triples of distinct lines.

Recall that the circumcircle of a triangle is the circle which passes through all the
vertices of that triangle.

Of course, it is straightforward to solve this problem by first computing all triangles
and then counting the number of circumcircles that pass through the origin. Unfortunately,
this O(n3) time algorithm is too slow to solve problems with n = 2, 000 lines with integer
coefficients |ai|, |bi|, |ci| ≤ 10, 000 representing line `i within the required time bound of four
seconds on the Codeforces server which has a similar performance as a regular desktop PC. A
MacBook needs already 2.5 seconds just to enumerate all triples of lines, adding the complex
calculations to determine the circumcircle and testing whether it passes through the origin
would increase this time by more than a factor of ten.

With these constraints on the problem size and running time it was clear that we need to
find at least a quadratic algorithm (it takes only 3ms on a MacBook to enumerate

(2000
2

)
pairs of lines). While many Codeforces problems have straightforward solutions based on
elementary data structures like, for example, balanced search trees and priority queues, this
problem gave me a hard time. None of the standard tricks from the bag of computational
geometry algorithms like plane sweep, duality, divide-and-conquer, Voronoi diagram, etc.,
seemed to work to bring down the running time from cubic to quadratic complexity. There is
no apparent locality in the problem, the lines forming original triangles can be close together
or far apart, and no clever preprocessing or ordering of the lines seems to give an advantage
that would allow us to not compute many of the

(
n
3
)
triangles and circumcircles to obtain a

better running time.
In this paper, we will show how to solve this problem in time O(n2 logn) (i.e., nearly

quadratic) by not computing any triangles or circles and only using the basic arithmetic
operations +,−, ?, /, i.e., without computing roots and trigonometric functions which usually
make life miserable for geometrical algorithm designers because of the inherent rounding
errors. It is actually a common trick in combinatorics to count X instead of Y if that is what
we are really interested in. A classical example from computational geometry is the problem
of counting the number of cells in a simple arrangement of n lines in general position [4] by
counting the number of vertices, instead. There are 1 + n +

(
n
2
)
cells because there are n

infinite-downward rays separating the n+ 1 cells of the arrangement that are unbounded in
the downward direction; the remaining cells all have a unique lowest vertex, each vertex is
the lowest one of a unique cell, and there are

(
n
2
)
vertices.

This paper is organized as follows. In Section 2, we will introduce the notations and
formulas from geometry we need to formulate and solve the problem. In Section 3, we will
explain the algorithm and analyze its correctness and run-time. In Section 4, we will shortly
discuss how the algorithm was implemented and fine-tuned to run faster by a factor of eight.

2 Geometry Preliminaries

In this section we define the problem and introduce some notations. The input is a set of n
lines `1, . . . , `n. Each line `i is represented by the equation

aix+ biy = ci , (1)

where a2
i + b2

i > 0. We assume the lines are in general position, i.e., no two lines are parallel
and no three lines pass through the same point. The first assumption implies

aibj 6= ajbi (2)

R. Fleischer 17:3

dj

O

`i

`k

`j

Mj

Pi,j

Pi,k

Pj,k

αi,j
αi,k

Figure 1 The triangle Ti,j,k (in bold) formed by the lines `i, `k, `k.

for all i 6= j. Any three distinct lines `i, `j , `k, 1 ≤ i < j < k ≤ n, therefore define a triangle
Ti,j,k with a unique circumcircle Ci,j,k. We call Ti,j,k original if Ci,j,k passes through the
origin O. The task in the Original Triangle Counting Problem (OTC) is to count the number
of original triangles defined by the given set of n lines.

Before we solve this problem efficiently, let us introduce a few more notations and formulas
from computational geometry. This also gives the reader the chance to digress and try to
find an efficient solution herself before continuing to read this paper. The intersection point
Pi,j = (xi,j , yi,j) of lines `i and `j , 1 ≤ i < j ≤ n, can be computed as

xi,j = bicj − bjci
biaj − bjai

, yi,j = aicj − ajci
aibj − ajbi

. (3)

The point Mj = (sj , tj) on line `j closest to the origin (see Figure 1) can be computed as

sj = ajcj
a2
j + b2

j

, tj = bjcj
a2
j + b2

j

(4)

and the square of its distance dj from the origin as

d2
j =

c2
j

a2
j + b2

j

. (5)

A central element of our algorithm will be the angle under which we can see O from line
`j in point Pi,j . We denote this angle by αi,j . We can compute the square of the sine of αi,j
as

sin2(αi,j) =
d2
j

x2
j + y2

j

. (6)

We would like to use the right-hand side of Equation 6 to represent the angle αi,j because we
can compute it with basic arithmetic operations. However, since sin(π2 − β) = sin(π2 + β) for
any β, we cannot distinguish between angles smaller and larger than π

2 . We will therefore
use d2

j

x2
j
+y2

j
to represent αi,j if the three points O, Pi,j , and Mj are counterclockwise oriented

FUN 2016

17:4 Counting Circles Without Computing Them

2α

α

α

M

M

A

B

O

Figure 2 An illustration of the Inscribed Angle Theorem [3].

(i.e., when walking from O to Mj via Pi,j we turn left at Pi,j , as in Figure 1), and we will
use − d2

j

x2
j
+y2

j
if O, Pi,j , and Mj are clockwise oriented.

The following theorem is a generalization of Thales’s Theorem.

I Theorem 1 (Inscribed Angle Theorem, [3]). An angle α inscribed in a circle is half of the
central angle 2α that subtends the same arc on the circle. Therefore, the angle does not
change as its vertex is moved to different positions on the circle.

We actually need to rephrase the theorem for our purposes, see Figure 2.

I Theorem 2 ([3]). Given two points A and B, the set of points M in the plane for which
the angle AMB is equal to α is an arc of a circle through A and B. The measure of the
angle AOB, where O is the center of the circle, is 2α.

3 The Algorithm

We will now describe an efficient algorithm for solving OTC. It is based on Theorem 2 which
we eventually remembered from another paper long ago [9]. It implies the following Corollary,
see Figure 1. Note that the validity of the corollary does not depend on a particular way to
draw the lines (i.e., the order in which the intersection points appear on the circle), see for
example a different configuration in Figure 3. Please remember that we represent the angles
ai,j as described after Equation 6.

I Corollary 3. The circumcircle Ci,j,k of triangle Ti,j,k passes through the origin O if and
only if Pi,j and Pi,k both see the line segment OPj,k under the same angle, i.e., if and only
if αi,j = αi,k.

Proof. We need to distinguish two cases, whether Pi,j , Pi,k, and Pj,k appear in this order
clockwise or counterclockwise on the circumcircle Ci,j,k of triangle Ti,j,k. In the former case,
Pi,j and Pi,k lie in different half-spaces defined by the line through O and Pj,k (see Figure 3),
while in the latter case they are in the same half-space (see Figure 1). Below we only give
the proof of the Corollary in the latter case, from Figure 3 it should be clear that the proof
of the other case is similar.

R. Fleischer 17:5

αi,j

O
`k

Pi,j

β
β

Pj,k

Pi,k

`j

`i

γ

γ

αi,k

Figure 3 A different configuration for triangle Ti,j,k (in bold) formed by the lines `i, `k, `k. Note
that αi,j = β + γ = αi,k.

We use the Inscribed Angle Theorem with A = O, B = Pj,k, and Pi,j and Pi,k in the
role of M . If αi,j = αi,k, then Pi,j and Pi,k see the line segment OPj,k under the same angle.
Now Theorem 2 implies that the four points O, Pj,k, Pi,k, and Pi,j must lie on a circle, which
is the circumcircle Ci,j,k of triangle Ti,j,k. That means, Ci,j,k contains the origin. J

We can now formulate an efficient algorithm for OTC. First note that we can w.l.o.g. assume
that no line goes through the origin. If there is only one such line, it cannot contribute to
any original triangle and we can delete it. If there are two such lines, any triangle they form
with a third line is an original triangle, so we can increase the triangle count by n− 2 and
delete the two lines through the origin.

1. Compute all intersection points and store point Pi,j , 1 ≤ i < j ≤ n, on line `i together
with the angle αi,j (using Equation 6).

2. Sort for each line `i, 1 ≤ i ≤ n, the intersections points Pi,j , j 6= i, on the line by angle
αi,j ;

3. If the same angle appears k times on line `i for some k ≥ 2, then any pair of the
corresponding intersection points induce an original triangle, i.e., we can increase the
triangle counter by

(
k
2
)
.

Although we do not use trigonometric functions, we may experience rounding error
problem when computing the squares of the sine values of the angles. However, if the lines
have integer coefficients of absolute value at most 105, then we can define two angles to be
equal if they are less than 10−14 apart, for example. As one reviewer pointed out, we may
also avoid the rounding problems by using exact rationals instead of error-prone doubles or
floats.

The run-time of step 1 is O(n2), step 2 needs time O(n2 logn), and step 3 needs time
O(n2). Thus, the run-time of the algorithm is O(n2 logn).

I Theorem 4. We can solve OCT in time O(n2 logn).

4 Engineering Speed-Ups

At the moment, there are 127 correct solutions for OTC listed on Codeforces, the fastest one
running in 109ms [11] on the most difficult test case (apparently using a similar algorithm

FUN 2016

17:6 Counting Circles Without Computing Them

as the one described in this paper, but submitted three weeks later than our solution).
Our first correct submission [6] needed 1,684ms, well within the time bounds of 4 seconds,
but nevertheless a bit disappointing considering the brilliant elegance and simplicity of our
algorithm.

So we set out to identify and remove the bottlenecks in our program code. Our first bad
design decision had been to actually compute all original triangles three times, namely once
for each line bounding the triangle. Computing the original triangles only once reduced the
run-time by a factor of two to 826ms [7]. Note that we do not achieve a speed-up factor of
three. The reason is that originally each Pi,j was stored twice, once on line `i and once on
line `j ; in the new implementation it was only stored on line `i if i < j, thus saving half of
the work.

The second bad design decision had been to sort all intersection point angles in one single
batch which may look slightly more elegant on paper but is less efficient in practice. So the
next speed-up came from sorting the angles separately for each line. Asymptotically there is
no difference in the run-time, it is O(n2 logn) in both cases, but the constant factors differ by a
factor of four. In the first variant, we sort

(
n
2
)
angles which needs approximately

(
n
2
)

log
(
n
2
)
≈

n2 logn comparisons. In the improved variant, we successively sort n− 1, n− 2, . . . , 1 values
which requires (n− 1) log(n− 1) + (n− 2) log(n− 2) + · · ·+ 1 log 1 < 1

2n
2 logn comparisons.

We gain another factor of two because we compare pairs of (line,angle) in the first variant,
i.e., each comparison in the sorting step actually requires two comparisons, while the sorting
in the second variant only requires one comparison to compare two angles. Consequently, the
run-time dropped to 187ms [8], which is currently the 11th best run-time on the Codeforces
server. Actually not too bad for a lousy programmer.

Acknowledgements. We would like to thank the reviewers for their helpful comments, and
also for generously ignoring some shortcomings of the original draft that was written in a
great hurry shortly before the submission deadline.

References

1 ACM-ICPC International Collegiate Programming Contest. https://icpc.baylor.edu.
2 Problem 603D–36: Ruminations on Ruminants. Codeforces, Contest 342, Division 1, 2015,

Dec 1. http://codeforces.com/contest/603/problem/D.
3 Wikipedia contributors. Inscribed angle, Date retrieved: 20 February 2016 15:40 UTC.

Permanent link: https://en.wikipedia.org/w/index.php?title=Inscribed_angle&
oldid=699778165.

4 Wikipedia contributors. Arrangement of lines, Date retrieved: 29 February 2016 15:24
UTC. Permanent link: https://en.wikipedia.org/w/index.php?title=Arrangement_
of_lines&oldid=702141041.

5 R. Fleischer. FUN with implementing algorithms. In E. Lodi, L. Pagli, and N. Santoro,
editors, Proceedings of the 1998 International Conference FUN with Algorithms (FUN’98),
pages 88–98. Carleton Scientific, Proceedings in Informatics 4, 1999.

6 R. Fleischer. Problem 603D–36: Submission 14741117. Codeforces, Contest 342, Division
1, 2015, Dec 10. http://codeforces.com/contest/603/submission/14741117.

7 R. Fleischer. Problem 603D–36: Submission 16228941. Codeforces, Contest 342, Division
1, 2016, Jan 20. http://codeforces.com/contest/603/submission/16228941.

8 R. Fleischer. Problem 603D–36: Submission 16231449. Codeforces, Contest 342, Division
1, 2016, Jan 20. http://codeforces.com/contest/603/submission/16231449.

https://icpc.baylor.edu
http://codeforces.com/contest/603/problem/D
https://en.wikipedia.org/w/index.php?title=Inscribed_angle&oldid=699778165
https://en.wikipedia.org/w/index.php?title=Inscribed_angle&oldid=699778165
https://en.wikipedia.org/w/index.php?title=Arrangement_of_lines&oldid=702141041
https://en.wikipedia.org/w/index.php?title=Arrangement_of_lines&oldid=702141041
http://codeforces.com/contest/603/submission/14741117
http://codeforces.com/contest/603/submission/16228941
http://codeforces.com/contest/603/submission/16231449

R. Fleischer 17:7

9 R. Fleischer and Y. Wang. On the camera placement problem. In Proceedings of the 20th
International Symposium on Algorithms and Computation (ISAAC’09). Springer Lecture
Notes in Computer Science 5878, pages 255–264, 2009.

10 M. Mirzayanov. Codeforces: The only programming contests web 2.0 platform, 2010–2016.
http://codeforces.com.

11 Z. Shi. Problem 603D–36: Submission 15094164. Codeforces, Contest 342, Division 1, 2015,
Dec 30. http://codeforces.com/contest/603/submission/15094164.

FUN 2016

http://codeforces.com
http://codeforces.com/contest/603/submission/15094164

	Introduction
	Geometry Preliminaries
	The Algorithm
	Engineering Speed-Ups

