40 research outputs found

    Dynamic Resource Allocation in Hybrid Access Femtocell Network

    Get PDF
    Intercell interference is one of the most challenging issues in femtocell deployment under the coverage of existing macrocell. Allocation of resources between femtocell and macrocell is essential to counter the effects of interference in dense femtocell networks. Advances in resource management strategies have improved the control mechanism for interference reduction at lower node density, but most of them are ineffective at higher node density. In this paper, a dynamic resource allocation management algorithm (DRAMA) for spectrum shared hybrid access OFDMA femtocell network is proposed. To reduce the macro-femtotier interference and to improve the quality of service, the proposed algorithm features a dynamic resource allocation scheme by controlling them both centrally and locally. The proposed scheme focuses on Femtocell Access Point (FAP) owners' satisfaction and allows maximum utilization of available resources based on congestion in the network. A simulation environment is developed to study the quantitative performance of DRAMA in hybrid access-control femtocell network and compare it to closed and open access mechanisms. The performance analysis shows that higher number of random users gets connected to the FAP without compromising FAP owners' satisfaction allowing the macrocell to offload a large number of users in a dense heterogeneous network

    An Analytical Framework for Heterogeneous Partial Feedback Design in Heterogeneous Multicell OFDMA Networks

    Full text link
    The inherent heterogeneous structure resulting from user densities and large scale channel effects motivates heterogeneous partial feedback design in heterogeneous networks. In such emerging networks, a distributed scheduling policy which enjoys multiuser diversity as well as maintains fairness among users is favored for individual user rate enhancement and guarantees. For a system employing the cumulative distribution function based scheduling, which satisfies the two above mentioned desired features, we develop an analytical framework to investigate heterogeneous partial feedback in a general OFDMA-based heterogeneous multicell employing the best-M partial feedback strategy. Exact sum rate analysis is first carried out and closed form expressions are obtained by a novel decomposition of the probability density function of the selected user's signal-to-interference-plus-noise ratio. To draw further insight, we perform asymptotic analysis using extreme value theory to examine the effect of partial feedback on the randomness of multiuser diversity, show the asymptotic optimality of best-1 feedback, and derive an asymptotic approximation for the sum rate in order to determine the minimum required partial feedback.Comment: To appear in IEEE Trans. on Signal Processin

    Review on Radio Resource Allocation Optimization in LTE/LTE-Advanced using Game Theory

    Get PDF
    Recently, there has been a growing trend toward ap-plying game theory (GT) to various engineering fields in order to solve optimization problems with different competing entities/con-tributors/players. Researches in the fourth generation (4G) wireless network field also exploited this advanced theory to overcome long term evolution (LTE) challenges such as resource allocation, which is one of the most important research topics. In fact, an efficient de-sign of resource allocation schemes is the key to higher performance. However, the standard does not specify the optimization approach to execute the radio resource management and therefore it was left open for studies. This paper presents a survey of the existing game theory based solution for 4G-LTE radio resource allocation problem and its optimization

    Pré-codificação e equalização para sistemas SC-FDMA heterogéneos

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesMobile traffic in cellular networks is increasing exponentially. Small-cells are considered as a key solution to meet these requirements. Under the same spectrum the small-cells and the associated macro-cell (forming the so called heterogeneous systems) must cooperate so that one system can adapt to the other. If no cooperation is considered then the small-cells will generate harmful interference at the macro-cell. Interference alignment (IA) is a precoding technique that is able to achieve the maximum degrees of freedom of the interference channel, and can efficiently deal with inter-systems interference. Single carrier frequency division multiple access (SC-FDMA) is a promising solution technique for high data rate uplink communications in future cellular systems. Conventional linear equalizers are not efficient to remove the residual inter-carrier interference of the SC-FDMA systems. For this reason, there has been significant interest in the design of nonlinear frequency domain equalizers in general and decision feedback equalizers in particular, with the iterative block decision feedback equalizer (IB-DFE) being the most promising nonlinear equalizer. In this dissertation we propose and evaluate joint interference alignment precoding at the small cell user terminals with iterative non-linear frequency domain equalizer at the receivers (macro base station and central unit) for SC-FDMA based heterogeneous networks. The small-cell precoders are designed by enforcing that all generated interference at the macro-cell is aligned in an orthogonal subspace to the macro-cell received signal subspace. This enforces that no performance degradation is observed at the macro cell. Then, we design an iterative nonlinear frequency domain equalizer at the macro-cell receiver that is able to recover the macro-cell spatial streams, in the presence of both small-cell and inter-carrier interferences. The results show that the proposed transmitter and receiver structures are robust to the inter-system interferences and at the same time are able to efficient separate the macro and small cells spatial streams.O trafego móvel nas redes celulares tem aumentado exponencialmente. As pico- células são consideradas como a solução chave para cumprir estes requisitos. Dentro do mesmo espectro, as pico-células e as macro-células (formando os chamados sistemas heterogéneos) precisam de colaborar de modo a que um sistema possa adaptar-se ao outro. Se não for considerada a cooperação, então as pico-células irão gerar interferência prejudicial na macro-célula. Interference alignment (IA) é uma técnica de précodificação que é capaz de atingir o grau máximo de liberdade do canal de interferência, e consegue lidar eficazmente com interferência entre sistemas. Single carrier frequency division multiple access (SC-FDMA) é uma solução técnica promissora para transmissão de dados em uplink, para sistemas celulares futuros. Equalizadores lineares convencionais não são eficientes a remover a interferência residual entre portadoras dos sistemas SC-FDMA. Por este motivo, tem havido interesse significativo no desenho de equalizadores não lineares no domínio da frequência em geral e em equalizadores baseados em decisão por feedback em particular, tendo o iterative block decision feedback equalizer (IB-DFE) como o equalizador não linear mais promissor. Nesta dissertação propomos e avaliamos précodificação de alinhamento de interferência nos terminais das pico-células em conjunto com equalizadores não lineares no domínio da frequência nos recetores (estação base da macro-célula e unidade central de processamento) para redes heterogéneas baseadas em SC-FDMA. Os précodificadores das pico-células são desenhados de maneira a obrigar a que toda a interferência gerada na macro-célula esteja alinhada num subespaço ortogonal em relação ao subespaço do sinal recebido na macro- célula. Isto obriga a que não seja observada degradação de desempenho na macro-célula. Em seguida, desenhamos um equalizador não linear no domínio da frequência no recetor da macro-célula capaz de recuperar os fluxos de dados da macro-célula, na presença de interferência tanto entre portadoras como das pico-células. Os resultados mostram que as estruturas de transmissão e receção propostas são robustas contra a interferência entre sistemas e ao mesmo tempo capaz de separar eficientemente os dados da macro e das pico células

    Cell Association in Dense Heterogeneous Cellular Networks

    Get PDF
    IEEE Coverage evaluation of heterogeneous multi-tier cellular networks (HetNets) is often based on simplifying assumptions on cell association (CA): the resource required by, and practical limitations of pilot measurements are overlooked. Also, the base station (BS) providing the strongest signal-to-interference ratio among all BSs is always the serving BS (an ideal CA (iCA)). Consequently, the resultant analysis falls short of characterizing HetNets & #x0027; coverage in practical settings. We therefore propose an analytical framework for modeling a practical CA (pCA) by considering pilot measurement, pilot sensitivity at the users, and the number of pilot measurements, KPK_P . Using tools from stochastic geometry, we obtain the coverage with pCA in both Rayleigh and Nakagami environments. We propose an algorithm to obtain the optimal KPK_P and its partitioning among the BSs in different tiers that maximizes the coverage. Our analysis provides key insights in designing dense HetNets. For dense networks, scale invariance achievable under iCA is shown unsustained with pCA. Also, dense HetNets are pilot-neutral, and hence their performance is not affected by pilot sensitivity. Our extensive simulations confirm the accuracy of our analysis and the proposed algorithm, and demonstrate the effect of pCA in comparison with iCA

    Enhancing Radio Access Network Performance over LTE-A for Machine-to-Machine Communications under Massive Access

    Get PDF
    The expected tremendous growth of machine-to-machine (M2M) devices will require solutions to improve random access channel (RACH) performance. Recent studies have shown that radio access network (RAN) performance is degraded under the high density of devices. In this paper, we propose three methods to enhance RAN performance for M2M communications over the LTE-A standard. The first method employs a different value for the physical RACH configuration index to increase random access opportunities. The second method addresses a heterogeneous network by using a number of picocells to increase resources and offload control traffic from the macro base station. The third method involves aggregation points and addresses their effect on RAN performance. Based on evaluation results, our methods improved RACH performance in terms of the access success probability and average access delay
    corecore