4 research outputs found

    Novel Correspondence-based Approach for Consistent Human Skeleton Extraction

    Get PDF
    This paper presents a novel base-points-driven shape correspondence (BSC) approach to extract skeletons of articulated objects from 3D mesh shapes. The skeleton extraction based on BSC approach is more accurate than the traditional direct skeleton extraction methods. Since 3D shapes provide more geometric information, BSC offers the consistent information between the source shape and the target shapes. In this paper, we first extract the skeleton from a template shape such as the source shape automatically. Then, the skeletons of the target shapes of different poses are generated based on the correspondence relationship with source shape. The accuracy of the proposed method is demonstrated by presenting a comprehensive performance evaluation on multiple benchmark datasets. The results of the proposed approach can be applied to various applications such as skeleton-driven animation, shape segmentation and human motion analysis

    Topological analysis of discrete scalar data

    Get PDF
    This thesis presents a novel computational framework that allows for a robust extraction and quantification of the Morse-Smale complex of a scalar field given on a 2- or 3- dimensional manifold. The proposed framework is based on Forman\u27s discrete Morse theory, which guarantees the topological consistency of the computed complex. Using a graph theoretical formulation of this theory, we present an algorithmic library that computes the Morse-Smale complex combinatorially with an optimal complexity of O(n2)O(n^2) and efficiently creates a multi-level representation of it. We explore the discrete nature of this complex, and relate it to the smooth counterpart. It is often necessary to estimate the feature strength of the individual components of the Morse-Smale complex -- the critical points and separatrices. To do so, we propose a novel output-sensitive strategy to compute the persistence of the critical points. We also extend this wellfounded concept to separatrices by introducing a novel measure of feature strength called separatrix persistence. We evaluate the applicability of our methods in a wide variety of application areas ranging from computer graphics to planetary science to computer and electron tomography.In dieser Dissertation präsentieren wir ein neues System zur robusten Berechnung des Morse-Smale Komplexes auf 2- oder 3-dimensionalen Mannigfaltigkeiten. Das vorgestellte System basiert auf Forman’s diskreter Morsetheorie und garantiert damit die topologische Konsistenz des berechneten Komplexes. Basierend auf einer graphentheoretischer Formulierung präesentieren wir eine Bibliothek von Algorithmen, die es erlaubt, den Morse-Smale Komplex mit einer optimalen Kompliztät von O(n2)O(n^2) kombinatorisch zu berechnen und effizient eine mehrskalige Repräsentation davon erstellt. Wir untersuchen die diskrete Natur dieses Komplexes und vergleichen ihn zu seinem kontinuierlichen Gegenstück. Es ist häufig notwendig, die Merkmalsstärke einzelner Bestandteile des Komplexes -- der kritischen Punkte und Separatrizen -- abzuschätzen. Hierfür stellen wir eine neue outputsensitive Strategie vor, um die Persistenz von kritischen Punkten zu berechen. Wir erweitern dieses fundierte Konzept auf Separatrizen durch die Einführung des Wichtigkeitsmaßes Separatrixpersistenz. Wir evaluieren die Anwendbarkeit unserer Methoden anhand vielfältiger Anwendungen aus den Gebieten der Computergrafik, Planetologie, Computer- und Elektronentomographie

    Correspondences of Persistent Feature Points on Near-Isometric Surfaces

    No full text
    Abstract We present a full pipeline for finding corresponding points between two surfaces based on conceptually simple and computationally efficient components. Our pipeline begins with robust and stable extraction of feature points from the surfaces. We then find a set of near isometric correspondences between the feature points by solving an optimization problem using established components. The performance is evaluated on a large number of 3D models from the following perspectives: robustness w.r.t. isometric deformation, robustness w.r.t. noise and incomplete surfaces, partial matching, and anisometric deformation.

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work
    corecore