69 research outputs found

    Smart Wireless Sensor Networks

    Get PDF
    The recent development of communication and sensor technology results in the growth of a new attractive and challenging area - wireless sensor networks (WSNs). A wireless sensor network which consists of a large number of sensor nodes is deployed in environmental fields to serve various applications. Facilitated with the ability of wireless communication and intelligent computation, these nodes become smart sensors which do not only perceive ambient physical parameters but also be able to process information, cooperate with each other and self-organize into the network. These new features assist the sensor nodes as well as the network to operate more efficiently in terms of both data acquisition and energy consumption. Special purposes of the applications require design and operation of WSNs different from conventional networks such as the internet. The network design must take into account of the objectives of specific applications. The nature of deployed environment must be considered. The limited of sensor nodesďż˝ resources such as memory, computational ability, communication bandwidth and energy source are the challenges in network design. A smart wireless sensor network must be able to deal with these constraints as well as to guarantee the connectivity, coverage, reliability and security of network's operation for a maximized lifetime. This book discusses various aspects of designing such smart wireless sensor networks. Main topics includes: design methodologies, network protocols and algorithms, quality of service management, coverage optimization, time synchronization and security techniques for sensor networks

    Fortified Anonymous Communication Protocol for Location Privacy in WSN: A Modular Approach

    Get PDF
    Wireless sensor network (WSN) consists of many hosts called sensors. These sensors can sense a phenomenon (motion, temperature, humidity, average, max, min, etc.) and represent what they sense in a form of data. There are many applications for WSNs including object tracking and monitoring where in most of the cases these objects need protection. In these applications, data privacy itself might not be as important as the privacy of source location. In addition to the source location privacy, sink location privacy should also be provided. Providing an efficient end-to-end privacy solution would be a challenging task to achieve due to the open nature of the WSN. The key schemes needed for end-to-end location privacy are anonymity, observability, capture likelihood, and safety period. We extend this work to allow for countermeasures against multi-local and global adversaries. We present a network model protected against a sophisticated threat model: passive /active and local/multi-local/global attacks. This work provides a solution for end-to-end anonymity and location privacy as well. We will introduce a framework called fortified anonymous communication (FAC) protocol for WSN.http://dx.doi.org/10.3390/s15030582

    Energy aware performance evaluation of WSNs

    Get PDF
    Distributed sensor networks have been discussed for more than 30 years, but the vision of Wireless Sensor Networks (WSNs) has been brought into reality only by the rapid advancements in the areas of sensor design, information technologies, and wireless networks that have paved the way for the proliferation of WSNs. The unique characteristics of sensor networks introduce new challenges, amongst which prolonging the sensor lifetime is the most important. Energy-efficient solutions are required for each aspect of WSN design to deliver the potential advantages of the WSN phenomenon, hence in both existing and future solutions for WSNs, energy efficiency is a grand challenge. The main contribution of this thesis is to present an approach considering the collaborative nature of WSNs and its correlation characteristics, providing a tool which considers issues from physical to application layer together as entities to enable the framework which facilitates the performance evaluation of WSNs. The simulation approach considered provides a clear separation of concerns amongst software architecture of the applications, the hardware configuration and the WSN deployment unlike the existing tools for evaluation. The reuse of models across projects and organizations is also promoted while realistic WSN lifetime estimations and performance evaluations are possible in attempts of improving performance and maximizing the lifetime of the network. In this study, simulations are carried out with careful assumptions for various layers taking into account the real time characteristics of WSN. The sensitivity of WSN systems are mainly due to their fragile nature when energy consumption is considered. The case studies presented demonstrate the importance of various parameters considered in this study. Simulation-based studies are presented, taking into account the realistic settings from each layer of the protocol stack. Physical environment is considered as well. The performance of the layered protocol stack in realistic settings reveals several important interactions between different layers. These interactions are especially important for the design of WSNs in terms of maximizing the lifetime of the network

    Energy-efficient task-scheduling and networking protocols for secure wireless networks

    Get PDF
    The performance of wireless networks is dependent on a number of factors including the available energy, energy-efficiency, data processing delay, transmission delay, routing decisions, security overhead, etc. Traditionally, due to limited resources, nodes were tasked with only collecting measurements and sending them to a base station or central unit for processing. With increased capabilities of microprocessors the data processing is pushed more toward network and its more capable nodes. This thesis focuses to virtualize the processing resources of the entire network and dynamically distribute processing steps along the routing path while optimizing performance. Additionally, a new multi-key encryption (MKE) scheme is proposed to optimize efficiency while enhancing security. The main benefit of the MKE scheme is the improved resilience of the advanced encryption standard (AES) against correlation power analysis (CPA) attack by breaking the correlation between power consumption and the used secret key. The MKE security scheme is analyzed with network implementation and studied for its effects on network parameters such as network connectivity, resilience against node capture and energy efficiency of the scheme. Moreover, a new analysis methodology is proposed to quantify a resilience of a network against node capture such that the strength of the underlying security mechanisms is taken into account. Furthermore, the tradeoff between security and network performance is addressed by the proposed task-scheduling scheme. Also, the proposed methodology does not make assumption of homogenous [sic] network that is often used in literature to simplify analysis and scheme design. In contrast, the proposed formulation is generic, thus allowing heterogeneous nodes to be used while guaranteeing network performance. Consequently, the proposed scheme creates a wireless computing cloud where the processing tasks are dynamically assigned to the nodes using the Dynamic Programming (DP) methodology. The processing and transmission decisions are analytically derived from network models in order to optimize the utilization of network resources including: available energy, processing capacity, security overhead, bandwidth etc. As a result, the online optimization of network resources is achieved --Abstract, page iv

    Clustering algorithms for sensor networks and mobile ad hoc networks to improve energy efficiency

    Get PDF
    Includes bibliographical references (leaves 161-172).Many clustering algorithms have been proposed to improve energy efficiency of ad hoc networks as this is one primary challenge in ad hoc networks. The design of these clustering algorithms in sensor networks is different from that in mobile ad hoc networks in accordance with their specific characteristics and application purposes. A typical sensor network, which consists of stationary sensor nodes, usually has a data sink because of the limitation on processing capability of sensor nodes. The data traffic of the entire network is directional towards the sink. This directional traffic burdens the nodes/clusters differently according to their distance to the sink. Most clustering algorithms assign a similar number of nodes to each cluster to balance the burden of the clusters without considering the directional data traffic. They thus fail to maximize network lifetime. This dissertation proposes two clustering algorithms. These consider the directional data traffic in order to improve energy efficiency of homogeneous sensor networks with identical sensor nodes and uniform node distribution. One algorithm is for sensor networks with low to medium node density. The other is for sensor networks with high node density. Both algorithms organize the clusters in such a way that the cluster load is proportional to the cluster energy stored, thereby equalizing cluster lifetimes and preventing premature node/cluster death. Furthermore, in a homogeneous sensor network with low to medium node density, the clusterhead is maintained in the central area of the cluster through re-clustering without ripple effect to save more energy. The simulation results show that the proposed algorithms improve both the lifetime of the networks and performance of data being delivered to the sink. A typical mobile ad hoc network, which usually consists of moveable nodes, does not have a data sink. Existing energy-efficient clustering algorithms maintain clusters by periodically broadcasting control messages. In a typical mobile ad hoc network, a greater speed of node usually needs more frequent broadcasting. To efficiently maintain the clusters, the frequency of this periodic broadcasting needs to meet the requirement of the potentially maximum speed of node. When the node speed is low, the unnecessary broadcasting may waste significant energy. Furthermore, some clustering algorithms limit the maximum cluster size to moderate the difference in cluster sizes. Unfortunately, the cluster sizes in these algorithms still experience significant difference. The larger clusters will have higher burdens. Some clustering algorithms restrict the cluster sizes between the maximum and minimum limits. The energy required to maintain these clusters within the maximum and minimum sizes is quite extensive, especially when the nodes are moving quickly. Thus, energy efficiency is not optimized

    Assessing system architectures: the Canonical Decomposition Fuzzy Comparative methodology

    Get PDF
    The impacts of decisions made during the selection of the system architecture propagate throughout the entire system lifecycle. The challenge for system architects is to perform a realistic assessment of an inherently ambiguous system concept. Subject matter expert interpretations, intuition, and heuristics are performed quickly and guide system development in the right overall direction, but these methods are subjective and unrepeatable. Traditional analytical assessments dismiss complexity in a system by assuming severability between system components and are intolerant of ambiguity. To be defensible, a suitable methodology must be repeatable, analytically rigorous, and yet tolerant of ambiguity. The hypothesis for this research is that an architecture assessment methodology capable of achieving these objectives is possible by drawing on the strengths of existing approaches while addressing their collective weaknesses. The proposed methodology is the Canonical Decomposition Fuzzy Comparative approach. The theoretical foundations of this methodology are developed and tested through the assessment of three physical architectures for a peer-to-peer wireless network. An extensible modeling framework is established to decompose high-level system attributes into technical performance measures suitable for analysis via computational modeling. Canonical design primitives are used to assess antenna performance in the form of a comparative analysis between the baseline free space gain patterns and the installed gain patterns. Finally, a fuzzy inference system is used to interpret the comparative feature set and offer a numerical assessment. The results of this experiment support the hypothesis that the proposed methodology is well suited for exposing integration sensitivity and assessing coupled performance in physical architecture concepts --Abstract, page iii

    Influenza virus assembly

    Get PDF
    Influenza A Viren besitzen ein segmentiertes, einzelsträngiges RNA-Genom, welches in Form viraler Ribonukleoprotein (vRNP)-Komplexe verpackt ist. Während das virale Genom im Zellkern repliziert wird, finden Assemblierung und Knospung reifer Viruspartikel an der apikalen Plasmamembran statt. Für die Virusbildung müssen die einzelnen viralen Komponenten hierher gebracht werden. Während intrinsische apikale Signale der viralen Transmembranproteine bekannt sind, sind der zielgerichtete Transport und der Einbau des viralen Genoms in neuentstehende Virionen noch wenig verstanden. In dieser Arbeit wurden potentielle Mechanismen des vRNP-Transportes untersucht, wie die Fähigkeit der vRNPs mit Lipidmembranen zu assoziieren und die intrinsische subzellulären Lokalisation des viralen Nukleoproteins (NP), eines Hauptbestandteils der vRNPs. Es konnte gezeigt werden, dass vRNPs nicht mit Lipidmembranen assoziieren, was mittels Flotation aufgereinigter vRNPs mit Liposomen unterschiedlicher Zusammensetzung untersucht wurde. Die Ergebnisse deuten jedoch darauf hin, dass das virale M1 in der Lage ist, Bindung von vRNPs an negativ-geladene Lipidmembranen zu vermitteln. Subzelluläre Lokalisation von NP wurde des Weiteren durch Expression fluoreszierender NP-Fusionsproteine und Fluoreszenzphotoaktivierung untersucht. Es konnte gezeigt werden, dass NP allein nicht mit zytoplasmatischen Strukturen assoziiert, stattdessen aber umfangreiche Interaktionen im Zellkern eingeht und mit hoher Affinität mit bestimmten Kerndomänen assoziiert, und zwar den Nukleoli sowie kleinen Kerndomänen, welche häufig in der Nähe von Cajal-Körperchen und PML-Körperchen zu finden waren. Schließlich wurde ein experimenteller Ansatz etabliert, welcher erlaubt, den Transport vRNP-ähnlicher Komplexe mittels Fluoreszenzdetektion aufzuzeichnen und Einzelpartikelverfolgungsanalysen durchzuführen. Unterschiedliche Phasen des vRNP-Transportes konnten beobachtet werden und ein 3-Phasen-Transportmodell wird skizziert.Influenza A viruses have a segmented single-stranded RNA genome, which is packed in form of viral ribonucleoprotein (vRNP) complexes. While the viral genome is replicated and transcribed in the host cell nucleus, assembly and budding of mature virus particles take place at the apical plasma membrane. Efficient virus formation requires delivery of all viral components to this site. While intrinsic apical targeting signals of the viral transmembrane proteins have been identified, it still remains poorly understood how the viral genome is transported and targeted into progeny virus particles. In this study, potential targeting mechanisms were investigated like the ability of vRNPs to associate with lipid membranes and the intrinsic ability of the viral nucleoprotein (NP) – which is the major protein component of vRNPs – for subcellular targeting. It could be shown that vRNPs are not able to associate with model membranes in vitro, which was demonstrated by flotation of purified vRNPs with liposomes of different lipid compositions. Results indicated, however, that the matrix protein M1 can mediate binding of vRNPs to negatively charged lipid bilayers. Intrinsic subcellular targeting of NP was further investigated by expression of fluorescent NP fusion protein and fluorescence photoactivation, revealing that NP by itself does not target cytoplasmic structures. It was found to interact extensively with the nuclear compartment instead and to target specific nuclear domains with high affinity, in particular nucleoli and small interchromatin domains that frequently localized in close proximity to Cajal bodies and PML bodies. An experimental approach was finally established that allowed monitoring the transport of vRNP-like complexes in living infected cells by fluorescence detection. It was possible to perform single particle tracking and to describe different stages of vRNP transport between the nucleus and the plasma membrane. A model of three-stage transport is suggested

    Fortified End-to-End Location Privacy and Anonymity in Wireless Sensor Networks: a Modular Approach

    Get PDF
    Wireless sensor network (WSN) consists of many hosts called sensors. These sensors can sense a phenomenon (motion, temperature, humidity, average, max, min, etc.) and represent what they sense in a form of data. There are many applications for WSNs; including object tracking and monitoring where in most of the cases these objects need protection. In these applications, data privacy itself might not be as important as the privacy of source location. In addition to the source location privacy, sink location privacy should also be provided. Providing an efficient end-to-end privacy solution would be a challenging task to achieve due to the open nature of the WSN. The key schemes needed for end-to-end location privacy are anonymity, observability, capture likelihood, and safety period. We extend this work to allow for countermeasures against multi-local and global adversaries. We present a network model that is protected against a sophisticated threat model: passive /active and local/multi-local/global attacks. This work provides a solution for end-to-end anonymity and location privacy as well. We will introduce a framework called fortified anonymous communication (FAC) protocol for WSN

    An architecture framework for enhanced wireless sensor network security

    Get PDF
    This thesis develops an architectural framework to enhance the security of Wireless Sensor Networks (WSNs) and provides the implementation proof through different security countermeasures, which can be used to establish secure WSNs, in a distributed and self-healing manner. Wireless Sensors are used to monitor and control environmental properties such as sound, acceleration, vibration, air pollutants, and temperature. Due to their limited resources in computation capability, memory and energy, their security schemes are susceptible to many kinds of security vulnerabilities. This thesis investigated all possible network attacks on WSNs and at the time of writing, 19 different types of attacks were identified, all of which are discussed including exposures to the attacks, and the impact of those attacks. The author then utilises this work to examine the ZigBee series, which are the new generation of wireless sensor network products with built-in layered security achieved by secure messaging using symmetric cryptography. However, the author was able to uniquely identify several security weaknesses in ZigBee by examining its protocol and launching the possible attacks. It was found that ZigBee is vulnerable to the following attacks, namely: eavesdropping, replay attack, physical tampering and Denial of Services (DoS). The author then provides solutions to improve the ZigBee security through its security schema, including an end-to-end WSN security framework, architecture design and sensor configuration, that can withstand all types of attacks on the WSN and mitigate ZigBee’s WSN security vulnerabilities
    • …
    corecore