9,359 research outputs found

    Visualizing test diversity to support test optimisation

    Full text link
    Diversity has been used as an effective criteria to optimise test suites for cost-effective testing. Particularly, diversity-based (alternatively referred to as similarity-based) techniques have the benefit of being generic and applicable across different Systems Under Test (SUT), and have been used to automatically select or prioritise large sets of test cases. However, it is a challenge to feedback diversity information to developers and testers since results are typically many-dimensional. Furthermore, the generality of diversity-based approaches makes it harder to choose when and where to apply them. In this paper we address these challenges by investigating: i) what are the trade-off in using different sources of diversity (e.g., diversity of test requirements or test scripts) to optimise large test suites, and ii) how visualisation of test diversity data can assist testers for test optimisation and improvement. We perform a case study on three industrial projects and present quantitative results on the fault detection capabilities and redundancy levels of different sets of test cases. Our key result is that test similarity maps, based on pair-wise diversity calculations, helped industrial practitioners identify issues with their test repositories and decide on actions to improve. We conclude that the visualisation of diversity information can assist testers in their maintenance and optimisation activities

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Preemptive regression testing of workflow-based web services

    Get PDF
    published_or_final_versio

    Cancer gene prioritization by integrative analysis of mRNA expression and DNA copy number data: a comparative review

    Get PDF
    A variety of genome-wide profiling techniques are available to probe complementary aspects of genome structure and function. Integrative analysis of heterogeneous data sources can reveal higher-level interactions that cannot be detected based on individual observations. A standard integration task in cancer studies is to identify altered genomic regions that induce changes in the expression of the associated genes based on joint analysis of genome-wide gene expression and copy number profiling measurements. In this review, we provide a comparison among various modeling procedures for integrating genome-wide profiling data of gene copy number and transcriptional alterations and highlight common approaches to genomic data integration. A transparent benchmarking procedure is introduced to quantitatively compare the cancer gene prioritization performance of the alternative methods. The benchmarking algorithms and data sets are available at http://intcomp.r-forge.r-project.orgComment: PDF file including supplementary material. 9 pages. Preprin

    Regression test case prioritization by code combinations coverage

    Get PDF
    Regression test case prioritization (RTCP) aims to improve the rate of fault detection by executing more important test cases as early as possible. Various RTCP techniques have been proposed based on different coverage criteria. Among them, a majority of techniques leverage code coverage information to guide the prioritization process, with code units being considered individually, and in isolation. In this paper, we propose a new coverage criterion, code combinations coverage, that combines the concepts of code coverage and combination coverage. We apply this coverage criterion to RTCP, as a new prioritization technique, code combinations coverage based prioritization (CCCP). We report on empirical studies conducted to compare the testing effectiveness and efficiency of CCCP with four popular RTCP techniques: total, additional, adaptive random, and search-based test prioritization. The experimental results show that even when the lowest combination strength is assigned, overall, the CCCP fault detection rates are greater than those of the other four prioritization techniques. The CCCP prioritization costs are also found to be comparable to the additional test prioritization technique. Moreover, our results also show that when the combination strength is increased, CCCP provides higher fault detection rates than the state-of-the-art, regardless of the levels of code coverage

    Test case prioritization using test case diversification and fault-proneness estimations

    Full text link
    Context: Regression testing activities greatly reduce the risk of faulty software release. However, the size of the test suites grows throughout the development process, resulting in time-consuming execution of the test suite and delayed feedback to the software development team. This has urged the need for approaches such as test case prioritization (TCP) and test-suite reduction to reach better results in case of limited resources. In this regard, proposing approaches that use auxiliary sources of data such as bug history can be interesting. Objective: Our aim is to propose an approach for TCP that takes into account test case coverage data, bug history, and test case diversification. To evaluate this approach we study its performance on real-world open-source projects. Method: The bug history is used to estimate the fault-proneness of source code areas. The diversification of test cases is preserved by incorporating fault-proneness on a clustering-based approach scheme. Results: The proposed methods are evaluated on datasets collected from the development history of five real-world projects including 357 versions in total. The experiments show that the proposed methods are superior to coverage-based TCP methods. Conclusion: The proposed approach shows that improvement of coverage-based and fault-proneness based methods is possible by using a combination of diversification and fault-proneness incorporation
    • …
    corecore