117 research outputs found

    Error resilience and concealment techniques for high-efficiency video coding

    Get PDF
    This thesis investigates the problem of robust coding and error concealment in High Efficiency Video Coding (HEVC). After a review of the current state of the art, a simulation study about error robustness, revealed that the HEVC has weak protection against network losses with significant impact on video quality degradation. Based on this evidence, the first contribution of this work is a new method to reduce the temporal dependencies between motion vectors, by improving the decoded video quality without compromising the compression efficiency. The second contribution of this thesis is a two-stage approach for reducing the mismatch of temporal predictions in case of video streams received with errors or lost data. At the encoding stage, the reference pictures are dynamically distributed based on a constrained Lagrangian rate-distortion optimization to reduce the number of predictions from a single reference. At the streaming stage, a prioritization algorithm, based on spatial dependencies, selects a reduced set of motion vectors to be transmitted, as side information, to reduce mismatched motion predictions at the decoder. The problem of error concealment-aware video coding is also investigated to enhance the overall error robustness. A new approach based on scalable coding and optimally error concealment selection is proposed, where the optimal error concealment modes are found by simulating transmission losses, followed by a saliency-weighted optimisation. Moreover, recovery residual information is encoded using a rate-controlled enhancement layer. Both are transmitted to the decoder to be used in case of data loss. Finally, an adaptive error resilience scheme is proposed to dynamically predict the video stream that achieves the highest decoded quality for a particular loss case. A neural network selects among the various video streams, encoded with different levels of compression efficiency and error protection, based on information from the video signal, the coded stream and the transmission network. Overall, the new robust video coding methods investigated in this thesis yield consistent quality gains in comparison with other existing methods and also the ones implemented in the HEVC reference software. Furthermore, the trade-off between coding efficiency and error robustness is also better in the proposed methods

    Light field image coding with jointly estimated self-similarity bi-prediction

    Get PDF
    This paper proposes an efficient light field image coding (LFC) solution based on High Efficiency Video Coding (HEVC) and a novel Bi-prediction Self-Similarity (Bi-SS) estimation and compensation approach to efficiently explore the inherent non-local spatial correlation of this type of content, where two predictor blocks are jointly estimated from the same search window by using a locally optimal rate constrained algorithm. Moreover, a theoretical analysis of the proposed Bi-SS prediction is also presented, which shows that other non-local spatial prediction schemes proposed in literature are suboptimal in terms of Rate-Distortion (RD) performance and, for this reason, can be considered as restricted cases of the jointly estimated Bi-SS solution proposed here. These theoretical insights are shown to be consistent with the presented experimental results, and demonstrate that the proposed LFC scheme is able to outperform the benchmark solutions with significant gains with respect to HEVC (with up to 61.1% of bit savings) and other state-of-the-art LFC solutions in the literature (with up 16.9% of bit savings).info:eu-repo/semantics/acceptedVersio

    Resource-Constrained Low-Complexity Video Coding for Wireless Transmission

    Get PDF

    End to end Multi-Objective Optimisation of H.264 and HEVC Codecs

    Get PDF
    All multimedia devices now incorporate video CODECs that comply with international video coding standards such as H.264 / MPEG4-AVC and the new High Efficiency Video Coding Standard (HEVC) otherwise known as H.265. Although the standard CODECs have been designed to include algorithms with optimal efficiency, large number of coding parameters can be used to fine tune their operation, within known constraints of for e.g., available computational power, bandwidth, consumer QoS requirements, etc. With large number of such parameters involved, determining which parameters will play a significant role in providing optimal quality of service within given constraints is a further challenge that needs to be met. Further how to select the values of the significant parameters so that the CODEC performs optimally under the given constraints is a further important question to be answered. This thesis proposes a framework that uses machine learning algorithms to model the performance of a video CODEC based on the significant coding parameters. Means of modelling both the Encoder and Decoder performance is proposed. We define objective functions that can be used to model the performance related properties of a CODEC, i.e., video quality, bit-rate and CPU time. We show that these objective functions can be practically utilised in video Encoder/Decoder designs, in particular in their performance optimisation within given operational and practical constraints. A Multi-objective Optimisation framework based on Genetic Algorithms is thus proposed to optimise the performance of a video codec. The framework is designed to jointly minimize the CPU Time, Bit-rate and to maximize the quality of the compressed video stream. The thesis presents the use of this framework in the performance modelling and multi-objective optimisation of the most widely used video coding standard in practice at present, H.264 and the latest video coding standard, H.265/HEVC. When a communication network is used to transmit video, performance related parameters of the communication channel will impact the end-to-end performance of the video CODEC. Network delays and packet loss will impact the quality of the video that is received at the decoder via the communication channel, i.e., even if a video CODEC is optimally configured network conditions will make the experience sub-optimal. Given the above the thesis proposes a design, integration and testing of a novel approach to simulating a wired network and the use of UDP protocol for the transmission of video data. This network is subsequently used to simulate the impact of packet loss and network delays on optimally coded video based on the framework previously proposed for the modelling and optimisation of video CODECs. The quality of received video under different levels of packet loss and network delay is simulated, concluding the impact on transmitted video based on their content and features

    A two-stage approach for robust HEVC coding and streaming

    Get PDF
    The increased compression ratios achieved by the High Efficiency Video Coding (HEVC) standard lead to reduced robustness of coded streams, with increased susceptibility to network errors and consequent video quality degradation. This paper proposes a method based on a two-stage approach to improve the error robustness of HEVC streaming, by reducing temporal error propagation in case of frame loss. The prediction mismatch that occurs at the decoder after frame loss is reduced through the following two stages: (i) at the encoding stage, the reference pictures are dynamically selected based on constraining conditions and Lagrangian optimisation, which distributes the use of reference pictures, by reducing the number of prediction units (PUs) that depend on a single reference; (ii) at the streaming stage, a motion vector (MV) prioritisation algorithm, based on spatial dependencies, selects an optimal sub-set of MVs to be transmitted, redundantly, as side information to reduce mismatched MV predictions at the decoder. The simulation results show that the proposed method significantly reduces the effect of temporal error propagation. Compared to the reference HEVC, the proposed reference picture selection method is able to improve the video quality at low packet loss rates (e.g., 1%) using the same bitrate, achieving quality gains up to 2.3 dB for 10% of packet loss ratio. It is shown, for instance, that the redundant MVs are able to boost the performance achieving quality gains of 3 dB when compared to the reference HEVC, at the cost using 4% increase in total bitrate

    High Performance Multiview Video Coding

    Get PDF
    Following the standardization of the latest video coding standard High Efficiency Video Coding in 2013, in 2014, multiview extension of HEVC (MV-HEVC) was published and brought significantly better compression performance of around 50% for multiview and 3D videos compared to multiple independent single-view HEVC coding. However, the extremely high computational complexity of MV-HEVC demands significant optimization of the encoder. To tackle this problem, this work investigates the possibilities of using modern parallel computing platforms and tools such as single-instruction-multiple-data (SIMD) instructions, multi-core CPU, massively parallel GPU, and computer cluster to significantly enhance the MVC encoder performance. The aforementioned computing tools have very different computing characteristics and misuse of the tools may result in poor performance improvement and sometimes even reduction. To achieve the best possible encoding performance from modern computing tools, different levels of parallelism inside a typical MVC encoder are identified and analyzed. Novel optimization techniques at various levels of abstraction are proposed, non-aggregation massively parallel motion estimation (ME) and disparity estimation (DE) in prediction unit (PU), fractional and bi-directional ME/DE acceleration through SIMD, quantization parameter (QP)-based early termination for coding tree unit (CTU), optimized resource-scheduled wave-front parallel processing for CTU, and workload balanced, cluster-based multiple-view parallel are proposed. The result shows proposed parallel optimization techniques, with insignificant loss to coding efficiency, significantly improves the execution time performance. This , in turn, proves modern parallel computing platforms, with appropriate platform-specific algorithm design, are valuable tools for improving the performance of computationally intensive applications

    Dynamically Reconfigurable Architectures and Systems for Time-varying Image Constraints (DRASTIC) for Image and Video Compression

    Get PDF
    In the current information booming era, image and video consumption is ubiquitous. The associated image and video coding operations require significant computing resources for both small-scale computing systems as well as over larger network systems. For different scenarios, power, bitrate and image quality can impose significant time-varying constraints. For example, mobile devices (e.g., phones, tablets, laptops, UAVs) come with significant constraints on energy and power. Similarly, computer networks provide time-varying bandwidth that can depend on signal strength (e.g., wireless networks) or network traffic conditions. Alternatively, the users can impose different constraints on image quality based on their interests. Traditional image and video coding systems have focused on rate-distortion optimization. More recently, distortion measures (e.g., PSNR) are being replaced by more sophisticated image quality metrics. However, these systems are based on fixed hardware configurations that provide limited options over power consumption. The use of dynamic partial reconfiguration with Field Programmable Gate Arrays (FPGAs) provides an opportunity to effectively control dynamic power consumption by jointly considering software-hardware configurations. This dissertation extends traditional rate-distortion optimization to rate-quality-power/energy optimization and demonstrates a wide variety of applications in both image and video compression. In each application, a family of Pareto-optimal configurations are developed that allow fine control in the rate-quality-power/energy optimization space. The term Dynamically Reconfiguration Architecture Systems for Time-varying Image Constraints (DRASTIC) is used to describe the derived systems. DRASTIC covers both software-only as well as software-hardware configurations to achieve fine optimization over a set of general modes that include: (i) maximum image quality, (ii) minimum dynamic power/energy, (iii) minimum bitrate, and (iv) typical mode over a set of opposing constraints to guarantee satisfactory performance. In joint software-hardware configurations, DRASTIC provides an effective approach for dynamic power optimization. For software configurations, DRASTIC provides an effective method for energy consumption optimization by controlling processing times. The dissertation provides several applications. First, stochastic methods are given for computing quantization tables that are optimal in the rate-quality space and demonstrated on standard JPEG compression. Second, a DRASTIC implementation of the DCT is used to demonstrate the effectiveness of the approach on motion JPEG. Third, a reconfigurable deblocking filter system is investigated for use in the current H.264/AVC systems. Fourth, the dissertation develops DRASTIC for all 35 intra-prediction modes as well as intra-encoding for the emerging High Efficiency Video Coding standard (HEVC)

    Encoder-Driven Inpainting Strategy in Multiview Video Compression

    Get PDF
    In free viewpoint video systems, where a user has the freedom to select a virtual view from which an observation image of the 3D scene is rendered, the scene is commonly represented by texture and depth images from multiple nearby viewpoints. In such representation, there exists data redundancy across multiple dimensions: a single visible 3D voxel may be represented by pixels in multiple viewpoint images (inter-view redundancy), a pixel patch may recur in a distant spatial region of the same image due to self-similarity (inter-patch redundancy), and pixels in a local spatial region tend to be similar (inter-pixel redundancy). It isimportant to exploit these redundancies for effective multiview video compression. Existing schemes attempt to eliminate them via the traditional video coding paradigm of hybrid signal prediction/residual coding; typically, the encoder codes explicit information to guide the decoder to the location of the most similar block along with the signal differential. In this paper, we argue that, given the inherent redundancy in the representation, the decoder can often independently recover missing data via inpainting without explicit directions from encoder, resulting in lower coding overhead. Specifically, after pixels in a reference view are projected to a target view via depth image-based rendering (DIBR) at the decoder, the remaining holes in the target view are filled via an inpainting process in a block-by-block manner. First, blocks are ordered in terms of difficulty-to-inpaint by the decoder. Then, explicit instructions are only sent for the reconstruction of the most difficult blocks. In particular, the missing pixels are explicitly coded via a graph Fourier transform (GFT) or a sparsification procedure using DCT, which leads to low coding cost. For the blocks that are easy to inpaint, the decoder independently completes missing pixels via template-based inpainting. We implemented our encoder-driven inpainting strategy as an extension of High Efficiency Video Coding (HEVC). Experimental results show that our coding strategy can outperform comparable implementation of HEVC by up to 0.8dB in reconstructed image qualit

    Livrable D5.2 of the PERSEE project : 2D/3D Codec architecture

    Get PDF
    Livrable D5.2 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D5.2 du projet. Son titre : 2D/3D Codec architectur
    • …
    corecore