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Test case prioritization (TCP) has been widely studied in regression testing, which aims to optimize the
execution order of test cases so as to detect more faults earlier. TCP has been divided into white-box test case
prioritization (WTCP) and black-box test case prioritization (BTCP). WTCP can achieve better prioritization
effectiveness by utilizing source code information, but is not applicable in many practical scenarios (where
source code is unavailable, e.g., outsourced testing). BTCP has the benefit of not relying on source code
information, but tends to be less effective than WTCP. That is, both WTCP and BTCP suffer from limitations
in the practical use.

To improve the practicability of TCP, we aim to explore better BTCP, significantly bridging the effectiveness
gap between BTCP and WTCP. In this work, instead of statically analyzing test cases themselves in existing
BTCP techniques, we conduct the first study to explore whether this goal can be achieved via log analysis.
Specifically, we propose to mine test logs produced during test execution to more sufficiently reflect test
behaviors, and design a newBTCP framework (called LogTCP), including log pre-processing, log representation,
and test case prioritization components. Based on the LogTCP framework, we instantiate seven log-based
BTCP techniques by combining different log representation strategies with different prioritization strategies.

We conduct an empirical study to explore the effectiveness of LogTCP. Based on 10 diverse open-source
Java projects from GitHub, we compared LogTCP with three representative BTCP techniques and four
representative WTCP techniques. Our results show that all of our LogTCP techniques largely perform better
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than all the BTCP techniques in average fault detection, to the extent that then become competitive to the
WTCP techniques. That demonstrates the great potential of logs in practical TCP.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Test Case Prioritization, Log Analysis, Regression Testing
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1 INTRODUCTION
Test case prioritization (TCP) is one of the most widely-studied regression testing techniques [23, 77,
113]. It aims to schedule the execution order of test cases in order to detect more faults earlier [92].
Based on whether the source code information is utilized, TCP has been divided into two categories:
white-box test case prioritization (WTCP) and black-box test case prioritization (BTCP) [47]. WTCP
prioritizes test cases by conducting dynamic or static analysis on source code, including coverage-
based techniques [64, 70, 92] and mutation-based techniques [35, 69, 109], whereas BTCP, in the
absence of the source code information, prioritizes test cases by measuring the diversity among
test cases (such as test-case text diversity) [18–20, 24, 46, 48, 60].
In the literature, a large amount of effort has been devoted to WTCP, achieving notable results

in effectiveness [23, 27, 86]. However, the reliance on source code information limits its usage and
imposes high costs in data collection. For example, coverage-based TCP instruments source code to
obtain coverage information [35], and mutation-based TCP constructs a large number of mutants
based on the source code [69]. As a result, WTCP is not applicable in many practical scenarios, in
which source code is unavailable, such as outsourced testing [98]. On the other hand, BTCP has
the obvious advantage of not requiring the source code, but as a result, it does have less to work
with and is often considered less effective than the white-box counterpart. That is, both WTCP and
BTCP suffer from limitations in their practical use.
So can we have the best of both worlds, i.e., achieving great effectiveness without relying on

source code information? In other words, can we improve the effectiveness of BTCP and thus
bridge the effectiveness gap between BTCP and WTCP? Existing BTCP approaches tend to focus
on measuring the diversity among test cases by treating test code as text [60, 79, 108]. This is quite
limited: statically inspecting test cases alone provides little information of their dynamic behaviors.
Hence, the key to improving TCP effectiveness is to identify and utilize dynamic information of
test executions, without having access to source code. One such source of information is the test
execution logs. Produced during the running of software (for the purpose of checking software
status, detecting faults, diagnosing root causes, etc), logs capture events and states of interest
which shed light on software behaviors. Also importantly, logs can be collected in testing without
having to access source code, since logging statements are part of the software written during the
programming stage. Hence, we conjecture that utilizing logs recorded during the execution of each
test case to reflect test behaviors could be a promising direction to improve BTCP effectiveness.

In this work, we conduct the first attempt to improve the effectiveness of BTCP via log analysis.
Specifically, we design a new BTCP framework (called LogTCP), which includes three key steps:
log pre-processing, log representation, and test case prioritization based on log vectors. Log pre-
processing facilitates log analysis by abstracting log messages into log events that are structured
templates designed by developers to reflect the behaviors embodied in the log messages [45]. This
step also has the effect of filtering out noise and irrelevant information from the log messages.
That is, the nature of logs used by LogTCP is the dynamic behavior of each test case reflected by a
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sequence of log events for the corresponding test case. Then, effective features are extracted to
transform a sequence of log events for a test case into a vector (log representation), ready for the
prioritization task that is the last step. LogTCP is a general framework that can be instantiated with
specific techniques. We propose three log representation strategies by emphasizing different kinds
of features in log events, including count-based representation, ordering-based representation, and
semantics-based representation. We also adapt three popular ranking strategies for prioritization
based on log vectors, including the total strategy [92], additional strategy [92], and adaptive random
prioritization (ARP) strategy [51]. Overall, by combining different log representation strategies
with different prioritization strategies, we manage to implement seven log-based TCP techniques
(the semantics-based representation strategy cannot be combined with the total or additional
prioritization strategy).

To investigate the effectiveness of LogTCP, we conducted an extensive study based on 10 widely-
used Java projects from GitHub, totaling 480,943 lines of source code and 17,853,105 lines of test
log messages, by comparing three representative BTCP techniques and four representative WTCP
techniques. In the study, we aim to address the following three research questions (RQs):

• RQ1: How do LogTCP techniques perform compared with existing BTCP techniques?
• RQ2: What is the influence of inherent factors (including both log representation strategies
and prioritization strategies) in LogTCP?

• RQ3: What is the effectiveness gap between LogTCP and WTCP?
RQ1 aims to investigate whether LogTCP can effectively improve the effectiveness of BTCP; RQ2
aims to investigate the influence of log representation strategies and prioritization strategies on
LogTCP, and then provide the suggestion of applying these LogTCP techniques in practice; RQ3
aims to investigate the degree to which the goal of possessing the advantages of both WTCP and
BTCP is approached. Based on our experimental results, we find that all of our LogTCP techniques
outperform all of the studied BTCP techniques (including the state-of-the-art one) in average
fault detection, even achieves competitive effectiveness with the state-of-the-art WTCP technique.
The results demonstrate that LogTCP is indeed able to significantly bridge the effectiveness gap
between BTCP and WTCP, largely promoting the practicability of TCP. In practice, we recommend
the LogTCP technique combining semantics-based or ordering-based log representation with the
adaptive random prioritization strategy as the representative due to its better effectiveness than
the other LogTCP techniques.

To sum up, our work makes three major contributions:
• We are the first to utilize log analysis to improve the effectiveness of BTCP, combining the
advantages of both WTCP and BTCP for enhanced practicability.

• We design a log-based TCP framework (LogTCP) and implement seven specific log-based TCP
techniques by proposing a series of log representation strategies and test case prioritization
strategies.

• We conduct an extensive study to evaluate the effectiveness of LogTCP by comparing with
both state-of-the-art BTCP and WTCP techniques, demonstrating its great potential.

2 BACKGROUND
2.1 Test Case Prioritization
As presented in the existing work [92], TCP can be formally defined to find 𝑇 ′ ∈ 𝑃𝑇 satisfying
∀𝑇 ′′ ∈ 𝑃𝑇 : [𝑓 (𝑇 ′) ≥ 𝑓 (𝑇 ′′) ∧𝑇 ′′ ≠ 𝑇 ′], where PT refers to a set of permutations of a test suite
𝑇 , and 𝑓 refers to an objective function that maps a permutation to a numerical value. Based on
whether the source code information is utilized, TCP has been divided into two categories, i.e.,
WTCP and BTCP [47]. Here, we introduce typical WTCP and BTCP techniques, which are also
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used for comparison with LogTCP in our study. We will discuss other TCP techniques as related
work in Section 7.

Coverage-based TCP is the most widely-studied WTCP techniques [34, 75, 91, 92], espe-
cially the total coverage-based technique (WTCPtotal) [92], additional coverage-based technique
(WTCPadditional) [92], search-based coverage-based technique (WTCPsearch) [64], and adaptive
random coverage-based technique (WTCParp) [51]. We therefore use the four techniques as the
representative WTCP techniques in our study. In particular, we used statement coverage as their
prioritization criterion due to its effectiveness following the existing studies [23, 73, 126].
Both WTCPtotal and WTCPadditional are greedy strategies [92]. WTCPtotal prioritizes test cases

according to the descending order of the number of statements covered by test cases, while
WTCPadditional prioritizes test cases according to the number of statements that are not covered
by already selected test cases but covered by unselected test cases. Although the idea is simple,
WTCPadditional has been widely recognized as a state-of-the-art technique due to its effectiveness [64,
70, 71, 122]. WTCPsearch treats all the permutations of a test suite as candidate solutions and adopts
some heuristics to guide the process of searching for a better solution in terms of statement
coverage. Following the existing studies [6, 119, 120], we used the same Genetic Algorithm as
the one designed by Li et al. [64] as the representative in WTCPsearch. It initially generates a
set of permutations randomly and then produces new permutations via crossover and mutation
operations in subsequent iterations. For crossover operation, two parent permutations produce
two offspring permutations through crossover on a random position. For mutation operation, it
randomly selects two tests and exchanges their positions for each offspring permutation. WTCParp
iteratively prioritizes test cases based on the diversity of their covered statements (measured by
Jaccard distance). It defines various distances to determine which test case is the farthest from a set
of already selected test cases in terms of covered statements. Following the existing work [23, 73],
WTCParp adopts the distance defined to select the test case that has the largest minimum distance
with already selected test cases as the next one, since it has been demonstrated to be the most
effective one among the proposed distances [51].
In the literature, three representative BTCP techniques are the string-based technique

(BTCPstring) [60], topic-based technique (BTCPtopic) [108], and FAST (BTCPFAST) [79]. BTCPstring
treats each test case as a string, and then adopts the adaptive random strategy (used in WTCParp)
to prioritize test cases by considering the diversity of test-case strings. In our study, it uses the
Levenshtein distance to measure the distance between strings following the existing study [47].
BTCPtopic treats each test case as text and adopts the Latent Dirichlet Allocation (LDA) algorithm [9]
to extract topics (which can approximate the functionality of each test case by mining hidden
semantics) from the text. In this way, a test case can be represented as a topic vector, in which each
element refers to the proportion of words in the test-case text that come from the corresponding
topic. Then, BTCPtopic uses the adaptive random strategy to prioritize test cases by considering
the diversity of topic vectors (measured by Manhattan distance). BTCPFAST, the state-of-the-art
BTCP technique, also treats each test case as a string, and adopts the data mining algorithms (i.e.,
minhashing and locality-sensitive hashing algorithms [88]) to speed up the process of finding diverse
test cases after transforming each string to a k-shingle (the set of its substrings of length k). In
BTCPFAST, it uses a function to balance efficiency and accuracy and here we use the all function as
the representative due to its effectiveness demonstrated by its experiment. Also, FAST has been
applied to improve the efficiency of coverage-based WTCP and the existing study has shown that
their prioritization effectiveness is not significantly affected [79]. Hence, we did not study FAST on
WTCP since our study focuses on the effectiveness comparison.
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Raw Log Messages

Log Events
Log Parsing

't1' attempting to acquire lock to page with id '1'
t1 acquired lock to page 1
't2' attempting to acquire lock to page with id '1'
t1 waiting for lock to page 1 for 5 seconds
't1' released lock to page with id '1'
't1' notifying blocked threads
't2' attempting to acquire lock to page with id '1'
…

1
2
3
4
5
6
7
…

1
2
3
4
5
6
7
…

* attempting to acquire lock to page with id * 
* acquired lock to page * 
* attempting to acquire lock to page with id *
* waiting for lock to page * for * seconds
* released lock to page with id *
* notifying blocked threads
* attempting to acquire lock to page with id *
…

E1
E2
E1
E3
E4
E5
E1
…

Fig. 1. An example of raw log messages and log events obtained by log parsing

2.2 Log Terminology
Logs contain abundant information reflecting the running status of a software system. In practice,
developers tend to examine logs to check software behaviors, detect faults, and diagnose root
causes. Here, for ease of understanding, we use an example (shown in Figure 1) to introduce log
terminology used in this paper. This example is a part of test logs from the open-source Java
projectWicket1. From Figure 1, a log message is a raw unstructured sentence generated during
test execution. In this example, ‘t1’ and ‘t2’ represent the names of the processes that try to perform
some operations on the page’s lock. A log message (e.g., ‘t1’ attempting to acquire lock to page with id
‘1’) consists of a log event (e.g., * attempting to acquire lock to page with id *) and log parameters
(e.g., ‘t1’ and ‘1’). A log event is the template of a log message that is written by developers during
the programming stage, while log parameters are the variable part in a log message, which records
some system attributes (e.g., path and id). In log analysis, log parsing tends to be used to extract
log events from log messages. Each unique log event can be assigned with a unique ID (e.g., E1 and
E2 in Figure 1) in order to facilitate the follow-up log analysis, and we can find that different log
messages may have the same log event. After executing a test case, a series of log messages can be
produced, which is called a log-message sequence. Similarly, a series of log events extracted from
a log-message sequence is called a log-event sequence, which records a specific execution flow
through the test case and can help reflect the dynamic behaviors of the test case to some degree.

3 LOG-BASED TEST CASE PRIORITIZATION
3.1 Overview
To improve the effectiveness of BTCP, we design a general log-based BTCP framework, called
LogTCP, which includes three key components: log pre-processing, log representation, and test
case prioritization. Figure 2 shows the architecture of LogTCP.

1https://wicket.apache.org/ (Accessed on: 4 January 2022)
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In LogTCP, there are three challenges that have to be handled. First, logs are a kind of semi-
structured natural language text and thus analyzing them is non-trivial. In particular, not all the
contents in logs could contribute to understanding test behaviors, e.g., some log parameters. Hence,
it is necessary to extract useful information from logs and transform them into an easy-to-analyze
form. To solve this problem, the log pre-processing component (to be presented in Section 3.2)
conducts log parsing to extract log-event sequences. On one hand, a log-event sequence can
effectively reflect what a test case does in its execution; on the other hand, log events are structured
information, which can facilitate log analysis.
The second challenge is how to represent the log-event sequence of each test case for the

prioritization task. Since each log event could reflect one action conducted by a test case in its
execution, the counts, ordering, and semantics of log events may embody the test behaviors of each
test case. Hence, we design three strategies in the log representation component (to be presented in
Section 3.3), i.e., count-based representation, ordering-based representation, and semantics-based
representation, to represent a sequence of log events produced during the execution of a test case
as a log vector.
The third challenge is how to prioritize test cases based on their corresponding log vectors.

Here, the component of test case prioritization (to be presented in Section 3.4) adapted three
widely-studied prioritization strategies in WTCP to log-based test case prioritization, including the
total strategy, additional strategy, and adaptive random prioritization strategy.

Please note that our LogTCP framework is general, and thus future advances in log representation
strategies or test case prioritization strategies can be integrated into LogTCP. In current LogTCP, by
combining the three log representation strategies with the three test case prioritization strategies, we
implemented seven log-based BTCP techniques since the semantics-based representation strategy
cannot be combined with the total or additional prioritization strategy.

3.2 Log Pre-processing
During the execution of a test case, a sequence of log messages could be produced to record the test
behaviors of the test case. The generation of log messages tend to be controlled by the logging levels
provided by the used logging frameworks (such as Log4j and Logback). As shown in Figure 2(a),
raw log messages are unstructured data and contain variable log parameters, which could hinder
automatic log analysis [45]. Therefore, in this component LogTCP first conducts log parsing to
extract the log-event sequence from a log-message sequence in order to filter out some useless
information and facilitate follow-up log analysis based on structured log events. That is, the minimal
information in logs required by LogTCP is just the log events, which could be different under
different logging levels. In particular, we carefully investigated the influence of logging levels on
the effectiveness of LogTCP in Section 6.1. Here, LogTCP adopts one of the most widely-used log
parsing tools, i.e., Drain3 [44], since it has been demonstrated to be very efficient and accurate in the
existing study [129]. Specifically, Drain3 employs a fixed-depth parse tree to guide the log-parsing
process by designing several parsing rules.

Although each log event is structured, it actually can be treated as a sentence in natural language
that is programmed by a developer. Typically, there are non-character tokens (e.g., delimiters, opera-
tors, and punctuation marks) and composite tokens that are concatenations of words (e.g., NullPoint-
erException). Hence, to facilitate the understanding of each log event (especially in semantics-based
representation), it is also necessary to conduct natural language pre-processing on these log events.
Specifically, LogTCP first removes non-character tokens and stop words from each log event and
then splits composite tokens into individual words using the Camel Case heuristics [30].
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't1' attempting to acquire lock to page with id '1'
t1 acquired lock to page 1
't2' attempting to acquire lock to page with id '1'
t1 waiting for lock to page 1 for 5 seconds
't1' released lock to page with id '1'
't1' notifying blocked threads
't2' attempting to acquire lock to page with id '1'
t2 acquired lock to page 1
't2' released lock to page with id '1'
't2' notifying blocked threads

1
2
3
4
5
6
7
8
9
10

Log-message Sequence

* attempting to acquire lock to page with id *
* acquired lock to page *
* attempting to acquire lock to page with id *
* waiting for lock to page * for * seconds
* released lock to page with id *
* notifying blocked threads
* attempting to acquire lock to page with id *
* acquired lock to page *
* released lock to page with id *
* notifying blocked threads

1
2
3
4
5
6
7
8
9
10

E1
E2
E1
E3
E4
E5
E1
E2
E4
E5

Log-event Sequence

Log Parsing

attempt acquire lock page id
acquire lock page
attempt acquire lock page id
wait lock page second
release lock page id
notify block thread
attempt acquire lock page id
acquire lock page
release lock page id
notify block thread

1
2
3
4
5
6
7
8
9
10

E1
E2
E1
E3
E4
E5
E1
E2
E4
E5

Log-event Sequence after Pre-processing

Natural Language 
Pre-processing

�>����������@
E1
E2
E3
E4
E5

3   2   1   2   2 
3
2
1
2
2

Event Count

>E1,E2]
>E1,E3]
>E2,E1]
>E2,E4]
>E3,E4]
>E4,E5]
[E5,E1]

2 1 1 1 1 2 1

2
1
1
1
1
2
1

Pattern Count

Semantics-based Strategy

Event Log-event Vector
E1
E2
E3
E4
E5

Count-based Representation

Ordering-based Representation

Semantics-based Representation

 =  

 =  

 =  

Additional
Prioritization Strategy

Adaptive Random
Prioritization Strategy

Logs Results
Log Representation

b

�>����������@

(a)

(b)

(c)

a-1

a-2

a-3

Count-based Strategyb-1

Ordering-based Strategyb-2

b-3

�!e1 + �!e2 + �!e1 + �!e3 + �!e4 + �!e5 + �!e1 + �!e2 + �!e4 + �!e5
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Test Case Prioritization

c

Log Pre-processing

a

Total
Prioritization Strategy

Fig. 2. Workflow of LogTCP

3.3 Log Representation
Based on different features in log-event sequences of test cases, we design three log representation
strategies in LogTCP. In each strategy, the log-event sequence of each test case can be represented
as a vector for the follow-up prioritization task. For ease of understanding, we also use an example
(shown in Figure 2(b)) to help illustrate each strategy.

3.3.1 Count-based Representation. A log event can reflect an action that is performed by a test
case in its execution. Intuitively, the categories of log events and the number of each category of
log events in a log-event sequence could help model the test behaviors of a test case. For instance,
if there are 10 categories of log events in a log-event sequence, one category of log events (denoted
as 𝐸1) occurs 10 times but the remaining categories occur only once respectively, which may mean
that this test case focuses on performing the action of 𝐸1 in order to test a certain functionality
sufficiently. Therefore, the count-based representation strategy counts the number of each category
of log events in a log-event sequence in order to transform the log-event sequence into a vector.
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More specifically, this strategy transforms a log-event sequence of a test case into a 𝑛-dimension
vector, denoted as 𝐶𝑖 = {𝑐𝑖1, 𝑐𝑖2, . . . , 𝑐𝑖𝑛}, where 𝑛 refers to the total number of log-event categories
occurring in this project under test and 𝑐ij refers to the number of occurring times of the 𝑗 th log
event in the log-event sequence of the 𝑖 th test case. For the log-event sequence example shown
in Figure 2(a) (assuming 𝑛 = 5), it is represented as a 5-dimension vector ([3, 2, 1, 2, 2] shown in
Figure 2(b-1)) by counting the number of E1, E2, E3, E4, and E5 respectively.

3.3.2 Ordering-based Representation. This strategy considers the ordering of log events to help
represent the test behaviors of a test case, instead of each individual log event used in the count-
based representation strategy. The insight behind this strategy is that the ordering of log events
in a log-event sequence can reflect the execution logic of a test case to some degree. That is,
different contexts (i.e., the adjacent log events) of a log event in a log-event sequence may reflect
its different testing purposes. To extract the ordering features of log events, we incorporate the
N-Gram model [13], which is widely used in the area of natural language processing to operate the
contents of text through a sliding window with a size of 𝑁 . In our scenario, this strategy uses the
N-Gram model to extract a set of log-event sub-sequences from a log-event sequence with the size
of 𝑁 . By regarding a log-event sub-sequence as a pattern, it then counts the number of occurring
times of each pattern in a log-event sequence. In this way, the log-event sequence of a test case
can be transformed into a𝑚-dimension vector, denoted as 𝑂𝑖 = {𝑜𝑖1, 𝑜𝑖2, . . . , 𝑜𝑖𝑚}, where𝑚 refers
to the total number of log-event sub-sequence patterns occurring in this project under test and
𝑜ij refers to the number of occurring times of the 𝑗 th pattern in the log-event sequence of the 𝑖 th
test case. For the log-event sequence example shown in Figure 2(a) (assuming 𝑁 = 2 and𝑚 = 7),
it is represented as a 7-dimension vector [2, 1, 1, 1, 1, 2, 1] shown in Figure 2(b-2) by counting the
number of occurring times of each log-event sub-sequence pattern (e.g., the pattern [E1,E2] occurs
twice) in this log-event sequence.

3.3.3 Semantics-based Representation. As presented in Section 3.2, each log event can be regarded
as a sentence in natural language, and thus each log event as well as each log-event sequence have
their own semantics. If the log-event sequences of two test cases have similar semantics, it is likely
for them to share similar test behaviors. With this insight, this strategy extracts semantic features
from the log-event sequence of a test case to facilitate the representation of its test behaviors.

Specifically, following the existing work on log analysis [45, 66, 117, 123], this strategy first trans-
forms each word in a log event into a 𝑑-dimension vector by extracting the semantic information
from the word through word embedding. Here, it conducts the word-embedding task through a
pre-trained word2vec model using the FastText algorithm [10], which can effectively capture the
intrinsic relationship among words in natural language. After obtaining the 𝑑-dimension word
vector for each word in a log event (denoted as𝑊ij = {𝑤1

ij,𝑤
2
ij, . . . ,𝑤

𝑑
ij }, where𝑊ij refers to the

word vector of the 𝑗 th word in the 𝑖 th log event of the log-event sequence), this strategy further
aggregates all word vectors in the log event to a log-event vector, denoted as 𝐸𝑖 = {𝑒i1, 𝑒i2, . . . , 𝑒id}
where 𝑒ik =

∑𝑟
𝑗=1𝑤

𝑘
ij (1 ≤ 𝑘 ≤ 𝑑) and 𝑟 is the total number of words in the 𝑖 th log event. Finally, it

obtains the semantic vector of the log-event sequence by aggregating all log-event vectors, denoted
as 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑑 } where 𝑠𝑔 =

∑𝑡
ℎ=1 𝑒hg (1 ≤ 𝑔 ≤ 𝑑) and 𝑡 is the total number of log events in

the log-event sequence. Here, we adopt the summation method for vector aggregation in order to
incorporate the length information of each log event and the log-event sequence. For the log-event
sequence example shown in Figure 2(a), it can be represented as a 𝑑-dimension vector shown in
Figure 2(b-3) by first obtaining each word vector and then aggregating them through summation.

Note: Our work aims to conduct the first exploration on log-based TCP, and in this work we design
the above three strategies to model test behaviors based on logs. Although the three strategies have
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considered three different kinds of features from test logs, it is likely to have other kinds of features
that may also help model test behaviors. Moreover, even for the three kinds of features, there could
be also other methods that can represent them as vectors. In fact, the main contribution of our
work lies in firstly exploring the potential of log-based TCP, and thus we take the integration of
more advanced representation strategies into our LogTCP framework as future work.

3.4 Test Case Prioritization
Based on the set of log vectors produced by a log representation strategy, we adapt three widely-
studied prioritization strategies in this component, in order to produce the prioritization result of
test cases.

3.4.1 Total and Additional Prioritization Strategies. The total and additional strategies are originally
proposed for coverage-based test case prioritization (as presented in Section 2.1). In our scenario,
we adapt the total and additional strategies based on the coverage of log-event categories for the
log vectors produced by the count-based representation strategy or the coverage of the log-event
sub-sequence patterns for the log vectors produced by the ordering-based representation strategy,
instead of program elements used in coverage-based TCP. Please note that, we cannot apply the
total and additional strategies to the log vectors produced by the semantics-based representation
strategy since this representation strategy does not involve the concept of coverage.

3.4.2 Adaptive Random Prioritization Strategy. The adaptive random prioritization (ARP) strategy
is originally proposed to prioritize test cases based on code coverage diversity as presented in
Section 2.1. In our scenario, we adapt it based on the diversity of log vectors. That is, it defines
the distance between log vectors to determine which test case should be selected next during
prioritization. Specifically, it iteratively selects the test case that has the largest minimum distance
with the already prioritized test cases following the existing study [41, 72, 73]. Here, we study
three distances to measure the diversity of log vectors, including Manhattan Distance, Euclidean
Distance, and Cosine Distance as shown in Formula 1, Formula 2, and Formula 3, respectively.

𝑑manhattan (𝑥,𝑦) =
𝑁∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 | (1)

𝑑euclidean (𝑥,𝑦) =

√√√
𝑁∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖 )2 (2)

𝑑cosine (𝑥,𝑦) = 1 −
∑𝑁

𝑖=1 𝑥𝑖 × 𝑦𝑖√︃∑𝑁
𝑖=1 𝑥

2
𝑖
×
√︃∑𝑁

𝑖=1 𝑦
2
𝑖

(3)

where 𝑥 and 𝑦 refer to two 𝑁 -dimension log vectors. In particular, before measuring the distance
between log vectors, it is required to normalize these vectors in order to adjust the feature values
to a common scale (i.e., the interval [0, 1]) for more precise diversity measuring. Following the
existing work, it adopts the widely-used min-max normalization method [40]. The original ARP
strategy randomly selects the first test case, which could lead to unstable performance. Hence, to
reduce the randomness of the ARP strategy, our adapted ARP strategy selects the test case with the
largest number of log-event categories as the first one in the prioritization result. The ARP strategy
is applicable to the log vectors produced by any of the three log representation strategies.

Note: Similar to the discussion on log representation strategies, it is also possible to have other
prioritization strategies, and we will integrate more advanced test case prioritization strategies

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: January 2022.



111:10 Zhichao Chen, Junjie Chen, Weijing Wang, Jianyi Zhou, Meng Wang, Xiang Chen, Shan Zhou, and Jianmin Wang

into our LogTCP framework in the future. Our work puts more efforts into exploring the potential
of mining test logs for better BTCP.

4 EVALUATION DESIGN
In this study, our main goal is to investigate whether LogTCP can effectively improve the effec-
tiveness of BTCP compared with the state-of-the-art BTCP. Also, we investigated the influence
of different log representation strategies and different test case prioritization strategies on the
effectiveness of LogTCP, in order to suggest how to apply and further improve our log-based
techniques in practice. Finally, we compared our log-based techniques with the state-of-the-art
WTCP to investigate the effectiveness gap between LogTCP and WTCP, which is helpful to answer
whether we have approached our expectation (i.e., achieving great effectiveness without relying on
source code information). The detailed RQs have been presented in Section 1. Here, we present our
study design in detail.

4.1 Subjects and Faults
In the study, we used 10 open-source Java projects from GitHub as subjects, which are widely-used
in the existing studies on log analysis [16, 42, 61] or test case prioritization [23, 73, 126]. All these
subjects are built with the Maven framework2, manage test cases based on the Junit framework3,
and produce logs based on the Log4j4 or Logback5 (a successor to Log4j) library (we set the logging
level to ALL for all the subjects in our study and will discuss the influence of different logging
levels on the effectiveness of LogTCP in Section 6.1). Table 1 presents the basic information of
these subjects, in which each column represents the project ID, the project name, the commit ID of
the project, the number of lines of source code (SLOC), the number of lines of test code (TLOC),
the number of lines of test log messages produced during test execution (LLOC), the number of
test classes, and the number of test methods, respectively. In total, there are 480,391 SLOC, 387,759
TLOC, and 17,853,105 LLOC. In particular, these subjects have great diversity, e.g., involving diverse
domains, having different functionalities, and having different scales. In particular, for each subject
we ran each test case several times (i.e., 10 times in our study) for identifying and removing flaky
tests following the existing work [7, 58, 78, 102].
Following the existing studies on test case prioritization [23, 73, 113], we used mutation

faults to evaluate the effectiveness of the studied TCP techniques since the existing stud-
ies [3, 21, 22, 54, 70, 109] have demonstrated that mutation faults are suitable for software testing
experimentation. Moreover, it is very challenging to collect a large number of real regression faults
for evaluation [23, 70]. Indeed, some TCP studies have used the real faults provided by Defects4J[53],
but this benchmark does not provide logs and thus we cannot use it in our study. We also discussed
this kind of potential threat from mutation faults in Section 6.5.

Specifically, for each subject we first adopted PIT6, one of the most widely-used mutation tools,
to generate mutant faults. Here, we used all the mutation operators provided by PIT to generate
mutation faults. For each mutation fault, we ran each test case on it, and determined that this
mutation fault is killed by a test case if the test case produces different testing results between the
original project and the mutated version. According to the conclusion from the existing study of
investigating the threats of mutant faults [83], we then filtered out all the duplicate mutation faults
since they could exaggerate the effectiveness of TCP techniques in terms of fault detection. More
2https://maven.apache.org/ (Accessed on: 4 January 2022).
3https://junit.org/junit4/ (Accessed on: 4 January 2022).
4https://logging.apache.org/log4j (Accessed on: 4 January 2022).
5http://logback.qos.ch/ (Accessed on: 4 January 2022).
6http://pitest.org (Accessed on: 4 January 2022).
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Table 1. Basic information of subjects

ID Project Commit ID SLOC TLOC LLOC #Test Class #Test Method

1 ActiveMQ-amqp 1f3ccad9 8,532 30,561 2,825,979 85 1,698
2 Airavata-registry-core efd6bd25 30,869 6,069 35,800 32 64
3 Blueflood-http b952e857 3,241 3,428 240 25 177
4 Dubbo-config-spring 9783ef06 11,818 13,955 12,388 22 49
5 Flume-ng-core d17f0a46 23,563 20,696 594 31 129
6 Kylin-core-metadata 2fb07e6b 31,915 6,899 675 54 176
7 ORCID-Source-core 68cff155 135,137 154,500 9,905,244 240 1,791
8 Shiro-core b637c467 28,894 8,602 5,701 64 294
9 Webdrivermanager e1453c4c 6,583 2,428 848,878 83 212
10 Wicket-core 34f78c85 200,391 140,621 4,217,606 455 2,083

Total 480,943 387,759 17,853,105 1,091 6,673

Table 2. Seven Log-based TCP techniques

Technique Log representation strategy Prioritization strategy

LogTCPtotalcount count-based total
LogTCPadditionalcount count-based additional
LogTCParpcount count-based ARP
LogTCPtotalordering ordering-based total
LogTCPadditionalordering ordering-based additional
LogTCParpordering ordering-based ARP
LogTCParpsemantics semantics-based ARP

specifically, if two mutation faults can be killed by the same set of test cases, they are regarded as
duplicate mutation faults and only one of them is kept as the representative. Also, we removed
all the live mutation faults that cannot be killed by any test cases. Finally, following the practice
of many existing studies [23, 70, 73], we randomly selected 500 mutation faults from the set of
remaining mutation faults, and constructed 100 mutation groups, each of which contains 5 randomly
selected mutation faults. That is, we constructed 100 faulty versions for each subject and each
version contains 5 mutation faults. If the total number of mutant faults after filtering is less than
500, the number of mutation groups is also less than 100.

4.2 Studied TCP Techniques
4.2.1 Compared Techniques. As presented in Section 2.1, we compared LogTCP with four repre-
sentative WTCP techniques and three representative BTCP techniques. The four WTCP techniques
are WTCPtotal, WTCPadditional (a state-of-the-art WTCP technique), WTCPsearch, and WTCParp, and
the three BTCP techniques are BTCPstring, BTCPtopic, and BTCPFAST (the state-of-the-art BTCP
technique).

4.2.2 Our Log-based Techniques. As presented in Section 3, we constructed seven log-based TCP
techniques based on our LogTCP framework by combining different log representation strategies
with different prioritization strategies respectively. For ease of presentation, we listed all the seven
techniques in Table 2, where the three columns present the name of a log-based TCP technique,
the log representation strategy used by the technique, and the prioritization strategy used by
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the technique. We took the last row as an example for further explanation: the LogTCParpsemantics
technique adopts the semantics-based representation strategy for log representation and adopts
the ARP strategy for test case prioritization. By comparing these techniques, we can investigate
the influence of different log representation strategies and different prioritization strategies.
Besides, for the ARP strategy in LogTCP, we also studied the influence of different log-vector

distances, including Manhattan distance, Euclidean distance, and Cosine distance (we did not list
this independent variable in Table 2 since we investigated it for only the ARP strategy). Except
for studying the influence of different log-vector distances in RQ2, we used Euclidean distance as
the default one in our ARP strategy in LogTCP. The reasons are twofold: (1) Our study (as shown
in Finding 3) demonstrates that Euclidean distance performs better than both Manhattan distance
and Cosine distance for our ARP strategy in LogTCP. (2) The existing studies [14, 25, 125] also
recommend to use Euclidean distance in ARP-based test case prioritization.

4.3 Measurements
In the study, we used two metrics, i.e., APFD and RAUC-s, to measure the effectiveness of each
TCP technique following the existing work [12, 23, 73, 113, 114].

APFD: Average Percentage of Faults Detected (APFD) [47, 70, 73, 90, 91] is the most widely-used
metric to measure TCP effectiveness. The calculation of APFD is shown in Formula 4:

APFD = 1 − TF1 + TF2 + ... + TF𝑚
𝑛 ∗𝑚 + 1

2𝑛
(4)

where 𝑛 is the total number of test cases to be prioritized,𝑚 is the total number of detected faults
by these test cases, and TF𝑖 refers to the rank of the first test case in the prioritized result that
detects the 𝑖 th fault. Larger APFD values mean better prioritization effectiveness.
RAUC-s: Actually, APFD measures TCP effectiveness from the angle of executing the entire

prioritized test suite. However, due to the testing time limitation in practice, the entire prioritized
test suite may be not always executed completely [76, 104]. Therefore, it is also necessary to
evaluate TCP effectiveness when only the first 𝑠 test cases in the prioritization result can be
executed within the limited testing time. Following the existing work [114], we used RAUC-s to
achieve this measurement goal, which measures the degree that the prioritization result of a TCP
technique approaches the ideal prioritization result within the first 𝑠 test cases. Specifically, it
transforms the prioritization result into a plot, where the x-axis represents the number of test cases
prioritized by a TCP technique and the y-axis represents the number of faults detected. Then, it
calculates the ratio of the area under the curve for the TCP technique to the area under the curve of
the ideal prioritization for the first 𝑠 test cases. Here, according to the relationship between each test
case and each used mutation fault, the ideal prioritization ranks test cases by iteratively selecting
the test case that kills the largest number of mutation faults that are not killed by the already
selected test cases. In our study, we consider 𝑠 to be 25%, 50%, 75% of the total number of test cases,
and denote them as RAUC-25%, RAUC-50%, and RAUC-75%, respectively. We also presented
the prioritization effectiveness on all the test cases for each subject, denoted as RAUC-100%. The
larger the RAUC-s value is, the better the TCP technique performs.

4.4 Implementation and Configurations
In LogTCP, we adopted Drain37 with its default settings to perform log parsing, PIT with all
mutation operators to generate mutation faults, and VS Code Counter8 to measure SLOC and TLOC

7https://github.com/IBM/Drain3 (Accessed on: 4 January 2022).
8https://marketplace.visualstudio.com/items?itemName=uctakeoff.vscode-counter (Accessed on: 4 January 2022).
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for each subject. For the studied WTCP techniques, we adopted OpenClover9 to collect coverage
information. In our ordering-based log representation strategy, we set 𝑁 to 2 by balancing the TCP
effectiveness and efficiency. In our semantics-based log representation strategy, we set the word-
vector dimension𝑑 to 50 and set the hyper-parameters in the FastText algorithm through grid search
(e.g., adopting the skipgram model and setting the max length of word ngrams to 3). Regarding the
hyper-parameters inWTCPsearch, we did not set them specially for each subject, but used the uniform
configuration for all the subjects same as the existing work [23, 64, 70, 126]. The effectiveness of the
uniform configuration has been demonstrated by these existing studies [23, 64, 126]. Specifically,
we set the population size to 100, the number of iterations to 300, and the probabilities for crossover
and mutation operations to 0.8 and 0.1 in the Genetic Algorithm. In BTCPtopic, we set the number
of topics to N/2.5 following the existing work [108], where N is the number of test cases. All the
settings have been reported in our project homepage10.

Our LogTCP framework and experimental scripts are mainly implemented in Python. We have
released all our implementations and experimental data in our project homepage, to promote future
research and practical use. In particular, we design a series of APIs in our LogTCP framework, in
order to facilitate its extension by integrating more advanced log representation strategies and
prioritization strategies in the future. To reduce the influence of randomness, we repeated all the
TCP techniques involving randomness 5 times and calculated the average results in our study11. In
the study, we prioritized test cases at the test-class level following the existing studies [57, 104].
This is because different test classes have to be frequently switched/loaded for running these
test methods in order when applying test-method-level TCP in practice, which can incur extra
non-negligible costs.

Our study was conducted on a workstation with 20-core Intel Xeon E5-2640 CPU(2.4GHz), 126G
memory, and Ubuntu 18.04.5 LTS.

5 RESULTS AND ANALYSIS
5.1 RQ1: LogTCP v.s. Existing BTCP Techniques
To investigate whether LogTCP can improve the effectiveness of BTCP, we compared our LogTCP
techniques with three representative BTCP techniques. Table 3 shows the comparison results in
terms of average APFD and average RAUC-s across all the faulty versions for each subject. In this
table, we marked the best result as the bold value for each subject in terms of each metric, and the
last column shows the average result across all the subjects in terms of each metric.

From Table 3, our LogTCP techniques always occupy the best results on all the subjects in terms
of all the metrics. For example, in terms of APFD, LogTCParpsemantics achieves the best results on
five subjects, LogTCPadditionalcount , LogTCPadditionalordering , and LogTCParpordering achieve the best results on two
subjects respectively, and LogTCParpcount achieves the best result on one subject, while the BTCP
techniques do not perform the best on any subjects. In terms of average APFD across all the
subjects, our LogTCP techniques achieve 0.7714∼0.7969, while the compared BTCP techniques
achieve 0.6783∼0.7014. Also, our LogTCP techniques and the compared BTCP techniques achieve
0.7604∼0.8291 and 0.4386∼0.5453 in term of average RAUC-25%, 0.8256∼0.8715 and 0.6065∼0.6650
in term of average RAUC-50%, 0.8639∼0.8936 and 0.7152∼0.7501 in term of average RAUC-75%,
0.8944∼0.9161 and 0.7851∼0.8104 in term of average RAUC-100% respectively. We can find that in
terms of all these average metrics, all the LogTCP techniques perform better than all the studied

9http://openclover.org/ (Accessed on: 4 January 2022).
10https://github.com/VikingStudyHard/LogTCP. (Accessed on: 4 January 2022)
11Following the released implementation of BTCPFAST by the existing work [79], we repeated BTCPFAST 50 times and
calculated the average result.
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Table 3. Comparison between LogTCP and existing BTCP techniques

Metrics Approach 1 2 3 4 5 6 7 8 9 10 Average

APFD

BTCPstring 0.7442 0.6561 0.5373 0.6361 0.5630 0.6031 0.6616 0.7980 0.6778 0.9060 0.6783
BTCPtopic 0.6966 0.6772 0.5649 0.6676 0.5764 0.6707 0.6250 0.7524 0.6968 0.8620 0.6790
BTCPFAST 0.7223 0.7016 0.5364 0.6888 0.6213 0.7408 0.6005 0.7809 0.7296 0.8915 0.7014
LogTCPtotalcount 0.7208 0.7004 0.7151 0.8282 0.6965 0.7821 0.7052 0.8806 0.7651 0.9198 0.7714
LogTCPadditionalcount 0.7362 0.7576 0.7302 0.8312 0.7005 0.7921 0.7145 0.8540 0.7857 0.9293 0.7831
LogTCParpcount 0.7503 0.7478 0.7284 0.8476 0.7005 0.7852 0.7129 0.8823 0.7878 0.9364 0.7879
LogTCPtotalordering 0.7194 0.7076 0.7169 0.8336 0.6990 0.7886 0.7045 0.8734 0.7725 0.9218 0.7737
LogTCPadditionalordering 0.7397 0.7499 0.7151 0.8306 0.6896 0.8030 0.7260 0.8809 0.7884 0.9385 0.7862
LogTCParpordering 0.7557 0.7466 0.7267 0.8433 0.6950 0.8084 0.7135 0.8834 0.7841 0.9385 0.7895
LogTCParpsemantics 0.7740 0.7496 0.7444 0.8633 0.6931 0.8187 0.7136 0.8764 0.8132 0.9230 0.7969

RAUC-25%

BTCPstring 0.5660 0.5648 0.3974 0.1617 0.3584 0.2676 0.3452 0.5749 0.3834 0.7668 0.4386
BTCPtopic 0.4221 0.6527 0.4038 0.3078 0.3699 0.3692 0.2793 0.5953 0.4417 0.6562 0.4498
BTCPFAST 0.5582 0.5491 0.3958 0.4174 0.5313 0.5959 0.3167 0.6634 0.6897 0.7358 0.5453
LogTCPtotalcount 0.5205 0.5113 0.8814 0.8866 0.9361 0.7534 0.6111 0.9358 0.7208 0.8471 0.7604
LogTCPadditionalcount 0.6316 0.7438 0.9583 0.9005 0.9361 0.7835 0.6882 0.8626 0.7880 0.8556 0.8148
LogTCParpcount 0.6215 0.7395 0.9199 0.9252 0.9361 0.7803 0.7421 0.9268 0.7898 0.8578 0.8239
LogTCPtotalordering 0.5526 0.5241 0.9006 0.9127 0.9292 0.7751 0.6127 0.9291 0.7208 0.8505 0.7707
LogTCPadditionalordering 0.6807 0.7224 0.9231 0.8988 0.9064 0.8292 0.7043 0.9280 0.7650 0.8671 0.8225
LogTCParpordering 0.7094 0.7353 0.9135 0.9200 0.9064 0.8201 0.7116 0.9327 0.7580 0.8670 0.8274
LogTCParpsemantics 0.6919 0.7402 0.8944 0.9704 0.8493 0.8257 0.6789 0.9073 0.9149 0.8184 0.8291

RAUC-50%

BTCPstring 0.6948 0.6304 0.5027 0.4413 0.5336 0.4401 0.5653 0.7639 0.6431 0.8496 0.6065
BTCPtopic 0.6096 0.6794 0.5396 0.5697 0.5941 0.5681 0.4908 0.6889 0.6629 0.7723 0.6175
BTCPFAST 0.6758 0.6951 0.4756 0.5697 0.6818 0.7434 0.4713 0.7561 0.7574 0.8242 0.6650
LogTCPtotalcount 0.6646 0.7033 0.8989 0.8927 0.9126 0.8302 0.7071 0.9436 0.8194 0.8836 0.8256
LogTCPadditionalcount 0.7094 0.8495 0.9303 0.8934 0.9160 0.8525 0.7312 0.8798 0.8775 0.8981 0.8538
LogTCParpcount 0.7221 0.8416 0.9180 0.9243 0.9143 0.8424 0.7536 0.9497 0.8732 0.9069 0.8646
LogTCPtotalordering 0.6591 0.7258 0.8989 0.9053 0.9092 0.8367 0.7052 0.9405 0.8279 0.8872 0.8296
LogTCPadditionalordering 0.7132 0.8377 0.8948 0.8998 0.8958 0.8760 0.7457 0.9501 0.8661 0.9099 0.8589
LogTCParpordering 0.7482 0.8430 0.9180 0.9180 0.8958 0.8701 0.7419 0.9528 0.8633 0.9109 0.8662
LogTCParpsemantics 0.7813 0.8184 0.8828 0.9716 0.8891 0.8726 0.7342 0.9382 0.9447 0.8818 0.8715

RAUC-75%

BTCPstring 0.7693 0.7359 0.5915 0.6329 0.6745 0.5962 0.6820 0.8301 0.7479 0.8912 0.7152
BTCPtopic 0.7041 0.7587 0.6381 0.6843 0.7047 0.7060 0.6294 0.7633 0.7678 0.8387 0.7195
BTCPFAST 0.7494 0.7974 0.5529 0.7069 0.7853 0.8243 0.5886 0.8063 0.8169 0.8729 0.7501
LogTCPtotalcount 0.7467 0.8044 0.8897 0.9087 0.9243 0.8838 0.7557 0.9441 0.8710 0.9102 0.8639
LogTCPadditionalcount 0.7699 0.9023 0.9167 0.9129 0.9247 0.9011 0.7687 0.9045 0.9053 0.9226 0.8829
LogTCParpcount 0.7858 0.8876 0.9085 0.9352 0.9372 0.8910 0.7764 0.9498 0.9032 0.9327 0.8907
LogTCPtotalordering 0.7435 0.8170 0.8930 0.9171 0.9291 0.8877 0.7557 0.9399 0.8773 0.9130 0.8673
LogTCPadditionalordering 0.7754 0.8887 0.8881 0.9124 0.9123 0.9176 0.7875 0.9479 0.9003 0.9350 0.8865
LogTCParpordering 0.7935 0.8882 0.9085 0.9296 0.9180 0.9145 0.7699 0.9494 0.8986 0.9354 0.8906
LogTCParpsemantics 0.8216 0.8739 0.8808 0.9593 0.9195 0.9093 0.7708 0.9393 0.9469 0.9146 0.8936

RAUC-100%

BTCPstring 0.8293 0.8066 0.6818 0.7210 0.7624 0.7012 0.7612 0.8682 0.8016 0.9177 0.7851
BTCPtopic 0.7760 0.8263 0.7204 0.7553 0.7805 0.7799 0.7191 0.8184 0.8201 0.8776 0.7874
BTCPFAST 0.8091 0.8529 0.6545 0.7777 0.8412 0.8680 0.6909 0.8499 0.8569 0.9030 0.8104
LogTCPtotalcount 0.8061 0.8610 0.9036 0.9264 0.9408 0.9126 0.8112 0.9545 0.8961 0.9313 0.8944
LogTCPadditionalcount 0.8233 0.9316 0.9229 0.9298 0.9381 0.9243 0.8219 0.9255 0.9205 0.9410 0.9079
LogTCParpcount 0.8349 0.9195 0.9206 0.9478 0.9448 0.9162 0.8202 0.9564 0.9230 0.9481 0.9132
LogTCPtotalordering 0.8046 0.8699 0.9058 0.9326 0.9461 0.9136 0.8105 0.9467 0.9049 0.9333 0.8968
LogTCPadditionalordering 0.8272 0.9221 0.9036 0.9292 0.9273 0.9371 0.8352 0.9548 0.9237 0.9503 0.9111
LogTCParpordering 0.8415 0.9180 0.9183 0.9430 0.9374 0.9366 0.8208 0.9575 0.9186 0.9502 0.9142
LogTCParpsemantics 0.8612 0.9116 0.9011 0.9656 0.9347 0.9274 0.8210 0.9499 0.9537 0.9345 0.9161

BTCP techniques. For example, LogTCParpsemantics improves 17.5%, 17.4%, and 13.6% over BTCPstring,
BTCPtopic, BTCPFAST in terms of average APFD, and improves 89.0%, 84.3%, and 52.0% over the
three BTCP techniques in terms of average RAUC-25%. In particular, the worst effectiveness of
our LogTCP techniques (i.e., LogTCPtotalcount) still improves 10.0%, 39.4%, 24.2%, 15.2%, and 10.4% over
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Table 4. Shapiro-Wilk normality test for each studied technique in terms of APFD

Subject 1 2 3 4 5 6 7 8 9 10

BTCPstring ✖ (0.95) ✖ (0.54) ✖ (0.83) ✖ (0.41) ✖ (0.47) ✖ (0.64) ✖ (0.69) ✔ (0.04) ✖ (0.08) ✔ (0.00)
BTCPtopic ✔ (0.00) ✖ (0.54) ✖ (0.51) ✖ (0.80) ✖ (0.20) ✖ (0.47) ✔ (0.02) ✔ (0.02) ✖ (0.78) ✔ (0.00)
BTCPFAST ✖ (0.44) ✖ (0.91) ✖ (0.62) ✖ (0.33) ✖ (0.77) ✔ (0.02) ✖ (0.66) ✔ (0.03) ✖ (0.64) ✔ (0.00)
WTCPtotal ✖ (0.78) ✖ (0.34) ✖ (0.09) ✖ (0.35) ✖ (0.54) ✖ (0.08) ✖ (0.13) ✔ (0.01) ✖ (0.80) ✔ (0.00)
WTCPadditional ✔ (0.04) ✖ (0.22) ✖ (0.15) ✖ (0.08) ✖ (0.42) ✖ (0.09) ✔ (0.01) ✔ (0.05) ✖ (0.83) ✔ (0.00)
WTCParp ✖ (0.08) ✖ (0.27) ✔ (0.01) ✖ (0.96) ✖ (0.70) ✖ (0.70) ✔ (0.02) ✖ (0.08) ✖ (0.25) ✖ (0.11)
WTCPsearch ✖ (0.34) ✖ (0.21) ✖ (0.65) ✖ (0.33) ✖ (0.99) ✖ (0.08) ✖ (0.08) ✔ (0.03) ✖ (0.87) ✔ (0.00)
LogTCPtotalcount ✖ (0.80) ✖ (0.73) ✖ (0.80) ✖ (0.24) ✖ (0.84) ✖ (0.12) ✖ (0.77) ✔ (0.01) ✖ (0.45) ✔ (0.00)
LogTCPadditionalcount ✖ (0.64) ✖ (0.09) ✖ (0.56) ✖ (0.27) ✖ (0.07) ✖ (0.75) ✖ (0.23) ✔ (0.01) ✖ (0.27) ✔ (0.00)
LogTCParpcount ✖ (0.19) ✔ (0.01) ✖ (0.33) ✖ (0.85) ✖ (0.24) ✖ (0.11) ✖ (0.64) ✔ (0.00) ✖ (0.69) ✔ (0.00)
LogTCPtotalordering ✖ (0.36) ✖ (0.92) ✖ (0.85) ✖ (0.22) ✖ (0.40) ✖ (0.45) ✖ (0.29) ✔ (0.00) ✖ (0.20) ✔ (0.00)
LogTCPadditionalordering ✖ (0.45) ✖ (0.35) ✖ (0.42) ✖ (0.35) ✖ (0.38) ✖ (0.17) ✖ (0.42) ✔ (0.00) ✖ (0.53) ✔ (0.00)
LogTCParpordering ✖ (0.75) ✖ (0.06) ✖ (0.52) ✖ (0.96) ✖ (0.70) ✖ (0.12) ✖ (0.17) ✔ (0.00) ✖ (0.98) ✔ (0.00)
LogTCParpsemantics ✔ (0.03) ✖ (0.11) ✖ (0.29) ✖ (0.14) ✖ (0.86) ✔ (0.03) ✔ (0.02) ✔ (0.01) ✖ (0.56) ✔ (0.00)

the best effectiveness of the BTCP techniques (i.e., BTCPFAST) in terms of average APFD, average
RAUC-25%, average RAUC-50%, average RAUC-75%, and average RAUC-100%, respectively. The
results demonstrate the significant superiority of LogTCP.
To further investigate whether our LogTCP techniques can significantly outperform the BTCP

techniques in statistics, we first performed the Shapiro-Wilk normality test [101] for each studied
technique (also including the WTCP techniques to be discussed in Section 5.3) on all the subjects in
terms of each metric at the significance level of 0.05. Table 4 presents the p-value results in terms of
APFD as the representative, since we can obtain the same conclusions from all these metrics. In this
table, ✔ represents that the data conform to the normal distribution while ✖ represents that the
data do not (i.e., the p-value is larger than 0.05). From this table, among 140 cases (14 techniques
× 10 subjects), 73.6% (103 out of 140) do not conform to the normal distribution. Hence, we then
performed theWilcoxon Signed-Rank Test [115] (a popular non-parametric hypothesis test) at the
significance level of 0.05 to compare each LogTCP technique with each BTCP technique in terms of
each metric. Since multiple hypothesis tests may introduce p-value bias [97], we further performed
the Benjamini-Hochberg method [8] to control the false discovery rate (FDR) at the FDR threshold
of 0.05 in order to correct our hypothesis test results.
Here, we presented the statistical analysis results after correction in terms of APFD as the

representative as shown in Table 5, since we can also obtain the same conclusions from all these
metrics. In Table 5, each cell presents the p value and the statistical analysis conclusion between
a pair of compared TCP techniques (i.e., the technique shown in the corresponding row and the
technique shown in the corresponding column). Specifically, if the p-value is larger than 0.05, it
means that the two compared techniques have no statistically significant difference in terms of
APFD (marked as ❍). Otherwise, we can conclude which technique performs significantly better
between them according to their APFD values in Table 3. Here, we marked ✔ for the cases where
the LogTCP technique performs significantly better than the BTCP technique, and marked ✖ for
the cases where the LogTCP technique performs significantly worse than the BTCP technique.
From Table 5, all the cells show either ✔ or ❍, demonstrating that our LogTCP techniques never
perform significantly worse than the BTCP techniques on all these studied subjects. In particular,
among all these cases, 76.2% are marked as ✔ while 23.8% are marked as ❍, further confirming the
significant superiority of our LogTCP techniques.
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Table 5. Statistical analysis between LogTCP and BTCP in terms of APFD

ID Baseline LogTCPtotalcount LogTCPadditionalcount LogTCParpcount LogTCPtotalordering LogTCPadditionalordering LogTCParpordering LogTCParpsemantics

1
BTCPstring ❍ (0.37) ❍ (0.82) ❍ (0.92) ❍ (0.37) ❍ (0.90) ❍ (0.44) ❍ (0.28)
BTCPtopic ❍ (0.61) ❍ (0.25) ❍ (0.22) ❍ (0.65) ❍ (0.29) ❍ (0.06) ❍ (0.07)
BTCPFAST ❍ (0.91) ❍ (0.66) ❍ (0.41) ❍ (0.96) ❍ (0.59) ❍ (0.12) ❍ (0.08)

2
BTCPstring ✔ (0.05) ✔ (0.00) ✔ (0.00) ✔ (0.03) ✔ (0.00) ✔ (0.00) ✔ (0.01)
BTCPtopic ❍ (0.06) ✔ (0.00) ✔ (0.00) ✔ (0.04) ✔ (0.00) ✔ (0.00) ✔ (0.01)
BTCPFAST ❍ (0.92) ❍ (0.12) ❍ (0.20) ❍ (0.92) ❍ (0.16) ❍ (0.20) ❍ (0.16)

3
BTCPstring ❍ (0.05) ✔ (0.04) ✔ (0.04) ❍ (0.07) ✔ (0.05) ✔ (0.03) ✔ (0.01)
BTCPtopic ✔ (0.01) ✔ (0.02) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.03)
BTCPFAST ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.01) ❍ (0.06)

4
BTCPstring ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)
BTCPtopic ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)
BTCPFAST ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)

5
BTCPstring ✔ (0.02) ✔ (0.03) ✔ (0.02) ✔ (0.01) ✔ (0.01) ✔ (0.02) ✔ (0.04)
BTCPtopic ✔ (0.01) ✔ (0.03) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.04)
BTCPFAST ✔ (0.03) ❍ (0.05) ✔ (0.04) ✔ (0.02) ❍ (0.07) ✔ (0.04) ❍ (0.19)

6
BTCPstring ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)
BTCPtopic ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)
BTCPFAST ❍ (0.27) ❍ (0.20) ✔ (0.05) ❍ (0.30) ❍ (0.07) ✔ (0.04) ✔ (0.01)

7
BTCPstring ❍ (0.07) ✔ (0.02) ✔ (0.03) ❍ (0.08) ✔ (0.01) ✔ (0.04) ✔ (0.01)
BTCPtopic ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)
BTCPFAST ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)

8
BTCPstring ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)
BTCPtopic ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)
BTCPFAST ✔ (0.00) ✔ (0.01) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)

9
BTCPstring ✔ (0.02) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.01)
BTCPtopic ❍ (0.11) ✔ (0.03) ✔ (0.01) ❍ (0.06) ✔ (0.02) ✔ (0.03) ✔ (0.03)
BTCPFAST ❍ (0.30) ❍ (0.27) ❍ (0.20) ❍ (0.24) ❍ (0.17) ❍ (0.20) ❍ (0.05)

10
BTCPstring ✔ (0.03) ✔ (0.00) ✔ (0.00) ✔ (0.02) ✔ (0.00) ✔ (0.00) ✔ (0.00)
BTCPtopic ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)
BTCPFAST ✔ (0.02) ✔ (0.00) ✔ (0.00) ✔ (0.01) ✔ (0.00) ✔ (0.00) ✔ (0.01)

Finding 1: All of our LogTCP techniques perform better than all the studied BTCP tech-
niques in terms of both average APFD and average RAUC-s, and the vast majority of
outperformance cases are statistically significant, demonstrating that LogTCP is indeed
able to largely improve the effectiveness of BTCP.

5.2 RQ2: Influence of Inherent Factors in LogTCP
In LogTCP, there are two inherent factors, i.e., log representation strategies and test case prioritiza-
tion strategies, and here we investigated their influence respectively in order to recommend how
to apply and further improve these LogTCP techniques in practice.

To investigate the influence of log representation strategies, we divided our LogTCP techniques
into three groups for comparison by controlling another inherent factor. That is, the techniques
in the same comparison group have the same test case prioritization strategy, which aims to get
rid of the influence of test case prioritization strategies. More specifically, we put LogTCPtotalcount,
LogTCPtotalordering into a comparison group, LogTCPadditionalcount , LogTCPadditionalordering into a comparison group,
and LogTCParpsemantics, LogTCP

arp
count, LogTCP

arp
ordering into a comparison group. From Table 3, we still

found that LogTCPtotalordering performs better than LogTCPtotalcount and LogTCPadditionalordering performs better
than LogTCPadditionalcount in terms of all the metrics on average, although the differences are relatively
small. Among LogTCParpsemantics, LogTCP

arp
count, and LogTCParpordering, LogTCP

arp
semantics performs the best
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in terms of all the metrics on average while LogTCParpcount performs the worst (except in RAUC-75%).
That is, we can conclude that with the same test case prioritization strategy, the semantics-based
log representation strategy performs the best, and the ordering-based log representation strategy
outperforms the count-based log representation strategy. The results indicate that the ordering
and semantics of log events indeed contribute to the effectiveness of LogTCP compared with the
count features of log events used in count-based log representation. It is reasonable since the test
behaviors of a test case tend to involve a series of continuous actions (that can be captured by both
ordering and semantics of log events), rather than simply treat each action independently. In the
future, it is promising to design more effective strategies to represent the ordering and semantics
of log events, in order to further improve the effectiveness of LogTCP.

Similarly, to investigate the influence of test case prioritization strategies, we divided our LogTCP
techniques into two groups and the techniques in the same group have the same log representation
strategy. Here, we did not study LogTCParpsemantics since only this technique uses the semantics-
based log representation strategy. That is, we put LogTCPtotalcount, LogTCPadditionalcount , LogTCParpcount into
a comparison group, and LogTCPtotalordering, LogTCP

additional
ordering , LogTCParpordering into a comparison group.

From Table 3, on average, LogTCParpcount performs the best while LogTCPtotalcount performs the worst
in terms of all the metrics among the three techniques with the count-based log representation
strategy. Same as the group of techniques with the ordering-based log representation strategy, on
average, LogTCParpordering performs the best while LogTCPtotalordering performs the worst in terms of all
the metrics. That is, regardless of on the basis of count-based log representation or ordering-based
log representation, the ARP strategy is the most effective while the total prioritization strategy is
the least effective. In particular, the effectiveness differences between the total-based techniques
and the additional-based techniques are more obvious than those between the additional-based
techniques and the ARP-based techniques. The reason could be that both the ARP strategy and the
additional strategy consider the diversity among test cases in prioritization, while the total strategy
considers each test case independently which could cause the test cases prioritized closely have
large overlaps in fault detection and thus damage the overall effectiveness.
To sum up, the semantics and ordering log representation strategies are more effective in the

three comparison groups with different test case prioritization strategies, and the ARP strategy
is more effective in the two comparison groups with different log representation strategies. By
combining these more effective log representation strategies with the more effective test case
prioritization strategy respectively, we obtain LogTCParpordering and LogTCParpsemantics. Indeed, both of
them perform better than the other five LogTCP techniques in terms of all these metrics on average
(except LogTCParpordering in terms of RAUC-75%, which is slightly worse than LogTCParpcount). Therefore,
when applying LogTCP to the practice, either LogTCParpordering or LogTCP

arp
semantics can be the first

choice. In particular, on average, LogTCParpsemantics performs slightly better than LogTCParpordering in
terms of all the metrics.

Finding 2: In terms of these metrics on average, semantics-based log representation and
ordering-based log representation are more effective than count-based log representation,
and the ARP test case prioritization strategy is more effective than the total and additional
strategies. Thus, we recommend LogTCParpsemantics and LogTCParpordering as the representatives
of LogTCP in practice.

In addition, due to the effectiveness of the ARP test case prioritization strategy, we also inves-
tigated the influence of different distances on its effectiveness. Here, we studied three popular
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Table 6. Effectiveness of LogTCP with different distances in the ARP strategy in terms of APFD

Project LogTCParp
count LogTCParp

ordering LogTCParp
semantics

Euclidean Manhattan Cosine Euclidean Manhattan Cosine Euclidean Manhattan Cosine

1 0.7503 0.7576 0.6617 0.7557 0.7423 0.6985 0.7740 0.7661 0.7086
2 0.7478 0.7412 0.7103 0.7466 0.7481 0.6879 0.7496 0.7198 0.7183
3 0.7284 0.7267 0.7187 0.7267 0.7258 0.7062 0.7444 0.7142 0.6964
4 0.8476 0.8476 0.8136 0.8433 0.8421 0.8173 0.8633 0.8633 0.8300
5 0.7005 0.7005 0.6801 0.6950 0.6891 0.6702 0.6931 0.6851 0.6772
6 0.7852 0.7892 0.7853 0.8084 0.7985 0.7858 0.8187 0.7989 0.8009
7 0.7129 0.7136 0.7122 0.7135 0.7078 0.7121 0.7136 0.7136 0.6935
8 0.8823 0.8866 0.8510 0.8834 0.8906 0.8363 0.8764 0.8791 0.8758
9 0.7878 0.7878 0.7862 0.7841 0.7825 0.7635 0.8132 0.7720 0.7222
10 0.9364 0.9401 0.9248 0.9385 0.9386 0.9079 0.9230 0.9194 0.9131

Average 0.7879 0.7891 0.7644 0.7895 0.7865 0.7586 0.7969 0.7832 0.7636

distances and used the APFD metric as the representative, whose results are shown in Table 6.
In this table, we marked the best distance in each technique on each subject as bold. From Ta-
ble 6, in all three techniques, Cosine distance performs the worst on average. In LogTCParpordering

and LogTCParpsemantics, Euclidean distance performs better than Manhattan distance on average,
while in LogTCParpcount, Manhattan distance is more effective on average. Since the superiority of
LogTCParpordering and LogTCP

arp
semantics among all the LogTCP techniques, Euclidean distance is the first

choice in the ARP test case prioritization strategy in practice.

Finding 3: In our recommended LogTCParpsemantics and LogTCParpordering techniques, Euclidean
distance makes the ARP test case prioritization strategy more effective than both Manhattan
distance and Cosine distance, and thus is recommended as the default distance in the ARP
strategy in practice.

5.3 RQ3: LogTCP v.s. Existing WTCP Techniques
We have confirmed that LogTCP can effectively improve the effectiveness of BTCP above. In RQ3,
we further investigated the effectiveness gap to WTCP. To answer this RQ, we compared LogTCP
with four representative WTCP techniques. Table 7 shows the comparison results in terms of
average APFD and average RAUC-s across all the faulty versions for each subject. We marked the
best result as bold for each subject in terms of each metric in this table.

From Table 7, surprisingly, our log-based techniques achieve the best results on nearly half of the
subjects compared with the representative WTCP techniques in terms of each metric. For example,
in terms of APFD, LogTCP achieves the best results on five subjects while WTCP techniques achieve
the best results on five subjects. In particular, LogTCParpsemantics performs the best among all the
log-based and studiedWTCP techniques in terms of average APFD, average RAUC-25%, and average
RAUC-50%. Also, in terms of average RAUC-75% and average RAUC-100%, LogTCParpsemantics is just
slightly less effective than the best WTCP technique (i.e., WTCPadditional). The results demonstrate
that LogTCP is indeed effective to bridge the effectiveness gap between BTCP and WTCP, even
slightly outperforming the state-of-the-art WTCP techniques on many subjects.
To further investigate whether there are statistically significant differences between LogTCP

and WTCP, we also performed the Wilcoxon Signed-Rank Test at the significance level of 0.05
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Table 7. Comparison between LogTCP and existing WTCP techniques

Metrics Approach 1 2 3 4 5 6 7 8 9 10 Average

APFD

WTCPtotal 0.6973 0.7576 0.6893 0.8621 0.6866 0.8041 0.7363 0.8981 0.7471 0.9109 0.7789
WTCPadditional 0.7642 0.7722 0.6813 0.8530 0.6995 0.8225 0.7808 0.8792 0.7333 0.9478 0.7934
WTCParp 0.7082 0.6740 0.5818 0.7027 0.5864 0.7184 0.6671 0.6948 0.7180 0.8264 0.6878
WTCPsearch 0.7274 0.7844 0.6867 0.8530 0.6970 0.8245 0.7699 0.8815 0.7116 0.9102 0.7846
LogTCPtotalcount 0.7208 0.7004 0.7151 0.8282 0.6965 0.7821 0.7052 0.8806 0.7651 0.9198 0.7714
LogTCPadditionalcount 0.7362 0.7576 0.7302 0.8312 0.7005 0.7921 0.7145 0.8540 0.7857 0.9293 0.7831
LogTCParpcount 0.7503 0.7478 0.7284 0.8476 0.7005 0.7852 0.7129 0.8823 0.7878 0.9364 0.7879
LogTCPtotalordering 0.7194 0.7076 0.7169 0.8336 0.6990 0.7886 0.7045 0.8734 0.7725 0.9218 0.7737
LogTCPadditionalordering 0.7397 0.7499 0.7151 0.8306 0.6896 0.8030 0.7260 0.8809 0.7884 0.9385 0.7862
LogTCParpordering 0.7557 0.7466 0.7267 0.8433 0.6950 0.8084 0.7135 0.8834 0.7841 0.9385 0.7895
LogTCParpsemantics 0.7740 0.7496 0.7444 0.8633 0.6931 0.8187 0.7136 0.8764 0.8132 0.9230 0.7969

RAUC-25%

WTCPtotal 0.5044 0.7953 0.6410 0.9913 0.7900 0.8299 0.7806 0.9598 0.7845 0.8276 0.7904
WTCPadditional 0.6833 0.8510 0.5353 0.8783 0.7854 0.8815 0.8725 0.9174 0.6979 0.8937 0.7996
WTCParp 0.4777 0.5949 0.2917 0.3938 0.4909 0.5578 0.4879 0.3206 0.6219 0.5103 0.4748
WTCPsearch 0.5932 0.8703 0.5353 0.8767 0.7785 0.8759 0.7880 0.9342 0.6979 0.7972 0.7747
LogTCPtotalcount 0.5205 0.5113 0.8814 0.8866 0.9361 0.7534 0.6111 0.9358 0.7208 0.8471 0.7604
LogTCPadditionalcount 0.6316 0.7438 0.9583 0.9005 0.9361 0.7835 0.6882 0.8626 0.7880 0.8556 0.8148
LogTCParpcount 0.6215 0.7395 0.9199 0.9252 0.9361 0.7803 0.7421 0.9268 0.7898 0.8578 0.8239
LogTCPtotalordering 0.5526 0.5241 0.9006 0.9127 0.9292 0.7751 0.6127 0.9291 0.7208 0.8505 0.7707
LogTCPadditionalordering 0.6807 0.7224 0.9231 0.8988 0.9064 0.8292 0.7043 0.9280 0.7650 0.8671 0.8225
LogTCParpordering 0.7094 0.7353 0.9135 0.9200 0.9064 0.8201 0.7116 0.9327 0.7580 0.8670 0.8274
LogTCParpsemantics 0.6919 0.7402 0.8944 0.9704 0.8493 0.8257 0.6789 0.9073 0.9149 0.8184 0.8291

RAUC-50%

WTCPtotal 0.6108 0.8386 0.7582 0.9630 0.8672 0.8736 0.8004 0.9666 0.8095 0.8705 0.8358
WTCPadditional 0.7616 0.8781 0.7227 0.9275 0.8832 0.9098 0.8617 0.9344 0.7727 0.9284 0.8580
WTCParp 0.6285 0.6668 0.5191 0.5807 0.5849 0.6909 0.5928 0.5291 0.7443 0.6848 0.6222
WTCPsearch 0.6953 0.9102 0.7336 0.8998 0.8782 0.9192 0.8316 0.9385 0.7663 0.8590 0.8432
LogTCPtotalcount 0.6646 0.7033 0.8989 0.8927 0.9126 0.8302 0.7071 0.9436 0.8194 0.8836 0.8256
LogTCPadditionalcount 0.7094 0.8495 0.9303 0.8934 0.9160 0.8525 0.7312 0.8798 0.8775 0.8981 0.8538
LogTCParpcount 0.7221 0.8416 0.9180 0.9243 0.9143 0.8424 0.7536 0.9497 0.8732 0.9069 0.8646
LogTCPtotalordering 0.6591 0.7258 0.8989 0.9053 0.9092 0.8367 0.7052 0.9405 0.8279 0.8872 0.8296
LogTCPadditionalordering 0.7132 0.8377 0.8948 0.8998 0.8958 0.8760 0.7457 0.9501 0.8661 0.9099 0.8589
LogTCParpordering 0.7482 0.8430 0.9180 0.9180 0.8958 0.8701 0.7419 0.9528 0.8633 0.9109 0.8662
LogTCParpsemantics 0.7813 0.8184 0.8828 0.9716 0.8891 0.8726 0.7342 0.9382 0.9447 0.8818 0.8715

RAUC-75%

WTCPtotal 0.6991 0.8981 0.8333 0.9588 0.9065 0.9081 0.8093 0.9687 0.8493 0.9001 0.8731
WTCPadditional 0.8025 0.9239 0.8178 0.9449 0.9276 0.9375 0.8709 0.9396 0.8272 0.9479 0.8940
WTCParp 0.7205 0.7590 0.6413 0.7198 0.7124 0.7848 0.6895 0.6718 0.8060 0.7840 0.7289
WTCPsearch 0.7569 0.9454 0.8260 0.9281 0.9247 0.9474 0.8528 0.9432 0.7967 0.8986 0.8820
LogTCPtotalcount 0.7467 0.8044 0.8897 0.9087 0.9243 0.8838 0.7557 0.9441 0.8710 0.9102 0.8639
LogTCPadditionalcount 0.7699 0.9023 0.9167 0.9129 0.9247 0.9011 0.7687 0.9045 0.9053 0.9226 0.8829
LogTCParpcount 0.7858 0.8876 0.9085 0.9352 0.9372 0.8910 0.7764 0.9498 0.9032 0.9327 0.8907
LogTCPtotalordering 0.7435 0.8170 0.8930 0.9171 0.9291 0.8877 0.7557 0.9399 0.8773 0.9130 0.8673
LogTCPadditionalordering 0.7754 0.8887 0.8881 0.9124 0.9123 0.9176 0.7875 0.9479 0.9003 0.9350 0.8865
LogTCParpordering 0.7935 0.8882 0.9085 0.9296 0.9180 0.9145 0.7699 0.9494 0.8986 0.9354 0.8906
LogTCParpsemantics 0.8216 0.8739 0.8808 0.9593 0.9195 0.9093 0.7708 0.9393 0.9469 0.9146 0.8936

RAUC-100%

WTCPtotal 0.7758 0.9287 0.8758 0.9643 0.9283 0.9321 0.8470 0.9735 0.8786 0.9223 0.9026
WTCPadditional 0.8503 0.9467 0.8656 0.9540 0.9458 0.9534 0.8982 0.9530 0.8623 0.9597 0.9189
WTCParp 0.7915 0.8276 0.7413 0.7873 0.7927 0.8390 0.7676 0.7554 0.8457 0.8384 0.7987
WTCPsearch 0.8117 0.9618 0.8724 0.9455 0.9424 0.9596 0.8858 0.9550 0.8367 0.9235 0.9094
LogTCPtotalcount 0.8061 0.8610 0.9036 0.9264 0.9408 0.9126 0.8112 0.9545 0.8961 0.9313 0.8944
LogTCPadditionalcount 0.8233 0.9316 0.9229 0.9298 0.9381 0.9243 0.8219 0.9255 0.9205 0.9410 0.9079
LogTCParpcount 0.8349 0.9195 0.9206 0.9478 0.9448 0.9162 0.8202 0.9564 0.9230 0.9481 0.9132
LogTCPtotalordering 0.8046 0.8699 0.9058 0.9326 0.9461 0.9136 0.8105 0.9467 0.9049 0.9333 0.8968
LogTCPadditionalordering 0.8272 0.9221 0.9036 0.9292 0.9273 0.9371 0.8352 0.9548 0.9237 0.9503 0.9111
LogTCParpordering 0.8415 0.9180 0.9183 0.9430 0.9374 0.9366 0.8208 0.9575 0.9186 0.9502 0.9142
LogTCParpsemantics 0.8612 0.9116 0.9011 0.9656 0.9347 0.9274 0.8210 0.9499 0.9537 0.9345 0.9161
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Table 8. Statistical analysis between LogTCP and WTCP in terms of APFD

ID Baseline LogTCPtotalcount LogTCPadditionalcount LogTCParpcount LogTCPtotalordering LogTCPadditionalordering LogTCParpordering LogTCParpsemantics

1

WTCPtotal ❍ (0.54) ❍ (0.40) ❍ (0.26) ❍ (0.58) ❍ (0.34) ❍ (0.08) ❍ (0.06)
WTCPadditional ❍ (0.35) ❍ (0.62) ❍ (0.65) ❍ (0.33) ❍ (0.69) ❍ (0.85) ❍ (0.91)
WTCParp ❍ (0.73) ❍ (0.56) ❍ (0.25) ❍ (0.74) ❍ (0.54) ❍ (0.23) ✔ (0.04)
WTCPsearch ❍ (0.65) ❍ (0.93) ❍ (0.62) ❍ (0.68) ❍ (1.00) ❍ (0.56) ❍ (0.27)

2

WTCPtotal ❍ (0.18) ❍ (0.93) ❍ (0.82) ❍ (0.20) ❍ (0.61) ❍ (0.72) ❍ (0.78)
WTCPadditional ✖ (0.01) ❍ (0.56) ❍ (0.41) ✖ (0.02) ❍ (0.36) ❍ (0.47) ❍ (0.47)
WTCParp ❍ (0.57) ❍ (0.06) ❍ (0.07) ❍ (0.38) ❍ (0.06) ❍ (0.12) ❍ (0.06)
WTCPsearch ✖ (0.01) ❍ (0.32) ❍ (0.18) ✖ (0.01) ❍ (0.22) ❍ (0.18) ❍ (0.32)

3

WTCPtotal ❍ (0.65) ❍ (0.59) ❍ (0.72) ❍ (0.56) ❍ (0.90) ❍ (0.61) ❍ (0.28)
WTCPadditional ❍ (0.61) ❍ (0.51) ❍ (0.65) ❍ (0.56) ❍ (0.65) ❍ (0.47) ❍ (0.24)
WTCParp ✔ (0.05) ✔ (0.05) ✔ (0.03) ✔ (0.03) ✔ (0.03) ✔ (0.02) ✔ (0.02)
WTCPsearch ❍ (0.78) ❍ (0.65) ❍ (0.72) ❍ (0.65) ❍ (0.78) ❍ (0.59) ❍ (0.29)

4

WTCPtotal ❍ (0.54) ❍ (0.63) ❍ (0.51) ❍ (0.56) ❍ (0.58) ❍ (0.54) ❍ (1.00)
WTCPadditional ❍ (0.78) ❍ (0.79) ❍ (0.79) ❍ (0.90) ❍ (0.78) ❍ (0.75) ❍ (0.66)
WTCParp ✔ (0.01) ✔ (0.02) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.01) ✔ (0.01)
WTCPsearch ❍ (0.70) ❍ (0.90) ❍ (0.93) ❍ (0.79) ❍ (0.77) ❍ (0.90) ❍ (0.57)

5

WTCPtotal ❍ (0.65) ❍ (0.60) ❍ (0.69) ❍ (0.63) ❍ (1.00) ❍ (0.90) ❍ (0.93)
WTCPadditional ❍ (0.63) ❍ (0.48) ❍ (0.91) ❍ (0.63) ❍ (0.73) ❍ (0.93) ❍ (1.00)
WTCParp ❍ (0.23) ❍ (0.23) ❍ (0.18) ❍ (0.20) ❍ (0.17) ❍ (0.21) ❍ (0.18)
WTCPsearch ❍ (0.93) ❍ (0.98) ❍ (0.99) ❍ (0.99) ❍ (0.91) ❍ (1.00) ❍ (0.91)

6

WTCPtotal ❍ (0.56) ❍ (0.57) ❍ (1.00) ❍ (0.56) ❍ (0.91) ❍ (0.73) ❍ (0.84)
WTCPadditional ❍ (0.32) ❍ (0.36) ❍ (0.32) ❍ (0.34) ❍ (0.56) ❍ (0.51) ❍ (0.93)
WTCParp ✔ (0.05) ✔ (0.02) ✔ (0.04) ✔ (0.05) ✔ (0.01) ✔ (0.02) ✔ (0.00)
WTCPsearch ❍ (0.41) ❍ (0.36) ❍ (0.51) ❍ (0.36) ❍ (0.60) ❍ (0.65) ❍ (0.96)

7

WTCPtotal ✖ (0.02) ❍ (0.27) ❍ (0.18) ✖ (0.04) ❍ (0.54) ❍ (0.18) ❍ (0.13)
WTCPadditional ✖ (0.00) ✖ (0.00) ✖ (0.00) ✖ (0.00) ✖ (0.00) ✖ (0.00) ✖ (0.00)
WTCParp ❍ (0.29) ❍ (0.09) ❍ (0.09) ❍ (0.18) ✔ (0.01) ❍ (0.10) ❍ (0.08)
WTCPsearch ✖ (0.00) ✖ (0.01) ✖ (0.00) ✖ (0.00) ✖ (0.02) ✖ (0.00) ✖ (0.01)

8

WTCPtotal ✖ (0.05) ✖ (0.00) ❍ (0.30) ✖ (0.01) ❍ (0.17) ❍ (0.18) ✖ (0.02)
WTCPadditional ❍ (0.93) ❍ (0.24) ❍ (0.82) ❍ (0.75) ❍ (0.90) ❍ (0.79) ❍ (0.93)
WTCParp ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)
WTCPsearch ❍ (0.76) ❍ (0.11) ❍ (0.99) ❍ (0.54) ❍ (0.93) ❍ (0.90) ❍ (0.90)

9

WTCPtotal ❍ (0.87) ❍ (0.69) ❍ (0.64) ❍ (0.69) ❍ (0.61) ❍ (0.73) ❍ (0.32)
WTCPadditional ❍ (0.56) ❍ (0.54) ❍ (0.47) ❍ (0.56) ❍ (0.44) ❍ (0.47) ❍ (0.30)
WTCParp ❍ (0.38) ❍ (0.14) ❍ (0.11) ❍ (0.30) ❍ (0.12) ❍ (0.17) ✔ (0.05)
WTCPsearch ❍ (0.51) ❍ (0.44) ❍ (0.38) ❍ (0.47) ❍ (0.41) ❍ (0.41) ❍ (0.17)

10

WTCPtotal ✔ (0.00) ❍ (0.09) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ❍ (0.41)
WTCPadditional ✖ (0.00) ✖ (0.00) ✖ (0.01) ✖ (0.01) ❍ (0.09) ✖ (0.02) ✖ (0.00)
WTCParp ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00) ✔ (0.00)
WTCPsearch ❍ (0.54) ❍ (0.16) ✔ (0.04) ❍ (0.45) ✔ (0.03) ✔ (0.02) ❍ (0.34)

Table 9. Spearman-rank correlation between the APFD result and the subject size

Technique coefficient p-value

LogTCPtotalcount 0.20 0.58
LogTCPadditionalcount 0.30 0.40
LogTCParpcount 0.18 0.63
LogTCPtotalordering 0.18 0.63
LogTCPadditionalordering 0.39 0.26
LogTCParpordering 0.25 0.49
LogTCParpsemantics 0.25 0.49

to compare each LogTCP technique with each WTCP technique, since most of our data do not
conform to the normal distribution according to Table 4. To correct the multiple hypothesis test
results, we also performed the Benjamini-Hochberg method [8] to control the FDR. We also used

ACM Trans. Softw. Eng. Methodol., Vol. 37, No. 4, Article 111. Publication date: January 2022.



Exploring Better Black-Box Test Case Prioritization via Log Analysis 111:21

Table 10. Influence of logging levels on the effectiveness of LogTCParpsemantics in terms of APFD

Technique Level 1 2 3 4 5 6 7 8 9 10 Average

LogTCParpsemantics

ALL 0.7740 0.7496 0.7444 0.8633 0.6931 0.8187 0.7136 0.8764 0.8132 0.9230 0.7969
DEBUG 0.7564 0.7801 0.7142 0.8542 0.6866 0.8101 0.7061 0.8734 0.7677 0.9149 0.7864
INFO 0.7192 0.7734 0.7373 0.8512 0.6722 0.8010 0.7155 0.8372 0.7979 0.9098 0.7815
WARN 0.7296 0.7651 0.7053 0.8555 0.6568 0.7890 0.6924 0.8151 0.7910 0.9000 0.7700
ERROR 0.6999 0.6744 0.7311 0.8445 0.6931 0.7343 0.6695 0.7254 — 0.8983 0.7412

BTCPstring 0.7442 0.6561 0.5373 0.6361 0.5630 0.6031 0.6616 0.7980 0.6778 0.9060 0.6783
BTCPtopic 0.6966 0.6772 0.5649 0.6676 0.5764 0.6707 0.6250 0.7524 0.6968 0.8620 0.6790
BTCPFAST 0.7223 0.7016 0.5364 0.6888 0.6213 0.7408 0.6005 0.7809 0.7296 0.8915 0.7014

the APFD metric as the representative (we can obtain the same conclusions from all these metrics)
and reported the statistical analysis results after correction in Table 8. Here, we marked ✔ for the
cases where the LogTCP technique performs significantly better than the WTCP technique, ✖ for
the cases where the LogTCP technique performs significantly worse than the WTCP technique,
and ❍ for the cases where they have no significant difference in statistics. From Table 8, among all
the cases, only 10.7% are marked as ✖ and even 16.4% are marked as ✔, indicating that LogTCP
significantly bridges the effectiveness gap between BTCP and WTCP. The results demonstrate that
we are indeed able to have the best of both BTCP and WTCP (i.e., achieving great effectiveness
without relying on source code information) through log analysis.

From Table 8, we found that LogTCP performs significantly worse than WTCP on some subjects
(i.e., subjects 7 and 10). Actually, LogTCP belongs to BTCP and thus this phenomenon is as expected,
but it is also important to understand the reason behind this phenomenon in order to further improve
LogTCP in the future. First of all, we found that the two subjects are more large-scale than other
subjects, and thus we suspect whether there is a correlation between the effectiveness of LogTCP
and the size of the subject under test. Specifically, we measured the Spearman-rank correlation [105]
between the APFD result and the subject size for each log-based TCP technique, whose results are
shown in Table 9. We found that all the p-values are larger than 0.05 and all the coefficients are
smaller than 0.39, indicating that their is no statistically significant correlation between them. Then,
we conducted manual analysis on the logs of these subjects for further investigation. We found that
for the two subjects, the log events extracted by Drain3 (the used log parser in our study) are not
very accurate, i.e., some log parameters are not accurately removed from log messages. In other
words, some log messages should belong to the same log event, but are processed into different
log events due to the inaccuracy of Drain3. Such inaccuracy can have negative influence on the
effectiveness of LogTCP, which may be the main reason why LogTCP performs worse than WTCP
on the two subjects. In the future, we will incorporate more advanced log parsing methods into
LogTCP to further improve the effectiveness of LogTCP by improving the accuracy of log parsing.

Finding 4: Indeed, LogTCP is able to significantly bridge the effectiveness gap between
BTCP and WTCP. Even, LogTCParpsemantics performs better than the state-of-the-art WTCP
technique in terms of average APFD, average RAUC-25%, and average RAUC-50%. Thus,
LogTCP could be more practical since it can achieve competitive effectiveness to the state-
of-the-art WTCP without relying on source code information.
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6 DISCUSSION
6.1 Influence of Logging Levels
In practice, there are several logging levels that can indicate how important a log message is. For
example, the logging levels provided by the used logging framework (i.e., Log4j or Logback) in
our study include ALL, DEBUG, INFO, WARN, ERROR, etc. These logging levels have the partial
ordering relation: ALL < DEBUG < INFO < WARN < ERROR < . . .. When setting the level to a lower
one (e.g., DEBUG), all the log messages with the same and higher levels (e.g., DEBUG, INFO, WARN,
ERROR, etc) can be produced. In our study, we set the logging level to ALL (i.e., the lowest one)
for all the subjects, which can produce log messages with various levels. In this way, the dynamic
behaviors of test cases can be reflected more sufficiently.

To better understand why logs can facilitate the task of test case prioritization, we conducted an
experiment to investigate the influence of different logging levels on the effectiveness of LogTCP.
Besides our used logging level (i.e., ALL) in the study, we further studied the effectiveness of
LogTCP when setting the logging level to DEBUG, INFO, WARN, and ERROR, respectively. These
logging levels are commonly-used in practice as presented in the existing work [5], where ALL
can record the most log messages while ERROR can record the fewest among the five studied
levels. In this experiment, we took LogTCParpsemantics as the representative due to its effectiveness as
demonstrated in Section 5.2. Table 10 shows the APFD results of LogTCParpsemantics under the settings
of different logging levels, where “—” indicates that there is no log message produced under the
setting of the corresponding logging level. From this table, we found that LogTCParpsemantics performs
better in terms of APFD when a lower logging level is set, e.g., the average APFD results are 0.7969,
0.7864, 0.7815, 0.7700, and 0.7412 when setting the logging level to ALL, DEBUG, INFO, WARN,
ERROR, respectively. One major reason is that more adequate log messages can be produced under
the setting of lower logging levels, which can better reflect the dynamic behaviors of test cases. In
particular, no matter which logging level is set among the five, LogTCParpsemantics always outperforms
the existing BTCP techniques in terms of APFD, demonstrating the power of logs for test case
prioritization.
Overall, one major reason why LogTCP can improve the effectiveness of BTCP is that logs can

effectively reflect the dynamic behaviors of test cases, which can provide more accurate information
to distinguish the difference between test cases. More adequate log messages can better reflect the
dynamic behaviors of test cases, and thus can make more contributions to the effectiveness of test
case prioritization. During the practical use of LogTCP, we recommend to set the logging level
to the lowest one (e.g., ALL in Log4j or Logback). If the testing resource is limited, setting higher
logging levels can also achieve better TCP effectiveness than the existing BTCP techniques.

6.2 Exploring Log-based Failure Detection for Test Case Prioritization
In the literature, there are many log-based failure detection techniques, such as DeepLog [32],
LogBert[39] and PLELog[117], which aim to detect failures in system runtime by building a machine
learning or deep learning model based on a large amount of log data. Intuitively, they can be also
adapted to the task of test case prioritization by using the model to predict how likely a test
case reveals failures based on its corresponding logs and then prioritizing test cases based on the
prediction results. Hence, it is interesting to investigate whether directly adapting the existing
log-based failure detection techniques can also perform well for the task of test case prioritization.
To obtain sufficient training data and avoid data leakage, we adopted EvoSuite [36], a state-of-

the-art test case generation tool, to generate a large number of test cases for each studied subject,
and collected the corresponding log data by running them. Since almost all the test cases generated
by EvoSuite are passing test cases, we used all the corresponding normal logs as training data to
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Table 11. Effectiveness of the existing log-based failure detection techniques for TCP in terms of APFD

Technique Blueflood Flume Wicket Average

DeepLog 0.6884 0.6801 0.9113 0.7599
PCA 0.7124 0.5963 0.9141 0.7409
LogCluster 0.6680 0.6926 0.8825 0.7477

LogTCPtotalcount 0.7151 0.6965 0.9198 0.7771
LogTCPadditionalcount 0.7302 0.7005 0.9293 0.7867
LogTCParpcount 0.7284 0.7005 0.9364 0.7884
LogTCPtotalordering 0.7169 0.6990 0.9218 0.7792
LogTCPadditionalordering 0.7151 0.6896 0.9385 0.7811
LogTCParpordering 0.7267 0.6950 0.9385 0.7867
LogTCParpsemantics 0.7444 0.6931 0.9230 0.7868

build the failure detection model for each studied subject. That is, we have to adopt semi-supervised
or unsupervised log-based failure detection techniques for model building in this task.

In our experiment, we adopted DeepLog [32] and LogCluster [110] (two typical semi-supervised
log-based failure detection techniques) and PCA [33] (a typical unsupervised log-based failure
detection technique) as the representatives. DeepLog builds a failure detection model based on a
large amount of normal log data via Long Short-Term Memory (LSTM) [50], and then identifies
a failure by predicting the next log event and comparing it with the actual one. Since DeepLog
predicts the next log event for failure detection, we adapted it to prioritize test cases based on the
number of its identified anomalous log events in the log sequence of each test case. LogCluster [110]
applies the Agglomerative Hierarchical clustering algorithm [38] to cluster log sequences for failure
detection. We adapted it to prioritize test cases by calculating the minimum distance between the
log sequence of each test case and the centroids of normal clusters (identified based on training
data). PCA [33] projects the log sequence of each test case to the normal space and the anomalous
space, which are constructed based on training data, for failure detection. We adapted it to prioritize
test cases based on the projection size in the anomalous space.
In this experiment, we used Blueflood, Flume, and Wicket as the representative subjects. On

average, the size of training log sequences is about 2,600 for them. Table 11 shows the APFD results
of those TCP techniques adapted from the existing log-based failure detection techniques. In this
table, we marked the best result as bold for each studied subject. From this table, we found that
directly adapting the existing log-based failure detection techniques for TCP performs worse than
our well-designed LogTCP specific to the task of test case prioritization in terms of APFD and all
the bold values belong to the results of LogTCP, which further demonstrates the value of LogTCP.
In the future, we may design the log-based failure detection technique specific to the task of test
case prioritization, so as to further improve its effectiveness.

6.3 Efficiency of LogTCP
As presented in Section 5, LogTCP achieves better prioritization effectiveness than the existing
BTCP techniques and significantly bridges the effectiveness gap between BTCP and WTCP. Here,
we further analyzed the time and memory costs of each studied TCP technique in order to better
understand the efficiency of LogTCP.
Table 12 presents the average time and memory costs of each studied TCP technique across all

the subjects. From this table, in terms of the average time cost, LogTCParpsemantics spends the most
time (i.e., 149.76 seconds) among the seven log-based TCP techniques, whose time cost consists of
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Table 12. Efficiency comparison among studied TCP techniques in terms of average time and memory usage

Technique Time (s) Memory (MB)

LogTCPtotalcount 56.57 119.79
LogTCPadditionalcount 57.55 129.58
LogTCParpcount 56.92 128.41
LogTCPtotalordering 122.26 113.14
LogTCPadditionalordering 126.86 136.58
LogTCParpordering 122.55 161.59
LogTCParpsemantics 149.76 506.58

BTCPstring 79.90 448.60
BTCPtopic 103.42 244.06
BTCPFAST 0.52 18.70

WTCPtotal 0.03 109.72
WTCPadditional 0.55 118.71
WTCParp 292.76 470.17
WTCPsearch 8.37 112.97

log pre-processing time, log representation time, and prioritization time. BTCPtopic spends the most
time (i.e., 103.42 seconds) among the three existing BTCP techniques, and WTCParp spends the
most time (i.e., 292.76 seconds) among the four existing WTCP techniques. Overall, all the studied
techniques spend less 292.76 seconds on test case prioritization on average. In particular, the test
case prioritization process is conducted offline in regression testing [23, 55, 60, 69, 108], and thus
the time costs of all the studied techniques are acceptable in practice.

In terms of the average memory usage, LogTCParpsemantics consumes the most memory (i.e., 506.58
MB) among the seven log-based TCP techniques, BTCPstring consumes the most memory (i.e., 448.60
MB) among the three existing BTCP techniques, and WTCParp consumes the most memory (i.e.,
470.17 MB) among the four existing WTCP techniques. Overall, all the studied techniques consume
less 506.58 MB memory on test case prioritization on average, which is also acceptable in practice.
To sum up, the results demonstrate the efficiency of the studied techniques. Although LogTCP

spends more time or consumes more memory than some of the existing BTCP or WTCP techniques
on average, the cost of LogTCP is still acceptable in terms of both prioritization time and memory
usage in practice. Besides, LogTCP just requires raw log messages for test case prioritization,
which are easy to collect in a continuous integration environment. That further demonstrates the
practicability of LogTCP, i.e., requiring little effort to integrate LogTCP in a continuous integration
environment.

6.4 Extension of LogTCP
First, our extensive study has demonstrated that mining test logs is indeed able to improve the
effectiveness of BTCP, even achieve competitive effectiveness to WTCP. That shows the great
potential of logs in the area of TCP. Currently, LogTCP directly utilizes the logs produced according
to the original logging statements in the project under test, but they may be not sufficient for the
TCP task. In the future, we could improve the logging practice by suggesting the logging contents
and locations specific to regression testing tasks, in order to further improve the effectiveness of
LogTCP.
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Second, we have proposed several log representation strategies by considering different features
in test logs, but these features may be not comprehensive for TCP. Due to the rapid development of
deep learning, it could be helpful to incorporate them to automatically and systematically extract
features from logs. For example, it could build a log-embedding model based on historical test logs of
the project under test. In historical test logs, we can obtain the information of test failures, enabling
the feasibility of supervised methods for log-embedding model building. In the literature, supervised
methods could be more effective than unsupervised methods (our used log representation strategies
in LogTCP are unsupervised) due to incorporating more known information [29, 31, 96].
Third, we used each kind of log feature individually in LogTCP. Actually, these features reflect

different aspects of logs, and thus it is likely to integrate them through ensemble learning. Moreover,
LogTCP is also orthogonal to other BTCP techniques that mostly rely on the textual information of
test cases themselves. Therefore, it may be also helpful to improve the effectiveness of BTCP by
integrating various features in different kinds of BTCP techniques.

6.5 Threats to validity
The threats to internal validity mainly lie in the implementation of TCP techniques (including
our LogTCP techniques and compared techniques) and experimental scripts, and the method
of identifying flaky tests. Regarding the compared techniques, we directly adopted the existing
implementation for the studied WTCP techniques, which are released by the existing work [70,
126], and re-implemented the compared BTCP techniques based on their descriptions in the
corresponding papers [47, 59, 108]. To reduce this kind of threat from implementation, two authors
have carefully checked all our code. Also, we have adopted some mature tools to facilitate our
implementation as presented in Section 4.4. Regarding flaky tests, we ran each test case several
times (i.e., 10 times in our study) for identifying and removing flaky tests following the existing
work [7, 78, 102]. Indeed, such a way may not identify and remove all the flaky tests, which may
affect the effectiveness of test case prioritization. In the future, we will incorporate more advanced
methods to identify flaky tests in order to further reduce this kind of threat.
The threats to external validity mainly lie in the subjects, logs, and faults. Although the used

subjects in our study may not sufficiently represent other subjects, we have used 10 widely-studied
subjects. In particular, we selected these subjects without any subjective bias and these subjects
have diverse functionalities. In the future, we will repeat our experiments on more subjects to
further reduce this kind of threat. Regarding the kind of threat from logs, the logs in all the studied
subjects are produced based on the Log4j or Logback library. However, this kind of threat might be
not serious since our LogTCP framework does not rely on the log styles and our used log parser
(i.e., Drain3) can process various styles of logs. Regarding the kind of threat from faults, we used
mutation faults for evaluation following the existing work [3, 54, 70, 73]. In particular, according to
the conclusion from the existing study of investigating the threats of mutant faults [83], we filtered
out both duplicate and live mutation faults. In the future, we will try to collect a large number of
regression faults on the subjects with logs, in order to further reduce this kind of threat.

The threats to construct validity mainly lie in the measurements, regression scenario, randomness,
and the inaccuracy from the dependent tools. Following the existing work [70, 73, 114], we adopted
both APFD and RAUC-s (with four different settings of 𝑠) as the metrics for TCP effectiveness, but
they may not represent other metrics. In the future, we will adopt more metrics to more sufficiently
measure TCP effectiveness, such as APFD𝑐 [34]. Normalized APFD (NAPFD) is also a metric of
measuring the effectiveness of test case prioritization [87]. Although the formulae of RAUC [114]
(one metric used in our study) and NAPFD are different, both of them have the same intention.
Specifically, both of them consider the scenario where the entire prioritized test suite may be not
always executed completely due to the testing time limitation in practice. Therefore, even though
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the specific values obtained from them are different, the conclusions are the same in terms of both
metrics. Regarding the kind of threat from the regression scenario, we regarded the version without
faults as the former version and the version with mutation faults as the current version following
the existing TCP studies [23, 69, 73, 122]. To reduce this kind of threat, we constructed 100 faulty
versions for each subject, and in the future, we will collect real faults from real-world regression
scenarios. In addition, as presented in Section 4.4, we repeated all the TCP techniques involving
randomness 5 times and calculated the average results in our study, in order to reduce the kind of
threat from randomness. Finally, LogTCP depends on some tools, such as Drain3, and these tools
may also bring some inaccuracies. To reduce this kind of threat, we adopted state-of-the-art tools
in the corresponding tasks. Moreover, LogTCP is not specific to the currently used tools and can be
easily extended by incorporating more advanced tools in the future.

7 RELATEDWORK
Our work is related to both test case prioritization and log analysis, and thus we present related
work from both aspects.

7.1 Test Case Prioritization
As presented before, TCP can be divided into two categories, i.e., BTCP and WTCP, based on
whether the source code information is used. In particular, there are some excellent survey papers
on TCP [68, 120].
Besides BTCPstring, BTCPtopic, and BTCPFAST presented before, some BTCP techniques were

proposed in the context of combinatorial interaction testing (CIT) for highly-configurable sys-
tems [11, 26], which prioritize test cases based on CIT coverage (e.g., pair-wise coverage). Also,
Rogstad et al. [89] proposed to prioritize test cases based on the diversity of program outputs.
Sampath et al. [95] proposed to prioritize user-session-based test cases for web applications testing
based on test-case lengths, appearance frequency of request sequences, and systematic coverage of
parameter-values and their interactions. Anderson et al. [1] proposed to utilize the identified usage
patterns based on telemetry for test case prioritization. Srikanth et al. [106] prioritized building
acceptance tests for an enterprise cloud application based on historical service information. In
addition, there are some BTCP techniques based on requirement information [49, 56, 107], such as
customer-assigned priority, requirement traceability, and the relationship between test cases and
risky requirements. These kinds of information are specific to certain categories of software or
cannot be always easily available in practice. Different from these existing BTCP techniques, our
work is the first to improve the effectiveness of BTCP through log analysis. Moreover, log data are
general and tend to be easily obtained in practice. Our experimental results have demonstrated
that LogTCP is indeed able to outperform the state-of-the-art BTCP technique.

Besides coverage-based WTCP presented before, there are a number of other WTCP techniques,
such as mutation-based techniques [35, 69, 111] and information-retrieval-based techniques [85, 94].
For example, Lou et al. [69] proposed a mutation-based TCP technique in the scenario of software
evolution by utilizing mutation faults on the difference between two versions. Peng et al. [85]
proposed an enhanced information-retrieval-based TCP technique by incorporating test-case text,
code changes, historical test-case execution time, and test-case failure frequencies. Different from
WTCP techniques, our work belongs to the category of BTCP but aims to bridge the effectiveness
gap between WTCP and BTCP through log analysis. Our experimental results have shown that
LogTCP can achieve competitive effectiveness with the state-of-the-art WTCP technique.
There are a number of empirical studies on TCP [74, 82, 84, 103, 116]. For example, Rothermel

et al. [91] empirically evaluated the effectiveness of several coverage-based and mutation-based
WTCP techniques. Henard et al. [47] conducted an empirical study to compare BTCP and WTCP in
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terms of both effectiveness and efficiency. Lu et al. [70] conducted an empirical study to investigate
the effectiveness of four representative coverage-based WTCP techniques (that are also used in our
study) in the real-world scenario of software evolution. Luo et al. [73] empirically compared five
static TCP techniques and four dynamic TCP techniques by considering several factors, such as test
case granularity and subject size. Different from these empirical studies, our work conducted an
extensive study to explore whether incorporating log analysis can help improve the effectiveness
of BTCP and thus bridge the effectiveness gap between WTCP and BTCP.

7.2 Log Analysis
In the literature, there is a great amount of work focusing on log analysis [45], including logging,
log parsing, and log mining. Logging aims to improve logging practices, including what-to-log [42,
67, 80, 100] (i.e., providing sufficient and concise information in logging statements), where-to-
log [63, 118, 124, 128] (i.e., determining the proper location of logging statements), and how-to-
log [15, 62, 99] (i.e., maintaining high-quality logging statements). Log parsing has been introduced
before and adopted in our proposed LogTCP. Over the years, many log parsing methods have
been proposed, including frequent-pattern-mining based methods (e.g., LFA [81] and Logram [28]),
clustering-based methods (e.g., LKE [37] and LogCluster [110]), and heuristics-based methods
(e.g., AEL [52] and Drain [43, 44]). In LogTCP, we adopted the widely-used Drain3. After parsing
log messages into log events, they are used for a series of subsequent tasks, such as anomaly
detection [117, 123], failure prediction [65, 93], and failure diagnosis [112, 121, 127]. Most of
those techniques adopted machine learning or deep learning algorithms to build models based on
processed log data. In particular, some work on software testing also utilizes logs, e.g., Andrews et
al.[2, 4] relieved the test oracle problem using logs and Chen et al. [17] proposed to estimate code
coverage measures from logs.

Different from these log analysis work, our work is the first to incorporate log analysis into test
case prioritization. Specifically, our work aims to boost BTCP through log analysis.

8 CONCLUSION
Both white-box test case prioritization (WTCP) and black-box test case prioritization (BTCP) suffer
from limitations in their practical use. The former relies on source code information, which can
achieve great prioritization effectiveness but cannot be applicable in many practical scenarios
(where source code is unavailable), while the latter gets rid of the limitation of requiring source
code information, but tends to perform worse than WTCP due to less information used for TCP. To
promote the practicability of TCP, in this work we explore better BTCP to bridge the effectiveness
gap between BTCP and WTCP through log analysis. Specifically, we first design a log-based
TCP framework (called LogTCP), including log pre-processing, log representation, and test case
prioritization components. Then, we conduct an empirical study to investigate the effectiveness
of LogTCP based on 10 diverse Java projects from GitHub. The results demonstrate that LogTCP
significantly performs better than the state-of-the-art BTCP technique, even achieves competitive
effectiveness to the state-of-the-art WTCP technique in average fault detection. In particular,
we recommend the LogTCP technique combining the semantics-based or ordering-based log
representation strategy with the adaptive random prioritization strategy as the first choice in
practice due to its better effectiveness.
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