24,636 research outputs found

    Multiflow Transmission in Delay Constrained Cooperative Wireless Networks

    Full text link
    This paper considers the problem of energy-efficient transmission in multi-flow multihop cooperative wireless networks. Although the performance gains of cooperative approaches are well known, the combinatorial nature of these schemes makes it difficult to design efficient polynomial-time algorithms for joint routing, scheduling and power control. This becomes more so when there is more than one flow in the network. It has been conjectured by many authors, in the literature, that the multiflow problem in cooperative networks is an NP-hard problem. In this paper, we formulate the problem, as a combinatorial optimization problem, for a general setting of kk-flows, and formally prove that the problem is not only NP-hard but it is o(n1/7ϵ)o(n^{1/7-\epsilon}) inapproxmiable. To our knowledge*, these results provide the first such inapproxmiablity proof in the context of multiflow cooperative wireless networks. We further prove that for a special case of k = 1 the solution is a simple path, and devise a polynomial time algorithm for jointly optimizing routing, scheduling and power control. We then use this algorithm to establish analytical upper and lower bounds for the optimal performance for the general case of kk flows. Furthermore, we propose a polynomial time heuristic for calculating the solution for the general case and evaluate the performance of this heuristic under different channel conditions and against the analytical upper and lower bounds.Comment: 9 pages, 5 figure

    Dynamic model of optimized supply for organizational units of armed forces (at decentralized procurement)

    Get PDF
    Efficient activity of organizational units in armed forces is impossible without comprehensive and continuous logistics. The key role in the arrangement of logistics is played by supply processes: ordering, purchase, delivery, and storage of material and technical resources (goods). The Complexity and multiplicity of implementing the logistics process assume the use of economic-mathematical modeling, as an efficient tool for supporting decisions, which ensures the selection of the most favorable supply options. This paper provides a dynamic model of optimized supply (at decentralized procurement of material and technical resources), which describes the possible options of arranging the logistics of organizational units of the armed forces. The criterion of global optimization is represented by a normalized performance indicator characterizing the level of provision of organizational units with material and technical resources. The proposed economic-mathematical model is an efficient tool for supporting decisions taken by logistics-management divisions of organizational units of armed forces – at multiple options of implementing the logistic processes and limited financial resources, which allows optimizing the level of provision of organizational units with required material and technical resources (for the entire planning period of supply, regarding change of needs, scope of funds allocated for logistics and logistic costs accompanying the supply process)

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Network correlated data gathering with explicit communication: NP-completeness and algorithms

    Get PDF
    We consider the problem of correlated data gathering by a network with a sink node and a tree-based communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. For source coding of correlated data, we consider a joint entropy-based coding model with explicit communication where coding is simple and the transmission structure optimization is difficult. We first formulate the optimization problem definition in the general case and then we study further a network setting where the entropy conditioning at nodes does not depend on the amount of side information, but only on its availability. We prove that even in this simple case, the optimization problem is NP-hard. We propose some efficient, scalable, and distributed heuristic approximation algorithms for solving this problem and show by numerical simulations that the total transmission cost can be significantly improved over direct transmission or the shortest path tree. We also present an approximation algorithm that provides a tree transmission structure with total cost within a constant factor from the optimal
    corecore