3,185 research outputs found

    Noise and disturbance in quantum measurements: an information-theoretic approach

    Get PDF
    We introduce information-theoretic definitions for noise and disturbance in quantum measurements and prove a state-independent noise-disturbance tradeoff relation that these quantities have to satisfy in any conceivable setup. Contrary to previous approaches, the information-theoretic quantities we define are invariant under relabelling of outcomes, and allow for the possibility of using quantum or classical operations to `correct' for the disturbance. We also show how our bound implies strong tradeoff relations for mean square deviations.Comment: v3: to appear on PRL (some issues fixed, supplemental material expanded). v2: replaced with submitted version; 5 two-column pages + 6 one-column pages + 3 figures; one issue corrected and few references added. v1: 17 pages, 3 figure

    Philosophical Aspects of Quantum Information Theory

    Get PDF
    Quantum information theory represents a rich subject of discussion for those interested in the philosphical and foundational issues surrounding quantum mechanics for a simple reason: one can cast its central concerns in terms of a long-familiar question: How does the quantum world differ from the classical one? Moreover, deployment of the concepts of information and computation in novel contexts hints at new (or better) means of understanding quantum mechanics, and perhaps even invites re-assessment of traditional material conceptions of the basic nature of the physical world. In this paper I review some of these philosophical aspects of quantum information theory, begining with an elementary survey of the theory, seeking to highlight some of the principles and heuristics involved. We move on to a discussion of the nature and definition of quantum information and deploy the findings in discussing the puzzles surrounding teleportation. The final two sections discuss, respectively, what one might learn from the development of quantum computation (both about the nature of quantum systems and about the nature of computation) and consider the impact of quantum information theory on the traditional foundational questions of quantum mechanics (treating of the views of Zeilinger, Bub and Fuchs, amongst others).Comment: LaTeX; 55pp; 3 figs. Forthcoming in Rickles (ed.) The Ashgate Companion to the New Philosophy of Physic

    Work and entropy production in generalised Gibbs ensembles

    Get PDF
    Recent years have seen an enormously revived interest in the study of thermodynamic notions in the quantum regime. This applies both to the study of notions of work extraction in thermal machines in the quantum regime, as well as to questions of equilibration and thermalisation of interacting quantum many-body systems as such. In this work we bring together these two lines of research by studying work extraction in a closed system that undergoes a sequence of quenches and equilibration steps concomitant with free evolutions. In this way, we incorporate an important insight from the study of the dynamics of quantum many body systems: the evolution of closed systems is expected to be well described, for relevant observables and most times, by a suitable equilibrium state. We will consider three kinds of equilibration, namely to (i) the time averaged state, (ii) the Gibbs ensemble and (iii) the generalised Gibbs ensemble (GGE), reflecting further constants of motion in integrable models. For each effective description, we investigate notions of entropy production, the validity of the minimal work principle and properties of optimal work extraction protocols. While we keep the discussion general, much room is dedicated to the discussion of paradigmatic non-interacting fermionic quantum many-body systems, for which we identify significant differences with respect to the role of the minimal work principle. Our work not only has implications for experiments with cold atoms, but also can be viewed as suggesting a mindset for quantum thermodynamics where the role of the external heat baths is instead played by the system itself, with its internal degrees of freedom bringing coarse-grained observables to equilibrium.Comment: 22 pages, 4 figures, improvements in presentatio

    From Quantum Optics to Quantum Technologies

    Full text link
    Quantum optics is the study of the intrinsically quantum properties of light. During the second part of the 20th century experimental and theoretical progress developed together; nowadays quantum optics provides a testbed of many fundamental aspects of quantum mechanics such as coherence and quantum entanglement. Quantum optics helped trigger, both directly and indirectly, the birth of quantum technologies, whose aim is to harness non-classical quantum effects in applications from quantum key distribution to quantum computing. Quantum light remains at the heart of many of the most promising and potentially transformative quantum technologies. In this review, we celebrate the work of Sir Peter Knight and present an overview of the development of quantum optics and its impact on quantum technologies research. We describe the core theoretical tools developed to express and study the quantum properties of light, the key experimental approaches used to control, manipulate and measure such properties and their application in quantum simulation, and quantum computing.Comment: 20 pages, 3 figures, Accepted, Prog. Quant. Ele

    Universal Quantum Hamiltonians

    Get PDF
    Quantum many-body systems exhibit an extremely diverse range of phases and physical phenomena. Here, we prove that the entire physics of any other quantum many-body system is replicated in certain simple, "universal" spin-lattice models. We first characterise precisely what it means for one quantum many-body system to replicate the entire physics of another. We then show that certain very simple spin-lattice models are universal in this very strong sense. Examples include the Heisenberg and XY models on a 2D square lattice (with non-uniform coupling strengths). We go on to fully classify all two-qubit interactions, determining which are universal and which can only simulate more restricted classes of models. Our results put the practical field of analogue Hamiltonian simulation on a rigorous footing and take a significant step towards justifying why error correction may not be required for this application of quantum information technology.Comment: 78 pages, 9 figures, 44 theorems etc. v2: Trivial fixes. v3: updated and simplified proof of Thm. 9; 82 pages, 47 theorems etc. v3: Small fix in proof of time-evolution lemma (this fix not in published version
    • 

    corecore